-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathpredict.py
91 lines (75 loc) · 3 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import argparse
import cv2
import numpy as np
import torch
from cog import BasePredictor, Input, Path
from main_test_swin2sr import define_model, test
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
print("Loading pipeline...")
self.device = "cuda:0"
args = argparse.Namespace()
args.scale = 4
args.large_model = False
tasks = ["classical_sr", "compressed_sr", "real_sr"]
paths = [
"weights/Swin2SR_ClassicalSR_X4_64.pth",
"weights/Swin2SR_CompressedSR_X4_48.pth",
"weights/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth",
]
sizes = [64, 48, 128]
self.models = {}
for task, path, size in zip(tasks, paths, sizes):
args.training_patch_size = size
args.task, args.model_path = task, path
self.models[task] = define_model(args)
self.models[task].eval()
self.models[task] = self.models[task].to(self.device)
def predict(
self,
image: Path = Input(description="Input image"),
task: str = Input(
description="Choose a task",
choices=["classical_sr", "real_sr", "compressed_sr"],
default="real_sr",
),
) -> Path:
"""Run a single prediction on the model"""
model = self.models[task]
window_size = 8
scale = 4
img_lq = cv2.imread(str(image), cv2.IMREAD_COLOR).astype(np.float32) / 255.0
img_lq = np.transpose(
img_lq if img_lq.shape[2] == 1 else img_lq[:, :, [2, 1, 0]], (2, 0, 1)
) # HCW-BGR to CHW-RGB
img_lq = (
torch.from_numpy(img_lq).float().unsqueeze(0).to(self.device)
) # CHW-RGB to NCHW-RGB
# inference
with torch.no_grad():
# pad input image to be a multiple of window_size
_, _, h_old, w_old = img_lq.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
img_lq = torch.cat([img_lq, torch.flip(img_lq, [2])], 2)[
:, :, : h_old + h_pad, :
]
img_lq = torch.cat([img_lq, torch.flip(img_lq, [3])], 3)[
:, :, :, : w_old + w_pad
]
output = model(img_lq)
if task == "compressed_sr":
output = output[0][..., : h_old * scale, : w_old * scale]
else:
output = output[..., : h_old * scale, : w_old * scale]
# save image
output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy()
if output.ndim == 3:
output = np.transpose(
output[[2, 1, 0], :, :], (1, 2, 0)
) # CHW-RGB to HCW-BGR
output = (output * 255.0).round().astype(np.uint8) # float32 to uint8
output_path = "/tmp/out.png"
cv2.imwrite(output_path, output)
return Path(output_path)