-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathLOMO.m
321 lines (263 loc) · 11 KB
/
LOMO.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
function descriptors = LOMO(images, options)
%% function Descriptors = LOMO(images, options)
% Function for the Local Maximal Occurrence (LOMO) feature extraction
%
% Input:
% <images>: a set of n RGB color images. Size: [h, w, 3, n]
% [optioins]: optional parameters. A structure containing any of the
% following fields:
% numScales: number of pyramid scales in feature extraction. Default: 3
% blockSize: size of the sub-window for histogram counting. Default: 10
% blockStep: sliding step for the sub-windows. Default: 5
% hsvBins: number of bins for HSV channels. Default: [8,8,8]
% tau: the tau parameter in SILTP. Default: 0.3
% R: the radius paramter in SILTP. Specify multiple values for multiscale SILTP. Default: [3, 5]
% numPoints: number of neiborhood points for SILTP encoding. Default: 4
% The above default parameters are good for 128x48 and 160x60 person
% images. You may need to adjust the numScales, blockSize, and R parameters
% for other smaller or higher resolutions.
%
% Output:
% descriptors: the extracted LOMO descriptors. Size: [d, n]
%
% Example:
% I = imread('../images/000_45_a.bmp');
% descriptor = LOMO(I);
%
% Reference:
% Shengcai Liao, Yang Hu, Xiangyu Zhu, and Stan Z. Li. Person
% re-identification by local maximal occurrence representation and metric
% learning. In IEEE Conference on Computer Vision and Pattern Recognition, 2015.
%
% Version: 1.0
% Date: 2015-04-29
%
% Author: Shengcai Liao
% Institute: National Laboratory of Pattern Recognition,
% Institute of Automation, Chinese Academy of Sciences
% Email: [email protected]
%% set parameters
numScales = 3;
blockSize = 10;
blockStep = 5;
hsvBins = [8,8,8];
tau = 0.3;
R = [3, 5];
numPoints = 4;
if nargin >= 2
if isfield(options,'numScales') && ~isempty(options.numScales) && isscalar(options.numScales) && isnumeric(options.numScales) && options.numScales > 0
numScales = options.numScales;
fprintf('numScales = %d.\n', numScales);
end
if isfield(options,'blockSize') && ~isempty(options.blockSize) && isscalar(options.blockSize) && isnumeric(options.blockSize) && options.blockSize > 0
blockSize = options.blockSize;
fprintf('blockSize = %d.\n', blockSize);
end
if isfield(options,'blockStep') && ~isempty(options.blockStep) && isscalar(options.blockStep) && isnumeric(options.blockStep) && options.blockStep > 0
blockStep = options.blockStep;
fprintf('blockStep = %d.\n', blockStep);
end
if isfield(options,'hsvBins') && ~isempty(options.hsvBins) && isvector(options.blockStep) && isnumeric(options.hsvBins) && length(options.hsvBins) == 3 && all(options.hsvBins > 0)
hsvBins = options.hsvBins;
fprintf('hsvBins = [%d, %d, %d].\n', hsvBins);
end
if isfield(options,'tau') && ~isempty(options.tau) && isscalar(options.tau) && isnumeric(options.tau) && options.tau > 0
tau = options.tau;
fprintf('tau = %g.\n', tau);
end
if isfield(options,'R') && ~isempty(options.R) && isnumeric(options.R) && all(options.R > 0)
R = options.R;
fprintf('R = %d.\n', R);
end
if isfield(options,'numPoints') && ~isempty(options.numPoints) && isscalar(options.numPoints) && isnumeric(options.numPoints) && options.numPoints > 0
numPoints = options.numPoints;
fprintf('numPoints = %d.\n', numPoints);
end
end
t0 = tic;
%% extract Joint HSV based LOMO descriptors
fea1 = PyramidMaxJointHist( images, numScales, blockSize, blockStep, hsvBins );
%% extract SILTP based LOMO descriptors
fea2 = [];
for i = 1 : length(R)
fea2 = [fea2; PyramidMaxSILTPHist( images, numScales, blockSize, blockStep, tau, R(i), numPoints )]; %#ok<AGROW>
end
%% finishing
descriptors = [fea1; fea2];
clear Fea1 Fea2
feaTime = toc(t0);
meanTime = feaTime / size(images, 4);
fprintf('LOMO feature extraction finished. Running time: %.3f seconds in total, %.3f seconds per image.\n', feaTime, meanTime);
end
function descriptors = PyramidMaxJointHist( oriImgs, numScales, blockSize, blockStep, colorBins )
%% PyramidMaxJointHist: HSV based LOMO representation
if nargin == 1
numScales = 3;
blockSize = 10;
blockStep = 5;
colorBins = [8,8,8];
end
totalBins = prod(colorBins);
numImgs = size(oriImgs, 4);
images = zeros(size(oriImgs));
% color transformation
for i = 1 : numImgs
I = oriImgs(:,:,:,i);
I = Retinex(I);
I = rgb2hsv(I);
I(:,:,1) = min( floor( I(:,:,1) * colorBins(1) ), colorBins(1)-1 );
I(:,:,2) = min( floor( I(:,:,2) * colorBins(2) ), colorBins(2)-1 );
I(:,:,3) = min( floor( I(:,:,3) * colorBins(3) ), colorBins(3)-1 );
images(:,:,:,i) = I; % HSV
end
minRow = 1;
minCol = 1;
descriptors = [];
% Scan multi-scale blocks and compute histograms
for i = 1 : numScales
patterns = images(:,:,3,:) * colorBins(2) * colorBins(1) + images(:,:,2,:)*colorBins(1) + images(:,:,1,:); % HSV
