forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mnist.R
163 lines (148 loc) · 6.05 KB
/
train_mnist.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
require(argparse)
require(mxnet)
download_ <- function(data_dir) {
dir.create(data_dir, showWarnings = FALSE)
setwd(data_dir)
if ((!file.exists('train-images-idx3-ubyte')) ||
(!file.exists('train-labels-idx1-ubyte')) ||
(!file.exists('t10k-images-idx3-ubyte')) ||
(!file.exists('t10k-labels-idx1-ubyte'))) {
download.file(url='http://data.mxnet.io/mxnet/data/mnist.zip',
destfile='mnist.zip', method='wget')
unzip("mnist.zip")
file.remove("mnist.zip")
}
setwd("..")
}
# multi-layer perceptron
get_mlp <- function() {
data <- mx.symbol.Variable('data')
fc1 <- mx.symbol.FullyConnected(data = data, name='fc1', num_hidden=128)
act1 <- mx.symbol.Activation(data = fc1, name='relu1', act_type="relu")
fc2 <- mx.symbol.FullyConnected(data = act1, name = 'fc2', num_hidden = 64)
act2 <- mx.symbol.Activation(data = fc2, name='relu2', act_type="relu")
fc3 <- mx.symbol.FullyConnected(data = act2, name='fc3', num_hidden=10)
mlp <- mx.symbol.SoftmaxOutput(data = fc3, name = 'softmax')
mlp
}
# LeCun, Yann, Leon Bottou, Yoshua Bengio, and Patrick
# Haffner. "Gradient-based learning applied to document recognition."
# Proceedings of the IEEE (1998)
get_lenet <- function() {
data <- mx.symbol.Variable('data')
# first conv
conv1 <- mx.symbol.Convolution(data=data, kernel=c(5,5), num_filter=20)
tanh1 <- mx.symbol.Activation(data=conv1, act_type="tanh")
pool1 <- mx.symbol.Pooling(data=tanh1, pool_type="max",
kernel=c(2,2), stride=c(2,2))
# second conv
conv2 <- mx.symbol.Convolution(data=pool1, kernel=c(5,5), num_filter=50)
tanh2 <- mx.symbol.Activation(data=conv2, act_type="tanh")
pool2 <- mx.symbol.Pooling(data=tanh2, pool_type="max",
kernel=c(2,2), stride=c(2,2))
# first fullc
flatten <- mx.symbol.Flatten(data=pool2)
fc1 <- mx.symbol.FullyConnected(data=flatten, num_hidden=500)
tanh3 <- mx.symbol.Activation(data=fc1, act_type="tanh")
# second fullc
fc2 <- mx.symbol.FullyConnected(data=tanh3, num_hidden=10)
# loss
lenet <- mx.symbol.SoftmaxOutput(data=fc2, name='softmax')
lenet
}
get_iterator <- function(data_shape) {
get_iterator_impl <- function(args) {
data_dir = args$data_dir
if (!grepl('://', args$data_dir))
download_(args$data_dir)
flat <- TRUE
if (length(data_shape) == 3) flat <- FALSE
train = mx.io.MNISTIter(
image = paste0(data_dir, "train-images-idx3-ubyte"),
label = paste0(data_dir, "train-labels-idx1-ubyte"),
input_shape = data_shape,
batch_size = args$batch_size,
shuffle = TRUE,
flat = flat)
val = mx.io.MNISTIter(
image = paste0(data_dir, "t10k-images-idx3-ubyte"),
label = paste0(data_dir, "t10k-labels-idx1-ubyte"),
input_shape = data_shape,
batch_size = args$batch_size,
flat = flat)
ret = list(train=train, value=val)
}
get_iterator_impl
}
parse_args <- function() {
parser <- ArgumentParser(description='train an image classifer on mnist')
parser$add_argument('--network', type='character', default='mlp',
choices = c('mlp', 'lenet'),
help = 'the cnn to use')
parser$add_argument('--data-dir', type='character', default='mnist/',
help='the input data directory')
parser$add_argument('--gpus', type='character',
help='the gpus will be used, e.g "0,1,2,3"')
parser$add_argument('--batch-size', type='integer', default=128,
help='the batch size')
parser$add_argument('--lr', type='double', default=.05,
help='the initial learning rate')
parser$add_argument('--mom', type='double', default=.9,
help='momentum for sgd')
parser$add_argument('--model-prefix', type='character',
help='the prefix of the model to load/save')
parser$add_argument('--num-round', type='integer', default=10,
help='the number of iterations over training data to train the model')
parser$add_argument('--kv-store', type='character', default='local',
help='the kvstore type')
parser$parse_args()
}
args = parse_args()
if (args$network == 'mlp') {
data_shape <- c(784)
net <- get_mlp()
} else {
data_shape <- c(28, 28, 1)
net <- get_lenet()
}
# train
data_loader <- get_iterator(data_shape)
data <- data_loader(args)
train <- data$train
val <- data$value
if (is.null(args$gpus)) {
devs <- mx.cpu()
} else {
devs <- lapply(unlist(strsplit(args$gpus, ",")), function(i) {
mx.gpu(as.integer(i))
})
}
mx.set.seed(0)
model <- mx.model.FeedForward.create(
X = train,
eval.data = val,
ctx = devs,
symbol = net,
num.round = args$num_round,
array.batch.size = args$batch_size,
learning.rate = args$lr,
momentum = args$mom,
eval.metric = mx.metric.accuracy,
initializer = mx.init.uniform(0.07),
batch.end.callback = mx.callback.log.train.metric(100))