-
Notifications
You must be signed in to change notification settings - Fork 0
/
agent_ppo.py
402 lines (315 loc) · 18.3 KB
/
agent_ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import os
import time
import gym
import numpy as np
import numpy.random as rd
import torch
import torch.nn as nn
from copy import deepcopy
from torch import Tensor
from torch.distributions.normal import Normal
class ActorPPO(nn.Module):
def __init__(self, dims: [int], state_dim: int, action_dim: int):
super().__init__()
self.net = build_mlp(dims=[state_dim, *dims, action_dim])
self.action_std_log = nn.Parameter(torch.zeros((1, action_dim)), requires_grad=True) # trainable parameter
def forward(self, state: Tensor) -> Tensor:
return self.net(state).tanh() # action.tanh()
def get_action(self, state: Tensor) -> (Tensor, Tensor): # for exploration
action_avg = self.net(state)
action_std = self.action_std_log.exp()
dist = Normal(action_avg, action_std)
action = dist.sample()
logprob = dist.log_prob(action).sum(1)
return action, logprob
def get_logprob_entropy(self, state: Tensor, action: Tensor) -> (Tensor, Tensor):
action_avg = self.net(state)
action_std = self.action_std_log.exp()
dist = Normal(action_avg, action_std)
logprob = dist.log_prob(action).sum(1)
entropy = dist.entropy().sum(1)
return logprob, entropy
@staticmethod
def convert_action_for_env(action: Tensor) -> Tensor:
return action.tanh()
class CriticPPO(nn.Module):
def __init__(self, dims: [int], state_dim: int, _action_dim: int):
super().__init__()
self.net = build_mlp(dims=[state_dim, *dims, 1])
def forward(self, state: Tensor) -> Tensor:
return self.net(state) # advantage value
def build_mlp(dims: [int]) -> nn.Sequential: # MLP (MultiLayer Perceptron)
net_list = []
for i in range(len(dims) - 1):
net_list.extend([nn.Linear(dims[i], dims[i + 1]), nn.ReLU()])
del net_list[-1] # remove the activation of output layer
return nn.Sequential(*net_list)
class Config:
def __init__(self, agent_class=None, env_class=None, env_args=None):
self.env_class = env_class # env = env_class(**env_args)
self.env_args = env_args # env = env_class(**env_args)
if env_args is None: # dummy env_args
env_args = {'env_name': None, 'state_dim': None, 'action_dim': None, 'if_discrete': None}
self.env_name = env_args['env_name'] # the name of environment. Be used to set 'cwd'.
self.state_dim = env_args['state_dim'] # vector dimension (feature number) of state
self.action_dim = env_args['action_dim'] # vector dimension (feature number) of action
self.if_discrete = env_args['if_discrete'] # discrete or continuous action space
self.agent_class = agent_class # agent = agent_class(...)
'''Arguments for reward shaping'''
self.gamma = 0.99 # discount factor of future rewards
self.reward_scale = 1.0 # an approximate target reward usually be closed to 256
'''Arguments for training'''
self.gpu_id = int(0) # `int` means the ID of single GPU, -1 means CPU
self.net_dims = (64, 32) # the middle layer dimension of MLP (MultiLayer Perceptron)
self.learning_rate = 6e-5 # 2 ** -14 ~= 6e-5
self.soft_update_tau = 5e-3 # 2 ** -8 ~= 5e-3
self.batch_size = int(128) # num of transitions sampled from replay buffer.
self.horizon_len = int(2000) # collect horizon_len step while exploring, then update network
self.buffer_size = None # ReplayBuffer size. Empty the ReplayBuffer for on-policy.
