From 39aca51fa11f955fb0ea6249250cffef5cdcf744 Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Mon, 12 Feb 2024 19:35:57 +0100 Subject: [PATCH 01/17] added basic simulation classes --- python/palin/__init__.py | 2 + .../__pycache__/participant.cpython-38.pyc | Bin 0 -> 1735 bytes .../__pycache__/simulation.cpython-38.pyc | Bin 0 -> 4371 bytes python/palin/simulation/simulation.py | 138 ++++++++++++++++++ 4 files changed, 140 insertions(+) create mode 100644 python/palin/simulation/__pycache__/participant.cpython-38.pyc create mode 100644 python/palin/simulation/__pycache__/simulation.cpython-38.pyc create mode 100644 python/palin/simulation/simulation.py diff --git a/python/palin/__init__.py b/python/palin/__init__.py index e24ccb2..206413c 100644 --- a/python/palin/__init__.py +++ b/python/palin/__init__.py @@ -3,3 +3,5 @@ #from palin.utils import * #from palin.kernels import * #from palin.internal_noise import * + +from palin.simulation import simulation diff --git a/python/palin/simulation/__pycache__/participant.cpython-38.pyc b/python/palin/simulation/__pycache__/participant.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3be0cfc1475213bb770c3b9e8729ef5f8bdbc7d7 GIT binary patch literal 1735 zcmaJ>Pj4JG6t_Kpb~0&G8djk}s2TwWR;oghW3`GJ0<9?3wrX0CMv*LM?377nX9jyV zWLJ|Dk>EhTLvrj_;UoCUsb_9T2;TE1WE1{)?{ zfzqWaY?SG|fmnrI%u7&8QSh?LjpC+}J>U996?+=pYV@xW^*2OALCEj@FYfPr^Yr;w zJD)$@K{$76QRL-LJ#N0O;O7RH>4V{Ks8;H+jX2NCyx|_oE z!CH*QW%>e?hMZE&cAuTGW8aM+UpERGvhVHt5@!R+UbEKglH;)T+u#mq!}kc-L$n

pJXl$rODXXCk%SsPLaS2r~ z(gAEpL(}9#zIy&&vy1BJI@swgku~{Y-i!fyxA>Z2EnT=;A{%LCY9N+!^_Yqd9B1E| zPDtKVyn*5tx4>%LeWDBSEz!Gl^1&?5*EeKX=!=F}V;X2PUxR4rDO|QQdP;vJdvNKb zcM_e^W3Tm2*%{z1fwVc5q3pb7Xx;Z)3bc;SM^w(i4lmXc-p>&ci!+k$sAiZTMcza>!%SV?I^l9!?<%q@F6z~AP9?T{HNbpVhe1EP450b zkb_=`j|s-Zxs5p=R&rFJeuMMxMxvO`Xe^E^tNsu*7tf`@pfvIfiQ%53h(W4l744o4gCPh~v@B7wqQG$$AyF7fl}Z%HaVTqXtfU~7C1*jHni^q-)KI_x z>KP~^3V5O)@(}+)9>_;m`5W>9seD1d`bodwq$)Z0HkKhM4Qd*_++ObKbC>ySbu|!p z{u%x&`S)8wd`*q=W23Q+H-CsC7HtvB*y_r*#s7BO`B=nu?0ha_=g?}qXt}Y6mWP&y zRwee)^3kfGRgD9*0<`?tdL)`FqrV3aZ~g9*R-@?myHENr8!xVHT@UhP(718!#*M3u zTL)P*YTSyujdr9|^d!C7xPQNKYuM=zi=j#r)wpuI_35LZeD=}3+sz=j-Hq}bYc=w; zH|$15(ilXlNIU5u%8EvsHB|DV(^rk;Xy@_Z` z;K2HSF4}hD82t}r+cmnkJ)?EIV)TWsD{&37)p!*;*Y(Q7#i2S*X(y^%cyHs)&!HI0 zu?WT3Mk&V@N-GwR#Fw(ww6*svQCZT}en+JRw2AaanxT?K-7xE?c@pMD+;p^)C*55| zODm5G7sZ!C`S|=p7!y_jRinEi|W?kK>J~s zW@!1+wr6^5cMK@6yi$d(nBSv*Bk8LPxAKF06ZoT>+o>vk= zP}<4{+EY;$_j|fB%+lSy>On`l)6I2|g}X@vS|s^GQ`XZIRV<-5{+bp~L$g9?5Zpk2 zPOuAWbh&)=)1n;~BT+n5Csl4b zta#?CRxC3swkPh`1uBj~MLRd5-HxhZqo%9g#vcH}jpW)X4&Xa3qK7T1>6!a<3s_)R zk&fDrIz{>-Ee>@3Bm&wu7ndi?n5~y?lvlchg>u?nSnD#7XYpQ?qf2GjmZzLx0TGjk z#&}&pWlv0S^ZVkC_{%2nus~ID1S><0aIXQaw4eBlCw3-3=oh<4lVW@*J z?DgYem+G}Jd_Ii2W<*g?(<>bc2fYN&ELLRYe39nvSe+kG-{P!XqXR24Z2~_hJMg9N zS~9SG`c-+XgYFX#P1wep)4i2L#Gci*O@L@SF%itu?qi~gcCHh{-hupyi=&l@_@2Y2UzyF=b!_E4RGW6(&;Y2c)gDLH&vV+VDcATy5H(S8;hjx$E;45k@^ zyG(F(9Ua;S_d+)L`FKg`If6GJJLNKkK%n^6;;3^dJLGU@51p6J&1WVI%6^*s6MVHj zk%de3Lj;yx%9v(e+g9Y-)p-<%CFv-EBce#do?B5!WnEY+?IPaoB{LTukRvlG!jdZb zOh+MtQsyv|xQUgf)PR9rDk*hJ^n`ZgBIXf3Mq`gCD+&&ehZ0_>HIeL-C@RTk@ZIO( zr!j8x=w*0napW9}9c$uFJoqcO@W$SuWKXpPOayu=V{6*8&c*4 zOLNUXqZ+}joo<>J%*|%SxU?GcA_J`YKM8t}#HqXQZ zBJ((DUV3dF+zi(~z|Q$P3Np1i9A915@LQLoizRHACbe+6OD4$H$GZFqYn688{h627 zFhF{9Y6d&>d`D5=DND4`xlMw!$Fe29KEGva^lu^8JQyYFlmnaFA|2D%;==NzUNwnV zXk7EmJN+86B}GUFeI`$eX__{bzK`x%PIPg0fUQ$vCz6LX%pqLZ)V@Lm#Ix}_cwM|6 z-b%sg1e31->HJ9*NvMB8OahEl_dzs}_Kz4@nbgozS8Mec-AY;vSm8^s(nfOnKQNN(#EUmXf!_&En zE@AnaT_n8m?gNZ42ZimxGWch0Ab@PZK7#4*lI2Uw{Qf(t&k4W_oVaxIt@BI2hX(nK zSOEIX0ztH}Og1b<;T*Z(D3W%{6Zi4CwTExoJsBfl$M}}}!kakoJj`zS+{DI2hbe@{C~X4Xmbwz(!>_LDLIl-zOYSAN(s!l|4cQyno_|Y zi&Xm= (self.criteria*external_noise_std)) else 1 + return response + + def respond_to_experiment(self,experiment): + responses = [] + for trial in experiment.trials: + responses.append(self.respond_to_trial(trial, experiment.external_noise_std)) + return responses + +class Trial: + TYPES = ['1afc','2afc'] + def __init__(self,stims): + self.stims = stims + self.type = Trial.TYPES[len(stims)-1] + +class Experiment: + def __init__(self, n_trials, exp_type, n_features, external_noise_std): + self.n_trials = n_trials + self.type = exp_type + self.n_features = n_features + self.external_noise_std = external_noise_std + + def create_stim_noise(self): + stim_noise = np.random.normal(loc=0, scale=self.external_noise_std, size=self.n_features) + return range(self.n_features),stim_noise + + def generate_trials(self): + self.trials = [] + for trial_number in range(self.n_trials): + stims = [] + num_stim = (self.type == '2afc') + 1 + for stim_order in range(num_stim): + stim_feature, stim_values = self.create_stim_noise() + stims.append(list(stim_values)) + self.trials.append(Trial(stims)) + + +class Analyzer: + + + def set_kernel_method(self,kernel_method): + self.kernel_method = kernel_method + + #self.noise_method = noise_method + + @classmethod + def to_df(csl, experiment, responses): + + trial_ids = [] + stim_orders = [] + features = [] + values = [] + resps = [] + + for num_trial, trial in enumerate(experiment.trials): + response = responses[num_trial] + for num_stim, stim in enumerate(trial.stims): + for num_feature, value in enumerate(stim): + trial_ids.append(num_trial) + stim_orders.append(num_stim) + features.append(num_feature) + values.append(value) + resps.append(True if response == num_stim else False) + + return pd.DataFrame.from_dict({'trial_id': trial_ids, + 'stim_order': stim_orders, + 'feature': features, + 'value': values, + 'response': resps}) + + def estimate_kernel(self, experiment, responses): + + if self.kernel_method == None: + print('no kernel method', file=sys.stderr) + + responses_df = Analyzer.to_df(experiment, responses) + + kernels_df = self.kernel_method(responses_df, + trial_ids=[], + dimension_ids=['feature'], + response_id='response', + value_id='value', + normalize=True) + + return list(kernels_df.kernel_value) + + + + + + + + + #response_df = trials_df.groupby('trial_id').apply( + # lambda group: self.respond_to_trial(new Trial(type='2afc', + # stims=[group[group['stim_order'] == 0]['value'].values, + # group[group['stim_order'] == 1]['value'].values]), + # experiment.external_noise_std)) + # call this "response" + #response_df = response_df.reset_index().rename({0:'response'}, axis=1) + # merge with trial_data + #response_df = response_df.merge(trials_df, on='trial_id') + # and convert to True/false for the two stimuli of each trial + #response_df['response'] = response_df.apply(lambda row: True if row['response'] == row['stim_order'] else False, axis=1) + From 32006725fd9866d2f7e6060a38c7d81d5b81b01b Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Mon, 12 Feb 2024 19:37:35 +0100 Subject: [PATCH 02/17] gitignore pycache --- python/palin/.gitignore | 1 + python/palin/internal_noise/.gitignore | 1 + python/palin/kernels/.gitignore | 1 + python/palin/kernels/classification_images.py | 6 +++--- python/palin/simulation/.gitignore | 1 + python/palin/utils/.gitignore | 1 + 6 files changed, 8 insertions(+), 3 deletions(-) create mode 100644 python/palin/.gitignore create mode 100644 python/palin/internal_noise/.gitignore create mode 100644 python/palin/kernels/.gitignore create mode 100644 python/palin/simulation/.gitignore create mode 100644 python/palin/utils/.gitignore diff --git a/python/palin/.gitignore b/python/palin/.gitignore new file mode 100644 index 0000000..ed8ebf5 --- /dev/null +++ b/python/palin/.gitignore @@ -0,0 +1 @@ +__pycache__ \ No newline at end of file diff --git a/python/palin/internal_noise/.gitignore b/python/palin/internal_noise/.gitignore new file mode 100644 index 0000000..ed8ebf5 --- /dev/null +++ b/python/palin/internal_noise/.gitignore @@ -0,0 +1 @@ +__pycache__ \ No newline at end of file diff --git a/python/palin/kernels/.gitignore b/python/palin/kernels/.gitignore new file mode 100644 index 0000000..ed8ebf5 --- /dev/null +++ b/python/palin/kernels/.gitignore @@ -0,0 +1 @@ +__pycache__ \ No newline at end of file diff --git a/python/palin/kernels/classification_images.py b/python/palin/kernels/classification_images.py index 22708b3..fe0d792 100644 --- a/python/palin/kernels/classification_images.py +++ b/python/palin/kernels/classification_images.py @@ -9,15 +9,15 @@ import pandas as pd import numpy as np -def compute_kernel(data_df,trial_ids=['experimentor','type','subject','session'], dimension_ids=['segment'],response_id='response', value_id='pitch', normalize=True): +def compute_kernel(data_df, trial_ids=['experimentor','type','subject','session'], dimension_ids=['segment'],response_id='response', value_id='pitch', normalize=True): ''' computes first-order temporal kernels for each participant using the classification image, ie. mean(stimulus features classified as positive) - mean(stimulus features classified as negative)''' # for each participant, average stimulus features (e.g. mean pitch for each segment) separately for positive and negative responses, and subtract positives - negatives - dimension_mean_value = data_df.groupby(trial_ids+[dimension_ids]+[response_id])[value_id].mean().reset_index() + dimension_mean_value = data_df.groupby(trial_ids+dimension_ids+[response_id])[value_id].mean().reset_index() positives = dimension_mean_value.loc[dimension_mean_value[response_id] == True].reset_index() negatives = dimension_mean_value.loc[dimension_mean_value[response_id] == False].reset_index() - kernels = pd.merge(positives, negatives, on=trial_ids+[dimension_ids]) + kernels = pd.merge(positives, negatives, on=trial_ids+dimension_ids) kernels['kernel_value'] = kernels['%s_x'%value_id] - kernels['%s_y'%value_id] if(normalize): diff --git a/python/palin/simulation/.gitignore b/python/palin/simulation/.gitignore new file mode 100644 index 0000000..ed8ebf5 --- /dev/null +++ b/python/palin/simulation/.gitignore @@ -0,0 +1 @@ +__pycache__ \ No newline at end of file diff --git a/python/palin/utils/.gitignore b/python/palin/utils/.gitignore new file mode 100644 index 0000000..ed8ebf5 --- /dev/null +++ b/python/palin/utils/.gitignore @@ -0,0 +1 @@ +__pycache__ \ No newline at end of file From 66ff6d921832c2cbeebbef75865244372c2d9cce Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Tue, 13 Feb 2024 09:23:08 +0100 Subject: [PATCH 03/17] added basic simulation api --- python/palin/simulation/simulation.py | 43 +++++++-------------------- 1 file changed, 11 insertions(+), 32 deletions(-) diff --git a/python/palin/simulation/simulation.py b/python/palin/simulation/simulation.py index 268d5cc..e0338c7 100644 --- a/python/palin/simulation/simulation.py +++ b/python/palin/simulation/simulation.py @@ -68,13 +68,10 @@ def generate_trials(self): self.trials.append(Trial(stims)) -class Analyzer: +class Analyser: - - def set_kernel_method(self,kernel_method): - self.kernel_method = kernel_method - - #self.noise_method = noise_method + def set_kernel_analyser(self,kernel_analyser): + self.kernel_analyser = kernel_analyser @classmethod def to_df(csl, experiment, responses): @@ -101,38 +98,20 @@ def to_df(csl, experiment, responses): 'value': values, 'response': resps}) - def estimate_kernel(self, experiment, responses): + def estimate_kernel(self, experiment, participant_responses, normalize=True): - if self.kernel_method == None: + if self.kernel_analyser == None: print('no kernel method', file=sys.stderr) - responses_df = Analyzer.to_df(experiment, responses) - - kernels_df = self.kernel_method(responses_df, - trial_ids=[], - dimension_ids=['feature'], - response_id='response', - value_id='value', - normalize=True) - - return list(kernels_df.kernel_value) + responses_df = Analyser.to_df(experiment, participant_responses) + kernel_df = self.kernel_analyser.extract_single_kernel(data_df = responses_df, + feature_id = 'feature', value_id = 'value', response_id = 'response') + if normalize: + kernel_df = self.kernel_analyser.normalize_kernel(kernel_df) + return list(kernel_df.kernel_value) - - - #response_df = trials_df.groupby('trial_id').apply( - # lambda group: self.respond_to_trial(new Trial(type='2afc', - # stims=[group[group['stim_order'] == 0]['value'].values, - # group[group['stim_order'] == 1]['value'].values]), - # experiment.external_noise_std)) - # call this "response" - #response_df = response_df.reset_index().rename({0:'response'}, axis=1) - # merge with trial_data - #response_df = response_df.merge(trials_df, on='trial_id') - # and convert to True/false for the two stimuli of each trial - #response_df['response'] = response_df.apply(lambda row: True if row['response'] == row['stim_order'] else False, axis=1) - From 8127e0f96948f2f75fa09b16c135d44c37ac120f Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Tue, 13 Feb 2024 09:23:57 +0100 Subject: [PATCH 04/17] changed kernel api: object oriented with abstract class KernelAnalyser --- python/palin/__init__.py | 1 + python/palin/kernels/classification_images.py | 107 ++++++++---------- python/palin/kernels/kernels.py | 37 ++++++ .../__pycache__/simulation.cpython-38.pyc | Bin 4371 -> 4453 bytes 4 files changed, 85 insertions(+), 60 deletions(-) create mode 100644 python/palin/kernels/kernels.py diff --git a/python/palin/__init__.py b/python/palin/__init__.py index 206413c..2257617 100644 --- a/python/palin/__init__.py +++ b/python/palin/__init__.py @@ -5,3 +5,4 @@ #from palin.internal_noise import * from palin.simulation import simulation +from palin.kernels import classification_images diff --git a/python/palin/kernels/classification_images.py b/python/palin/kernels/classification_images.py index fe0d792..de5818f 100644 --- a/python/palin/kernels/classification_images.py +++ b/python/palin/kernels/classification_images.py @@ -8,66 +8,53 @@ import pandas as pd import numpy as np - -def compute_kernel(data_df, trial_ids=['experimentor','type','subject','session'], dimension_ids=['segment'],response_id='response', value_id='pitch', normalize=True): - ''' computes first-order temporal kernels for each participant using the classification image, ie. - mean(stimulus features classified as positive) - mean(stimulus features classified as negative)''' - - # for each participant, average stimulus features (e.g. mean pitch for each segment) separately for positive and negative responses, and subtract positives - negatives - dimension_mean_value = data_df.groupby(trial_ids+dimension_ids+[response_id])[value_id].mean().reset_index() - positives = dimension_mean_value.loc[dimension_mean_value[response_id] == True].reset_index() - negatives = dimension_mean_value.loc[dimension_mean_value[response_id] == False].reset_index() - kernels = pd.merge(positives, negatives, on=trial_ids+dimension_ids) - kernels['kernel_value'] = kernels['%s_x'%value_id] - kernels['%s_y'%value_id] - - if(normalize): - # Kernel are then normalized for each participant/session by dividing them - # by the square root of the sum of their squared values. - kernels['square_value'] = kernels['kernel_value']**2 - if trial_ids: - for_norm = kernels.groupby(trial_ids)['square_value'].mean().reset_index() - kernels = pd.merge(kernels, for_norm, on=trial_ids, suffixes=('', '_mean')) - else: - kernels['square_value_mean'] = kernels.square_value.mean() - - kernels['kernel_value'] = kernels['kernel_value']/np.sqrt(kernels['square_value_mean']) - kernels.drop(columns=['square_value', 'square_value_mean'], inplace=True) - - kernels.drop(columns=['index_x','%s_x'%response_id,'%s_x'%value_id,'index_y','%s_y'%response_id,'%s_y'%value_id], inplace=True) - - return kernels - -def compute_accuracy(data_df, control_kernel, session_identifiers = ['experimentor','type','subject','session'], trial_identifier = 'trial', stimulus_dimension='segment', stimulus_value = 'pitch', stimulus_response='response'): - ''' Computes participant's accuracy on the task as a measure of how well the participant performs - compared to an ideal participant model having the control group as an internal representation and zero internal noise. - Accuracy therefore combines both internal representation and noise in a single measure.''' - - # for each participant, in each trial, compute the dot product of each stimulus with the control group kernel - - # create a df of positive and negative trial data for each participant - positives = data_df.loc[data_df[stimulus_response] == 1].reset_index()[session_identifiers + [trial_identifier,stimulus_dimension,stimulus_value]] - negatives = data_df.loc[data_df[stimulus_response] == 0].reset_index()[session_identifiers + [trial_identifier,stimulus_dimension,stimulus_value]] - - trial_data = positives.merge(negatives, - on=session_identifiers + [trial_identifier,stimulus_dimension], - suffixes=('_pos','_neg')) - - # dot product of each positive and negative trial with the control group's kernel - def dot_control(x): - #print(list(x)) - #print(control_kernel) - return np.dot(list(x), control_kernel) - - trial_data = trial_data.groupby(session_identifiers+[trial_identifier]).agg({'%s_pos'%stimulus_value:dot_control, - '%s_neg'%stimulus_value:dot_control}).reset_index() - - # count hits as trials for which the positive stimuli is the one with higher dot product to control kernel - trial_data['hit'] = trial_data['%s_pos'%stimulus_value] > trial_data['%s_neg'%stimulus_value] - - # compute hit rate (average hit across trials) per participant - hit_rate = trial_data.groupby(session_identifiers, as_index=False).hit.mean() - - return hit_rate +from .kernels import KernelAnalyser + +class ClassificationImage(KernelAnalyser): + + @classmethod + def extract_single_kernel(cls, data_df, feature_id = 'feature', value_id = 'value', response_id = 'response'): + feature_average = data_df.groupby([feature_id,response_id])[value_id].mean().reset_index() + positives = feature_average.loc[feature_average[response_id] == True].reset_index() + negatives = feature_average.loc[feature_average[response_id] == False].reset_index() + kernels = pd.merge(positives, negatives, on=feature_id, suffixes=('_true','_false')) + kernels['kernel_value'] = kernels['%s_true'%value_id] - kernels['%s_false'%value_id] + kernels = kernels[[feature_id,'kernel_value']].set_index(feature_id) + #kernels.index.names = ['feature'] + return kernels + + +# def compute_accuracy(data_df, control_kernel, session_identifiers = ['experimentor','type','subject','session'], trial_identifier = 'trial', stimulus_dimension='segment', stimulus_value = 'pitch', stimulus_response='response'): +# ''' Computes participant's accuracy on the task as a measure of how well the participant performs +# compared to an ideal participant model having the control group as an internal representation and zero internal noise. +# Accuracy therefore combines both internal representation and noise in a single measure.''' + +# # for each participant, in each trial, compute the dot product of each stimulus with the control group kernel + +# # create a df of positive and negative trial data for each participant +# positives = data_df.loc[data_df[stimulus_response] == 1].reset_index()[session_identifiers + [trial_identifier,stimulus_dimension,stimulus_value]] +# negatives = data_df.loc[data_df[stimulus_response] == 0].reset_index()[session_identifiers + [trial_identifier,stimulus_dimension,stimulus_value]] + +# trial_data = positives.merge(negatives, +# on=session_identifiers + [trial_identifier,stimulus_dimension], +# suffixes=('_pos','_neg')) + +# # dot product of each positive and negative trial with the control group's kernel +# def dot_control(x): +# #print(list(x)) +# #print(control_kernel) +# return np.dot(list(x), control_kernel) + +# trial_data = trial_data.groupby(session_identifiers+[trial_identifier]).agg({'%s_pos'%stimulus_value:dot_control, +# '%s_neg'%stimulus_value:dot_control}).reset_index() + +# # count hits as trials for which the positive stimuli is the one with higher dot product to control kernel +# trial_data['hit'] = trial_data['%s_pos'%stimulus_value] > trial_data['%s_neg'%stimulus_value] + +# # compute hit rate (average hit across trials) per participant +# hit_rate = trial_data.groupby(session_identifiers, as_index=False).hit.mean() + +# return hit_rate diff --git a/python/palin/kernels/kernels.py b/python/palin/kernels/kernels.py new file mode 100644 index 0000000..749f64f --- /dev/null +++ b/python/palin/kernels/kernels.py @@ -0,0 +1,37 @@ +#!/usr/bin/env python +''' +PALIN toolbox v0.1 +Decemberr 2022, Aynaz Adl Zarrabi, JJ Aucouturier (CNRS/UBFC) + +Functions for kernel calculating method in Classification images +''' + +import pandas as pd +import numpy as np +from abc import ABC, abstractmethod + +class KernelAnalyser(ABC): + + @classmethod + @abstractmethod + def extract_single_kernel(cls,data_df, feature_id = 'feature', value_id = 'value', response_id = 'response'): + raise NotImplementedError() + + @classmethod + def extract_kernels(cls,data_df, group_ids, feature_id, value_id, response_id, normalize = True): + + # for each level in group, compute kernels + return data_df.groupby(group_ids).apply(lambda group: cls.normalize_kernel(cls.extract_single_kernel(group, feature_id, value_id, response_id),normalize)).reset_index() + + @classmethod + def normalize_kernel(cls,kernel, normalize=True): + if normalize: + if isinstance(kernel,pd.DataFrame): + rms = np.sqrt((kernel.kernel_value**2).mean()) + kernel.kernel_value /= rms + elif isinstance(kernel,(np.ndarray, list)): + rms = np.sqrt(np.mean(np.power(kernel,2))) + kernel = kernel/rms + else: + raise TypeError('argument kernel is neither a pd.DataFrame or a np.ndarray') + return kernel \ No newline at end of file diff --git a/python/palin/simulation/__pycache__/simulation.cpython-38.pyc b/python/palin/simulation/__pycache__/simulation.cpython-38.pyc index 827054dce51d0265f7a11a338311962f0cf08040..03f2384ecaabeb75b3cd43420f509a0bccfec214 100644 GIT binary patch delta 556 zcmZuuzi$&U6h8ZYAD6q6N=gPKNTX6+hgL;M5mOa~p-7z|EG&l=yXeyEC9)j^(M1{B zl`NjR6!JIlSD^j}-Wiw}I|g5R$$+rs?>&F-`Fr-W*!i^+ysOnbO^u&VZb=d?0w3&) zL-6#Gi!E$lf%g`6-fFQYolcIjFHF4hpU=W`LUWQOXhjhkLuxAtdR&6D0atl)ixHmu zlmA);7*wEv$>V!nLJ$6v*w@RXYJ|#`;@uyA{2KsH#XM;5GIfv-6MWX|8|y@6t!j0Z zWpBjq;MtK;Xaj9v6$aL^flX|EHKt~v)02|_ZWrbPOik_-=D@uK>dCfv5jJ0z0<@_h zHl&RaN2-+c&IsaTN|F>y=M&1tEAIg%Y&6VSxrse-9kyn&PCj#r`aEH2{xKs}BV?2h z=>^Kt$(o^URYLkzpH`Bwb>Gz8GEyHQ%F}*2LOD;?b(nNFI?~^;k+ zUU4drcZ;JeF{c#F;>^o0%1zA4tV#tMw3uJny2u=)nFs1cusWcL>>%S+L4+Du8fI8A z&=XNy5XHrl-2{}?Gl25NVnBj{iHnhsiHC`ek%^H7h=K4o8+(-mG<+urh)iBCpuiYC V`9GV) Date: Tue, 13 Feb 2024 09:32:25 +0100 Subject: [PATCH 05/17] added kernel normalizer to simulation --- .../__pycache__/simulation.cpython-38.pyc | Bin 4453 -> 4866 bytes python/palin/simulation/simulation.py | 17 ++++++++++++++++- 2 files changed, 16 insertions(+), 1 deletion(-) diff --git a/python/palin/simulation/__pycache__/simulation.cpython-38.pyc b/python/palin/simulation/__pycache__/simulation.cpython-38.pyc index 03f2384ecaabeb75b3cd43420f509a0bccfec214..63150e0347d4400da2ef83d19d9b5ba479525fa9 100644 GIT binary patch delta 2178 zcmZWq&2Jk;6yI6zuGb&2lQvD9G-+H)lWb|MDg~65K+}e_r4?1G1fiOumFt;=P1kGd z?FKa_D5%LlPzE8yg>vkL1Be6S$dUhG?;vqNsAn#`H|y9=u(fYz-kbM(pZn&ISDsE6 zJ{TCtYWVwM_IL5;(6hqCqldWTT2prXM>Yb_@JjD&)Y*!Cj8$ahJzkmg{SpGw|$-uS$REXvSf2;jVx{_}7D)zY_|m zKN}j8753{13&mg)Nh5ioL010D?y!QqsegH@%Lnp3AvyWCKFUr?Gxg!JiCiZIMSR66 z-i(0I933*mFv7@d^eYmx2qJ7X1MWsmm*k`JyHqqz05C{$D`-Na<|~f~NX{9hT)**E zV}gy#hVkQk0na-ojFOs3SYd2LJ1qedghtUgR^o{nfrpr<<$ZJZY#$hD4)!^uj!nvM z&7Cb3nGsux6~;Lv;|f zNT~KrPFz6{6_&_M5wtWI|=!hV!(3lL*C-82 zw!2e@A=KfI)-;@!@d?QfuI*|r(lrgJAzrY!_!x)QyTW&Cow4Pxq!W4pbPIlmUUl z1)L-0bes`b5ta0$qUtl5mj4W#w`K@(R*n~z7R$6G4S0*l2$DF5if#uKZW6oCJRLA` zF!GI6`E}vvnG->?Oc@YB95u^yKh?VT6V6vv zoCn$-dP^4JVVo+X~6ef>WRq-93k`I~lk@P`x3h zz7&cM=7_8*`*m89{XUzjZmRp1P;eWckaTUG<}S|PQnsja@8sgN>+)vZbz>8&-`Yv; zORH52cr66dOd4JIVI@g?m_$sI5|(Lj0)3fDDSQ3W^&qwv8%@6Li+89z>Jl*0G-C65 KVX9yiM*ag1a>~pA delta 1684 zcmZux&2Jl35Z|}owqwVM^4X+KQsUz67bOZ1s*r@HQ3XZFsDTP|SeCq(VzFLZvm1oD zfM`w#5aGd{3kSrd0wEzGF5D3R!MpPx@CPvS){VCjEA8yg%$wiLo3GC<{d2MQX0=*2 z@cC=$ZxPl{YKw2RkmE+%;EbCwYn%FOwe33wx43<5aQmUzc93(pi=2y`i=4-OMa`MHu?BHZ#UcSM8pR~~hxI`QzKN{f63+Ah=Dm&&k)2DLq>4YXF zS+{1{q- zI~()`oI{DeWZ>ojIvI4()x6A{=E@l#^+KHb*rNQy8La9H+sf6VRJl>VFA@$H33{F! z+Zb}&UAS_ABxf+E3z*^~jHuHUN!F0xyYJkl!mG+b9HnVjWbgMlOcDa!A`e`RBKWg^#!khXBgQ8eV|3ce||gU@^hS23!u_J`T?lQ7Sp_74*Tqm$?8 zy1=t2P(EfT)O9=67krh-hWxL|xCE^kVrR+BPCFk9EbwVZ!5rxbUOQ3_M9Bm3xJS#> zAbIx`(dG5>4BL=<Opdzm z34lepQ+cjZ$guphGQ~FKca@F1XVR-PtC3$K_>s*h$2U+xQKU4Zm}A$sfn+q;H>pO# zXfxa$dS@IPZA;ks&Unb$4(RslS3BpB9SR1s)B~$5EOPvJW2_*f^u-3@Wa>S`uMMndeU3YBVW!( zDPYPz?8E|Yk)<|Yk@foe5?w?&eZV!MtaO0$oMs#=1zU8mB@gP?