forked from quadjr/aframe-gaussian-splatting
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.js
656 lines (593 loc) · 21.2 KB
/
index.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
AFRAME.registerComponent("gaussian_splatting", {
schema: {
src: {type: 'string', default: "train.splat"},
},
init: function () {
// aframe-specific data
this.el.sceneEl.renderer.setPixelRatio(1);
this.el.sceneEl.renderer.xr.setFramebufferScaleFactor(0.5);
this.initGL( this.el.sceneEl.camera.el.components.camera.camera, this.el.object3D, this.el.sceneEl.renderer);
this.loadData(this.data.src);
},
// also works from vanilla three.js
initGL: function(camera, object, renderer) {
this.camera = camera;
this.object = object;
this.renderer = renderer;
this.textureReady = false;
this.object.frustumCulled = false;
this.centerAndScaleData = new Float32Array(4096 * 4096 * 4);
this.covAndColorData = new Uint32Array(4096 * 4096 * 4);
this.centerAndScaleTexture = new THREE.DataTexture(this.centerAndScaleData, 4096, 4096, THREE.RGBA, THREE.FloatType);
this.centerAndScaleTexture.needsUpdate = true;
this.covAndColorTexture = new THREE.DataTexture(this.covAndColorData, 4096, 4096, THREE.RGBAIntegerFormat, THREE.UnsignedIntType);
this.covAndColorTexture.internalFormat = "RGBA32UI";
this.covAndColorTexture.needsUpdate = true;
let splatIndexArray = new Uint32Array(4096 * 4096);
const splatIndexes = new THREE.InstancedBufferAttribute(splatIndexArray, 1, false);
splatIndexes.setUsage(THREE.DynamicDrawUsage);
const baseGeometry = new THREE.BufferGeometry();
const positionsArray = new Float32Array(6 * 3);
const positions = new THREE.BufferAttribute(positionsArray, 3);
baseGeometry.setAttribute('position', positions);
positions.setXYZ(2, -2.0, 2.0, 0.0);
positions.setXYZ(1, 2.0, 2.0, 0.0);
positions.setXYZ(0, -2.0, -2.0, 0.0);
positions.setXYZ(5, -2.0, -2.0, 0.0);
positions.setXYZ(4, 2.0, 2.0, 0.0);
positions.setXYZ(3, 2.0, -2.0, 0.0);
positions.needsUpdate = true;
const geometry = new THREE.InstancedBufferGeometry().copy(baseGeometry);
geometry.setAttribute('splatIndex', splatIndexes);
geometry.instanceCount = 1;
const material = new THREE.ShaderMaterial( {
uniforms : {
viewport: {value: new Float32Array([1980, 1080])}, // Dummy. will be overwritten
focal: {value: 1000.0}, // Dummy. will be overwritten
centerAndScaleTexture: {value: this.centerAndScaleTexture},
covAndColorTexture: {value: this.covAndColorTexture},
gsProjectionMatrix: {value: this.getProjectionMatrix()},
gsModelViewMatrix: {value: this.getModelViewMatrix()},
},
vertexShader: `
precision highp usampler2D;
out vec4 vColor;
out vec2 vPosition;
uniform vec2 viewport;
uniform float focal;
uniform mat4 gsProjectionMatrix;
uniform mat4 gsModelViewMatrix;
attribute uint splatIndex;
uniform sampler2D centerAndScaleTexture;
uniform usampler2D covAndColorTexture;
vec2 unpackInt16(in uint value) {
int v = int(value);
int v0 = v >> 16;
int v1 = (v & 0xFFFF);
if((v & 0x8000) != 0)
v1 |= 0xFFFF0000;
return vec2(float(v1), float(v0));
}
void main () {
ivec2 texPos = ivec2(splatIndex%uint(4096),splatIndex/uint(4096));
vec4 centerAndScaleData = texelFetch(centerAndScaleTexture, texPos, 0);
vec4 center = vec4(centerAndScaleData.xyz, 1);
vec4 camspace = gsModelViewMatrix * center;
vec4 pos2d = gsProjectionMatrix * camspace;
float bounds = 1.2 * pos2d.w;
if (pos2d.z < -pos2d.w || pos2d.x < -bounds || pos2d.x > bounds
|| pos2d.y < -bounds || pos2d.y > bounds) {
gl_Position = vec4(0.0, 0.0, 2.0, 1.0);
return;
}
uvec4 covAndColorData = texelFetch(covAndColorTexture, texPos, 0);
vec2 cov3D_M11_M12 = unpackInt16(covAndColorData.x) * centerAndScaleData.w;
vec2 cov3D_M13_M22 = unpackInt16(covAndColorData.y) * centerAndScaleData.w;
vec2 cov3D_M23_M33 = unpackInt16(covAndColorData.z) * centerAndScaleData.w;
mat3 Vrk = mat3(
cov3D_M11_M12.x, cov3D_M11_M12.y, cov3D_M13_M22.x,
cov3D_M11_M12.y, cov3D_M13_M22.y, cov3D_M23_M33.x,
cov3D_M13_M22.x, cov3D_M23_M33.x, cov3D_M23_M33.y
);
mat3 J = mat3(
focal / camspace.z, 0., -(focal * camspace.x) / (camspace.z * camspace.z),
0., -focal / camspace.z, (focal * camspace.y) / (camspace.z * camspace.z),
0., 0., 0.