self.repeat_times = 8.0 # repeatedly update network using ReplayBuffer to keep critic's loss small
'''Arguments for evaluate'''
self.cwd = None # current working directory to save model. None means set automatically
self.break_step = +np.inf # break training if 'total_step > break_step'
self.eval_times = int(32) # number of times that get episodic cumulative return
self.eval_per_step = int(2e4) # evaluate the agent per training steps
def init_before_training(self):
if self.cwd is None: # set cwd (current working directory) for saving model
self.cwd = f'./{self.env_name}_{self.agent_class.__name__[5:]}'
os.makedirs(self.cwd, exist_ok=True)
def get_gym_env_args(env, if_print: bool) -> dict:
if {'unwrapped', 'observation_space', 'action_space', 'spec'}.issubset(dir(env)): # isinstance(env, gym.Env):
env_name = env.unwrapped.spec.id
state_shape = env.observation_space.shape
state_dim = state_shape[0] if len(state_shape) == 1 else state_shape # sometimes state_dim is a list
if_discrete = isinstance(env.action_space, gym.spaces.Discrete)
if if_discrete: # make sure it is discrete action space
action_dim = env.action_space.n
elif isinstance(env.action_space, gym.spaces.Box): # make sure it is continuous action space
action_dim = env.action_space.shape[0]
env_args = {'env_name': env_name, 'state_dim': state_dim, 'action_dim': action_dim, 'if_discrete': if_discrete}
print(f"env_args = {repr(env_args)}") if if_print else None
return env_args
def kwargs_filter(function, kwargs: dict) -> dict:
import inspect
sign = inspect.signature(function).parameters.values()
sign = {val.name for val in sign}
common_args = sign.intersection(kwargs.keys())
return {key: kwargs[key] for key in common_args} # filtered kwargs
def build_env(env_class=None, env_args=None):
if env_class.__module__ == 'gym.envs.registration': # special rule
env = env_class(id=env_args['env_name'])
else:
env = env_class(**kwargs_filter(env_class.__init__, env_args.copy()))
for attr_str in ('env_name', 'state_dim', 'action_dim', 'if_discrete'):
setattr(env, attr_str, env_args[attr_str])
return env
class AgentBase:
def __init__(self, net_dims: [int], state_dim: int, action_dim: int, gpu_id: int = 0, args: Config = Config()):
self.state_dim = state_dim
self.action_dim = action_dim
self.gamma = args.gamma
self.batch_size = args.batch_size
self.repeat_times = args.repeat_times
self.reward_scale = args.reward_scale
self.soft_update_tau = args.soft_update_tau
self.states = None # assert self.states == (1, state_dim)
self.device = torch.device(f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu")
act_class = getattr(self, "act_class", None)
cri_class = getattr(self, "cri_class", None)
self.act = self.act_target = act_class(net_dims, state_dim, action_dim).to(self.device)
self.cri = self.cri_target = cri_class(net_dims, state_dim, action_dim).to(self.device) \
if cri_class else self.act
self.act_optimizer = torch.optim.Adam(self.act.parameters(), args.learning_rate)
self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), args.learning_rate) \
if cri_class else self.act_optimizer
self.criterion = torch.nn.SmoothL1Loss()
@staticmethod
def optimizer_update(optimizer, objective: Tensor):
optimizer.zero_grad()
objective.backward()
optimizer.step()
@staticmethod
def soft_update(target_net: torch.nn.Module, current_net: torch.nn.Module, tau: float):
for tar, cur in zip(target_net.parameters(), current_net.parameters()):
tar.data.copy_(cur.data * tau + tar.data * (1.0 - tau))
class AgentPPO(AgentBase):
def __init__(self, net_dims: [int], state_dim: int, action_dim: int, gpu_id: int = 0, args: Config = Config()):
self.if_off_policy = False
self.act_class = getattr(self, "act_class", ActorPPO)
self.cri_class = getattr(self, "cri_class", CriticPPO)
AgentBase.__init__(self, net_dims, state_dim, action_dim, gpu_id, args)
self.ratio_clip = getattr(args, "ratio_clip", 0.25) # `ratio.clamp(1 - clip, 1 + clip)`
self.lambda_gae_adv = getattr(args, "lambda_gae_adv", 0.95) # could be 0.80~0.99
self.lambda_entropy = getattr(args, "lambda_entropy", 0.01) # could be 0.00~0.10
self.lambda_entropy = torch.tensor(self.lambda_entropy, dtype=torch.float32, device=self.device)
def explore_env(self, env, horizon_len: int) -> [Tensor]:
states = torch.zeros((horizon_len, self.state_dim), dtype=torch.float32).to(self.device)
actions = torch.zeros((horizon_len, self.action_dim), dtype=torch.float32).to(self.device)
logprobs = torch.zeros(horizon_len, dtype=torch.float32).to(self.device)
rewards = torch.zeros(horizon_len, dtype=torch.float32).to(self.device)
dones = torch.zeros(horizon_len, dtype=torch.bool).to(self.device)
ary_state = self.states[0]
get_action = self.act.get_action
convert = self.act.convert_action_for_env
for i in range(horizon_len):
state = torch.as_tensor(ary_state, dtype=torch.float32, device=self.device)
action, logprob = [t.squeeze(0) for t in get_action(state.unsqueeze(0))[:2]]
ary_action = convert(action).detach().cpu().numpy()
ary_state, reward, done, _ = env.step(ary_action)
if done:
ary_state = env.reset()
states[i] = state
actions[i] = action
logprobs[i] = logprob
rewards[i] = reward
dones[i] = done
self.states[0] = ary_state
rewards = (rewards * self.reward_scale).unsqueeze(1)
undones = (1 - dones.type(torch.float32)).unsqueeze(1)
return states, actions, logprobs, rewards, undones
def update_net(self, buffer) -> [float]:
with torch.no_grad():
states, actions, logprobs, rewards, undones = buffer
buffer_size = states.shape[0]
'''get advantages reward_sums'''
bs = 2 ** 10 # set a smaller 'batch_size' when out of GPU memory.