*bDNcKIPIvgNFR6 zzP)_L^SGcEqGgo(6tXz&2En$#bS%r SM@mg@d)P{5ZK>wgX8r?mEnD;e diff --git a/python/palin/simulation/simulation.py b/python/palin/simulation/simulation.py index e0338c7..c130e46 100644 --- a/python/palin/simulation/simulation.py +++ b/python/palin/simulation/simulation.py @@ -8,6 +8,7 @@ import numpy as np import pandas as pd +from ..kernels.kernels import KernelAnalyser class Participant: def __init__(self, kernel,internal_noise_std,criteria): @@ -70,6 +71,9 @@ def generate_trials(self): class Analyser: + def __init__(self): + self.kernel_analyser = None + def set_kernel_analyser(self,kernel_analyser): self.kernel_analyser = kernel_analyser @@ -101,7 +105,7 @@ def to_df(csl, experiment, responses): def estimate_kernel(self, experiment, participant_responses, normalize=True): if self.kernel_analyser == None: - print('no kernel method', file=sys.stderr) + print('no kernel analyser', file=sys.stderr) responses_df = Analyser.to_df(experiment, participant_responses) @@ -113,5 +117,16 @@ def estimate_kernel(self, experiment, participant_responses, normalize=True): return list(kernel_df.kernel_value) + def normalize_kernel(self, kernel): + + if self.kernel_analyser == None: + print('no kernel method, defaulting to KernelAnalyser') + self.kernel_analyser = KernelAnalyser + return self.kernel_analyser.normalize_kernel(kernel) + + + + + From 37035ae4e6ee38913f3a17b956d74d8868a8d260 Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Tue, 13 Feb 2024 15:25:59 +0100 Subject: [PATCH 06/17] added metrics (kernel distance) --- python/palin/__init__.py | 1 + python/palin/kernels/classification_images.py | 2 +- python/palin/metrics/.gitignore | 1 + python/palin/metrics/metrics.py | 39 ++++++++++++++++++ .../__pycache__/simulation.cpython-38.pyc | Bin 4866 -> 4866 bytes 5 files changed, 42 insertions(+), 1 deletion(-) create mode 100644 python/palin/metrics/.gitignore create mode 100644 python/palin/metrics/metrics.py diff --git a/python/palin/__init__.py b/python/palin/__init__.py index 2257617..a903b7d 100644 --- a/python/palin/__init__.py +++ b/python/palin/__init__.py @@ -6,3 +6,4 @@ from palin.simulation import simulation from palin.kernels import classification_images +from palin.metrics import metrics diff --git a/python/palin/kernels/classification_images.py b/python/palin/kernels/classification_images.py index de5818f..a1c5744 100644 --- a/python/palin/kernels/classification_images.py +++ b/python/palin/kernels/classification_images.py @@ -20,7 +20,7 @@ def extract_single_kernel(cls, data_df, feature_id = 'feature', value_id = 'valu kernels = pd.merge(positives, negatives, on=feature_id, suffixes=('_true','_false')) kernels['kernel_value'] = kernels['%s_true'%value_id] - kernels['%s_false'%value_id] kernels = kernels[[feature_id,'kernel_value']].set_index(feature_id) - #kernels.index.names = ['feature'] + kernels.index.names = ['feature'] return kernels diff --git a/python/palin/metrics/.gitignore b/python/palin/metrics/.gitignore new file mode 100644 index 0000000..ed8ebf5 --- /dev/null +++ b/python/palin/metrics/.gitignore @@ -0,0 +1 @@ +__pycache__ \ No newline at end of file diff --git a/python/palin/metrics/metrics.py b/python/palin/metrics/metrics.py new file mode 100644 index 0000000..0dace42 --- /dev/null +++ b/python/palin/metrics/metrics.py @@ -0,0 +1,39 @@ +import pandas as pd +import numpy as np + +def kernel_distance(kernel_1, kernel_2, type='CORR'): + if type == 'RMS': + return kernel_rms(kernel_1, kernel_2) + elif type == 'CORR': + return kernel_correlation(kernel_1, kernel_2) + else: + raise AttributeError('metric type %s unknown'%s) + + +def kernel_rms(kernel_1, kernel_2): + if isinstance(kernel_1,pd.DataFrame): + + rms = np.sqrt(np.mean((kernel_1.kernel_value - kernel_2.kernel_value_2)**2)) + + elif isinstance(kernel_1,(np.ndarray, list)): + rms = np.sqrt(np.mean(np.power(kernel_1-kernel_2,2))) + + else: + raise TypeError('argument kernel is neither a pd.DataFrame or a np.ndarray') + + return rms + +def kernel_correlation(kernel_1, kernel_2): + + if isinstance(kernel_1,pd.DataFrame): + + correlation = np.corrcoef(kernel_1.kernel_value, kernel_2.kernel_value)[0, 1] + + elif isinstance(kernel_1,(np.ndarray, list)): + + correlation = np.corrcoef(kernel_1, kernel_2)[0, 1] + + else: + raise TypeError('argument kernel is neither a pd.DataFrame or a np.ndarray') + + return correlation diff --git a/python/palin/simulation/__pycache__/simulation.cpython-38.pyc b/python/palin/simulation/__pycache__/simulation.cpython-38.pyc index 63150e0347d4400da2ef83d19d9b5ba479525fa9..6afccbf4d2f542cb01a026f3df5eb45687eb5ff4 100644 GIT binary patch delta 26 gcmZotYf|G1<>lpK0D_Hq8@Uz>GNx``Cm6yA08s%3j{pDw delta 26 gcmZotYf|G1<>lpK0D^TI8@Uz>GA3?bCm6yA08M%ZLI3~& From 3b3c9482daa1cc89d4758ae6a13b036fd7e66e0e Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Wed, 14 Feb 2024 08:16:25 +0100 Subject: [PATCH 07/17] refactored simulation api with abstract classes --- python/palin/kernels/kernels.py | 28 ++-- python/palin/metrics/metrics.py | 13 +- .../__pycache__/simulation.cpython-38.pyc | Bin 4866 -> 3596 bytes python/palin/simulation/analyser.py | 36 +++++ python/palin/simulation/experiment.py | 9 ++ python/palin/simulation/kernel_analyser.py | 36 +++++ python/palin/simulation/linear_observer.py | 28 ++++ python/palin/simulation/observer.py | 18 +++ python/palin/simulation/simple_experiment.py | 29 ++++ python/palin/simulation/simulation.py | 132 ------------------ python/palin/simulation/trial.py | 39 ++++++ 11 files changed, 218 insertions(+), 150 deletions(-) create mode 100644 python/palin/simulation/analyser.py create mode 100644 python/palin/simulation/experiment.py create mode 100644 python/palin/simulation/kernel_analyser.py create mode 100644 python/palin/simulation/linear_observer.py create mode 100644 python/palin/simulation/observer.py create mode 100644 python/palin/simulation/simple_experiment.py delete mode 100644 python/palin/simulation/simulation.py create mode 100644 python/palin/simulation/trial.py diff --git a/python/palin/kernels/kernels.py b/python/palin/kernels/kernels.py index 749f64f..c2b6514 100644 --- a/python/palin/kernels/kernels.py +++ b/python/palin/kernels/kernels.py @@ -21,17 +21,23 @@ def extract_single_kernel(cls,data_df, feature_id = 'feature', value_id = 'value def extract_kernels(cls,data_df, group_ids, feature_id, value_id, response_id, normalize = True): # for each level in group, compute kernels - return data_df.groupby(group_ids).apply(lambda group: cls.normalize_kernel(cls.extract_single_kernel(group, feature_id, value_id, response_id),normalize)).reset_index() + + def extract_normalize(group): + kernel = cls.extract_single_kernel(group, feature_id, value_id, response_id) + if normalize: + kernel = cls.normalize_kernel(kernel) + return kernel + + return data_df.groupby(group_ids).apply(lambda group: extract_normalize(group)).reset_index() @classmethod - def normalize_kernel(cls,kernel, normalize=True): - if normalize: - if isinstance(kernel,pd.DataFrame): - rms = np.sqrt((kernel.kernel_value**2).mean()) - kernel.kernel_value /= rms - elif isinstance(kernel,(np.ndarray, list)): - rms = np.sqrt(np.mean(np.power(kernel,2))) - kernel = kernel/rms - else: - raise TypeError('argument kernel is neither a pd.DataFrame or a np.ndarray') + def normalize_kernel(cls,kernel): + if isinstance(kernel,pd.DataFrame): + rms = np.sqrt((kernel.kernel_value**2).mean()) + kernel.kernel_value /= rms + elif isinstance(kernel,(np.ndarray, list)): + rms = np.sqrt(np.mean(np.power(kernel,2))) + kernel = kernel/rms + else: + raise TypeError('argument kernel is neither a pd.DataFrame or a np.ndarray') return kernel \ No newline at end of file diff --git a/python/palin/metrics/metrics.py b/python/palin/metrics/metrics.py index 0dace42..8998615 100644 --- a/python/palin/metrics/metrics.py +++ b/python/palin/metrics/metrics.py @@ -11,29 +11,28 @@ def kernel_distance(kernel_1, kernel_2, type='CORR'): def kernel_rms(kernel_1, kernel_2): - if isinstance(kernel_1,pd.DataFrame): - + if isinstance(kernel_1,pd.DataFrame) & isinstance(kernel_2,pd.DataFrame): rms = np.sqrt(np.mean((kernel_1.kernel_value - kernel_2.kernel_value_2)**2)) - elif isinstance(kernel_1,(np.ndarray, list)): + elif isinstance(kernel_1,(np.ndarray, list)) & isinstance(kernel_2,(np.ndarray, list)): rms = np.sqrt(np.mean(np.power(kernel_1-kernel_2,2))) else: - raise TypeError('argument kernel is neither a pd.DataFrame or a np.ndarray') + raise TypeError('argument kernels are neither both pd.DataFrames or np.ndarrays') return rms def kernel_correlation(kernel_1, kernel_2): - if isinstance(kernel_1,pd.DataFrame): + if isinstance(kernel_1,pd.DataFrame) & isinstance(kernel_2,pd.DataFrame): correlation = np.corrcoef(kernel_1.kernel_value, kernel_2.kernel_value)[0, 1] - elif isinstance(kernel_1,(np.ndarray, list)): + elif isinstance(kernel_1,(np.ndarray, list)) & isinstance(kernel_2,(np.ndarray, list)): correlation = np.corrcoef(kernel_1, kernel_2)[0, 1] else: - raise TypeError('argument kernel is neither a pd.DataFrame or a np.ndarray') + raise TypeError('argument kernels are neither both pd.DataFrames or np.ndarrays') return correlation diff --git a/python/palin/simulation/__pycache__/simulation.cpython-38.pyc b/python/palin/simulation/__pycache__/simulation.cpython-38.pyc index 6afccbf4d2f542cb01a026f3df5eb45687eb5ff4..5a1e747d41cb08a8e34c68f191f724c3b4e85bcb 100644 GIT binary patch delta 1757 zcmZuxOK%)S5bmDYdF<@l7-Ad8vE&CCJ6Vy)QY2(zP!gd;!3c#2v`RFLx7%i&+1X9^ z7-4HyD`8)dl7rQMz`h`&TsU#zFL2?)p~Zn;zzvBbRWoC8`Hoss5_I{&xA< zZ1rKK;t}{A2EXv1CXcJL^#1YcLX(-yikz;~aw++UFq=6?ggJ*ss|Yif6=7C{na7L= z#P^P$y)5}uJ6)cLPFt$y?k-(Xf4dh)0}>PlgxFlN23w&R}Y zh7oR+2Ot+Dqzx{Ogh~xQBg&o6l$vJy+xZ?$RG(FkX_@D-X@Rl z59tmW8Zb9c3a4af!kU?`%nftW9vMSxXb+4NJ8=f~Aw8v(JY9hZa$*Cm=D;}3Y;`18 z*zg(O6(!8!0z%Hndyu3P1Bsok6w|Pv?XchHG1G;pBNN}r&QZ>a5$|=kxBx=XUEL~O zUm80U?usm4gh$o^2#{H&1?s8qOUvpvdubi5=~q(6F-9_4aMc39nZ%4;>UwS=wY85M z)AXMD!Ckn*q34);L=I`oVGZW7(h+UBtjsD$q*Y{9R)e?4>d=1^>S=j#3qQ+Jj#H$s z7%_D12{aRrf)F}tU&7%kxgqOVpQZ$irHb7maK{yRWB~xqss1RxzmRfF#XDfh>z|It zW7W;d6m6={E57=xeEG{f;__Goj>jWlsvD9g!E0$<1G6*$2tAnjFi*YtA2&6s{C;B| zytI?+M_XTq(H_?>NU7h8CHEa&*|-Z69lZ+4gzgK_w@J0Bt&St4>xKk z#k(+R<)V~%<}xcI7D9ZAU?HSk@;_NdATNL-!x_!F~+Tm;D|62lHB>K>k8eVEdgzT_`0c!O@uuXU_S~mHJ|3#TU4~ zP5u@A=Zp~lrcU{?(AmP1?x2yPBcvhCp3yP+*Xr2Pl6KGOyB*gMzZ24t?kgePBePRM zuOdD4JoG&Ds?tZ#N3V)rP1ez?qvuQWv1qM~{_a2A{=@Iv&1^8}JsrGkzPP^mk)KAx z=8fw&Zd_|_A12|bxh;FmPN-D)G``lnf4{kX&>b9P2P%$K^TS*1M~{F0#bM7}k~QO`siGI%foeuChmnf=5e6qK<3W=8Zy>K|zcJCa z4BdDTsU+%cCt>d}jZ~K=%hwF1EsRE@V*o0K=#}VL5rgzf92p&_0I1^@&~z#VC>^hW zqf?bDfTE#m59hpg?b1m^6HmABq!-ZSMlJ%8TWF2kL~Ba%SiCmcEla!4m}~8IRh&V{ zP_M@c2uKkmgE)RW5c@9yJv-uZ1GZ`0pooKHmBB=Z_xj-2Qxr^sqAw zdvUTeJj}ix;D>J07YHplZ5Y{@ffR@#M^Bt}?1{OhRGZ|`Eg^3*Wb>$$5cL%Bu8Le(F)qWD}Mj@;v zO6QWYoJCW^7JB`!arSjk><|@GkUn_grs1So_3ClI+fhI{NA(zql}jIjmUl;$&2 zZIZi8<}8}KDKIOJVN+OVW7fWixA*PbJSUzxsx6Jgl-AhE9iU z`X1)fIvQcF8NP82&t+qDr3~BhD+^XYhDn~zczpT!w*qm3UC`u?oZv{_E2H+W0S7kaf|l8yS}847 zn`m&tmk;kehF?dCdLIK5=T*F7E-#BpNYP6v$xH!!)L{N*fx8U{_z9-ePpP>^&2?(% z#dm^7yU{Y<5#Slj)aj6sD$0;iR-HpeB?mHV1)_S|zcb6{U5W(o1b9cgY3W`&gFWVz1Jvd_LRd4NTC(r5XIt^=w7`w>;6p;1(_X7|m&(7)`2M z)VZ!)k)Eu+GEm|AvIhV3WF5BI(B7+8;47 zJ^#w={C6x|s9(r8Dc7;L{}Tjk-@;?#aqzf!Dj8QaZ2uYT-Wyj@2YZ*q*vCwDAGQv^ z`3q)h<2pv_+`o(d%D9nRsBk>;j@$-SW6A-w!jucD!Bhp5pVv?+{f#T1BKO~We)IX& z%-(m7U8<0BCwKFTwEp3o7|^WUesZ_vXs_^(SgKDUfv!v)z+u~0A7HRm(bWh(!v$dB zfSh&MY*nUok1mJR3R+gwKu zTZfDKllzM48D??+Z`7EX0B`VQ;X8*SAU&-0M<6I}NdfFPG9>cMEGlwCWcINGj^pyu3xw7nbmB6SC+ z76P++Y+aF107TXP1dbq<+G8+@s!dBdbXvY5uh7m=p^(*9dWd=uUzG@sYK!)LOta_l zNuW^j25Fq^p%$Bbm#!6G4@gau5kP?rWCSN^)qTnxBOoSZ(ll+9fvc_7M9$@ z!yhW1Nd+= (self.criteria*experiment.external_noise_std)) else 1 + return response + diff --git a/python/palin/simulation/observer.py b/python/palin/simulation/observer.py new file mode 100644 index 0000000..5c51d6e --- /dev/null +++ b/python/palin/simulation/observer.py @@ -0,0 +1,18 @@ +from abc import ABC, abstractmethod + + +class Observer(ABC): + + @abstractmethod + def respond_to_stim(self, stim): + raise NotImplementedError() + + @abstractmethod + def respond_to_trial(self, trial, experiment): + raise NotImplementedError() + + def respond_to_experiment(self,experiment): + responses = [] + for trial in experiment.trials: + responses.append(self.respond_to_trial(trial, experiment)) + return responses diff --git a/python/palin/simulation/simple_experiment.py b/python/palin/simulation/simple_experiment.py new file mode 100644 index 0000000..a5a702b --- /dev/null +++ b/python/palin/simulation/simple_experiment.py @@ -0,0 +1,29 @@ +import numpy as np + +from .experiment import Experiment + +class SimpleExperiment(Experiment): + + def __init__(self, n_trials, trial_type, n_features, external_noise_std): + # init parameters + self.n_trials = n_trials + self.trial_type = trial_type + self.n_features = n_features + self.external_noise_std = external_noise_std + self.trials = None + # generate trials + self.generate_trials() + + def create_stim_noise(self): + stim_noise = np.random.normal(loc=0, scale=self.external_noise_std, size=self.n_features) + return range(self.n_features),stim_noise + + def generate_trials(self): + self.trials = [] + for trial_number in range(self.n_trials): + stims = [] + num_stim = self.trial_type.n_stims() + for stim_order in range(num_stim): + stim_feature, stim_values = self.create_stim_noise() + stims.append(list(stim_values)) + self.trials.append(self.trial_type(stims)) \ No newline at end of file diff --git a/python/palin/simulation/simulation.py b/python/palin/simulation/simulation.py deleted file mode 100644 index c130e46..0000000 --- a/python/palin/simulation/simulation.py +++ /dev/null @@ -1,132 +0,0 @@ -#!