-
Notifications
You must be signed in to change notification settings - Fork 846
/
Copy path6.py
60 lines (52 loc) · 1.83 KB
/
6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import sys
input = sys.stdin.readline # 시간 초과를 피하기 위한 빠른 입력 함수
sys.setrecursionlimit(int(1e5)) # 런타임 오류를 피하기 위한 재귀 깊이 제한 설정
LOG = 21 # 2^20 = 1,000,000
n = int(input())
parent = [[0] * LOG for _ in range(n + 1)] # 부모 노드 정보
d = [0] * (n + 1) # 각 노드까지의 깊이
c = [0] * (n + 1) # 각 노드의 깊이가 계산되었는지 여부
graph = [[] for _ in range(n + 1)] # 그래프(graph) 정보
for _ in range(n - 1):
a, b = map(int, input().split())
graph[a].append(b)
graph[b].append(a)
# 루트 노드부터 시작하여 깊이(depth)를 구하는 함수
def dfs(x, depth):
c[x] = True
d[x] = depth
for y in graph[x]:
if c[y]: # 이미 깊이를 구했다면 넘기기
continue
parent[y][0] = x
dfs(y, depth + 1)
# 전체 부모 관계를 설정하는 함수
def set_parent():
dfs(1, 0) # 루트 노드는 1번 노드
for i in range(1, LOG):
for j in range(1, n + 1):
parent[j][i] = parent[parent[j][i - 1]][i - 1]
# A와 B의 최소 공통 조상을 찾는 함수
def lca(a, b):
# b가 더 깊도록 설정
if d[a] > d[b]:
a, b = b, a
# 먼저 깊이(depth)가 동일하도록
for i in range(LOG - 1, -1, -1):
if d[b] - d[a] >= (1 << i):
b = parent[b][i]
# 부모가 같아지도록
if a == b:
return a;
for i in range(LOG - 1, -1, -1):
# 조상을 향해 거슬러 올라가기
if parent[a][i] != parent[b][i]:
a = parent[a][i]
b = parent[b][i]
# 이후에 부모가 찾고자 하는 조상
return parent[a][0]
set_parent()
m = int(input())
for i in range(m):
a, b = map(int, input().split())
print(lca(a, b))