values = [self.cri(states[i:i + bs]) for i in range(0, buffer_size, bs)]
values = torch.cat(values, dim=0).squeeze(1) # values.shape == (buffer_size, )
advantages = self.get_advantages(rewards, undones, values) # advantages.shape == (buffer_size, )
reward_sums = advantages + values # reward_sums.shape == (buffer_size, )
del rewards, undones, values
advantages = (advantages - advantages.mean()) / (advantages.std(dim=0) + 1e-5)
assert logprobs.shape == advantages.shape == reward_sums.shape == (buffer_size,)
'''update network'''
obj_critics = 0.0
obj_actors = 0.0
update_times = int(buffer_size * self.repeat_times / self.batch_size)
assert update_times >= 1
for _ in range(update_times):
indices = torch.randint(buffer_size, size=(self.batch_size,), requires_grad=False)
state = states[indices]
action = actions[indices]
logprob = logprobs[indices]
advantage = advantages[indices]
reward_sum = reward_sums[indices]
value = self.cri(state).squeeze(1) # critic network predicts the reward_sum (Q value) of state
obj_critic = self.criterion(value, reward_sum)
self.optimizer_update(self.cri_optimizer, obj_critic)
new_logprob, obj_entropy = self.act.get_logprob_entropy(state, action)
ratio = (new_logprob - logprob.detach()).exp()
surrogate1 = advantage * ratio
surrogate2 = advantage * ratio.clamp(1 - self.ratio_clip, 1 + self.ratio_clip)
obj_surrogate = torch.min(surrogate1, surrogate2).mean()
obj_actor = obj_surrogate + obj_entropy.mean() * self.lambda_entropy
self.optimizer_update(self.act_optimizer, -obj_actor)
obj_critics += obj_critic.item()
obj_actors += obj_actor.item()
a_std_log = getattr(self.act, 'a_std_log', torch.zeros(1)).mean()
return obj_critics / update_times, obj_actors / update_times, a_std_log.item()
def get_advantages(self, rewards: Tensor, undones: Tensor, values: Tensor) -> Tensor:
advantages = torch.empty_like(values) # advantage value
masks = undones * self.gamma
horizon_len = rewards.shape[0]
next_state = torch.tensor(self.states, dtype=torch.float32).to(self.device)
next_value = self.cri(next_state).detach()[0, 0]
advantage = 0 # last_gae_lambda
for t in range(horizon_len - 1, -1, -1):
delta = rewards[t] + masks[t] * next_value - values[t]
advantages[t] = advantage = delta + masks[t] * self.lambda_gae_adv * advantage
next_value = values[t]
return advantages
class PendulumEnv(gym.Wrapper): # a demo of custom gym env
def __init__(self):
gym.logger.set_level(40) # Block warning
gym_env_name = "Pendulum-v0" if gym.__version__ < '0.18.0' else "Pendulum-v1"
super().__init__(env=gym.make(gym_env_name))
'''the necessary env information when you design a custom env'''
self.env_name = gym_env_name # the name of this env.
self.state_dim = self.observation_space.shape[0] # feature number of state
self.action_dim = self.action_space.shape[0] # feature number of action
self.if_discrete = False # discrete action or continuous action
def reset(self) -> np.ndarray: # reset the agent in env
return self.env.reset()
def step(self, action: np.ndarray) -> (np.ndarray, float, bool, dict): # agent interacts in env