/usr/bin/env python -''' -PALIN toolbox v0.1 -sep 2022, Aynaz Adl Zarrabi, JJ Aucouturier (CNRS/UBFC) - -Class to simulate participant in revcor experiment simulations -''' - -import numpy as np -import pandas as pd -from ..kernels.kernels import KernelAnalyser - -class Participant: - def __init__(self, kernel,internal_noise_std,criteria): - self.kernel = kernel - self.criteria = criteria - self.internal_noise_std = internal_noise_std - - @classmethod - def with_random_kernel(cls, n_features, internal_noise_std,criteria): - return cls(np.random.uniform(-1,1,n_features),internal_noise_std,criteria) - - def respond_to_stim(self, stim): - return np.dot(stim, self.kernel) - - def generate_internal_noise(self, external_noise_std): - return np.random.normal(loc=0, scale=self.internal_noise_std)*external_noise_std - - def respond_to_trial(self, trial, external_noise_std): - - activity = self.respond_to_stim(trial.stims[0]) - if trial.type == '2afc': - activity -= self.respond_to_stim(trial.stims[1]) - internal_noise = self.generate_internal_noise(external_noise_std) - response = 0 if (activity + internal_noise >= (self.criteria*external_noise_std)) else 1 - return response - - def respond_to_experiment(self,experiment): - responses = [] - for trial in experiment.trials: - responses.append(self.respond_to_trial(trial, experiment.external_noise_std)) - return responses - -class Trial: - TYPES = ['1afc','2afc'] - def __init__(self,stims): - self.stims = stims - self.type = Trial.TYPES[len(stims)-1] - -class Experiment: - def __init__(self, n_trials, exp_type, n_features, external_noise_std): - self.n_trials = n_trials - self.type = exp_type - self.n_features = n_features - self.external_noise_std = external_noise_std - - def create_stim_noise(self): - stim_noise = np.random.normal(loc=0, scale=self.external_noise_std, size=self.n_features) - return range(self.n_features),stim_noise - - def generate_trials(self): - self.trials = [] - for trial_number in range(self.n_trials): - stims = [] - num_stim = (self.type == '2afc') + 1 - for stim_order in range(num_stim): - stim_feature, stim_values = self.create_stim_noise() - stims.append(list(stim_values)) - self.trials.append(Trial(stims)) - - -class Analyser: - - def __init__(self): - self.kernel_analyser = None - - def set_kernel_analyser(self,kernel_analyser): - self.kernel_analyser = kernel_analyser - - @classmethod - def to_df(csl, experiment, responses): - - trial_ids = [] - stim_orders = [] - features = [] - values = [] - resps = [] - - for num_trial, trial in enumerate(experiment.trials): - response = responses[num_trial] - for num_stim, stim in enumerate(trial.stims): - for num_feature, value in enumerate(stim): - trial_ids.append(num_trial) - stim_orders.append(num_stim) - features.append(num_feature) - values.append(value) - resps.append(True if response == num_stim else False) - - return pd.DataFrame.from_dict({'trial_id': trial_ids, - 'stim_order': stim_orders, - 'feature': features, - 'value': values, - 'response': resps}) - - def estimate_kernel(self, experiment, participant_responses, normalize=True): - - if self.kernel_analyser == None: - print('no kernel analyser', file=sys.stderr) - - responses_df = Analyser.to_df(experiment, participant_responses) - - kernel_df = self.kernel_analyser.extract_single_kernel(data_df = responses_df, - feature_id = 'feature', value_id = 'value', response_id = 'response') - - if normalize: - kernel_df = self.kernel_analyser.normalize_kernel(kernel_df) - - return list(kernel_df.kernel_value) - - def normalize_kernel(self, kernel): - - if self.kernel_analyser == None: - print('no kernel method, defaulting to KernelAnalyser') - self.kernel_analyser = KernelAnalyser - return self.kernel_analyser.normalize_kernel(kernel) - - - - - - - diff --git a/python/palin/simulation/trial.py b/python/palin/simulation/trial.py new file mode 100644 index 0000000..1064d52 --- /dev/null +++ b/python/palin/simulation/trial.py @@ -0,0 +1,39 @@ +from abc import ABC, abstractmethod + +class Trial(ABC): + + @abstractmethod + def activate(self,participant): + raise NotImplementedError() + + @classmethod + @abstractmethod + def n_stims(self): + raise NotImplementedError() + +class Int1Trial(Trial): + + def __init__(self,stims): + self.stims = stims + + def activate(self,obs): + return obs.respond_to_stim(self.stims[0]) + + @classmethod + def n_stims(self): + return 1 + +class Int2Trial(Trial): + + def __init__(self,stims): + self.stims = stims + + def activate(self,obs): + return obs.respond_to_stim(self.stims[0]) - obs.respond_to_stim(self.stims[1]) + + @classmethod + def n_stims(self): + return 2 + + + From f20392107a009ebe082e5bf1f4c6f7f892e93990 Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Wed, 14 Feb 2024 15:38:54 +0100 Subject: [PATCH 08/17] changed module name kernel analyser + created unimpleted LMAnalyser --- python/palin/__init__.py | 1 - python/palin/kernels/classification_images.py | 2 +- python/palin/kernels/kernel_analyser.py | 43 +++++++++++++++++++ python/palin/kernels/lm_analyser.py | 21 +++++++++ 4 files changed, 65 insertions(+), 2 deletions(-) create mode 100644 python/palin/kernels/kernel_analyser.py create mode 100644 python/palin/kernels/lm_analyser.py diff --git a/python/palin/__init__.py b/python/palin/__init__.py index a903b7d..ac92014 100644 --- a/python/palin/__init__.py +++ b/python/palin/__init__.py @@ -4,6 +4,5 @@ #from palin.kernels import * #from palin.internal_noise import * -from palin.simulation import simulation from palin.kernels import classification_images from palin.metrics import metrics diff --git a/python/palin/kernels/classification_images.py b/python/palin/kernels/classification_images.py index a1c5744..012e1c7 100644 --- a/python/palin/kernels/classification_images.py +++ b/python/palin/kernels/classification_images.py @@ -8,7 +8,7 @@ import pandas as pd import numpy as np -from .kernels import KernelAnalyser +from .kernel_analyser import KernelAnalyser class ClassificationImage(KernelAnalyser): diff --git a/python/palin/kernels/kernel_analyser.py b/python/palin/kernels/kernel_analyser.py new file mode 100644 index 0000000..c2b6514 --- /dev/null +++ b/python/palin/kernels/kernel_analyser.py @@ -0,0 +1,43 @@ +#!/usr/bin/env python +''' +PALIN toolbox v0.1 +Decemberr 2022, Aynaz Adl Zarrabi, JJ Aucouturier (CNRS/UBFC) + +Functions for kernel calculating method in Classification images +''' + +import pandas as pd +import numpy as np +from abc import ABC, abstractmethod + +class KernelAnalyser(ABC): + + @classmethod + @abstractmethod + def extract_single_kernel(cls,data_df, feature_id = 'feature', value_id = 'value', response_id = 'response'): + raise NotImplementedError() + + @classmethod + def extract_kernels(cls,data_df, group_ids, feature_id, value_id, response_id, normalize = True): + + # for each level in group, compute kernels + + def extract_normalize(group): + kernel = cls.extract_single_kernel(group, feature_id, value_id, response_id) + if normalize: + kernel = cls.normalize_kernel(kernel) + return kernel + + return data_df.groupby(group_ids).apply(lambda group: extract_normalize(group)).reset_index() + + @classmethod + def normalize_kernel(cls,kernel): + if isinstance(kernel,pd.DataFrame): + rms = np.sqrt((kernel.kernel_value**2).mean()) + kernel.kernel_value /= rms + elif isinstance(kernel,(np.ndarray, list)): + rms = np.sqrt(np.mean(np.power(kernel,2))) + kernel = kernel/rms + else: + raise TypeError('argument kernel is neither a pd.DataFrame or a np.ndarray') + return kernel \ No newline at end of file diff --git a/python/palin/kernels/lm_analyser.py b/python/palin/kernels/lm_analyser.py new file mode 100644 index 0000000..84ee8ea --- /dev/null +++ b/python/palin/kernels/lm_analyser.py @@ -0,0 +1,21 @@ +#!/usr/bin/env python +''' +PALIN toolbox v0.1 +Decemberr 2022, Aynaz Adl Zarrabi, JJ Aucouturier (CNRS/UBFC) + +Functions for kernel calculating method in Classification images +''' + +import pandas as pd +import numpy as np +from .kernels import KernelAnalyser + +class LMAnalyser(KernelAnalyser): + + @classmethod + def extract_single_kernel(cls, data_df, feature_id = 'feature', value_id = 'value', response_id = 'response'): + + raise NotImplementedError() + + + \ No newline at end of file From d79ec6c5508ef9b241f450dca08bc24980d97e39 Mon Sep 17 00:00:00 2001 From: Aynaz Adl Zarrabi <59262612+aynazadl@users.noreply.github.com> Date: Mon, 18 Mar 2024 14:40:07 +0100 Subject: [PATCH 09/17] change of default value for parameter regex in str.replace --- python/palin/utils/utils.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/python/palin/utils/utils.py b/python/palin/utils/utils.py index 76789d8..3950622 100644 --- a/python/palin/utils/utils.py +++ b/python/palin/utils/utils.py @@ -60,8 +60,8 @@ def compute_prob_agreement(data_df, session_identifiers=['experimentor', 'type', trial_responses_df = trial_responses_df.join(trial_responses_df[response_identifier].str.split(expand=True).rename(columns={0: '%s1' % response_identifier, 1: '%s2' % response_identifier})) #clean the response data by removing any non-numeric characters - trial_responses_df['%s1' % response_identifier] = trial_responses_df['%s1' % response_identifier].str.replace(r'\D', '') - trial_responses_df['%s2' % response_identifier] = trial_responses_df['%s2' % response_identifier].str.replace(r'\D', '') + trial_responses_df['%s1' % response_identifier] = trial_responses_df['%s1' % response_identifier].str.replace(r'\D', '', regex=True)) + trial_responses_df['%s2' % response_identifier] = trial_responses_df['%s2' % response_identifier].str.replace(r'\D', '', regex=True)) # drop the original response column trial_responses_df = trial_responses_df.drop(columns=[response_identifier]) @@ -133,4 +133,4 @@ def simulate_observer(internal_noise_sigma,criteria, n_trials, n_blocks=1): #probability of agreement between pass prob_agreement = np.mean(all_response_pass1==all_response_pass2) - return prob_agreement,prob_interval1 \ No newline at end of file + return prob_agreement,prob_interval1 From dcf6cbb2b1aa16b6459daccd5b3b54179c7235cc Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Tue, 9 Apr 2024 22:13:45 +0200 Subject: [PATCH 10/17] added simulation abstraction + sandbox notebook --- python/new_sim.ipynb | 132 +++--- python/palin/kernels/kernels.py | 43 -- .../__pycache__/simulation.cpython-38.pyc | Bin 3596 -> 2445 bytes .../correlation_with_true_kernel.py | 36 ++ python/palin/simulation/linear_observer.py | 5 + python/palin/simulation/simulation.py | 60 +++ python/palin/simulation/trial.py | 8 +- python/sandbox.ipynb | 385 ++++++++++++++++++ 8 files changed, 559 insertions(+), 110 deletions(-) delete mode 100644 python/palin/kernels/kernels.py create mode 100644 python/palin/simulation/correlation_with_true_kernel.py create mode 100644 python/palin/simulation/simulation.py create mode 100644 python/sandbox.ipynb diff --git a/python/new_sim.ipynb b/python/new_sim.ipynb index 17aef6e..9ee7e2a 100644 --- a/python/new_sim.ipynb +++ b/python/new_sim.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "61ae16d1", + "id": "e99fe799", "metadata": {}, "source": [ "# Simulation Experiment" @@ -11,7 +11,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "218cb1d4", + "id": "25ef725a", "metadata": { "ExecuteTime": { "end_time": "2024-01-18T13:37:38.559326Z", @@ -38,7 +38,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "67b5263d", + "id": "12b04338", "metadata": { "ExecuteTime": { "end_time": "2024-01-18T13:37:49.595623Z", @@ -94,7 +94,7 @@ }, { "cell_type": "markdown", - "id": "7974d885", + "id": "b2a8e69b", "metadata": {}, "source": [ "## generate trials and responses" @@ -102,7 +102,7 @@ }, { "cell_type": "markdown", - "id": "02b090af", + "id": "93deb009", "metadata": {}, "source": [ "### with IN" @@ -111,7 +111,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "39d623ae", + "id": "c63479f5", "metadata": { "ExecuteTime": { "end_time": "2024-01-09T11:51:05.326379Z", @@ -407,7 +407,7 @@ }, { "cell_type": "markdown", - "id": "27f8230f", + "id": "95614290", "metadata": {}, "source": [ "### without IN" @@ -416,7 +416,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "ff4070e0", + "id": "600f94be", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T13:48:42.038219Z", @@ -734,7 +734,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "6ec4fa22", + "id": "d7e6f0ef", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T13:56:41.339132Z", @@ -802,7 +802,7 @@ { "cell_type": "code", "execution_count": 27, - "id": "06339766", + "id": "df82ef23", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T14:13:00.797724Z", @@ -1058,7 +1058,7 @@ }, { "cell_type": "markdown", - "id": "64c4ff24", + "id": "dcd35e0e", "metadata": {}, "source": [ "## CI kernel computaion with palin" @@ -1067,7 +1067,7 @@ { "cell_type": "code", "execution_count": 51, - "id": "ea040695", + "id": "a1c2acec", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T10:48:37.990321Z", @@ -1191,7 +1191,7 @@ { "cell_type": "code", "execution_count": 52, - "id": "035c4e5d", + "id": "0d581ad6", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T10:50:16.700639Z", @@ -1388,7 +1388,7 @@ }, { "cell_type": "markdown", - "id": "88da0057", + "id": "e669651c", "metadata": {}, "source": [ "## Simulate participant w/ CI kernel and IN 0 (graphs)" @@ -1397,7 +1397,7 @@ { "cell_type": "code", "execution_count": 92, - "id": "5dc2cc69", + "id": "c60393c8", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T13:33:09.670157Z", @@ -1507,7 +1507,7 @@ }, { "cell_type": "markdown", - "id": "2b1f9642", + "id": "7a218f2c", "metadata": {}, "source": [ "## Graphs " @@ -1515,7 +1515,7 @@ }, { "cell_type": "markdown", - "id": "4d682794", + "id": "b0045be8", "metadata": {}, "source": [ "### random kernel visualization" @@ -1524,7 +1524,7 @@ { "cell_type": "code", "execution_count": 100, - "id": "b8b8f7e4", + "id": "da3bfa43", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T14:00:48.775953Z", @@ -1620,7 +1620,7 @@ { "cell_type": "code", "execution_count": 93, - "id": "ebf36d1d", + "id": "2a59b2a0", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T13:33:34.410827Z", @@ -1650,7 +1650,7 @@ }, { "cell_type": "markdown", - "id": "9d7b4fe5", + "id": "8e391534", "metadata": {}, "source": [ "### Kernel value Evolution" @@ -1659,7 +1659,7 @@ { "cell_type": "code", "execution_count": 95, - "id": "d7432729", + "id": "59a5af6e", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T13:34:39.290061Z", @@ -1847,7 +1847,7 @@ { "cell_type": "code", "execution_count": 99, - "id": "2cdf0a8d", + "id": "83d9d01a", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T14:00:29.686409Z", @@ -2030,7 +2030,7 @@ { "cell_type": "code", "execution_count": 97, - "id": "7a060387", + "id": "12951875", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T13:35:06.438482Z", @@ -2226,7 +2226,7 @@ { "cell_type": "code", "execution_count": 84, - "id": "3896d726", + "id": "eead7e97", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T12:56:27.559484Z", @@ -2407,7 +2407,7 @@ }, { "cell_type": "markdown", - "id": "e5ff8723", + "id": "1160fd60", "metadata": {}, "source": [ "### correlation with participant random kernel" @@ -2416,7 +2416,7 @@ { "cell_type": "code", "execution_count": 102, - "id": "92cc553a", + "id": "3d440806", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T14:04:33.150155Z", @@ -2492,7 +2492,7 @@ { "cell_type": "code", "execution_count": 98, - "id": "0f68f4f8", + "id": "c5ff4a70", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T13:55:15.633617Z", @@ -2530,7 +2530,7 @@ { "cell_type": "code", "execution_count": 70, - "id": "c5dd2a7e", + "id": "ad3c31b7", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T12:34:32.110896Z", @@ -2579,7 +2579,7 @@ { "cell_type": "code", "execution_count": 36, - "id": "97d53d9c", + "id": "b7cf4832", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T14:38:54.912560Z", @@ -2618,7 +2618,7 @@ }, { "cell_type": "markdown", - "id": "8638d240", + "id": "2c09a8f3", "metadata": {}, "source": [ "## different values of IN and Criteria" @@ -2627,7 +2627,7 @@ { "cell_type": "code", "execution_count": 27, - "id": "efa0e863", + "id": "7a46844b", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T10:46:43.760310Z", @@ -2696,7 +2696,7 @@ { "cell_type": "code", "execution_count": null, - "id": "5d3e5ecc", + "id": "29009e30", "metadata": {}, "outputs": [], "source": [ @@ -2759,7 +2759,7 @@ { "cell_type": "code", "execution_count": 28, - "id": "16b53e5c", + "id": "5e9a3d7c", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T10:46:51.758548Z", @@ -2991,7 +2991,7 @@ { "cell_type": "code", "execution_count": 29, - "id": "4b59cca3", + "id": "6e4fa100", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T10:47:14.696339Z", @@ -3189,7 +3189,7 @@ { "cell_type": "code", "execution_count": 34, - "id": "4ae835a9", + "id": "14cfea33", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T11:13:25.877519Z", @@ -3267,7 +3267,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "b0756f7f", + "id": "a95aa8e0", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T14:58:54.514751Z", @@ -3285,7 +3285,7 @@ { "cell_type": "code", "execution_count": 147, - "id": "126a7881", + "id": "ed8bf8d5", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T16:04:45.627539Z", @@ -3472,7 +3472,7 @@ { "cell_type": "code", "execution_count": 148, - "id": "b70660e3", + "id": "8cbba7ef", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T16:04:57.636887Z", @@ -3511,7 +3511,7 @@ { "cell_type": "code", "execution_count": 149, - "id": "c971a1ee", + "id": "86bc796d", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T16:05:03.546637Z", @@ -3689,7 +3689,7 @@ { "cell_type": "code", "execution_count": 178, - "id": "d67c3612", + "id": "55f1c3a0", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T16:29:43.229712Z", @@ -3776,7 +3776,7 @@ { "cell_type": "code", "execution_count": 137, - "id": "dbdfbd70", + "id": "dbd37577", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T15:36:50.667399Z", @@ -3794,7 +3794,7 @@ { "cell_type": "code", "execution_count": 138, - "id": "8d6dcee0", + "id": "82fe1272", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T15:36:54.065249Z", @@ -3820,7 +3820,7 @@ { "cell_type": "code", "execution_count": 86, - "id": "5dfe6da3", + "id": "2d995dc4", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:16:30.123735Z", @@ -4061,7 +4061,7 @@ { "cell_type": "code", "execution_count": null, - "id": "891a7421", + "id": "95f1f085", "metadata": {}, "outputs": [], "source": [ @@ -4143,7 +4143,7 @@ { "cell_type": "code", "execution_count": 87, - "id": "7e2923cc", + "id": "3ac37b58", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:19:29.722626Z", @@ -4432,7 +4432,7 @@ { "cell_type": "code", "execution_count": 59, - "id": "198bb0e4", + "id": "30fa36bf", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T09:57:26.120796Z", @@ -4457,7 +4457,7 @@ { "cell_type": "code", "execution_count": 60, - "id": "28912b02", + "id": "17efce54", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T09:57:26.951351Z", @@ -4486,7 +4486,7 @@ { "cell_type": "code", "execution_count": 88, - "id": "27eaa2be", + "id": "da7d3dac", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:20:56.141439Z", @@ -4552,7 +4552,7 @@ { "cell_type": "code", "execution_count": null, - "id": "deee5314", + "id": "235143ae", "metadata": {}, "outputs": [], "source": [ @@ -4684,7 +4684,7 @@ { "cell_type": "code", "execution_count": 62, - "id": "4c7c4c0b", + "id": "44e7690d", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T09:57:40.477337Z", @@ -4817,7 +4817,7 @@ { "cell_type": "code", "execution_count": 46, - "id": "038a7310", + "id": "1fda96e6", "metadata": { "ExecuteTime": { "end_time": "2023-12-21T21:31:26.672299Z", @@ -4998,7 +4998,7 @@ { "cell_type": "code", "execution_count": 186, - "id": "9f7bbfd0", + "id": "a38e4822", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T16:32:49.165346Z", @@ -5036,7 +5036,7 @@ { "cell_type": "code", "execution_count": 187, - "id": "15856aa4", + "id": "a3b326aa", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T16:32:49.908428Z", @@ -5244,7 +5244,7 @@ { "cell_type": "code", "execution_count": 89, - "id": "f1ef1711", + "id": "5a09b1c4", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:21:19.872108Z", @@ -5420,7 +5420,7 @@ { "cell_type": "code", "execution_count": 65, - "id": "4ea914db", + "id": "bdce1492", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T09:57:51.619598Z", @@ -5579,7 +5579,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4668ce88", + "id": "fd8f2de7", "metadata": {}, "outputs": [], "source": [ @@ -5638,7 +5638,7 @@ { "cell_type": "code", "execution_count": null, - "id": "92083cbb", + "id": "9768764e", "metadata": {}, "outputs": [], "source": [ @@ -5648,7 +5648,7 @@ { "cell_type": "code", "execution_count": null, - "id": "1571041f", + "id": "7f71bf08", "metadata": {}, "outputs": [], "source": [ @@ -5665,7 +5665,7 @@ { "cell_type": "code", "execution_count": null, - "id": "4797d773", + "id": "a31c7ec0", "metadata": {}, "outputs": [], "source": [ @@ -5721,7 +5721,7 @@ { "cell_type": "code", "execution_count": 92, - "id": "f935090c", + "id": "4513b1da", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:21:52.587637Z", @@ -5830,7 +5830,7 @@ { "cell_type": "code", "execution_count": 80, - "id": "a460210d", + "id": "5f1dc0ae", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:09:46.311424Z", @@ -5911,7 +5911,7 @@ { "cell_type": "code", "execution_count": 94, - "id": "5652318b", + "id": "c727988c", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:23:53.589811Z", @@ -5999,7 +5999,7 @@ { "cell_type": "code", "execution_count": 93, - "id": "fe9945fc", + "id": "a3a9af36", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:22:00.580704Z", @@ -6028,7 +6028,7 @@ { "cell_type": "code", "execution_count": 90, - "id": "e3a77657", + "id": "cecf7185", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:21:32.745907Z", @@ -6060,7 +6060,7 @@ { "cell_type": "code", "execution_count": null, - "id": "02347247", + "id": "ec589710", "metadata": {}, "outputs": [], "source": [] @@ -6082,7 +6082,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.3" + "version": "3.8.10" }, "toc": { "base_numbering": 1, diff --git a/python/palin/kernels/kernels.py b/python/palin/kernels/kernels.py deleted file mode 100644 index c2b6514..0000000 --- a/python/palin/kernels/kernels.py +++ /dev/null @@ -1,43 +0,0 @@ -#!/usr/bin/env python -''' -PALIN toolbox v0.1 -Decemberr 2022, Aynaz Adl Zarrabi, JJ Aucouturier (CNRS/UBFC) - -Functions for kernel calculating method in Classification images -''' - -import pandas as pd -import numpy as np -from abc import ABC, abstractmethod - -class KernelAnalyser(ABC): - - @classmethod - @abstractmethod - def extract_single_kernel(cls,data_df, feature_id = 'feature', value_id = 'value', response_id = 'response'): - raise NotImplementedError() - - @classmethod - def extract_kernels(cls,data_df, group_ids, feature_id, value_id, response_id, normalize = True): - - # for each level in group, compute kernels - - def extract_normalize(group): - kernel = cls.extract_single_kernel(group, feature_id, value_id, response_id) - if normalize: - kernel = cls.normalize_kernel(kernel) - return kernel - - return data_df.groupby(group_ids).apply(lambda group: extract_normalize(group)).reset_index() - - @classmethod - def normalize_kernel(cls,kernel): - if isinstance(kernel,pd.DataFrame): - rms = np.sqrt((kernel.kernel_value**2).mean()) - kernel.kernel_value /= rms - elif isinstance(kernel,(np.ndarray, list)): - rms = np.sqrt(np.mean(np.power(kernel,2))) - kernel = kernel/rms - else: - raise TypeError('argument kernel is neither a pd.DataFrame or a np.ndarray') - return kernel \ No newline at end of file diff --git a/python/palin/simulation/__pycache__/simulation.cpython-38.pyc b/python/palin/simulation/__pycache__/simulation.cpython-38.pyc index 5a1e747d41cb08a8e34c68f191f724c3b4e85bcb..8882d368430b9b981482ea453d977f76c01a577c 100644 GIT binary patch literal 2445 zcmb_e&1)M+6rYdX)oNoaPSUucA7Bch2!e6l(n4!O+PLYV;FN|^5DLp?XYH=DT5V=m zp%$xN9B6uIptQ#xq@(|(x%O1(U(i#3ZzdcaT)|G0km zkI&d&)LAYLI(JaZJqX1V&)9(X_(1dor@qK!PukY$xwiFst*@Ap%6Z0=lkij7^ObnO zy6)fDfpvwEpMP=JbfQOPrK7kSB-IZ?br93wa*^oVK`nP664v92^@QR|JYzkXIP(Ke zISzG|2b-r_%17H$Z5$Su;6XYVWl@z5^SFgAnnJpZdKb0)2BPLQ3t258dF?`qT0qL$ zfplsQ64oi&W6U{*_1K-!>{jI~UbWG0o$^g~%E=)(TO5q993^?8qbgBbH`SINiK#&5&E@ z6i3M{$-6D%lu34|>B}{6X4)gsCP5z26a{BYZ=m`2voAmGe}DhmulxJ=`@1{4yZs`{ z(!5`s04X%KQ=WUbzfiY}6XS+K9J@6|Kp{6=LoMHeIAS$>cy+=nR`KTuj8k#Se-lrf2Xn_Db{&<*aOpTL&=K1^ zhCe;y#(A8al-76p3brx9UY3?sJRB6a-=)3jTRbM%_}0>wuK>5bmkr}6D{n(-mUdm^ zjS7V*(r?hNZdxUXi8dNt4To82T7@2}QCtCD8E54jSc@saX#ybA1Or#bdm3e<O}QHiOn z`HaK5H*qQpkCMM4hk#m6EoU5%%Bed8e62ZnDO*5yVfxdJd=84ZdoF&>hOPUCK%*Kjkv4q-%I7!T~qj}jxn7URUj;zSet zuone(FrrYVy&qN4J+Lt8w)ABhZRg>9-_kgiZ0&Qh>6I9gO5z0IqDE{X$VeL_t zZNXBKzZrLUz(xt+Gck`;#&yu@P5jh~<_qP^x*HnXul5!Nb^E&U~{ zv{vVW)p^d2`61l=0w6#a&?R&ax`ggP2LONxe4F@nYw99TdbK~3*7+-(qH9sOTTX33 zNr_W8`eMQn7hu&fd+cdT=HHi?#ck}KNqrql41cW2LucGNeuY@XKTE6+FrlOzdX%>p4s*E+qA%@dza_xH|xE`o0{smUYPC?+qyO4fMsWs+EIB&HgPA=93p zT{g_HuA^+JyAa!`FCU9dJQ15>4QyBwff#pIQ9bDT^u*-gWf+IKNZA1U@e}_6Jd!qq literal 3596 zcmb7HTaVku73T0RN_+99Np0741vE{<#NFCPABwhUz4fJu?W|j0&_dXNpgFS}DikHp zP=;5ap4Jb2X#PPTb{_-uxxb>nU|#!_zfcrtzcZw?+O>h86nJ>%ey-mfJzHCgEIdca zKgB=3XIcNE#_HpsaSN|{2*Ry_#TmB?Hn7dt8MxfxZsCpmfzK@PUJ;CfLCCD%TioZt zYl{a*_Mn4S$UA6t(2BVI#EPTYU!y;(iNz1CAmwhQ-W@FhGuO>p~BZ1C#WFge+GG2;@tl?!6A_t@;pif(UAJ))1yaIkkP#^lefw zNjfhMWfvd$eIm;U&_QW*Qj+x1ema?ml54lfRTT$~S$a+EmDAC4Az@#bKp`}zBeSx# z+E{W7_Kbbn=+s@)dYKkeq0SjpQgr+fui6B$5G3o&WfAM)x5;LgSIl`XicMZ5NtupB zlISQ&Mq@rLi0>uIi)mUkBa-$tN|~cpj;A=6$BN~g&3!aN#`#f;+OIeTr@y- zDhZPxqPNW>!=F1-zoSHzoRfANYm_+$3AB{pEfcfhI-LDo8WUA!J%A8$~>Rzqg8w?fv2^A6xYykyNIjC9(J|1(Cq z^B#J7X68M#*XHZBgG>%7w`&(%*Ki)VHN*Mf)(sbci|X!Iw)_icrOlE3z=Ka;{Nlyc z${l*Z1P2$5SNnCqoxgb}46*0#KD~z&!nvmamh?@p^7-r9f6!T z7fOR9SFu3;fL7TPt~+mb$Yq$D@SjSru<+CsT!v#PWvJoyC?)cNT}M7Ap*j z09=;$o8O=ZfEsdO0iljrq&@SI6hrbyB!o+7qq{VtT`qr0gC^e%F-Y!Jk;8)B*;YC3 zH#yW#Piq->KQDy5hEp4b$t1C>0}h8kRUNhFNOG=2V^89`3pbzrH<5W+X-6F@ z?W2?sQpyi#-`|4hcTsD|G^-Momj^)HMiRZ*+^V>4+a7s^X7}1;HwVUk14LwY{q9O7 zmn@_p-@Xm*nrXJMsPVzT6PxbGnzCDW79|^&W_2M{M2hk^cZ(_J4hNxo6KV zE`4}z;Tr%$d2aHW%8;|pJVI_&RKl5lWFBr>xX0d|ZJ)XaaPj4sU+Z(RpH7Pk2BTW` z!Pzp@ZIJRVj*xVq{0wAKjQEX8=TtUR_ApHm@{pP#?#|hzrD97XwkA1)Sab-5tpgpV^6CLS

