-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsegmentVirilisSong.m
258 lines (206 loc) · 9.09 KB
/
segmentVirilisSong.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
function [maleBoutInfo,femaleBoutInfo,run_data] = ...
segmentVirilisSong(data,likelihoodModels,samplingFrequency)
%Fits song data to previously-defined likelihood models
%Inputs:
% data -> 1d array containing a time series of song
% likelihoodModels -> fitted likelihood models from
% find_songs_from_hand_annotation.m (default:exampleLikelihoodModels)
% samplingFrequency -> data sampling frequency in Hz (default = 1e4)
%
%Outputs:
% maleBoutInfo -> struct containing statistis from found male bouts
% femaleBoutInfo -> struct containing statistis from found female bouts
% run_data -> struct containing statistis from analysis
%
% (C) Gordon J. Berman, Jan Clemens, Kelly M. LaRue, and Mala Murthy, 2015
% Princeton University
addpath('utilities');
addpath('subroutines');
if nargin < 2 || isempty(likelihoodModels)
load('exampleLikelihoodModels.mat','likelihoodModels');
end
if nargin < 3 || isempty(samplingFrequency)
samplingFrequency = 1e4;
end
%initialize parameters
segmentParameters = params_virilis(samplingFrequency);
N = length(data);
maleTestDuration = segmentParameters.maleTestDuration;
wvlt = 'fbsp2-1-2';
fc = segmentParameters.fc;
fs = segmentParameters.fs;
sc = scales_for_freqs(fc,1/fs,wvlt);
likelihoodModels.scales = sc;
fprintf('Computing Wavelet Transform\n');
Cs = cwt(data,sc,wvlt);
fprintf('Computing Power\n');
P = Cs.*conj(Cs);
clear Cs
amps = sum(P)';
%find noise model for this particular data set
[noiseModel,obj,posts,noiseThreshold,idx] = ...
findNoiseModel(P',amps,segmentParameters);
maxNoiseLength = 300000;
if length(idx) > maxNoiseLength
noiseData = data(idx(1:maxNoiseLength));
else
noiseData = data(idx);
end
%run pulse detector to find male bouts
[pulseInfo,pulseInfoF,pulseInfoM,male_song_times_final] = ...
Process_Song_virilis(data,P,noiseData,segmentParameters);
P = P';
amps = sum(P,2);
initial_male_bouts = false(N,1);
male_song_times_final = male_song_times_final(male_song_times_final(:,1)>0,:);
for i=1:length(male_song_times_final(:,1))
initial_male_bouts(male_song_times_final(i,1):male_song_times_final(i,2)) = true;
end
%find likelihood model projections
[probs,likelihoods,noiseP] = ...
findProbabilities_wavelet(P,likelihoodModels,noiseModel,segmentParameters,false);
%find all contiguous sections that are not noise
[~,maxIdx] = max(probs,[],2);
isNoise = noiseP > segmentParameters.noiseThreshold | maxIdx == 3 ...
| likelihoods(:,3) > segmentParameters.noiseLikelihoodThreshold;
isSignal = ~isNoise;
%end recording if pause time too large
stop_time = segmentParameters.stop_recording_time*segmentParameters.fs;
signalTimes = find(isSignal);
firstTime = signalTimes(min([10 length(signalTimes)]));
diffTimes = diff(signalTimes);
stopIdx = find(diffTimes > stop_time & signalTimes(2:end) > firstTime,1,'first');
if ~isempty(stopIdx)
isSignal(signalTimes(stopIdx+1):end) = false;
end
%find male pulses
tmp = probs(:,1:3);
tmp(:,1) = tmp(:,1) + probs(:,4);
[~,maxIdx] = max(tmp,[],2);
isMale_initial = maxIdx == 1 & tmp(:,1) > segmentParameters.maleThreshold;
isMale = (isMale_initial | initial_male_bouts) & isSignal;
%fill in holes in male pulse detection
midIdx = round(N/2);
testVals = zeros(size(isMale));
testVals(midIdx + (-maleTestDuration:maleTestDuration)) = 1;
numL = 2*maleTestDuration + 1;
out = fftshift(ifft(fft(isMale).*conj(fft(testVals)))) ./ numL;
isMale(out >= segmentParameters.minMaleBoutFraction) = true;
maleBouts = bwconncomp(isMale);
lengths = returnCellLengths(maleBouts.PixelIdxList);
isMaleBout = lengths >= segmentParameters.minMaleDuration;
male_song_times_final = zeros(sum(isMaleBout),2);
maleIdx = find(isMaleBout);
isMale = false(size(isMale));
for i=1:length(maleIdx)
male_song_times_final(i,1) = maleBouts.PixelIdxList{maleIdx(i)}(1);
male_song_times_final(i,2) = maleBouts.PixelIdxList{maleIdx(i)}(end);
isMale(male_song_times_final(i,1):male_song_times_final(i,2)) = true;
end
isFemale = isSignal;
for i=1:sum(isMaleBout)
isFemale(male_song_times_final(i,1):male_song_times_final(i,2)) = false;
end
femaleBouts = bwconncomp(isFemale);
lengths = returnCellLengths(femaleBouts.PixelIdxList);
isFemaleBout = lengths >= segmentParameters.minFemalePulseSize;
female_song_times = zeros(sum(isFemaleBout),2);
femaleIdx = find(isFemaleBout);
for i=1:length(femaleIdx)
female_song_times(i,1) = femaleBouts.PixelIdxList{femaleIdx(i)}(1);
female_song_times(i,2) = femaleBouts.PixelIdxList{femaleIdx(i)}(end);
end
%find female pulses during male song regions
[female_pulses,run_data] = ...