);
mat3 W = transpose(mat3(gsModelViewMatrix));
mat3 T = W * J;
mat3 cov = transpose(T) * Vrk * T;
vec2 vCenter = vec2(pos2d) / pos2d.w;
float diagonal1 = cov[0][0] + 0.3;
float offDiagonal = cov[0][1];
float diagonal2 = cov[1][1] + 0.3;
float mid = 0.5 * (diagonal1 + diagonal2);
float radius = length(vec2((diagonal1 - diagonal2) / 2.0, offDiagonal));
float lambda1 = mid + radius;
float lambda2 = max(mid - radius, 0.1);
vec2 diagonalVector = normalize(vec2(offDiagonal, lambda1 - diagonal1));
vec2 v1 = min(sqrt(2.0 * lambda1), 1024.0) * diagonalVector;
vec2 v2 = min(sqrt(2.0 * lambda2), 1024.0) * vec2(diagonalVector.y, -diagonalVector.x);
uint colorUint = covAndColorData.w;
vColor = vec4(
float(colorUint & uint(0xFF)) / 255.0,
float((colorUint >> uint(8)) & uint(0xFF)) / 255.0,
float((colorUint >> uint(16)) & uint(0xFF)) / 255.0,
float(colorUint >> uint(24)) / 255.0
);
vPosition = position.xy;
gl_Position = vec4(
vCenter
+ position.x * v2 / viewport * 2.0
+ position.y * v1 / viewport * 2.0, pos2d.z / pos2d.w, 1.0);
}
`,
fragmentShader: `
in vec4 vColor;
in vec2 vPosition;
void main () {
float A = -dot(vPosition, vPosition);
if (A < -4.0) discard;
float B = exp(A) * vColor.a;
gl_FragColor = vec4(vColor.rgb, B);
}
`,
blending : THREE.CustomBlending,
blendSrcAlpha : THREE.OneFactor,
depthTest : true,
depthWrite: false,
transparent: true
} );
material.onBeforeRender = ((renderer, scene, camera, geometry, object, group) => {
let projectionMatrix = this.getProjectionMatrix(camera);
mesh.material.uniforms.gsProjectionMatrix.value = projectionMatrix;
mesh.material.uniforms.gsModelViewMatrix.value = this.getModelViewMatrix(camera);
let viewport = new THREE.Vector4();
renderer.getCurrentViewport(viewport);
const focal = (viewport.w / 2.0) * Math.abs(projectionMatrix.elements[5]);
material.uniforms.viewport.value[0] = viewport.z;
material.uniforms.viewport.value[1] = viewport.w;
material.uniforms.focal.value = focal;
});
const mesh = new THREE.Mesh(geometry, material);
mesh.frustumCulled = false;
this.object.add(mesh);
this.worker = new Worker(
URL.createObjectURL(
new Blob(["(", this.createWorker.toString(), ")(self)"], {
type: "application/javascript",
}),
),
);
this.worker.onmessage = (e) => {
let indexes = new Uint32Array(e.data.sortedIndexes);
mesh.geometry.attributes.splatIndex.set(indexes);
mesh.geometry.attributes.splatIndex.needsUpdate = true;
mesh.geometry.instanceCount = indexes.length;
this.sortReady = true;
};
this.sortReady = true;
},
loadData: function(src) {
this.loadedVertexCount = 0;
this.rowLength = 3 * 4 + 3 * 4 + 4 + 4;
this.worker.postMessage({method: "clear"});
const sleep = ms => new Promise(resolve => setTimeout(resolve, ms));
fetch(src)
.then(async (data) => {
const reader = data.body.getReader();
let bytesDownloaded = 0;
let bytesProcesses = 0;
let _totalDownloadBytes = data.headers.get("Content-Length");
let totalDownloadBytes = _totalDownloadBytes ? parseInt(_totalDownloadBytes) : undefined;
const chunks = [];
const start = Date.now();
let lastReportedProgress = 0;
let isPly = src.endsWith(".ply");