6mszwlJa>u3zx>sxI%f~zJ9$V2jvL_8uU0pB8o4u9R0KEI*c(UjY6Kn6h# IWv^fUACjMRUjP6A diff --git a/python/palin/simulation/correlation_with_true_kernel.py b/python/palin/simulation/correlation_with_true_kernel.py new file mode 100644 index 0000000..a097fb2 --- /dev/null +++ b/python/palin/simulation/correlation_with_true_kernel.py @@ -0,0 +1,36 @@ + +from .analyser import Analyser +from palin.metrics import metrics as me + +class CorrelationWithTrueKernel(Analyser): + + def __init__(self, kernel_analyser): + self.kernel_analyser = kernel_analyser + + def analyse(self, experiment, participant, participant_responses): + + true_kernel = self.kernel_analyser.normalize_kernel(participant.kernel) + + estimated_kernel = self.estimate_kernel(experiment, participant_responses) + + return self.kernel_correlation(estimated_kernel, true_kernel) + + def estimate_kernel(self, experiment, participant_responses, normalize=True): + + responses_df = self.to_df(experiment, participant_responses) + + kernel_df = self.kernel_analyser.extract_single_kernel(data_df = responses_df, + feature_id = 'feature', value_id = 'value', response_id = 'response') + + if normalize: + kernel_df = self.kernel_analyser.normalize_kernel(kernel_df) + + return list(kernel_df.kernel_value) + + def normalize_kernel(self, kernel): + + return self.kernel_analyser.normalize_kernel(kernel) + + def kernel_correlation(self, kernel_1, kernel_2): + + return me.kernel_distance(kernel_1, kernel_2, type='CORR') diff --git a/python/palin/simulation/linear_observer.py b/python/palin/simulation/linear_observer.py index a89cf2f..6326753 100644 --- a/python/palin/simulation/linear_observer.py +++ b/python/palin/simulation/linear_observer.py @@ -5,6 +5,7 @@ class LinearObserver(Observer): def __init__(self, kernel,internal_noise_std,criteria): + self.kernel = kernel self.criteria = criteria self.internal_noise_std = internal_noise_std @@ -14,6 +15,10 @@ def with_random_kernel(cls, n_features, internal_noise_std,criteria): return cls(np.random.uniform(-1,1,n_features),internal_noise_std,criteria) def respond_to_stim(self, stim): + if isinstance(self.kernel, str): + if (self.kernel == 'random'): + # if initialized with random, obs creates a random kernel on first occurrence of stim + self.kernel = np.random.uniform(-1,1,len(stim)) return np.dot(stim, self.kernel) def generate_internal_noise(self, external_noise_std): diff --git a/python/palin/simulation/simulation.py b/python/palin/simulation/simulation.py new file mode 100644 index 0000000..51f9930 --- /dev/null +++ b/python/palin/simulation/simulation.py @@ -0,0 +1,60 @@ +from abc import ABC, abstractmethod +import itertools +import pandas as pd +import numpy as np + +class Simulation(ABC): + + def __init__(self, experiment, experiment_params, observer, observer_params, analyser, analyser_params): + + # store simulation classes + self.experiment = experiment + self.observer = observer + self.analyser = analyser + + # construct simulation plan + self.experiment_params = experiment_params + self.observer_params = observer_params + self.analyser_params = analyser_params + self.run_params = self.generate_runs(self.experiment_params,self.observer_params,self.analyser_params) + print("generated %d runs"%len(self.run_params)) + + @classmethod + def generate_runs(cls, experiment_params, observer_params, analyser_params): + # construct simulation plan + sim_params ={} + for d in (experiment_params, observer_params, analyser_params): + sim_params.update(d) + keys, values = zip(*sim_params.items()) + return [dict(zip(keys, v)) for v in itertools.product(*values)] + + + def run_all(self, n_samples): + runs = [] + for run_param in self.run_params: + print(run_param) + for sample in np.arange(n_samples): + print('.',end='') + res = self.run(run_param) + run_res = run_param.copy() + run_res.update({'sample':sample, 'metric':res}) + runs.append(run_res) + print('') + return pd.DataFrame(runs) + + + def run(self, run_param): + + # separate this run's parameters into distinct sets + run_experiment_params = {k: v for k, v in run_param.items() if k in self.experiment_params} + run_observer_params = {k: v for k, v in run_param.items() if k in self.observer_params} + run_analyser_params = {k: v for k, v in run_param.items() if k in self.analyser_params} + + exp = self.experiment(**run_experiment_params) + obs = self.observer(**run_observer_params) + ana = self.analyser(**run_analyser_params) + + responses = obs.respond_to_experiment(exp) + + return ana.analyse(exp, obs, responses) + diff --git a/python/palin/simulation/trial.py b/python/palin/simulation/trial.py index 1064d52..d60f1ed 100644 --- a/python/palin/simulation/trial.py +++ b/python/palin/simulation/trial.py @@ -23,6 +23,10 @@ def activate(self,obs): def n_stims(self): return 1 + def __str__(self): + return '1-interval' + + class Int2Trial(Trial): def __init__(self,stims): @@ -35,5 +39,7 @@ def activate(self,obs): def n_stims(self): return 2 - + def __str__(self): + return '2-interval' + diff --git a/python/sandbox.ipynb b/python/sandbox.ipynb new file mode 100644 index 0000000..e2f9fab --- /dev/null +++ b/python/sandbox.ipynb @@ -0,0 +1,385 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 94, + "id": "9f82673e", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-09T18:19:01.978718Z", + "start_time": "2024-04-09T18:19:01.941618Z" + } + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 113, + "id": "8fa531a7", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-09T18:34:55.185980Z", + "start_time": "2024-04-09T18:34:55.140103Z" + } + }, + "outputs": [], + "source": [ + "import os, sys\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "31fd8e73", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-09T16:44:59.134464Z", + "start_time": "2024-04-09T16:44:58.278104Z" + } + }, + "outputs": [], + "source": [ + "sys.path.insert(0, os.path.abspath('../palin/python'))" + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "id": "b2b99fd0", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-09T18:43:47.753878Z", + "start_time": "2024-04-09T18:43:47.708766Z" + } + }, + "outputs": [], + "source": [ + "from palin.simulation.simple_experiment import SimpleExperiment as Exp\n", + "from palin.simulation.trial import Int2Trial, Int1Trial \n", + "from palin.simulation.linear_observer import LinearObserver as Obs\n", + "from palin.simulation.kernel_analyser import KernelAnalyser as Analyser\n", + "from palin.kernels.classification_images import ClassificationImage\n", + "from palin.simulation.simulation import Simulation as Sim" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "22041899", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-09T16:49:31.299979Z", + "start_time": "2024-04-09T16:49:31.293995Z" + } + }, + "outputs": [], + "source": [ + "# single run: \n", + "exp = Exp(n_trials = 100,\n", + " trial_type = Int2Trial, \n", + " n_features = 5, \n", + " external_noise_std = 100)\n", + "obs = Obs.with_random_kernel(n_features = 5, \n", + " internal_noise_std = 1, \n", + " criteria = 0)\n", + "responses = obs.respond_to_experiment(exp)\n", + "ka = Analyser(ClassificationImage)\n", + "ka.analyse(exp, obs, responses)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "386b6eb7", + "metadata": { + "ExecuteTime": { + "start_time": "2024-04-09T19:20:58.342Z" + }, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "generated 100 runs\n", + "{'n_trials': 1, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 1, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 1, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 1, 'trial_type': , 'n_features': 32, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 1, 'trial_type': , 'n_features': 42, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 1, 'trial_type': , 'n_features': 52, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 1, 'trial_type': , 'n_features': 62, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 1, 'trial_type': , 'n_features': 72, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 1, 'trial_type': , 'n_features': 82, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 1, 'trial_type': , 'n_features': 92, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 101, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 101, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 101, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 101, 'trial_type': , 'n_features': 32, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 101, 'trial_type': , 'n_features': 42, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 101, 'trial_type': , 'n_features': 52, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 101, 'trial_type': , 'n_features': 62, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 101, 'trial_type': , 'n_features': 72, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 101, 'trial_type': , 'n_features': 82, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 101, 'trial_type': , 'n_features': 92, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 201, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 201, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 201, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "....................................................................................................\n", + "{'n_trials': 201, 'trial_type': , 'n_features': 32, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 201, 'trial_type': , 'n_features': 42, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 201, 'trial_type': , 'n_features': 52, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 201, 'trial_type': , 'n_features': 62, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 201, 'trial_type': , 'n_features': 72, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 201, 'trial_type': , 'n_features': 82, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 201, 'trial_type': , 'n_features': 92, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 301, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 301, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 301, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 301, 'trial_type': , 'n_features': 32, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 301, 'trial_type': , 'n_features': 42, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 301, 'trial_type': , 'n_features': 52, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 301, 'trial_type': , 'n_features': 62, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 301, 'trial_type': , 'n_features': 72, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 301, 'trial_type': , 'n_features': 82, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 301, 'trial_type': , 'n_features': 92, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 401, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 401, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 401, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 401, 'trial_type': , 'n_features': 32, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 401, 'trial_type': , 'n_features': 42, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 401, 'trial_type': , 'n_features': 52, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "....................................................................................................\n", + "{'n_trials': 401, 'trial_type': , 'n_features': 62, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 401, 'trial_type': , 'n_features': 72, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 401, 'trial_type': , 'n_features': 82, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 401, 'trial_type': , 'n_features': 92, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 501, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 501, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 501, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 501, 'trial_type': , 'n_features': 32, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 501, 'trial_type': , 'n_features': 42, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 501, 'trial_type': , 'n_features': 52, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 501, 'trial_type': , 'n_features': 62, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 501, 'trial_type': , 'n_features': 72, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 501, 'trial_type': , 'n_features': 82, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 501, 'trial_type': , 'n_features': 92, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 601, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 601, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + "....................................................................................................