-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathracer.py
299 lines (245 loc) · 9.96 KB
/
racer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
"""
Overview:
TensorRT/Tensorflow/Tensorflow Lite Racer for the DonkeyCar Virtual Race.
Usage:
racer.py (--host=<ip_address>) (--name=<car_name>) (--model=<model_path>) (--delay=<seconds>)
Example:
python racer.py --host=127.0.0.1 --name=naisy --model=linear.engine --delay=0.2
Supported models:
TensorRT 8: linear.engine
Tensorflow: linear.h5
Tensorflow Lite: linear.tflite
"""
import socket
import cv2
import select
import time
from docopt import docopt
import json
import logging
from io import BytesIO
import base64
from PIL import Image
import numpy as np
import queue as Queue
import threading
import re
import traceback
from pynput import keyboard
import os
logger = logging.getLogger(__name__)
logger.setLevel(logging.NOTSET) # NOTSET:0, DEBUG:10, INFO:20, WARNING:30, ERROR:40, CRITICAL:50
# モデルロードと推論を行うクラス(RaceClientから推論部分を抜粋・変更)
class InferenceModel():
def __init__(self, model_path):
if model_path.endswith('.engine'):
self.model = TRTModel(model_path=model_path)
elif model_path.endswith('.h5'):
self.model = TFModel(model_path=model_path)
elif model_path.endswith('.tflite'):
self.model = TFLiteModel(model_path=model_path)
def infer(self, image):
x = self.model.preprocess(image)
[throttle, steering] = self.model.infer(x)
return throttle[0], steering[0]
# 画像ファイルから推論し、結果を動画に保存する関数
def process_images_to_video(image_dir, model_path, output_video, start_frame=0, end_frame=1000, fps=20):
model = InferenceModel(model_path=model_path)
# MP4形式で動画の設定
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # MP4 コーデック
out = cv2.VideoWriter(output_video, fourcc, fps, (320, 24)) # 画像サイズに応じて変更
count = 0
start_time = time.time()
for i in range(start_frame, end_frame + 1):
image_path = os.path.join(image_dir, f"{i}_cam_image_array_.jpg")
if not os.path.exists(image_path):
print(f"Image {image_path} not found.")
continue
image = cv2.imread(image_path)
throttle, steering = model.infer(image)
if throttle > 1.0:
throttle = 1.0
elif throttle < -1.0:
throttle = 1.0
if steering > 1.0:
steering = 1.0
elif steering < -1.0:
steering = -1.0
#print(f"{steering}, {throttle}")
# 推論結果を画像に描画(オプション)
image = draw_circle(image, throttle, steering)
# 動画にフレームを追加
out.write(image)
if count == 0:
start_time = time.time()
count += 1
out.release()
print(f"Video saved to {output_video}")
end_time = time.time()
print(f"fps: {(count/(end_time - start_time)):0.2f}")
def draw_circle(image, throttle, steering):
# 画像の高さと幅を取得
height, width = image.shape[:2]
# throttleとsteeringの値に基づいて、丸の位置を計算
if steering <= -1.0 and throttle <= -1.0:
center_coordinates = (int(width * 0.1), int(height * 0.9)) # 左下
elif steering == 0.0 and throttle == 0.0:
center_coordinates = (int(width * 0.5), int(height * 0.5)) # 真ん中
elif steering >= 1.0 and throttle >= 1.0:
center_coordinates = (int(width * 0.9), int(height * 0.1)) # 右上
else:
# 標準化されていない値の場合、中心を基準に位置を計算
center_coordinates = (int(width * (0.5 + steering * 0.5)), int(height * (0.5 - throttle * 0.5)))
# throttleの値に応じて、丸の色を選択
if throttle >= 0:
color = (0, 255, 0) # 緑色
else:
color = (0, 0, 255) # 赤色
# 円を描画
radius = 3 # 丸の半径
thickness = -1 # 塗りつぶし
image = cv2.circle(image, center_coordinates, radius, color, thickness)
return image
class TRTModel():
def __init__(self, model_path):
self.engine = None
self.inputs = None
self.outputs = None
self.bindings = None
self.stream = None
self.runtime = trt.Runtime(TRT_LOGGER)
MODEL_TYPE = 'linear'
self.engine = self.load_engine(model_path)
self.inputs, self.outputs, self.bindings, self.stream = self.allocate_buffers(self.engine)
self.context = self.engine.create_execution_context()
def close(self):
self.context = None
def load_engine(self, model_path):
# load tensorrt model from file
with open(model_path, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime:
engine = runtime.deserialize_cuda_engine(f.read())
print(f'Load model from {model_path}.')