while (true) {
try {
const { value, done } = await reader.read();
if (done) {
console.log("Completed download.");
break;
}
bytesDownloaded += value.length;
if (totalDownloadBytes != undefined) {
const mbps = (bytesDownloaded / 1024 / 1024) / ((Date.now() - start) / 1000);
const percent = bytesDownloaded / totalDownloadBytes * 100;
if (percent - lastReportedProgress > 1) {
console.log("download progress:", percent.toFixed(2) + "%", mbps.toFixed(2) + " Mbps");
lastReportedProgress = percent;
}
} else {
console.log("download progress:", bytesDownloaded, ", unknown total");
}
chunks.push(value);
if(!this.textureReady &&
this.renderer.properties.get( this.centerAndScaleTexture) &&
this.renderer.properties.get( this.covAndColorTexture)){
this.textureReady = true;
}
const bytesRemains = bytesDownloaded - bytesProcesses;
if(!isPly &&this.textureReady && bytesRemains > this.rowLength){
let vertexCount = Math.floor(bytesRemains / this.rowLength);
const concatenatedChunksbuffer = new Uint8Array(bytesRemains);
let offset = 0;
for (const chunk of chunks) {
concatenatedChunksbuffer.set(chunk, offset);
offset += chunk.length;
}
chunks.length = 0;
if(bytesRemains > vertexCount * this.rowLength){
const extra_data = new Uint8Array(bytesRemains - vertexCount * this.rowLength);
extra_data.set(concatenatedChunksbuffer.subarray(bytesRemains - extra_data.length, bytesRemains), 0);
chunks.push(extra_data);
}
const buffer = new Uint8Array(vertexCount * this.rowLength);
buffer.set(concatenatedChunksbuffer.subarray(0, buffer.byteLength), 0);
this.pushDataBuffer(buffer.buffer, vertexCount);
bytesProcesses += vertexCount * this.rowLength;
}
} catch (error) {
console.error(error);
break;
}
}
if(bytesDownloaded - bytesProcesses > 0){
// Concatenate the chunks into a single Uint8Array
let concatenatedChunks = new Uint8Array(
chunks.reduce((acc, chunk) => acc + chunk.length, 0)
);
let offset = 0;
for (const chunk of chunks) {
concatenatedChunks.set(chunk, offset);
offset += chunk.length;
}
if(isPly){
concatenatedChunks = new Uint8Array(this.processPlyBuffer(concatenatedChunks.buffer));
}
this.pushDataBuffer(concatenatedChunks.buffer, Math.floor(concatenatedChunks.byteLength/this.rowLength));
}
});
},
pushDataBuffer: function(buffer, vertexCount) {
if(this.loadedVertexCount + vertexCount > 4096*4096){
console.log("vertexCount limited to 4096*4096", vertexCount);
vertexCount = 4096*4096 - this.loadedVertexCount;
}
if(vertexCount <= 0){
return;
}
let u_buffer = new Uint8Array(buffer);
let f_buffer = new Float32Array(buffer);
let matrices = new Float32Array(vertexCount * 16);
const covAndColorData_uint8 = new Uint8Array(this.covAndColorData.buffer);
const covAndColorData_int16 = new Int16Array(this.covAndColorData.buffer);
for (let i = 0; i < vertexCount; i++) {
let quat = new THREE.Quaternion(
(u_buffer[32 * i + 28 + 1] - 128) / 128.0,
(u_buffer[32 * i + 28 + 2] - 128) / 128.0,
-(u_buffer[32 * i + 28 + 3] - 128) / 128.0,
(u_buffer[32 * i + 28 + 0] - 128) / 128.0,
);
let center = new THREE.Vector3(
f_buffer[8 * i + 0],
f_buffer[8 * i + 1],
-f_buffer[8 * i + 2]