\n", + "{'n_trials': 601, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", + ".........." + ] + } + ], + "source": [ + "# obs = Obs.with_random_kernel(n_features=5, internal_noise_std=0, criteria=0)\n", + "\n", + "observer_params = {'kernel':['random'],\n", + " 'internal_noise_std':[1], \n", + " 'criteria':[0]}\n", + "experiment_params = {'n_trials':np.arange(1,1000,100),\n", + " 'trial_type': [Int2Trial],\n", + " 'n_features': np.arange(2,100,10),\n", + " 'external_noise_std': [100]}\n", + "analyser_params = {'kernel_analyser':[ClassificationImage]}\n", + "\n", + "\n", + "sim = Sim(Exp, experiment_params, \n", + " Obs, observer_params, \n", + " Analyser, analyser_params)\n", + "sim_df = sim.run_all(n_samples=100)\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 151, + "id": "3c925055", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-09T19:19:35.346726Z", + "start_time": "2024-04-09T19:19:34.771230Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 151, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGxCAYAAACeKZf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf4UlEQVR4nO3de3wcZb0/8M8zszN7zf2ym2tT7uXSUlqoBVTUQgFPBUFF5EApCActIlQOyhEpglgORxGUIkcQkJ8giAIil2JPoCJYCrSUm/SSpmnS5tY0zT3Zy8zz+2N2J7tJWtp0k+3uft4vY5PZ2c2TKe1++szzfb5CSilBRERElCGUVA+AiIiIKJkYboiIiCijMNwQERFRRmG4ISIioozCcENEREQZheGGiIiIMgrDDREREWUUhhsiIiLKKI5UD2CymaaJ5uZm5OTkQAiR6uEQERHRPpBSore3F+Xl5VCUvc/NZF24aW5uRlVVVaqHQUREROPQ1NSEysrKvZ6TdeEmJycHgHVxcnNzUzwaIiIi2hc9PT2oqqqy38f3JuvCTexWVG5uLsMNERFRmtmXJSVcUExEREQZheGGiIiIMgrDDREREWUUhhsiIiLKKAw3RERElFEYboiIiCijpDTcvPbaa1iwYAHKy8shhMCzzz77ic9ZtWoVTjjhBDidThx22GF45JFHJnycRERElD5SGm76+/sxY8YMLF++fJ/O37p1K774xS/ic5/7HNavX49rr70W3/zmN/Hyyy9P8EiJiIgoXaR0E7+zzjoLZ5111j6ff//992Pq1Kn4+c9/DgCYNm0aXn/9dfziF7/A/PnzJ2qYRERElEbSas3N6tWrMW/evIRj8+fPx+rVq1M0IiIiIjrYpFX7hdbWVvj9/oRjfr8fPT09GBwchNvtHvWcYDCIYDBof93T0zPh4yQiIqLUSauZm/FYtmwZ8vLy7A92BCciIspsaRVuAoEA2traEo61tbUhNzd3zFkbALjxxhvR3d1tfzQ1NU3GUImIiChF0uq21Ny5c/Hiiy8mHFu5ciXmzp27x+c4nU44nc6JHhoRUdaRUgKQgAQgZdzX0c+jH9I6OfE4Es/Z1/OkfW7sWOx7m8OfI+51E54PRP/vk3+25D2w7/b6Ent+0Lrue3vq3h6Xe3xpGf/AqHPkXr9U3R7kHnLE3sc1gVIabvr6+lBXV2d/vXXrVqxfvx6FhYWorq7GjTfeiB07duDRRx8FAFx11VW49957ccMNN+Cyyy7DK6+8gj/+8Y944YUXUvUjEBFNKvvN3TSH39TN2Jt74tf2OaYJSBPSlNavUgKmmXiulHHnjH7d4efFHSPaAzMcTun3T2m4eeedd/C5z33O/nrJkiUAgIULF+KRRx5BS0sLGhsb7cenTp2KF154Addddx3uueceVFZW4sEHH2QZOBHZ4v/Fb/0DfsRsgnWS/XXC7EHs+YiFAtjPtWYAAMRmCCCtIGD/y3fErII5/L0SZxLix4i42YgxwoOMCy3RYJI2hLB/FfbXAtEvog8L67h9TMQ9V0T/l3gOxIjnxs4T0cfiz4//2v7eexzwfvxsE3LqfryoGPtzRK/XXgeS+LhhGIhEDITDEUQMA5FIBEbERMSIIBK2Hhv+iFjnRT+PHQ+Hw4gY5vCxcATFpUVYcOQxyfuZ95OQnziflVl6enqQl5eH7u5u5Obmpno4RGnPTJgVkJDSGH6DtmcKYrMAiTMKY884jJxdSHyTT5y1GP1Y9om9uSv2GzqEEn2zBwQUQLHe3IUQ1ucJIUBYz1XiPoeAUKKfCwGoCoT9mgJCUYefq8RCSez7RING7G1WjBjrno4lPDzy2Ig37DGOCbGHN/UJYpomIuGI/YYejn0ejgy/4dvHYmEgLhyEY1+HEQknnh8OW68T/5qhUDjxNUY8bgeOcGTscUUMGHHHYp9PVAQ48ujD8NRLv03qa+7P+3darbkhovGzg0XEgDTCkIYBM2JAmhHrmBmBNIzED9MYsd4hMVSkZZgYc0YBSJxVECPOjT0++jljz0DEHYs7XyTMIMTPTGBEKIl+Hhc4hCIgFGX4nGjAEEKMeN34MWDU8eFDI362EZ/vb1gwTRNGxEDEsN5EYzMCpmHanxvRx6xzDCsg2MetX+036uix4Tfm6OORyPDn9jmxxyMwjMTXtD+PfR2OIBx9jVFhxH6txNkJI26Wwvr+EZhmGv63vw+s/7RUqIoC1aFCVWMfivWrY8TXqgqHQ00816FiSk1lSn8OhhuiNBC7tSJNCWlEosEkEhdMjNEBxYwPKSakaUxOGBl1e0DEvWEnHo+/nQBYswoCI86PzR6MfB0RPyNhfR6bvbDe/JXoG7wSHdbIqfzRtymGz9nTLYyxZiPiDuzp+KhPxzo+9q2G+HFLKREKhhAKRxAaDCMUCiEcCiMUtD4PhcIIBUMIBkMIhUIIDoXsx2LHQsEQwqFI9PMwwmHrOaFQGKFQ2Hq90PA54XA4+nnY/jwSsX61QoMJMzbDluUURYGqKlY4sN/8R4aCPQcFh8Nhfe4YDgmO2HkOBxyqCocWe8wBR9zjjtjXugZNc0DTNDgcKnRdg6Zp0HSHfVzTdWi6Aw6Hdcz+Nfqc2GycELE/j8N/ToUY/no4WA9/rUQDuaZpKf29YLghmgTxi0ATgkjEgBkfUIwxwolpQBqxWzlJWnMhFAjF+oCiQChq4tdCSbwVEb1NgVhoGBVcYgEkensESJwdiIYW6/jwjIaI+9x6SuKshv1CI18vYbZh7CCQSqZpYqB/EL09fejt6UNPTx96unvQ09WL7u5e9HT1oqen1358oH/QDhhWgLDCQzg8HChiMwvpxnrDU6CoivWrokBRhP25Gn98xOfqiM9F7Fh0ZiF2vv0aqgJVUe2AoajDj6nxsxGOuBkHVYWmOaBqDuuYqkLTtbg3/FgocFhBweGAwzkcIHQ9GhY0R/TPy/DPjPgQEAsJijJmQEj8ABB9DYHh87CH59FoDDdE4xQfWMxIBDISghkOw4yEYYbDkJHo55EIZCRizZyYyQonYkQgift8VHCJDy9qNLTEzVzE/uJVoqEkFm5EfFgYETYm4LbGwcQwDPT3DQyHk+5edHf1oLurFz3dvXGhpRd9Pf3o7e1DX08/+vr60d83gIH+gUm5bWH9K99hv1E77H/BO6Bq1uda9F/9sX+hO7Tov/Bj/2J3OOx/xTti/7KP/SteV6E5rDfwhDd5pxNOXYsGAmX4e6pK9PtoUB1WwHA4VCixN+JosEm4lQaMesOO/29vrNkD+/gYMwjDjyUGhYTjQDR8MCxkKoYbojjxlTamaUKGwzDDIZiRcPRzK7DISASmEQ0tRmQc30lAqNGwERdAhj+PBoy4gKIoCoSIhhMlbv/N2MyKGL6tAyVu7Qbi/4KPf+MYMYOSQSKRCPp6+xPDye4ea9akOzGg9PX2o7e3H329fejrHUB/Xz8G+geTMg5VVeFyu+B2O+H2uOD2uOH2uODxuOH2uOH1euDxuuHxuqOzBSp0XbeDhK7r0J0anLoGzalD13U4nRqcTpd1m0F3QBHDMxijZgDigkR8wEiYXcDw5wkzC0gMAPGvT3SwY7ihjDdyMzBpGMMhJRyGGZ1xkZGIdcwYvj20P4SiQqgqhMNh/ao67GOKqgKqFV4Ue2Yk/k0ibg1KbBZFwJqFSZhFSZxtsV8jw950pJQY6B9ET3cvunZ3o6erF11dPejptmZPYoElFlB6e/vRFw0qfX0DGBocSso4NM0Bl9tlBxSXxwWP2wojbq8bHo8bXp8HHo8HXp8bvhwvvF4PcvNykFeQC6/XY8126Jp928QR/e8hts4i/vZLQhiJD7BEtF8YbigtjdwZ1TRNwDDsWRYzFlqisyzWDIsB04js960hO6ioDiukOBxQYkEmGloU1ZG4fiRunUpsBkbYa1XiHhfxa0wyaxZlaHAI3dEZEyuY9KIn9mt33G2d6AxLX28/+nqt2zr9fQPW7+kB0nUtIZyMnDnxeIdnT7w+L3w+Nzw+L3JyfcjN98HjtmZUNM0BVbVu58TCiOpQ7bUcw6HF+pqIUovhhtJCbO8TY2gIoZ4uGEODkEbEWs8SnWnZv0ogAeFQo4ElbqYlGlistSnWv7BHhRZ72j8utMTOiV9LkMazKVJKhENhdPdEb+d0WYthY7d0enr60NttBRIroFi3dOxw0j+AUDB0wONQVTV6O8cFdzSkeLyxWzqxgBKdNfF54fV54PN54MvxISfXB7fHZa8h2dPsiRJbZKoMrxFJ1983IrIw3NBBS5omTCOCyMAAwr1diPT1wgwF9/4koUA4rBkWkRBaFAglepvIoSYGEmA4mNjHMy+0mKaJcCiM3bu7sbOtAzvbd6GjvRO7dnaic1cXOnbuwu5dXdjd2W2Fme7epFTnuNxOe6YkFlLiZ1BcHhe8sRmUHA9yvF54c7zw5frgdrugOzXo0VJWXdftMBILKI7YDIojcW8OIspeDDd00LDXwxgRRPp6Ee7rQaS/DzKS2KNEcbrgcLmB6CyLoqiA4oiubYmVISeGFiWuisgOJ/GhJf42URoxDAPhUBhdu7uxs30X2ls70NGxOxpYdqOjvRO7d3Wha/f4A4vDocITvXXjdrvg9rqtWzzu2NfRWZXo+hOf12P9muODL8cD1eGAHp05sfbYiN3mGb6dE7vFY932Gd77g+tOiGg8GG4oZezt9Q0DRjiIcF8vIv19MAb6rbJpm4Dq8cDh9kJ1uaE4HHa58nDpc2JQGbXxW5qQUtq7oO6OzqbsbNuFjp3WDMuuXbuxq70TnZ3d0YW24wssbo8LuXk5yMm1bt/k5FizJTm5PuTm5iAnz4eC/Dzk5efC6XFaAUS1yoetfT00u7Q4tjGZoioJsyjxa1DS6feAiNIfww1NGrtnkGHdbjKCQ4j09yEy0AdjcCBxzYyiwOHxweHxQXW6ouFFgaI5oDj06LqY9PlXvWmaGBoKRgNLJzradmHnzl3YFZtl6ehC567d1gxLdy96DzCw5Ob6rModnxc5edbXObk5yM/PRX5hHpxuJxzRGRWnywmnU4fu1Id3OY1taKY5EmZWiIjSAcMNTajYjrxmtJ+RFWj6YQz0wwgm7iUiHA44vDlweLxQdCcgpbXuxeGA6tCja2UO/rUU4VAYrS3t+Oj9DdjwUR02/qsO9XXbsLOtYxyBxY3cPJ89o+LL9cLn80RnXHLgy/UhPz8H+QV5cLlddjBxOnU7tMQ2WItt2+7QrI3bGFiIKFMx3FBSxdbNWC0GIjAiYZjBIUQG+mEMDoxaEKzoTji8Pji8ORAOhxVoorvvKroORXUMb0h3kDFNE4ODQ9hW34R/fbAJGz7ajE0fb8G2rU3Y3dm9x+fFAkvs9o8vZziw+HKtmZe8/BzkF+TC7XLZfWOcLid0pw6XS4/badaRuDOt5mBgIaKsx3BDB8ReN2NajRzNaJsBY3AAxuAAIoP9kJHEHXxVlycaaHxQVMfw+hqhQNE1KA7Nuu10EAWacCiMvt5+bPx4CzZ8tAkbPqpD3aataNq2A4MDY28Y5w+UoLK6DGWVAZRX+OEvL0VhUT5cThdUh7UWxel2wqXr0F1Ou4/NcGBJvEVERET7huGG9luskaPdfiDa4NEYGkBkcACRgf7EjfKEgMPjtW45eX0QQkAaVhNICQlFd0LRYoEmtbMO9tqYzi58/MEmfPzhJmz6eAu2bmlC8/aWMW8rqQ4VlVVlqKwuR1mlH2XlflRUlyEvNxdOl47c/Bzk5PjgcjutTr3R3j5caEtENDEYbugT2Z2sDRNmJGQHEzMSgTE0iMhg/6gFwUJR7dtNDo83+jqG1dlaCCiaFg00jpQtDA4FQxgaCqJlexs+/tcmfPT+RmzZ1IDGrduxs31XdBfkRB6vG9U1FaioKkNZhR+BslL4y0vh9XrgdOr2gl6X29p4zuVyMsAQEU0yhhsaZeS6mVjLAglARsIwBgetCqehkQuCNWjeHDh8OVBdbuu1ovvWCCEgVBWqpts7Ak8WwzAQDIYw0D+Ihi2N+NeHG7HxozrUb2lEU8MO9HT3jvm8wqJ8VE+tREWlFWT8ZSUoLi2CrmtwupzIiy7wjQ8yXO9CRJR6DDc05roZSNOaZYGAjIQRGehHZKBv9IJgpwtadIZG0Z3W65kGzEjY6qOkKlA1a28aoUz8bZjYbExPTx82f7wFH32wEXUbt2Lb1iZsb2xBcGj0DsdCCJRV+KNBJmDPyHhzvNB0B1wuF3JyvMjJzYnusOuEy+1ikCEiOkgx3GQ5aZrWol/DsG8rSSFgBoOI9Fub6kljxIJgt3c40GjacDiK7SSsqFCdLivQxBpKJplhGAgOBTE0FEJnx2589P4GfPzRZtTXbUNTww607Ggbs/GipmuonlKB6qkVKK8sQ3l5KYr8RXA6rQW9LpcTXp8Hefm5di8jl9vJBb1ERGmE4SbLxW49QQgYQ0MI9/ciMtA3YkGwAofXa91y8vjsW0rSNGGGwwBktNJJn/AN9sLhCF5/9U2sWvkGtm5pRFPjDuzauXvMc70+D2oOqcaUaJAJlJcivyDPrkRyunR4fV7k5vmsHkfRIONw8I8FEVE649/iWS7Y1YlQZ8fo9TOqGq1uyoHD7bHDipQmzEgY0jStDfa0ydlgzzRNbPhwM35xx/1Y88a6UY8Xlxah5pBKVNdYt5asRb5eCCGhqlaQ8fg8yMvLgcfjgSt6a0nT+EeAiCjT8G/2LGaEghhsbrK/VjTdCjO+HKvlQfR2kpTSKvs2TXuDPdXlnpQN9qSU2Nm+Cw/e+3s8/eQLCAVDEELgpJNn4rAjp6K8MgB/oAQOTQOkhKIocLqc8Hjd1iZ4HjdcLifcHjeDDBFRluDf9lksMjgAwKpy8pRXQY0uCAYSK6YAxK2jmbwN9vp6+/Hisyvxm1/9P7S3dQAAjph2KC64+BwUFOUPz8i4XcgryBvuWu12QdO1CR8fEREdnBhuspgxaN2KUl0uO9jE9rOBNAFVTckGe0NDQax/5wMs//lDeG/dRwCAvPxcXLjwyzjqmMPhcjlROaXc6qcUbUlAREQUw3CTxYwha+ZG0Z3WOppoX6dUbbAXDoXR1NiM3y7/PV766yuIhCNQFAVnfunzOP2szwJCIFBWiqqaCuTk+iZtXERElF4YbrKYEbR6IsU21UvFBnuAVda9s30X/vrnl/HYQ39C564uAMAx04/CNxadB4/HDV+OF1OmVqHEX8SybCIi2iuGmywlpbQ35FNdHqvEe5LbBEgpsbuzG2+tXoeH7nscGz7aDAAoLC7Av1/2FRwx7VCYhkR5ZSkqp1TA43FP6viIiCg9MdxkKTM4ZG3aJwQUpz7pwaanuxf1m7fh0QeexKsr34BhGHA4HPi3807H/H/7HAYHh+D1eTGlpgJFJYXsz0RERPuM4SZLRaL72iiaDsUxeZVFAwODaN7eguefXok//+F5dHf1AACOn3UsLv7mV6FpGgzTxKGH1aCiqoyLhYmIaL8x3GQpI1oGrmiTM2sTCobQ1roTa95Yh8ce+hO2bG4AAJQGirHwigtw+FGHoL9vAAXF+ZhSU4n8grwJHxMREWUmhpssFduRWNF1YAJLvCORCDp2dmLjR5vxx8eewxur3oJpmtCdGs796tmYv+Bz6O3ug2lKHHH0YSgrL2X7AyIiOiB8F8lSdqWU7pyQcm8pJTo7dmNbw3aseO4VPP/M39DX2w8AOOnkE/Dvl38Fuq6ht6cfgbJSVE+thC/Hm/RxEBFR9mG4yULSNO1KKcXpBJJ8W6q7qwfN21vx9ur1+NPjz6Gh3mrxUF4ZwKX/8XUcMe1QdHZ0weNx4+jjalDqL4YyifvpEBFRZmO4yUKxxcQQClTNmbQ1NwP9A2je0YZNG7bgL39cgTdffwdSSrjcTpx/4QLM/+Jp6OnpQ09XL6qnVqBqSgXcbldSvjcREVEMw00WMu1KKWsX4gMVHAqirXUnGht24JWX/4GX/lKL/n5rwfKpp83BNxadD5dLR0dHJwoKC1AztRKFxQUs7yYiognBcJOFInGLiRV1/LeDIpEIdrbtwvbGZqxf9yGeffIlNG3bAQCorqnEoqsuxOFHTcWuji5IKXHo4VNRURlgeTcREU0ohpssZFdKac5xVUqZpoldO3dje+MONNQ34aXnavHm62sBAF6vB1/99y/h9LM/i/6+Aexs24WSQDGm1FQiLz83qT8HERHRWBhuspARHJ65Ecq+3xqSUqK7qwfbtzWjtbkdr/99DV78Sy2GBocghMDnTj8FX1/4ZbjcLrS3dcDtceOoYw6Hv6yE5d1ERDRp+I6TZaRpQIbDAADV6drnmZu+3n40b29Ba/NO/OujTfjLH1/EjqZWAMChh9dg0VUX4tAjatC1uxudu3ajvCKAqikVLO8mIqJJx3CTZSKD0UopRYGqf3Kl1NBQEC072tCyvRUtzW148S+1eHv1uwCAnFwfLrz0PJw272SEQmG0NrcjNy8Hhx15CEpKi1jeTUREKcFwk2WMoeG2C9hL+AiHI2hv3Yntjc3Y3dmFN/+xFi88uxLBYAhCETjj7NPw1X//EjxuNzo7dkNKYMohVaisLofL5ZysH4eIiGgUhpssYwzG1ts4IRR19OOGgV0du9G0rRm7d3Vh65ZteOr3z6G1pR0AcOTRh+Gyqy7ElEOq0N83gNbWnSgsyseUqVUoLMpneTcREaUcw02WiS0mVjUtYTGxlBK7O7uxvakZHe2d6N7djb88tQLr3n4fAFBQmIeLLvsKTvnsSTAMA22tHdA0Bw4/cirKKwLQ9MnrLE5ERLQ3DDdZJqGnVHQxcU93L5q3t6GtpR3BYBCvv7oGLzy7EuFwBKqq4Oxz5uG8r/8b3B4Xerp70d83gNJACaZMrURuXk4qfxwiIqJRGG6yiBmJQEYiAABFdwGKgoH+Afzrg43o6+vH1s3b8IffPYOOnZ0AgOOOn4ZL/+PrqKgqsxcMuz1uTDv2CPjLSqCqo29rERERpRrDTRaJLSYWqgpFc0AIgcGBIdTXNeKFZ/+GD979GABQXFKIS674Gk6cOxMA0LmrC+FQGOWVZaiaUg6vz5Oyn4GIiOiTMNxkkVgZuKLpdk+ph//3Cfz+t0/BNE1omgMLzp+Pc75yJpwuJ4YGh7B7Vzdy83NwxLRDUVxSyPJuIiI66DHcZBF75kbTIRQFjQ3b8egDTwIAZp00HRdf8TUEykphGiZ2tu+CgMCUQ1neTURE6YXhJovEFhOrug4hFGz6uB4AUD21Ev9589UAgL6+fvR096G4uADV0fJuIiKidMJwk0XM+EopRcGmDVsAAFXV5YiEI+jo2A2nruOIow5BWbmf5d1ERJSWGG6yhBEOQxoGACvcQAhs3mDN3JT4i7CzfRf8gRJUs7ybiIjSHMNNljAG+wEAwuGAojogFAVbt2wDAPjLS3H0cUeiNFDM8m4iIkp7DDdZwkiolFIQiUTQtK0ZAHD44VNRVuFP5fCIiIiShnW9WSLWdiFWBr6jqRXhUBia5sCUQ6tSPDoiIqLkYbjJEsZQXLgRCrZs2goAKPUXw+fzpnJoREREScVwkwVM04QRCgKILiZWBDZ9bFVKBSr8cDr1VA6PiIgoqRhusoAMhwHTBDA8c1MXnbkprwhAZ7ghIqIMwnCTBSKD0Z2JHRqEQwWEQH2dVSlVUV3GmRsiIsooDDdZINZ2QdF1KIoK0zTRuHU7AKDmkCrO3BARUUZhuMkCCYuJVRXN21sRCoXhcKiomVoNIUSKR0hERJQ8DDdZINZTSok2zKzb1AAAKCktRm6+L4UjIyIiSj6GmwxnmgbMaKWUqjsBoQxXSpWX8JYUERFlHIabDGcGQ4CUAAChaRCKsPe4Ka/kYmIiIso8DDcZzl5MrOkQigoIBfWbrUqpyuoyOF3OVA6PiIgo6RhuMpy9mFjXoagqpJTY1mBVSlXVVEDXtVQOj4iIKOkYbjKcHW4cOqAoaNnRhuBQEKqqouaQKigK/xMgIqLMwne2DCaltCulRHSPm9jOxCWlRcjLz03l8IiIiCZEysPN8uXLUVNTA5fLhTlz5uCtt97a6/l33303jjzySLjdblRVVeG6667D0NDQJI02vUjTgBkOAQBUTQcUgY3RSil/eQnX2xARUUZKabh58sknsWTJEixduhTr1q3DjBkzMH/+fLS3t495/uOPP44f/OAHWLp0KT7++GP89re/xZNPPon/+q//muSRpwdjKGhVSglhVUoJBVs2WjM3ZWyYSUREGSql4eauu+7CFVdcgUWLFuHoo4/G/fffD4/Hg4ceemjM8//5z3/ilFNOwTe+8Q3U1NTgjDPOwIUXXviJsz3ZalSllKJg65ZYpVQ5Z26IiCgjpSzchEIhrF27FvPmzRsejKJg3rx5WL169ZjPOfnkk7F27Vo7zNTX1+PFF1/E2WefvcfvEwwG0dPTk/CRLRLaLihWi4Vt9ValVHVNJWduiIgoIzlS9Y07OjpgGAb8fn/Ccb/fjw0bNoz5nG984xvo6OjAqaeeCiklIpEIrrrqqr3ellq2bBl+/OMfJ3Xs6cIIxsKNBqE60NrcjsHBISiKguqplVBVNcUjJCIiSr6ULyjeH6tWrcJPf/pT3HfffVi3bh2efvppvPDCC7jtttv2+Jwbb7wR3d3d9kdTU9Mkjjh1pDRhBq22CyLaU2rzxnoAQHFpIQpYKUVERBkqZTM3xcXFUFUVbW1tCcfb2toQCATGfM6PfvQjXHzxxfjmN78JADjuuOPQ39+PK6+8Ej/84Q/H3LPF6XTC6cy+tSXSMIcrpXQr3GzaEK2UKiuBy+1K5fCIiIgmTMpmbnRdx6xZs1BbW2sfM00TtbW1mDt37pjPGRgYGBVgYrdWZLR/Elli620gBIQjsVKqvCLAxcRERJSxUjZzAwBLlizBwoULMXv2bJx00km4++670d/fj0WLFgEALrnkElRUVGDZsmUAgAULFuCuu+7CzJkzMWfOHNTV1eFHP/oRFixYwPUjI0RilVK6E0JRAEVg65ZGAEBFNRtmEhFR5kppuLnggguwc+dO3HzzzWhtbcXxxx+PFStW2IuMGxsbE2ZqbrrpJgghcNNNN2HHjh0oKSnBggULcPvtt6fqRzhoGYNxlVJCASDQUG+tN6qqLofOcENERBlKyCy7n9PT04O8vDx0d3cjNzczF9VKKdGzZSOMgT7oBUVwFQewq7sPp8/5ChRF4IHH78KJc09I9TCJiIj22f68f6dVtRTtI2nCDFmVUoqmQ6gK6jZYlVJFxYUoKCpI5eiIiIgmFMNNBjIjBmQkDGD4ttRwpVQpPB53KodHREQ0oRhuMpBdKaUoEA4HoAhs3hDrKVXKxcRERJTRGG4yUKynlBqtlBJiuKdURWUZFxMTEVFGY7jJQLGZGxG9JSUBbNtq9ZSqnFLOmRsiIspoDDcZRkoTRjC2mFiDUBR0duxGX28/hBCorqmEpmspHiUREdHEYbjJMNI0YYbjK6Uc2PixtZi4qLgABYV5EEKkcohEREQTiuEmw8hIBDISAQComg6hCGyO6ynl9XlTOTwiIqIJx3CTYSKx9TaqalVKCQV1GxsAAGXlfq63ISKijMdwk2GMweGeUoCAUIYrpcoqA3C6GG6IiCizMdxkECkljOAQAGu9DRQBCbCnFBERZRWGm0