return engine
def save_engine(self, engine, model_path):
# save tensorrt model to file
serialized_engine = engine.serialize()
with open(model_path, "wb") as f, trt.Runtime(TRT_LOGGER) as runtime:
engine = runtime.deserialize_cuda_engine(serialized_engine)
f.write(engine.serialize())
print(f'Save model to {model_path}.')
def allocate_buffers(self, engine):
inputs = []
outputs = []
bindings = []
stream = cuda.Stream()
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate host and device buffers
host_memory = cuda.pagelocked_empty(size, dtype)
device_memory = cuda.mem_alloc(host_memory.nbytes)
bindings.append(int(device_memory))
if engine.binding_is_input(binding):
inputs.append(HostDeviceMemory(host_memory, device_memory))
else:
outputs.append(HostDeviceMemory(host_memory, device_memory))
return inputs, outputs, bindings, stream
def preprocess(self, image):
# image: rgb image
# RGB convert from [0, 255] to [0.0, 1.0]
x = image.astype(np.float32) / 255.0
# HWC to CHW format
x = x.transpose((2, 0, 1)) # keras -> ONNX -> TRT8, don't need HWC to CHW. model inputs uses HWC.
# Flatten it to a 1D array.
x = x.reshape(-1)
#x = x.ravel()
return x
def infer(self, x, batch_size=1):
# The first input is the image. Copy to host memory.
image_input = self.inputs[0]
np.copyto(image_input.host_memory, x)
# Transfer input data to the GPU.
[cuda.memcpy_htod_async(inp.device_memory, inp.host_memory, self.stream) for inp in self.inputs]
# Run inference.
self.context.execute_async(batch_size=batch_size, bindings=self.bindings, stream_handle=self.stream.handle)
# Transfer predictions back from the GPU.
[cuda.memcpy_dtoh_async(out.host_memory, out.device_memory, self.stream) for out in self.outputs]
# Synchronize the stream
self.stream.synchronize()
# Return only the host outputs.
#print(self.outputs)
return [out.host_memory for out in self.outputs]
class TFLiteModel():
def __init__(self, model_path):
self.interpreter = self.load_model(model_path)
def close(self):
return
def load_model(self, model_path):
print(f'Load model from {model_path}.')
interpreter = tf.lite.Interpreter(model_path)
interpreter.allocate_tensors()
self.input_details = interpreter.get_input_details()
self.output_details = interpreter.get_output_details()
return interpreter
def preprocess(self, image):
# image: rgb image
# RGB convert from [0, 255] to [0.0, 1.0]
x = image.astype(np.float32) / 255.0
# Flatten it to a 1D array.
#x = x.reshape(-1)
#x = x.ravel()
return x
def infer(self, x, batch_size=1):
self.interpreter.set_tensor(self.input_details[0]['index'], [x])
self.interpreter.invoke()
steering = self.interpreter.get_tensor(self.output_details[0]['index'])[0]
throttle = self.interpreter.get_tensor(self.output_details[1]['index'])[0]
return [throttle, steering]
class TFModel():
def __init__(self, model_path):
self.model = self.load_model(model_path)
def close(self):
return
def load_model(self, model_path):
print(f'Load model from {model_path}.')
model = keras.models.load_model(model_path)
return model
def preprocess(self, image):
# image: rgb image
# RGB convert from [0, 255] to [0.0, 1.0]
x = image.astype(np.float32) / 255.0
# Flatten it to a 1D array.
#x = x.reshape(-1)
x = x[None, :, :, :]
#x = x.ravel()
return x
def infer(self, x, batch_size=1):
outputs = self.model(x, training=False)
steering = outputs[0][0].numpy() # EagerTensor to numpy
throttle = outputs[1][0].numpy()
return [throttle, steering]
if __name__ == '__main__':
args = docopt(__doc__)
if args['--model'].endswith('.engine'):
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
from collections import namedtuple
global HostDeviceMemory
global TRT8
global TRT7
global TRT_LOGGER
HostDeviceMemory = namedtuple('HostDeviceMemory', 'host_memory device_memory')
TRT8 = 8
TRT7 = 7
TRT_LOGGER = trt.Logger()
elif args['--model'].endswith('.h5'):
import tensorflow as tf
import tensorflow.keras as keras
elif args['--model'].endswith('.tflite'):
import tensorflow as tf
main(host=args['--host'], name=args['--name'], model_path=args['--model'], delay=args['--delay'])
#image_dir = 'data/images'
#model_path = args['--model']
#output_video = 'output.mp4'
#process_images_to_video(image_dir, model_path, output_video, start_frame=0, end_frame=6000, fps=60)