);
let scale = new THREE.Vector3(
f_buffer[8 * i + 3 + 0],
f_buffer[8 * i + 3 + 1],
f_buffer[8 * i + 3 + 2]
);
let mtx = new THREE.Matrix4();
mtx.makeRotationFromQuaternion(quat);
mtx.transpose();
mtx.scale(scale);
let mtx_t = mtx.clone()
mtx.transpose();
mtx.premultiply(mtx_t);
mtx.setPosition(center);
let cov_indexes = [0, 1, 2, 5, 6, 10];
let max_value = 0.0;
for(let j = 0; j < cov_indexes.length; j++){
if(Math.abs(mtx.elements[cov_indexes[j]]) > max_value){
max_value = Math.abs(mtx.elements[cov_indexes[j]]);
}
}
let destOffset = this.loadedVertexCount * 4 + i * 4;
this.centerAndScaleData[destOffset + 0] = center.x;
this.centerAndScaleData[destOffset + 1] = center.y;
this.centerAndScaleData[destOffset + 2] = center.z;
this.centerAndScaleData[destOffset + 3] = max_value / 32767.0;
destOffset = this.loadedVertexCount * 8 + i * 4 * 2;
for(let j = 0; j < cov_indexes.length; j++){
covAndColorData_int16[destOffset + j] = parseInt(mtx.elements[cov_indexes[j]] * 32767.0 / max_value);
}
// RGBA
destOffset = this.loadedVertexCount * 16 + (i * 4 + 3) * 4;
covAndColorData_uint8[destOffset + 0] = u_buffer[32 * i + 24 + 0];
covAndColorData_uint8[destOffset + 1] = u_buffer[32 * i + 24 + 1];
covAndColorData_uint8[destOffset + 2] = u_buffer[32 * i + 24 + 2];
covAndColorData_uint8[destOffset + 3] = u_buffer[32 * i + 24 + 3];
// Store scale and transparent to remove splat in sorting process
mtx.elements[15] = Math.max(scale.x, scale.y, scale.z) * u_buffer[32 * i + 24 + 3] / 255.0;
for(let j = 0; j < 16; j++){
matrices[i * 16 + j] = mtx.elements[j];
}
}
const gl = this.renderer.getContext();
while(vertexCount > 0){
let width = 0;
let height = 0;
let xoffset = (this.loadedVertexCount%4096);
let yoffset = Math.floor(this.loadedVertexCount/4096);
if(this.loadedVertexCount%4096 != 0){
width = Math.min(4096, xoffset + vertexCount) - xoffset;
height = 1;
}else if(Math.floor(vertexCount/4096) > 0){
width = 4096;
height = Math.floor(vertexCount/4096);
}else{
width = vertexCount%4096;
height = 1;
}
const centerAndScaleTextureProperties = this.renderer.properties.get( this.centerAndScaleTexture );
gl.bindTexture(gl.TEXTURE_2D, centerAndScaleTextureProperties.__webglTexture);
gl.texSubImage2D(gl.TEXTURE_2D, 0, xoffset, yoffset, width, height, gl.RGBA, gl.FLOAT, this.centerAndScaleData, this.loadedVertexCount * 4);
const covAndColorTextureProperties = this.renderer.properties.get( this.covAndColorTexture );
gl.bindTexture(gl.TEXTURE_2D, covAndColorTextureProperties.__webglTexture);
gl.texSubImage2D(gl.TEXTURE_2D, 0, xoffset, yoffset, width, height, gl.RGBA_INTEGER, gl.UNSIGNED_INT, this.covAndColorData, this.loadedVertexCount * 4);
this.loadedVertexCount += width * height;
vertexCount -= width * height;
}
this.worker.postMessage({
method: "push",
matrices: matrices.buffer
}, [matrices.buffer]);
},
tick: function(time, timeDelta) {
if(this.sortReady){
this.sortReady = false;
let camera_mtx = this.getModelViewMatrix().elements;
let view = new Float32Array([camera_mtx[2], camera_mtx[6], camera_mtx[10], camera_mtx[14]]);
this.worker.postMessage({
