-
Notifications
You must be signed in to change notification settings - Fork 0
/
vanilla_conditional_GAN.py
197 lines (123 loc) · 5.94 KB
/
vanilla_conditional_GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 9 19:22:54 2017
@author: Florian
Vanilla/fully connected conditional GAN for MNIST dataset
"""
from __future__ import division
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import os
def xavier_init(size):
in_dim = size[0]
xavier_stddev = 1. / tf.sqrt(in_dim / 2.)
return tf.random_normal(shape=size, stddev=xavier_stddev)
def sample_Z(m, n):
return np.random.uniform(-1., 1., size=[m, n])
def generator(z, y):
with tf.variable_scope('generator', reuse=True):
G_W1 = tf.get_variable('G_W1')
G_b1 = tf.get_variable('G_b1')
G_W2 = tf.get_variable('G_W2')
G_b2 = tf.get_variable('G_b2')
z = tf.concat(values=[z, y], axis=1)
G_h1 = tf.nn.relu(tf.matmul(z, G_W1) + G_b1)
G_log_prob = tf.matmul(G_h1, G_W2) + G_b2
G_prob = tf.nn.sigmoid(G_log_prob)
return G_prob
def discriminator(x, y):
with tf.variable_scope('discriminator', reuse=True):
D_W1 = tf.get_variable('D_W1')
D_b1 = tf.get_variable('D_b1')
D_W2 = tf.get_variable('D_W2')
D_b2 = tf.get_variable('D_b2')
# concat x and y
x = tf.concat(values=[x, y], axis=1)
D_h1 = tf.nn.relu(tf.matmul(x, D_W1) + D_b1)
D_logit = tf.matmul(D_h1, D_W2) + D_b2
D_prob = tf.nn.sigmoid(D_logit)
return D_prob, D_logit
def plot(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
gs.update(wspace=0.05, hspace=0.05)
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
return fig
if __name__ == '__main__':
mnist = input_data.read_data_sets('../../MNIST_data', one_hot=True)
folder = 'out_vanilla_conditional_GAN/'
# input size
input_size = 784
batch_size = 128
# size conditional variable
cond_size = 10
# size of generator input
Z_dim = 100
# batch within an epoch
batches_per_epoch = int(np.floor(mnist.train.num_examples / batch_size))
nb_epochs = 100
learning_rate = 0.001
# initialize weights and biases
with tf.variable_scope('discriminator'):
D_W1 = tf.get_variable('D_W1', initializer=xavier_init([input_size+cond_size, 128]))
D_b1 = tf.get_variable('D_b1', initializer=tf.zeros(shape=[128]))
D_W2 = tf.get_variable('D_W2', initializer=xavier_init([128, 1]))
D_b2 = tf.get_variable('D_b2', initializer=tf.zeros(shape=[1]))
theta_D = [D_W1, D_W2, D_b1, D_b2]
with tf.variable_scope('generator'):
G_W1 = tf.get_variable('G_W1', initializer=xavier_init([Z_dim+cond_size, 128]))
G_b1 = tf.get_variable('G_b1', initializer=tf.zeros(shape=[128]))
G_W2 = tf.get_variable('G_W2', initializer=xavier_init([128, input_size]))
G_b2 = tf.get_variable('G_b2', initializer=tf.zeros(shape=[input_size]))
theta_G = [G_W1, G_W2, G_b1, G_b2]
X = tf.placeholder(tf.float32, shape=[None, input_size])
Y = tf.placeholder(tf.float32, shape=[None, cond_size])
Z = tf.placeholder(tf.float32, shape=[None, Z_dim])
G_sample = generator(Z, Y)
D_real, D_logit_real = discriminator(X, Y)
D_fake, D_logit_fake = discriminator(G_sample, Y)
# objective functions
# discriminator aims at maximizing the probability of TRUE data (i.e. from the dataset) and minimizing the probability
# of GENERATED/FAKE data:
D_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_real, labels=tf.ones_like(D_logit_real)))
D_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.zeros_like(D_logit_fake)))
D_loss = D_loss_real + D_loss_fake
# generator aims at maximizing the probability of GENERATED/FAKE data (i.e. fool the discriminator)
G_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=D_logit_fake, labels=tf.ones_like(D_logit_fake)))
D_solver = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(D_loss, var_list=theta_D)
# when optimizing generator, discriminator is kept fixed
G_solver = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(G_loss, var_list=theta_G)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
if not os.path.exists(folder):
print('CREATE')
os.makedirs(folder)
for i_epoch in range(nb_epochs):
D_loss_cum = 0
G_loss_cum = 0
for i_batch in range(batches_per_epoch):
X_mb, Y_mb = mnist.train.next_batch(batch_size)
# train discriminator
_, D_loss_curr = sess.run([D_solver, D_loss], feed_dict={X: X_mb, Y:Y_mb, Z: sample_Z(batch_size, Z_dim)})
D_loss_cum += D_loss_curr
# train generator
_, G_loss_curr = sess.run([G_solver, G_loss], feed_dict={Y:Y_mb, Z: sample_Z(batch_size, Z_dim)})
G_loss_cum += G_loss_curr
conditional_arr = np.zeros(shape=(16, cond_size))
conditional_arr[:, 4] = 1
samples = sess.run(G_sample, feed_dict={Z: sample_Z(16, Z_dim), Y:conditional_arr})
fig = plot(samples)
plt.savefig('%s/%i.png' % (folder, i_epoch), bbox_inches='tight')
plt.close(fig)
print('Iter: {}'.format(i_epoch))
print('D loss: {:.4}'.format(D_loss_cum))
print('G_loss: {:.4}'.format(G_loss_cum))