# We suggest that adjust action space to (-1, +1) when designing a custom env.
state, reward, done, info_dict = self.env.step(action * 2)
return state.reshape(self.state_dim), float(reward), done, info_dict
def train_agent(args: Config):
args.init_before_training()
env = build_env(args.env_class, args.env_args)
agent = args.agent_class(args.net_dims, args.state_dim, args.action_dim, gpu_id=args.gpu_id, args=args)
agent.states = env.reset()[np.newaxis, :]
evaluator = Evaluator(eval_env=build_env(args.env_class, args.env_args),
eval_per_step=args.eval_per_step,
eval_times=args.eval_times,
cwd=args.cwd)
torch.set_grad_enabled(False)
while True: # start training
buffer_items = agent.explore_env(env, args.horizon_len)
torch.set_grad_enabled(True)
logging_tuple = agent.update_net(buffer_items)
torch.set_grad_enabled(False)
evaluator.evaluate_and_save(agent.act, args.horizon_len, logging_tuple)
if (evaluator.total_step > args.break_step) or os.path.exists(f"{args.cwd}/stop"):
torch.save(agent.act.state_dict(), args.cwd + '/actor.pth')
break # stop training when reach `break_step` or `mkdir cwd/stop`
def render_agent(env_class, env_args: dict, net_dims: [int], agent_class, actor_path: str, render_times: int = 8):
env = build_env(env_class, env_args)
state_dim = env_args['state_dim']
action_dim = env_args['action_dim']
agent = agent_class(net_dims, state_dim, action_dim, gpu_id=-1)
actor = agent.act
print(f"| render and load actor from: {actor_path}")
actor.load_state_dict(torch.load(actor_path, map_location=lambda storage, loc: storage))
for i in range(render_times):
cumulative_reward, episode_step = get_rewards_and_steps(env, actor, if_render=True)
print(f"|{i:4} cumulative_reward {cumulative_reward:9.3f} episode_step {episode_step:5.0f}")
class Evaluator:
def __init__(self, eval_env, eval_per_step: int = 1e4, eval_times: int = 8, cwd: str = '.'):
self.cwd = cwd
self.env_eval = eval_env
self.eval_step = 0
self.total_step = 0
self.start_time = time.time()
self.eval_times = eval_times # number of times that get episodic cumulative return
self.eval_per_step = eval_per_step # evaluate the agent per training steps
self.recorder = []
print(f"\n| `step`: Number of samples, or total training steps, or running times of `env.step()`."
f"\n| `time`: Time spent from the start of training to this moment."
f"\n| `avgR`: Average value of cumulative rewards, which is the sum of rewards in an episode."
f"\n| `stdR`: Standard dev of cumulative rewards, which is the sum of rewards in an episode."
f"\n| `avgS`: Average of steps in an episode."
f"\n| `objC`: Objective of Critic network. Or call it loss function of critic network."
f"\n| `objA`: Objective of Actor network. It is the average Q value of the critic network."
f"\n| {'step':>8} {'time':>8} | {'avgR':>8} {'stdR':>6} {'avgS':>6} | {'objC':>8} {'objA':>8}")
def evaluate_and_save(self, actor, horizon_len: int, logging_tuple: tuple):
self.total_step += horizon_len
if self.eval_step + self.eval_per_step > self.total_step:
return
self.eval_step = self.total_step
rewards_steps_ary = [get_rewards_and_steps(self.env_eval, actor) for _ in range(self.eval_times)]
rewards_steps_ary = np.array(rewards_steps_ary, dtype=np.float32)
avg_r = rewards_steps_ary[:, 0].mean() # average of cumulative rewards
std_r = rewards_steps_ary[:, 0].std() # std of cumulative rewards
avg_s = rewards_steps_ary[:, 1].mean() # average of steps in an episode
used_time = time.time() - self.start_time
self.recorder.append((self.total_step, used_time, avg_r))
print(f"| {self.total_step:8.2e} {used_time:8.0f} "
f"| {avg_r:8.2f} {std_r:6.2f} {avg_s:6.0f} "
f"| {logging_tuple[0]:8.2f} {logging_tuple[1]:8.2f}")
def get_rewards_and_steps(env, actor, if_render: bool = False) -> (float, int): # cumulative_rewards and episode_steps
device = next(actor.parameters()).device # net.parameters() is a Python generator.
state = env.reset()
episode_steps = 0
cumulative_returns = 0.0 # sum of rewards in an episode
for episode_steps in range(12345):
tensor_state = torch.as_tensor(state, dtype=torch.float32, device=device).unsqueeze(0)
tensor_action = actor(tensor_state)
action = tensor_action.detach().cpu().numpy()[0] # not need detach(), because using torch.no_grad() outside
state, reward, done, _ = env.step(action)
cumulative_returns += reward
if if_render:
env.render()
if done:
break
return cumulative_returns, episode_steps + 1