find_female_pulses_during_male(male_song_times_final,P,...
likelihoodModels,female_song_times,amps,segmentParameters);
female_pulses = break_up_female_pulses(female_pulses,amps,segmentParameters);
% cull female pulses to remove abberant female pulses based on many "male IPI"s in a row
numPulses = segmentParameters.num_female_IPI_limit;
if mod(numPulses,2) == 0
numPulses = numPulses + 1;
end
sideLength = floor(numPulses/2);
pulseThreshold = segmentParameters.female_IPI_limit * segmentParameters.fs / 1000;
numF = length(female_pulses(:,1));
cull = [-1e10; diff(female_pulses(:,1))] < pulseThreshold;
eliminatePulse = false(numF,1);
for i=1:numF-numPulses+1
if min(cull(i:i+numPulses-1)) == 1
eliminatePulse(i:(i+2*sideLength)) = true;
end
end
female_pulses = female_pulses(~eliminatePulse,:);
%eliminate female pulses at the beginning and end of male bouts
isPulse = true(length(female_pulses(:,1)),1);
for i=1:length(female_pulses(:,1))
if female_pulses(i,1) > 1
currentVal = isMale(female_pulses(i,1));
prevVal = isMale(female_pulses(i,1)-1);
if currentVal && ~prevVal
isPulse(i) = false;
end
end
if female_pulses(i,2) < N
currentVal = isMale(female_pulses(i,2));
nextVal = isMale(female_pulses(i,2)+1);
if currentVal && ~nextVal
isPulse(i) = false;
end
end
end
female_pulses_final = female_pulses(isPulse,:);
%format data structures
L_male = length(male_song_times_final(:,1));
L_female = length(female_pulses_final(:,1));
maleBoutInfo.w0 = male_song_times_final(:,1);
maleBoutInfo.w1 = male_song_times_final(:,2);
maleBoutInfo.wc = mean(male_song_times_final,2);
maleBoutInfo.scmx = zeros(L_male,1);
maleBoutInfo.fcmx = zeros(L_male,1);
maleBoutInfo.x = cell(L_male,1);
maleBoutInfo.wMax = zeros(size(maleBoutInfo.w0));
maleBoutInfo.wMean = zeros(size(maleBoutInfo.w0));
for i=1:L_male
maleBoutInfo.x{i} = data(male_song_times_final(i,1):male_song_times_final(i,2));
q = male_song_times_final(i,1):male_song_times_final(i,2);
[~,maleBoutInfo.wMax(i)] = max(amps(q));
maleBoutInfo.wMax(i) = q(maleBoutInfo.wMax(i));
maleBoutInfo.wMean(i) = sum(q.*amps(q)') / sum(amps(q));
end
femaleBoutInfo.w0 = female_pulses_final(:,1);
femaleBoutInfo.w1 = female_pulses_final(:,2);
femaleBoutInfo.wc = mean(female_pulses_final,2);
femaleBoutInfo.x = cell(L_female,1);
femaleBoutInfo.scmx = zeros(L_female,1);
femaleBoutInfo.fcmx = zeros(L_female,1);
femaleBoutInfo.wMax = zeros(size(femaleBoutInfo.w0));
femaleBoutInfo.wMean = zeros(size(femaleBoutInfo.w0));
for i=1:L_female
femaleBoutInfo.x{i} = data(female_pulses_final(i,1):female_pulses_final(i,2));
q = female_pulses_final(i,1):female_pulses_final(i,2);
[~,femaleBoutInfo.wMax(i)] = max(amps(q));
femaleBoutInfo.wMax(i) = q(femaleBoutInfo.wMax(i));
femaleBoutInfo.wMean(i) = sum(q.*amps(q)') / sum(amps(q));
end
run_data.pulseInfo = pulseInfo;
run_data.pulseInfoF = pulseInfoF;
run_data.amps = amps;
run_data.pulseInfoM = pulseInfoM;
run_data.segmentParameters = segmentParameters;
run_data.initial_male_bouts = initial_male_bouts;
run_data.isSignal = isSignal;
run_data.femaleBouts = femaleBouts;
run_data.maleBouts = maleBouts;
run_data.isMaleBout = isMaleBout;
run_data.probs = probs;
run_data.likelihoods = likelihoods;
run_data.male_song_times_final = male_song_times_final;
run_data.obj = obj;
run_data.posts = posts;
run_data.noiseThreshold = noiseThreshold;
run_data.noiseP = noiseP;
run_data.stoptime = stopIdx;
clear pulseInfo pulseInfoF pulseInfoM male_song_times_final P ampGMM amps
figure
makeMaleFemalePlot(data,maleBoutInfo,femaleBoutInfo)