method: "sort",
view: view.buffer,
}, [view.buffer]);
}
},
getProjectionMatrix: function(camera) {
if(!camera){
camera = this.camera;
}
let mtx = camera.projectionMatrix.clone();
mtx.elements[4] *= -1;
mtx.elements[5] *= -1;
mtx.elements[6] *= -1;
mtx.elements[7] *= -1;
return mtx;
},
getModelViewMatrix: function(camera) {
if(!camera){
camera = this.camera;
}
const viewMatrix = camera.matrixWorld.clone();
viewMatrix.elements[1] *= -1.0;
viewMatrix.elements[4] *= -1.0;
viewMatrix.elements[6] *= -1.0;
viewMatrix.elements[9] *= -1.0;
viewMatrix.elements[13] *= -1.0;
const mtx = this.object.matrixWorld.clone();
mtx.invert();
mtx.elements[1] *= -1.0;
mtx.elements[4] *= -1.0;
mtx.elements[6] *= -1.0;
mtx.elements[9] *= -1.0;
mtx.elements[13] *= -1.0;
mtx.multiply(viewMatrix);
mtx.invert();
return mtx;
},
createWorker: function (self) {
let matrices = undefined;
const sortSplats = function sortSplats(matrices, view){
const vertexCount = matrices.length/16;
let threshold = -0.001;
let maxDepth = -Infinity;
let minDepth = Infinity;
let depthList = new Float32Array(vertexCount);
let sizeList = new Int32Array(depthList.buffer);
let validIndexList = new Int32Array(vertexCount);
let validCount = 0;
for (let i = 0; i < vertexCount; i++) {
// Sign of depth is reversed
let depth =
( view[0] * matrices[i * 16 + 12]
+ view[1] * matrices[i * 16 + 13]
+ view[2] * matrices[i * 16 + 14]
+ view[3]);
// Skip behind of camera and small, transparent splat
if(depth < 0 && matrices[i * 16 + 15] > threshold * depth){
depthList[validCount] = depth;
validIndexList[validCount] = i;
validCount++;
if (depth > maxDepth) maxDepth = depth;
if (depth < minDepth) minDepth = depth;
};
}
// This is a 16 bit single-pass counting sort
let depthInv = (256 * 256 - 1) / (maxDepth - minDepth);
let counts0 = new Uint32Array(256*256);
for (let i = 0; i < validCount; i++) {
sizeList[i] = ((depthList[i] - minDepth) * depthInv) | 0;
counts0[sizeList[i]]++;
}
let starts0 = new Uint32Array(256*256);
for (let i = 1; i < 256*256; i++) starts0[i] = starts0[i - 1] + counts0[i - 1];
let depthIndex = new Uint32Array(validCount);
for (let i = 0; i < validCount; i++) depthIndex[starts0[sizeList[i]]++] = validIndexList[i];
return depthIndex;
};
self.onmessage = (e) => {
if(e.data.method == "clear"){
matrices = undefined;
}
if(e.data.method == "push"){
const new_matrices = new Float32Array(e.data.matrices);
if(matrices === undefined){
matrices = new_matrices;
}else{
resized = new Float32Array(matrices.length + new_matrices.length);
resized.set(matrices);
resized.set(new_matrices, matrices.length);
matrices = resized;
}
}
if(e.data.method == "sort"){
if(matrices === undefined){
const sortedIndexes = new Uint32Array(1);
self.postMessage({sortedIndexes}, [sortedIndexes.buffer]);
}else{
const view = new Float32Array(e.data.view);
const sortedIndexes = sortSplats(matrices, view);
self.postMessage({sortedIndexes}, [sortedIndexes.buffer]);
}
}
};
},
processPlyBuffer: function (inputBuffer) {
const ubuf = new Uint8Array(inputBuffer);
// 10KB ought to be enough for a header...
