-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmovies.py
97 lines (77 loc) · 3.63 KB
/
movies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
# coding: utf-8
import json
import uuid
from flask import Flask, abort, render_template, request, jsonify
from neo4j.v1 import GraphDatabase
app = Flask(__name__)
# Set up a driver for the recommendation graph database.
uri = "bolt://54.173.14.47:32973"
username = "neo4j"
password = "rounds-discontinuances-remedy"
driver = GraphDatabase.driver(uri, auth=(username, password))
def match_genres(tx):
return tx.run("MATCH (genre:Genre) "
"RETURN genre.name AS name "
"ORDER BY genre.name").data()
def match_random_movie(tx, genre, ignore):
cypher = "MATCH (g:Genre)<-[:IN_GENRE]-(m:Movie) WHERE g.name = $genre "
if ignore:
cypher += " AND NOT m.imdbId IN $ignore "
cypher += "RETURN g, m ORDER BY RAND() LIMIT 1"
record = tx.run(cypher, genre=genre, ignore=ignore).single()
return dict(record[0]), dict(record[1]) if record else None
def save_ratings(tx, user_id, genre, ratings):
""" Merge the User node by User ID
"""
tx.run("MERGE (u:User {userId: $user_id})", user_id=user_id)
""" Save each rating
"""
for movieId, rating in ratings.items():
tx.run("MATCH (u:User {userId: $user_id}) "
"MATCH (m:Movie {imdbId: $movie_id}) "
"MERGE (u)-[r:RATED]->(m) "
"SET r.rating = $rating ", user_id=user_id, movie_id=movieId, rating=rating)
def get_recommendation(tx, user_id, genre):
""" Get a recommendation
"""
record = tx.run("MATCH (g:Genre {name: $genre}) "
"MATCH (u:User {userId: $user_id})-[x:RATED]->()<-[y:RATED]-(other) "
"WITH g, u, other, COUNT(*) AS numbermovies, SUM(x.rating * y.rating) AS xyDotProduct, "
"SQRT(REDUCE(xDot = 0.0, a IN COLLECT(x.rating) | xDot + a^2)) AS xLength, "
"SQRT(REDUCE(yDot = 0.0, b IN COLLECT(y.rating) | yDot + b^2)) AS yLength "
"WITH g, u, other, xyDotProduct / (xLength * yLength) AS sim "
"ORDER BY sim DESC LIMIT 10 "
"MATCH (other)-[r:RATED]->(recommendation)-[:IN_GENRE]->(g) "
"WHERE r.rating >= 4 AND NOT (u)-[:RATED]->(recommendation) "
"RETURN g, recommendation, count(*) as occurrences "
"ORDER BY occurrences DESC LIMIT 1", user_id=user_id, genre=genre).single()
return dict(record[0]), dict(record[1]) if record else None
@app.route("/")
def get_index():
""" Show the index page.
"""
with driver.session() as session:
return render_template("index.html", genres=session.read_transaction(match_genres))
@app.route("/recommend/<genre>")
def start_recommendation(genre):
""" Get a movie within this genre at random
"""
with driver.session() as session:
genre, movie = session.read_transaction(match_random_movie, genre, [])
return render_template("rate.html", genre=genre, movie=movie)
@app.route("/recommend/<genre>/next")
def get_next_movie(genre):
with driver.session() as session:
ignore = request.args.get("rated", "").split(",")
genre, movie = session.read_transaction(match_random_movie, genre, ignore)
return jsonify(movie)
@app.route("/recommend/<genre>/results")
def get_results(genre):
with driver.session() as session:
user_id = str(uuid.uuid4())
param = request.args.get("ratings", "")
ratings = json.loads(param)
session.write_transaction(save_ratings, user_id, genre, ratings)
genre, movie = session.read_transaction(get_recommendation, user_id, genre)
return render_template("result.html", genre=genre, movie=movie)