patterns = reshape(patterns, [], numImgs);
height = size(images, 1);
width = size(images, 2);
maxRow = height - blockSize + 1;
maxCol = width - blockSize + 1;
[cols,rows] = meshgrid(minCol:blockStep:maxCol, minRow:blockStep:maxRow); % top-left positions
cols = cols(:);
rows = rows(:);
numBlocks = length(cols);
numBlocksCol = length(minCol:blockStep:maxCol);
if numBlocks == 0
break;
end
offset = bsxfun(@plus, (0 : blockSize-1)', (0 : blockSize-1) * height); % offset to the top-left positions. blockSize-by-blockSize
index = sub2ind([height, width], rows, cols);
index = bsxfun(@plus, offset(:), index'); % (blockSize*blockSize)-by-numBlocks
patches = patterns(index(:), :); % (blockSize * blockSize * numBlocks)-by-numImgs
patches = reshape(patches, [], numBlocks * numImgs); % (blockSize * blockSize)-by-(numBlocks * numChannels * numImgs)
fea = hist(patches, 0 : totalBins-1); % totalBins-by-(numBlocks * numImgs)
fea = reshape(fea, [totalBins, numBlocks / numBlocksCol, numBlocksCol, numImgs]);
fea = max(fea, [], 3);
fea = reshape(fea, [], numImgs);
descriptors = [descriptors; fea]; %#ok<AGROW>
if i < numScales
images = ColorPooling(images, 'average');
end
end
descriptors = log(descriptors + 1);
descriptors = normc(descriptors);
end
function outImages = ColorPooling(images, method)
[height, width, numChannels, numImgs] = size(images);
outImages = images;
if mod(height, 2) == 1
outImages(end, :, :, :) = [];
height = height - 1;
end
if mod(width, 2) == 1
outImages(:, end, :, :) = [];
width = width - 1;
end
if height == 0 || width == 0
error('Over scaled image: height=%d, width=%d.', height, width);
end
height = height / 2;
width = width / 2;
outImages = reshape(outImages, 2, height, 2, width, numChannels, numImgs);
outImages = permute(outImages, [2, 4, 5, 6, 1, 3]);
outImages = reshape(outImages, height, width, numChannels, numImgs, 2*2);
if strcmp(method, 'average')
outImages = floor(mean(outImages, 5));
else if strcmp(method, 'max')
outImages = max(outImages, [], 5);
else
error('Error pooling method: %s.', method);
end
end
end
function descriptors = PyramidMaxSILTPHist( oriImgs, numScales, blockSize, blockStep, tau, R, numPoints )
%% PyramidMaxSILTPHist: SILTP based LOMO representation
if nargin == 1
numScales = 3;
blockSize = 10;
blockStep = 5;
tau = 0.3;
R = 5;
numPoints = 4;
end
totalBins = 3^numPoints;
[imgHeight, imgWidth, ~, numImgs] = size(oriImgs);
images = zeros(imgHeight,imgWidth, numImgs);
% Convert gray images
for i = 1 : numImgs
I = oriImgs(:,:,:,i);
I = rgb2gray(I);
images(:,:,i) = double(I) / 255;
end
minRow = 1;
minCol = 1;
descriptors = [];
% Scan multi-scale blocks and compute histograms
for i = 1 : numScales
height = size(images, 1);
width = size(images, 2);
if width < R * 2 + 1
fprintf('Skip scale R = %d, width = %d.\n', R, width);
continue;
end
patterns = SILTP(images, tau, R, numPoints);
patterns = reshape(patterns, [], numImgs);
maxRow = height - blockSize + 1;
maxCol = width - blockSize + 1;
[cols,rows] = meshgrid(minCol:blockStep:maxCol, minRow:blockStep:maxRow); % top-left positions
cols = cols(:);
rows = rows(:);
numBlocks = length(cols);
numBlocksCol = length(minCol:blockStep:maxCol);
if numBlocks == 0
break;
end
offset = bsxfun(@plus, (0 : blockSize-1)', (0 : blockSize-1) * height); % offset to the top-left positions. blockSize-by-blockSize
index = sub2ind([height, width], rows, cols);
index = bsxfun(@plus, offset(:), index'); % (blockSize*blockSize)-by-numBlocks
patches = patterns(index(:), :); % (blockSize * blockSize * numBlocks)-by-numImgs
patches = reshape(patches, [], numBlocks * numImgs); % (blockSize * blockSize)-by-(numBlocks * numChannels * numImgs)
fea = hist(patches, 0:totalBins-1); % totalBins-by-(numBlocks * numImgs)
fea = reshape(fea, [totalBins, numBlocks / numBlocksCol, numBlocksCol, numImgs]);
fea = max(fea, [], 3);
fea = reshape(fea, [], numImgs);
descriptors = [descriptors; fea]; %#ok<AGROW>
if i < numScales
images = Pooling(images, 'average');
end
end
descriptors = log(descriptors + 1);
descriptors = normc(descriptors);
end
function outImages = Pooling(images, method)
[height, width, numImgs] = size(images);
outImages = images;
if mod(height, 2) == 1
outImages(end, :, :) = [];
height = height - 1;
end
if mod(width, 2) == 1
outImages(:, end, :) = [];
width = width - 1;
end
if height == 0 || width == 0
error('Over scaled image: height=%d, width=%d.', height, width);
end
height = height / 2;
width = width / 2;
outImages = reshape(outImages, 2, height, 2, width, numImgs);
outImages = permute(outImages, [2, 4, 5, 1, 3]);
outImages = reshape(outImages, height, width, numImgs, 2*2);
if strcmp(method, 'average')
outImages = mean(outImages, 4);
else if strcmp(method, 'max')
outImages = max(outImages, [], 4);
else
error('Error pooling method: %s.', method);
end
end
end