-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpca_test.py
257 lines (214 loc) · 8.79 KB
/
pca_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np
import imutils
import time
import dlib
import cv2
from math import atan2, cos, sin, sqrt, pi, degrees
def blend_images(frame_list):
for idx, img in enumerate(frame_list,1):
if idx == 1:
first_img = img
continue
else:
second_img = img
second_weight = 1/(idx+1)
first_weight = 1 - second_weight
first_img = cv2.addWeighted(first_img, first_weight, second_img, second_weight, 0)
return first_img
def drawAxis(img, p_, q_, colour, scale):
p = list(p_)
q = list(q_)
angle = atan2(p[1] - q[1], p[0] - q[0]) # angle in radians
hypotenuse = sqrt((p[1] - q[1]) * (p[1] - q[1]) + (p[0] - q[0]) * (p[0] - q[0]))
# Here we lengthen the arrow by a factor of scale
q[0] = p[0] - scale * hypotenuse * cos(angle)
q[1] = p[1] - scale * hypotenuse * sin(angle)
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), colour, 1, cv2.LINE_AA)
# create the arrow hooks
p[0] = q[0] + 9 * cos(angle + pi / 4)
p[1] = q[1] + 9 * sin(angle + pi / 4)
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), colour, 1, cv2.LINE_AA)
p[0] = q[0] + 9 * cos(angle - pi / 4)
p[1] = q[1] + 9 * sin(angle - pi / 4)
cv2.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), colour, 1, cv2.LINE_AA)
def getOrientation(pts, img):
sz = len(pts)
data_pts = np.empty((sz, 2), dtype=np.float64)
for i in range(data_pts.shape[0]):
data_pts[i,0] = pts[i,0,0]
data_pts[i,1] = pts[i,0,1]
# Perform PCA analysis
mean = np.empty((0))
mean, eigenvectors, eigenvalues = cv2.PCACompute2(data_pts, mean)
# Store the center of the object
cntr = (int(mean[0,0]), int(mean[0,1]))
cv2.circle(img, cntr, 3, (255, 0, 255), 2)
p1 = (cntr[0] + 0.02 * eigenvectors[0,0] * eigenvalues[0,0], cntr[1] + 0.02 * eigenvectors[0,1] * eigenvalues[0,0])
p2 = (cntr[0] - 0.02 * eigenvectors[1,0] * eigenvalues[1,0], cntr[1] - 0.02 * eigenvectors[1,1] * eigenvalues[1,0])
drawAxis(img, cntr, p1, (0, 255, 0), 1)
drawAxis(img, cntr, p2, (255, 255, 0), 5)
angle = atan2(eigenvectors[0,1], eigenvectors[0,0]) # orientation in radians
return angle
# start the video stream thread
print("[INFO] starting video stream thread...")
cap = cv2.VideoCapture('./images and samples/100109.mp4')
time.sleep(1.0)
(grabbed, frame) = cap.read()
#cv2.imshow("Image", frame)
#cv2.waitKey(0)
gaussian = cv2.GaussianBlur(frame, (3, 3), 0)
frame_HSV = cv2.cvtColor(gaussian, cv2.COLOR_BGR2HSV)
orange_border = cv2.inRange(frame_HSV, (0, 100, 100), (50, 255, 255))
#cv2.imshow("Image2", orange_border)
#cv2.waitKey(0)
black_border = cv2.threshold(orange_border, 100, 150, cv2.THRESH_BINARY)[1]
#cv2.imshow("black_border", black_border)
#cv2.waitKey(0)
# find contours (i.e., outlines) of the foreground objects in the
# thresholded image
cnts, _ = cv2.findContours(black_border.copy(), cv2.RETR_LIST,
cv2.CHAIN_APPROX_NONE)
#sort contıurs
min_idx=0
min_area=cv2.contourArea(cnts[0])
for i, c in enumerate(cnts):
# Calculate the area of each contour
area = cv2.contourArea(c)
if area < min_area:
min_area = area
min_idx = i
c=cnts[min_idx]
src = black_border.copy()
cv2.drawContours(src, [c], -1, (255, 255, 255), -1)
cv2.imshow("Contours", src)
cv2.waitKey(0)
mask = cv2.threshold(src, 200, 255, cv2.THRESH_BINARY)[1]
cv2.imshow("mask", mask)
cv2.waitKey(0)
#--------------------------------PCA---------
contours, _ = cv2.findContours(mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
c = contours[0]
sz = len(c)
data_pts = np.empty((sz, 2), dtype=np.float64)
for i in range(data_pts.shape[0]):
data_pts[i,0] = c[i,0,0]
data_pts[i,1] = c[i,0,1]
# Perform PCA analysis
mean = np.empty((0))
mean, eigenvectors, eigenvalues = cv2.PCACompute2(data_pts, mean)
# Store the center of the object
cntr = (int(mean[0,0]), int(mean[0,1]))
cv2.circle(mask, cntr, 3, (255, 0, 255), 2)
p1 = (cntr[0] + 0.02 * eigenvectors[0,0] * eigenvalues[0,0], cntr[1] + 0.02 * eigenvectors[0,1] * eigenvalues[0,0])
p2 = (cntr[0] - 0.02 * eigenvectors[1,0] * eigenvalues[1,0], cntr[1] - 0.02 * eigenvectors[1,1] * eigenvalues[1,0])
drawAxis(mask, cntr, p1, (0, 255, 0), 1)
drawAxis(mask, cntr, p2, (255, 255, 0), 5)
angle_mask0 = atan2(eigenvectors[0,1], eigenvectors[0,0]) # orientation in radians