const header = new TextDecoder().decode(ubuf.slice(0, 1024 * 10));
const header_end = "end_header\n";
const header_end_index = header.indexOf(header_end);
if (header_end_index < 0)
throw new Error("Unable to read .ply file header");
const vertexCount = parseInt(/element vertex (\d+)\n/.exec(header)[1]);
console.log("Vertex Count", vertexCount);
let row_offset = 0,
offsets = {},
types = {};
const TYPE_MAP = {
double: "getFloat64",
int: "getInt32",
uint: "getUint32",
float: "getFloat32",
short: "getInt16",
ushort: "getUint16",
uchar: "getUint8",
};
for (let prop of header
.slice(0, header_end_index)
.split("\n")
.filter((k) => k.startsWith("property "))) {
const [p, type, name] = prop.split(" ");
const arrayType = TYPE_MAP[type] || "getInt8";
types[name] = arrayType;
offsets[name] = row_offset;
row_offset += parseInt(arrayType.replace(/[^\d]/g, "")) / 8;
}
console.log("Bytes per row", row_offset, types, offsets);
let dataView = new DataView(
inputBuffer,
header_end_index + header_end.length,
);
let row = 0;
const attrs = new Proxy(
{},
{
get(target, prop) {
if (!types[prop]) throw new Error(prop + " not found");
return dataView[types[prop]](
row * row_offset + offsets[prop],
true,
);
},
},
);
console.time("calculate importance");
let sizeList = new Float32Array(vertexCount);
let sizeIndex = new Uint32Array(vertexCount);
for (row = 0; row < vertexCount; row++) {
sizeIndex[row] = row;
if (!types["scale_0"]) continue;
const size =
Math.exp(attrs.scale_0) *
Math.exp(attrs.scale_1) *
Math.exp(attrs.scale_2);
const opacity = 1 / (1 + Math.exp(-attrs.opacity));
sizeList[row] = size * opacity;
}
console.timeEnd("calculate importance");
console.time("sort");
sizeIndex.sort((b, a) => sizeList[a] - sizeList[b]);
console.timeEnd("sort");
// 6*4 + 4 + 4 = 8*4
// XYZ - Position (Float32)
// XYZ - Scale (Float32)
// RGBA - colors (uint8)
// IJKL - quaternion/rot (uint8)
const rowLength = 3 * 4 + 3 * 4 + 4 + 4;
const buffer = new ArrayBuffer(rowLength * vertexCount);
console.time("build buffer");
for (let j = 0; j < vertexCount; j++) {
row = sizeIndex[j];
const position = new Float32Array(buffer, j * rowLength, 3);
const scales = new Float32Array(buffer, j * rowLength + 4 * 3, 3);
const rgba = new Uint8ClampedArray(
buffer,
j * rowLength + 4 * 3 + 4 * 3,
4,
);
const rot = new Uint8ClampedArray(
buffer,
j * rowLength + 4 * 3 + 4 * 3 + 4,
4,
);
if (types["scale_0"]) {
const qlen = Math.sqrt(
attrs.rot_0 ** 2 +
attrs.rot_1 ** 2 +
attrs.rot_2 ** 2 +
attrs.rot_3 ** 2,
);
rot[0] = (attrs.rot_0 / qlen) * 128 + 128;
rot[1] = (attrs.rot_1 / qlen) * 128 + 128;
rot[2] = (attrs.rot_2 / qlen) * 128 + 128;
rot[3] = (attrs.rot_3 / qlen) * 128 + 128;
scales[0] = Math.exp(attrs.scale_0);
scales[1] = Math.exp(attrs.scale_1);
scales[2] = Math.exp(attrs.scale_2);
} else {
scales[0] = 0.01;
scales[1] = 0.01;
scales[2] = 0.01;
rot[0] = 255;
rot[1] = 0;
rot[2] = 0;
rot[3] = 0;
}
position[0] = attrs.x;
position[1] = attrs.y;
position[2] = attrs.z;
if (types["f_dc_0"]) {
const SH_C0 = 0.28209479177387814;
rgba[0] = (0.5 + SH_C0 * attrs.f_dc_0) * 255;
rgba[1] = (0.5 + SH_C0 * attrs.f_dc_1) * 255;
rgba[2] = (0.5 + SH_C0 * attrs.f_dc_2) * 255;
} else {
rgba[0] = attrs.red;
rgba[1] = attrs.green;
rgba[2] = attrs.blue;
}
if (types["opacity"]) {
rgba[3] = (1 / (1 + Math.exp(-attrs.opacity))) * 255;
} else {
rgba[3] = 255;
}
}
console.timeEnd("build buffer");
return buffer;
}
});