forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MinimumAsciiDeleteSumForTwoStrings.cpp
55 lines (49 loc) · 2.02 KB
/
MinimumAsciiDeleteSumForTwoStrings.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
// Source : https://leetcode.com/problems/minimum-ascii-delete-sum-for-two-strings/
// Author : Hao Chen
// Date : 2019-01-30
/*****************************************************************************************************
*
* Given two strings s1, s2, find the lowest ASCII sum of deleted characters to make two strings equal.
*
* Example 1:
*
* Input: s1 = "sea", s2 = "eat"
* Output: 231
* Explanation: Deleting "s" from "sea" adds the ASCII value of "s" (115) to the sum.
* Deleting "t" from "eat" adds 116 to the sum.
* At the end, both strings are equal, and 115 + 116 = 231 is the minimum sum possible to achieve this.
*
* Example 2:
*
* Input: s1 = "delete", s2 = "leet"
* Output: 403
* Explanation: Deleting "dee" from "delete" to turn the string into "let",
* adds 100[d]+101[e]+101[e] to the sum. Deleting "e" from "leet" adds 101[e] to the sum.
* At the end, both strings are equal to "let", and the answer is 100+101+101+101 = 403.
* If instead we turned both strings into "lee" or "eet", we would get answers of 433 or 417, which
* are higher.
*
* Note:
* 0 .
* All elements of each string will have an ASCII value in [97, 122].
******************************************************************************************************/
class Solution {
public:
int minimumDeleteSum(string s1, string s2) {
// Dynamic Programm - simlar with : Edit Distance
vector < vector <int> > dp ( s1.size()+1, vector<int>( s2.size()+1, 0) );
// s1 is row, s2 is column
for (int i=1; i<=s2.size(); i++) dp[0][i] = dp[0][i-1] + s2[i-1];
for (int i=1; i<=s1.size(); i++) dp[i][0] = dp[i-1][0] + s1[i-1];
for (int i=1; i<=s1.size(); i++){
for (int j=1; j<=s2.size(); j++) {
if ( s1[i-1] == s2[j-1] ) {
dp[i][j] = dp[i-1][j-1];
}else{
dp[i][j] = min(dp[i-1][j] + s1[i-1], dp[i][j-1] + s2[j-1]);
}
}
}
return dp[s1.size()][s2.size()];
}
};