angle_mask1 = atan2(eigenvectors[1,1], eigenvectors[1,0]) # orientation in radians
print("eigenvector0 of mask (angle): ", angle_mask0*180/np.pi if angle_mask0>0 else angle_mask0*180/np.pi+180)
print("eigenvector1 of mask (angle): ", angle_mask1*180/np.pi if angle_mask1>0 else angle_mask1*180/np.pi+180)
cv2.imshow('pca', mask)
cv2.waitKey(0)
#--------------------------------------------
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
output = cv2.bitwise_and(gray, gray, mask=mask)
cv2.imshow('output', output)
cv2.waitKey(0)
summation = output.copy()
frame_list= []
while True:
# if this is a file video stream, then we need to check if
# there any more frames left in the buffer to process
(grabbed, frame) = cap.read()
if not grabbed:
break
# grab the frame from the threaded video file stream, resize
# it, and convert it to grayscale
# channels)
#cv2.imshow("frame", frame)
#cv2.waitKey(0)
# gaussian = cv2.GaussianBlur(frame, (3, 3), 0)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
output = cv2.bitwise_and(gray, gray, mask=mask)
#cv2.imshow("output", output)
#cv2.waitKey(0)
#summation = cv2.addWeighted(summation,0.95,output,0.05,0)
#cv2.imshow("summation", summation)
#cv2.waitKey(0)
frame_list.append(output)
# windowlist=frame_list[-10:]
# blended_windowlist = blend_images(windowlist)
# deneme kısmı ----------
windowlist=frame_list[0:5]
blended_windowlist = blend_images(windowlist)
cv2.imshow("windowlist", blended_windowlist)
cv2.waitKey(0)
# ----------
blended = blend_images(frame_list)
cv2.imshow("blended", blended)
cv2.waitKey(0)
sharpened = cv2.threshold(blended_windowlist, 65, 255, cv2.THRESH_BINARY)[1]
cv2.imshow("sharpened", sharpened)
cv2.waitKey(0)
# otsu
blur = cv2.GaussianBlur(sharpened,(5,5),0)
th3,ret3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
cv2.imshow("ret3", ret3)
cv2.waitKey(0)
print(th3)
# closing
# kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
kernel=np.ones((3,3),np.uint8)
closing = cv2.morphologyEx(ret3, cv2.MORPH_CLOSE, kernel)
cv2.imshow("closing", closing)
cv2.waitKey(0)
# opening
# kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
kernel=np.ones((2,2),np.uint8)
opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)
cv2.imshow("opening", opening)
cv2.waitKey(0)
#--------------------------------PCA---------
contours, _ = cv2.findContours(opening, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
area_list=[]
angle0_list=[]
angle1_list=[]
for i, c in enumerate(contours):
# Calculate the area of each contour
area = cv2.contourArea(c)
# Ignore contours that are too small or too large
if area < 1e2 or 1e5 < area:
continue
area_list.append(area)
sz = len(c)
data_pts = np.empty((sz, 2), dtype=np.float64)
for j in range(data_pts.shape[0]):
data_pts[j,0] = c[j,0,0]
data_pts[j,1] = c[j,0,1]
# Perform PCA analysis
mean = np.empty((0))
mean, eigenvectors, eigenvalues = cv2.PCACompute2(data_pts, mean)
# Store the center of the object
cntr = (int(mean[0,0]), int(mean[0,1]))
cv2.circle(opening, cntr, 3, (255, 0, 255), 2)
p1 = (cntr[0] + 0.1 * eigenvectors[0,0] * eigenvalues[0,0], cntr[1] + 0.1 * eigenvectors[0,1] * eigenvalues[0,0])
p2 = (cntr[0] - 0.1 * eigenvectors[1,0] * eigenvalues[1,0], cntr[1] - 0.1 * eigenvectors[1,1] * eigenvalues[1,0])
drawAxis(opening, cntr, p1, (0, 255, 0), 1)
# drawAxis(opening, cntr, p2, (255, 255, 0), 5)
angle0 = atan2(eigenvectors[0,1], eigenvectors[0,0]) # orientation in radians
angle1 = atan2(eigenvectors[1,1], eigenvectors[1,0]) # orientation in radians
angle0_list.append(angle0)
angle1_list.append(angle1)
angle = atan2(cntr[1] - p1[1], cntr[0] - p1[0]) # angle in radians
print("eigenvector0 of components (angle to center): ", angle*180/np.pi if angle>0 else angle*180/np.pi+180)
anglep= cv2.phase( eigenvectors[1,1], eigenvectors[1,0],angleInDegrees=True) # angle in degree
print("eigenvector0 of components (anglep to center): ",anglep[0] if anglep[0]<=180 else anglep[0]-180)
print("eigenvector0 of components (angle): ", [x*180/np.pi if x>0 else x*180/np.pi+180 for x in angle0_list])
print("eigenvector1 of components (angle): ", [x*180/np.pi if x>0 else x*180/np.pi+180 for x in angle1_list])
cv2.imshow('pca2', opening)
cv2.waitKey(0)
#--------------------------------------------