wiTZhxlVKKomJ3Zzd6e/ogBFBVU8HbUkRElPEYbjJIfKWUcOiAomBTtFKqoKgAhUX5rJQiIqKMx3CTQcxwBNIwAACKrkFRVbunVCBQAq/Pk8rhERERTQqGmwwSibZdEA4HFMWqlNqy0eopFajww+lypnJ4REREk4LhJoPYlVKaExCAUATq66KVUhUsAyciouzAcJMhpGnCDEUrpXQdEAoglOGeUtVsmElERNmB4SZDSGnCDIUARHtKqQq6dneju6sHAFBdU8mZGyIiygoMN5nClDBD0TJwhwahqNj8cT0AoKAoHwWF+VBVNZUjJCIimhQMNxnCCIUgTRMAIDQdQlGx4eM6AECgjJVSRESUPRhuMoQx2A8AEA4NiqJAKAJbNkUrpcpK4Xa7Ujk8IiKiScNwkwGklIgErYaZqu4EhIAQCrbWNQIAAhWlXExMRERZg+EmEyS0XdABIQBFYNtWq6dUZXUFXGyYSUREWYLhJgNYbResSimhaRBCQU93H3Z3dgMAqqewYSYREWUPhpsMYBrD4UbRNAiHAxv/ZS0mzi/IQ35hPhwORyqHSERENGkYbjKAGQoCCZVSww0z/WUl8OWwUoqIiLIHw00GGG67oEOJLibesqkBAFBWXgq3253C0REREU0uhps0J00Tht12wWkvJq7fYvWU8peXcmdiIiLKKgw3ac5quxCrlNLsMvBt9VZPqYqqMnYDJyKirMJwk+7M+J5SOoRQ0Nvbj85duwEAVdUVnLkhIqKswnCT5hIrpXQIdXgxcV5+LgqK8qDpWiqHSERENKkYbtKcGRwEpAQgAIcDQnVg0wYr3ATKS+DzeVM7QCIioknGcJPGpJSIDFltFxQ9ViklULfR6inlD5TC42UZOBERZReGm3QW33YhViklFGzdYvWU8peXsu0CERFlHYabNGa1XYirlIKAUBRsq4/2lKoMsO0CERFlHYabNCZHVEpBEejt7UfHzk4AQOUUVkoREVH2YbhJY6ZhwAyHAQCKQ4eiqNi8sR4AkJuXg4LCPM7cEBFR1mG4SWPm4CAAaa21cagQqmqXgQfKSuD1eSCESO0giYiIJhnDTZoa2XZBEdZ6m1hPqdKyEuTk+lI4QiIiotRguElTCW0XdB2AVSlVX2f1lCorL+UtKSIiykoMN+nKHA43quaMZhthV0oFKgJcTExERFmJ4SZNSVPCiLZdEJoGCAX9/YPY2b4LAFBdXcGZGyIiykoMN2nKjIQhY5VSmgZFVbFpg1Up5cvxoqA4nzM3RESUlRhu0lB82wUoCoSiAoqCzdFwU1bhh9fjhqLwt5eIiLIP3/3SkTRhRiul1GjbBaGoqIvuceMPlMCXy4aZRESUnRhu0tDInYkFrMXEdk+pshI4Xc4UjpCIiCh1GG7SkDTjy8CjMzdCwbb67QCAQHkp19sQEVHWYrhJQ1bDzNhiYt2qlBocQntbBwCgij2liIgoizHcpCEzFIKMWOFGaA4IRaBuQz2klPD6PCgqLuBtKSIiyloMN2kmvu2CUFQIoUCoDmzaYPWUKiv3w+11Q1XVVA6TiIgoZRhu0kxi2wUngJE9pYqR42OlFBERZS+Gm3QTXyml6xACEIqC+rpYpVQpXG5XKkdIRESUUgw3acZaTDwcbuxKqa3RnlJlbJhJRETZjeEmzUjDSNjjBkKgf2AIbS07AQCV1WWslCIioqzGcJNGpJQwwmFIIwIAUBw6hLDW20gp4fG4UVxSyEopIiLKagw36cQcbrsgVKsEXKgqNm2MVkpV+OF2u6BpjlSOkoiIKKUYbtKIlCbM4HCllAQgVNWulPKXlcCbw0opIiLKbgw3aUSaJozoYmJVd0JIQAgF9ZsbAAClgRJ4PO4UjpCIiCj1GG7SiDRMyGi4EboOKAJQBBq3Wj2l/GUlXExMRERZj+EmjUgjYpeBq5oGQGBwIIjWWKVUVTkXExMRUdZjuEkT0jRhRsKQhgEAEA4NUATqNjfANE243C4U+ws5c0NERFmP4SZNxLddEA4NQihQFBWbN9QDsCqlXE4nNF1L5TCJiIhSjuEmXZjD4UbVdUhICNWBLdHFxIFACXw+L4QQKRwkERFR6jHcpAnTGK6UUnQXBAChCNTXbQMAlASK4c3xpHCEREREBweGm3RhGgkNM6MdM+1KKfaUIiIisjDcpAEpJYzIcKWUolkhZmhwCK3N7QCA8soAXKyUIiIiYrhJC6YJaYQB0wQACIcDUBTU1TXCMAw4XU74A8WcuSEiIsI4w80111yDX/7yl6OO33vvvbj22mv367WWL1+OmpoauFwuzJkzB2+99dZez+/q6sLixYtRVlYGp9OJI444Ai+++OJ+fc90k9B2QdMghICiqKjbuBUAUFZeCs2pswyciIgI4ww3f/7zn3HKKaeMOn7yySfjT3/60z6/zpNPPoklS5Zg6dKlWLduHWbMmIH58+ejvb19zPNDoRBOP/10NDQ04E9/+hM2btyIBx54ABUVFeP5MdKGNM3hW1K6EzAloCjYstkKN4HyUni9blZKERERARhX++hdu3YhLy9v1PHc3Fx0dHTs8+vcdddduOKKK7Bo0SIAwP33348XXngBDz30EH7wgx+MOv+hhx5CZ2cn/vnPf0LTrP1campqxvMjpBVpJIYbKQBFUVG/OVopVVoMHxtmEhERARjnzM1hhx2GFStWjDr+0ksv4ZBDDtmn1wiFQli7di3mzZs3PBhFwbx587B69eoxn/Pcc89h7ty5WLx4Mfx+P4499lj89Kc/hRHdtTdTWW0XwgAARXNCAIAisC1WKVVeCpfblboBEhERHUTGNXOzZMkSXH311di5cyc+//nPAwBqa2vx85//HHffffc+vUZHRwcMw4Df70847vf7sWHDhjGfU19fj1deeQUXXXQRXnzxRdTV1eHb3/42wuEwli5dOuZzgsEggtH1KgDQ09OzT+M7WEjThDlGGfjgYBCtzW0AgLKKUq63ISIiihpXuLnssssQDAZx++2347bbbgNg3R769a9/jUsuuSSpA4xnmiZKS0vxm9/8BqqqYtasWdixYwf+53/+Z4/hZtmyZfjxj388YWOaaNI0ISNhQFqVUopDA4RA/ZYmRCIGdKeO0kAJK6WIiIiixl0K/q1vfQvbt29HW1sbenp6UF9fv1/Bpri4GKqqoq2tLeF4W1sbAoHAmM8pKyvDEUccAVVV7WPTpk1Da2srQtGZjZFuvPFGdHd32x9NTU37PMaDgjQTZ20gIVQFWzYNV0q5XE7O3BAREUUd8D43JSUl8Pl8+/08Xdcxa9Ys1NbW2sdM00RtbS3mzp075nNOOeUU1NXVwYzu9wIAmzZtQllZGXR97Dd3p9OJ3NzchI90Yhrx4cYJSAmhqKjb1AAA8JeVwuVxJQQ+IiKibLbPt6VOOOEE1NbWoqCgADNnztxr2fG6dev26TWXLFmChQsXYvbs2TjppJNw9913o7+/366euuSSS1BRUYFly5YBsGaL7r33Xnz3u9/Fd77zHWzevBk//elPcc011+zrj5F+TANmxAo3qu6ElIBQFNRHG2aWBoqQ42OlFBERUcw+h5tzzjkHTqe1vf+5556blG9+wQUXYOfOnbj55pvR2tqK448/HitWrLAXGTc2NkJRhieXqqqq8PLLL+O6667D9OnTUVFRge9+97v4/ve/n5TxHGyklDCN4cXEQnNCCABCoLHBqpTyB0rh9rhTOEoiIqKDi5BSyv15gmEYeOONNzB9+nTk5+dP0LAmTk9PD/Ly8tDd3X3Q36KShoFQXw/6G+sBKeGtnArhUBEWDnxm5jkIhyO46fbrMO+s01BYlJ/q4RIREU2Y/Xn/3u81N6qq4owzzsDu3bvHPUDaN1KakOEwrHtRwuopJQQatjYhHI5A0zSUlpVwMTEREVGccS0oPvbYY1FfX5/ssdAI0jRhhBI7gQuhoG5jAwAgUFEKl9PJMnAiIqI44wo3P/nJT3D99dfj+eefR0tLC3p6ehI+KDmkYULGLSaGNCFUB7ZEFxMHykrgcrugaeParoiIiCgjjetd8eyzzwYAfOlLX0qompJSQgiR8e0QJoOUMrHtgtMJCVh73ETDjT9QipxcVkoRERHFG1e4efXVV5M9DhpJymg3cKt1hKJHe0pBoDHaU6o0UAy3m5VSRERE8cYVbqZOnYqqqqpRe91IKdNvB+CDlDRNSGnCDMUaZkZ7SgWDaN5h7ersL2dPKSIiopHGteZm6tSp2Llz56jjnZ2dmDp16gEPigBIEzIcAhCtlFLV6P42zQiHwnA4HAiwpxQREdEo4wo3sbU1I/X19cHlch3woAgwDWO4Ukp3RjOOgrqNVk+pQHkpnG4nXC5nKodJRER00Nmv21JLliwBAAgh8KMf/Qgej8d+zDAMrFmzBscff3xSB5i1Yt3AEauUkhDK8GLiQLRhpqZrKRwkERHRwWe/ws27774LwJq5+eCDDxKaVeq6jhkzZuD6669P7giz0Mi2C4ruhIS0ysBjDTMDxfCxpxQREdEo+xVuYlVSixYtwj333HPQty9IW6YJSBNmeHiPGwFAQqJx2w4AQKm/BB6vZy8vQkRElJ3Gtebm4YcfRm5uLurq6vDyyy9jcHAQgDXjQAdOSjNaBh5tmKlblVJDwTBatrcCiK654WJiIiKiUcYVbjo7O/GFL3wBRxxxBM4++2y0tLQAAC6//HJ873vfS+oAs1F8sIGiQCgqAIHtjS0IBkNQHSpK/cVwuhhuiIiIRhpXuLn22muhaRoaGxsTFhVfcMEFWLFiRdIGl62kkXhLCpCAIrApVilVVgq3182ZGyIiojGMaxO/v/3tb3j55ZdRWVmZcPzwww/Htm3bkjKwbDWq7YLuBEwJRXOgPq5SStc17nFDREQ0hnHN3PT39yfM2MR0dnbC6eS+Kwck2nZBxs3cSCkBRUX9Zis4+gMl8Po8Y+41RERElO3GFW4+/elP49FHH7W/FkLANE3ceeed+NznPpe0wWUjaZoAZMIGfkLEKqWiPaX8xfDlsAyciIhoLOO6LXXnnXfiC1/4At555x2EQiHccMMN+Oijj9DZ2Yk33ngj2WPMLtKENAx7Az+hWbeegsEwmrdbPaVKy4p5S4qIiGgPxjVzc+yxx2Ljxo049dRTcc4556C/vx/nnXce3n33XRx66KHJHmNWMQ0DRnS9jVBVKKoKCGD79lYMDQ5BURT4y0rZdoGIiGgPxjVzAwAulwunn346ZsyYAdM0AQBvv/02AOBLX/pSckaXjUwTMhLfU0oCQkFdbGfishJ43G7O3BAREe3BuMLNihUrcPHFF6Ozs3PUxn1CCBiGkZTBZRu77UJcpZSUJhSHZrddKKvwQ3NqLAMnIiLag3HdlvrOd76Dr33ta2huboZpmgkfDDYHINZ2IRS3x42UQFzDTH+gBB6PG4oyrt86IiKijDeud8i2tjYsWbIEfr8/2ePJalKagJQww0EAsYaZgCmBpmhPqRJWShEREe3VuMLNV77yFaxatSrJQyEZnf2SkQgAQNF0CADBYMiulPIHirmYmIiIaC/Gtebm3nvvxVe/+lX84x//wHHHHQdN0xIev+aaa5IyuGwjjYi9eZ9QHRCKAmlKtOxox+DAIIQi4C8rYU8pIiKivRhXuPnDH/6Av/3tb3C5XFi1alXCTrlCCIabcbDaLpiJbRdilVJxOxO7PewpRUREtDfjCjc//OEP8eMf/xg/+MEPuLA1WaJtF+yGmU6rUkqoKuqiDTPLKvzsKUVERPQJxpVMQqEQLrjgAgabJIq1XYiFm9jMjVCHG2b6AyVwuV1wOMa9PREREVHGG1c6WbhwIZ588slkjyW7xSqlQlallBqtlDJMiabGZgBASaAYvpzRDUuJiIho2LimAAzDwJ133omXX34Z06dPH7Wg+K677krK4LKJaRiQEQMyuk+QojshjQiGhkLY0dQKwKqUGqsbOxEREQ0bV7j54IMPMHPmTADAhx9+mPBY/OJi2nfSNGAa0Z5SDg0QAhACra0dGOgfgBACJf4SrrchIiL6BOMKN6+++mqyx5HVRlZKqbrT2q1YCHtn4hJ/EbxeVkoRERF9Eq4IPhjE2i7ELSaWUkIIBXWbrUqp8soANI09pYiIiD4Jw81BQI5YTKw4Y5VSCurtPW5K4XTp0HRtby9FRESU9RhuDgLSNGFKmdAwU0IiYgJN26KVUv4i9pQiIiLaBww3BwFpRADDhDSjlVKaDiElQsEQmrcPV0p5vayUIiIi+iQMNylmLyaORNsuaLpVKaUoaGvrQF9vPwCgJFDC9TZERET7gOEm1aJtF2QkfmdiE4DAls2NAKKVUh43y8CJiIj2AcNNitltF0KJlVJQBDZHe0qVVwSg6ayUIiIi2hcMN6lmV0oNLyaGKaEoKuq3RCulyqxbUpy5ISIi+mQMNylmGgakKWHEysBjlVKGie3RSqlSfzF8Pi93fyYiItoHDDcpJk0DUhrRdTaAousQAILhCFp2tAEASgJF8LJhJhER0T5huEmhWKWUjLZdUHSn9YAQ2NneiZ7uXgCAP8CeUkRERPuK4SaVom0XjHB8pZQEANRFe0oVlxTC7fFwMTEREdE+YrhJIWmOXkwspQkIBXUbGwAAZRV+6JrGmRsiIqJ9xHCTQlKakEBcw0zd6imlKNi6xdrjJlBeCs3JMnAiIqJ95Uj1ALKZNCKAxHDDTN0FmBJhGNjeGK2UCpTA63VDUZhDiYiI9gXfMVPEXkxsRKx1NkJA0TRIAYRCht1TqqSUDTOJiIj2B8NNqkTbLtg9pXTrtpMAsGvXbnR39QCwZm6cLmeqRklERJR2GG5SxG67EI4tJnbZMzhbNls7ExcWF8DjdXG9DRER0X5guEkV04SU8T2l9Gi4UVC3qQEAUF7hh67rnLkhIiLaDww3KWKaBkTCYuJYGThQX2fN3ATKS6GzYSYREdF+YbhJEWkakGI43MRuS4UNie2NLQCs9TYujwuqqqZyqERERGmF4SYF7EqpSMQ6IBQIhwNSAqFQGC07rEqpUn8RcnyslCIiItofDDepEG27YEZ7SqmxSikBdO7uxu7ObgBAib8YLrcrZcMkIiJKRww3KWC3XQgPr7cBrEqp+k3Wepv8wjx4vB4uJiYiItpPDDcpYLddiFVKOZ2AaYWbzZu2AgDKKwPQdAcXExMREe0ntl9IAWlEICDiFhM7rXU4ALZuaQIAlJWXsmEmERHRODDcTDIpJUzDgIzbwE/RnYA0ETYFdjRZlVL+shK4XE5oGn+LiIiI9gdvS002KQFTDldKKQqE6oAEEAqH0byjDYDVU8rLnlJERET7jeFmko1uu+CEEAJCAl27+9DZsRsAUFJaDI/HncKREhERpSeGm8kWa7sQd0tKSgkoAnV1DQCAvPwceHO8cLFSioiIaL8x3Ewy0zQgAJjB4cXEkKbVMDPaU6qisgyaw8HFxEREROPA1aqTTBoRQAgY8T2lzGilVH0jACBQ4YeDZeBERETjwnAziaQ0oxv4ATJi7U4c2+MmFDGwI9pTyh8ohtPphKZrqRwuERFRWuJtqclkSmtn4oi13kaoKhTVAQmJUNgcrpTyF8Pn9UAIkcrREhERpSWGm0k03HYhOmujWwuGBYCenl67UqrUX8wycCIionFiuJlEw20XEncmhhDYUtcIKSVycn3w5Xi53oaIiGicDopws3z5ctTU1MDlcmHOnDl466239ul5TzzxBIQQOPfccyd2gEkiI1bbhfjFxJASwHBPqYqqMiiKAqeL4YaIiGg8Uh5unnzySSxZsgRLly7FunXrMGPGDMyfPx/t7e17fV5DQwOuv/56fPrTn56kkR4YKSVM0wCU4Z5S1h43JgxpoiG+p5TOnlJERETjlfJwc9ddd+GKK67AokWLcPTRR+P++++Hx+PBQw89tMfnGIaBiy66CD/+8Y9xyCGHTOJoD4A0rQXFca0X1OjMTThkYMf2VgCAv7wUDl3jbSkiIqJxSmm4CYVCWLt2LebNm2cfUxQF8+bNw+rVq/f4vFtvvRWlpaW4/PLLJ2OYSSGjlVJGdGdi4XBAqCpgSgTDEbREw01JaRF8PlZKERERjVdK97np6OiAYRjw+/0Jx/1+PzZs2DDmc15//XX89re/xfr16/fpewSDQQSjuwEDQE9Pz7jHe0BMExISMr4TOAApgP6+AXTs7AQAFJcUwcdKKSIionFL+W2p/dHb24uLL74YDzzwAIqLi/fpOcuWLUNeXp79UVVVNcGjHJvddmFEpZSAQF20Usrr8yA3zwcne0oRERGNW0pnboqLi6GqKtra2hKOt7W1IRAIjDp/y5YtaGhowIIFC+xjpmkCABwOBzZu3IhDDz004Tk33ngjlixZYn/d09OTkoAzVtsFSAkIoG5zAwCgsrociqpwvQ0REdEBSGm40XUds2bNQm1trV3ObZomamtrcfXVV486/6ijjsIHH3yQcOymm25Cb28v7rnnnjFDi9PphNOZ2pmQWNsFIZSEmRtIiYghsa0+WilV4YemsVKKiIjoQKS8t9SSJUuwcOFCzJ49GyeddBLuvvtu9Pf3Y9GiRQCASy65BBUVFVi2bBlcLheOPfbYhOfn5+cDwKjjB5VY2wWYkIYBINYw00AoEsaOpmilVKAEulPnzA0REdEBSHm4ueCCC7Bz507cfPPNaG1txfHHH48VK1bYi4wbGxuhKGm1NGgUaZrREnCr7YJwaBCKAmlEEA4baN5hhZtSfxE8HjdUVU3lcImIiNJaysMNAFx99dVj3oYCgFWrVu31uY888kjyB5RkUpqQInExsXVcoq9vCB3tVqVUUWkRvD5PysZJRESUCdJ7SiRNjGq74IxWSgmB+i3bYJomPF43cvNy4Ha7UjxaIiKi9MZwM8HGarug2pVSAnWbGgDEekoJLiYmIiI6QAw3E02agGkCYzTMjEQMNGzdDgAorwjAoTm4mJiIiOgAMdxMMKvtAiBNIxpyAEXTIaVEMBRBc6xSqrwETl1nN3AiIqIDxHAzweTItguaDqEogDQRjpho3mFtYOj3F8PldsHhOCjWeBMREaUthpsJJqNtF4xg3C0pABJA/+AgdrZ1AACKS4vgy2GlFBER0YFiuJlgsbYLZigx3AgA9XWNME0TLrczWinlTuFIiYiIMgPDzQSKb7sQW0ysRsvAR1ZKQQguJiYiIkoChpsJJE0TkDK6gV90zY3ujK63iaCxYQcAoKIyAE1zsBs4ERFREjDcTCRTWh+GYZWEI1opZUoEgxHs2G5VSgXKS6FpGmduiIiIkoDhZgLF2i7E728jhACkRDgSQct2q1KqxF8Cp0uHpmupHC4REVFGYLiZQLG2CyMXE0tIDA6F0B6tlCrxF8Hn86ZsnERERJmE4WaC7LHtAqKVUluaYBgGnC4ncnN98HhZBk5ERJQMDDcTJdp2Ib5SStHjKqU2NgAAKqoCEELAxZ2JiYiIkoLhZoJYlVLWZn2xSinVafWUCoUiaNxmVUqVVwbgcDjYMJOIiChJGG4miDSl1XYhErY7gAuHBilNBEMh7GhqAQAEykqh6ayUIiIiShaGmwkSa7tgjqyUMiXCYQMtze0AAH9ZCXRd48wNERFRkjDcTJCRbRdii4mllBgYDKO9NVopVVoEr89jBR8iIiI6YAw3E0Ca8W0X4nYmBiAEsK2hCZFIBLpTQ06eD74cloETERElC8PNBJDSarsARUm4LSWlhJTA5mhPqfLKAFRFYdsFIiKiJGK4mQixtgtA4m0pKREKh7F9WzMAoKKyDEJRuZiYiIgoiRhuJoA0zYRmmRAKhMNhVUoFI9ge7SlVVuGHrnExMRERUTIx3EwAaSS2XVATekoZaI1VSgVKoDlZBk5ERJRMDDdJFt92wQgNAQAUpzP2IAaDQbS17ARgVUp5PG4oCn8biIiIkoXvqskW13bBHFEpJQE0bN2BcDgMTXMgNz8XObmslCIiIkomhpsks9ouyFF73EgpASmxpW4bAKtSSiiClVJERERJxnCTZFbbBQBSwgzHzdxIiWAorlKqqgxCgOttiIiIkozhJsnstgvRYCMUFUJVo+Emgu1Nw5VSmsbFxERERMnGcJNkMmK1XTCCiT2lpDQRDoftSqlS9pQiIiKaEAw3SSRNE1LGFhNHw01CpVQYba1WpVRpaRFcHhccDkeqhktERJSRGG6SaKy2C6quRx8DGhuaEQqGoDpU5BXkIjfHl8rhEhERZSSGm2SSsFIMAMPuKeWK9pQyhyulKvwQQsDldqVqpERERBmL4WYCSNOAjIQBAIquA5AIhSJoamwBYFVKAYLrbYiIiCYAw80EiG3eJ1QViuoATImhUAg7opVS5ZUBaJqDlVJEREQTgOFmAphxt6QAqyVDOBRBW4tVKRUoK7HKwLmBHxERUdIx3EwAY8RiYkiJoWAIrdGeUsX+YrjdTmgaK6WIiIiSjeFmAozuKSXR2NSG4FAQqqogvyAX3hz2lCIiIpoIDDcTYHiPG+u2lBkxUF/XCAAIlPuhCAUejztl4yMiIspkvC+SZNIwII0IAOu2lJQSoXAETY1WT6nK6jJIsKcUEVGmMQwD4XA41cNIa7quQ1EOfN6F4SbJ7J5SDgeEokKaBoLBMJq3D1dKOVSVZeBERBlCSonW1lZ0dXWleihpT1EUTJ06Fbp+YO+RDDdJFgs3amy9jZQIxvWU8peVQHNqcLFSiogoI8SCTWlpKTweD4QQqR5SWjJNE83NzWhpaUF1dfUBXUeGmySLhZvYYmKYEsGh4UqpUn8xnLoOTddSNUQiIkoSwzDsYFNUVJTq4aS9kpISNDc3IxKJQNPG/z7JBcVJNlalVNP2NgwNDkFRFBQU5sPn8zLZExFlgNgaG4/Hk+KRZIbY7SjDMA7odRhukswYcVvKNAxsrW8CAATKSwABeHP4h4CIKJPwH6zJkazryHCTRGYkDJgmAGvmRkqJYCiMpm1WpVRFVTkEwMXEREREE4jhJomM4BAAQDg0CEUBpLXepnlHGwCgojIARVG5mJiIiD5Ra2srTj/9dHi9XuTn56d6OGmF4SaJzCEr3AxXSpkIhiL2YuJAeSl0XePMDRERfaJf/OIXaGlpwfr167Fp06akvW5NTQ3uvvvupL3ewYjVUkkUm7mxK6WiPaXaomXgJf5iOHQNOiuliIjoE2zZsgWzZs3C4YcfnuqhjCkUCh3wfjQThTM3STQq3JgS27e3YWBgEEIRKCwugNfrTsrui0REdPA77bTTcM011+CGG25AYWEhAoEAbrnllk98Xk1NDf785z/j0UcfhRACl156KQCgq6sL3/zmN1FSUoLc3Fx8/vOfx3vvvWc/b8uWLTjnnHPg9/vh8/lw4okn4v/+7/8SxrNt2zZcd911EELYC3hvueUWHH/88QljuPvuu1FTU2N/femll+Lcc8/F7bffjvLychx55JEAgKamJnzta19Dfn4+CgsLcc4556ChocF+3qpVq3DSSSfZt9dOOeUUbNu2bf8u5H7iu2ySSClhBAcBAEo0yYYNA9u27gAA+P0lEBDwsWEmEVFW+d3vfgev14s1a9bgzjvvxK233oqVK1fu9Tlvv/02zjzzTHzta19DS0sL7rnnHgDAV7/6VbS3t+Oll17C2rVrccIJJ+ALX/gCOjs7AQB9fX04++yzUVtbi3fffRdnnnkmFixYgMZGq7/h008/jcrKStx6661oaWlBS0vLfv0stbW12LhxI1auXInnn38e4XAY8+fPR05ODv7xj3/gjTfegM/nw5lnnolQKIRIJIJzzz0Xn/3sZ/H+++9j9erVuPLKKye8uoy3pZJEhuMrpaI9pYIhbG+K9pSaUgYJEy63K5XDJCKiSTZ9+nQsXboUAHD44Yfj3nvvRW1tLU4//fQ9PqekpAROpxNutxuBQAAA8Prrr+Ott95Ce3s7nE7rDsHPfvYzPPvss/jTn/6EK6+8EjNmzMCMGTPs17ntttvwzDPP4LnnnsPVV1+NwsJCqKqKnJwc+3X3h9frxYMPPmjfjvr9738P0zTx4IMP2oHl4YcfRn5+PlatWoXZs2eju7sb//Zv/4ZDDz0UADBt2rT9/r77izM3SRKJztoITYMQ0UqpYAjN261KqfLKMiiKwoaZRERZZvr06Qlfl5WVob29fb9f57333kNfXx+Kiorg8/nsj61bt2LLli0ArJmb66+/HtOmTUN+fj58Ph8+/vhje+bmQB133HEJ62zee+891NXVIScnxx5PYWEhhoaGsGXLFhQWFuLSSy/F/PnzsWDBAtxzzz37PVs0Hpy5SRLN44NvymGIDPZbB6LdwFtbhyulNI2VUkRE2WZkGwEhBMzoTP/+6OvrQ1lZGVatWjXqsVip+PXXX4+VK1fiZz/7GQ477DC43W585StfQSi6e/6eKIoCKWXCsbE6nHu9iUsr+vr6MGvWLDz22GOjzi0pKQFgzeRcc801WLFiBZ588kncdNNNWLlyJT71qU/tdUwHguEmSYSqwuH1AbD+45DSxOBQcLhhZqAYuq5x5oaIiMblhBNOQGtrKxwOR8JC33hvvPEGLr30Unz5y18GYIWP+MW9gNXiYGR7g5KSErS2tkJKad9eWr9+/T6N6cknn0RpaSlyc3P3eN7MmTMxc+ZM3HjjjZg7dy4ef/zxCQ03vC01UaREc3MH+vsGIIRAUXEhXB4XVFVN9ciIiCgNzZs3D3PnzsW5556Lv/3tb2hoaMA///lP/PCHP8Q777wDwFrT8/TTT2P9+vV477338I1vfGPULFFNTQ1ee+017NixAx0dHQCsKqqdO3fizjvvxJYtW7B8+XK89NJLnzimiy66CMXFxTjnnHPwj3/8A1u3bsWqVatwzTXXYPv27di6dStuvPFGrF69Gtu2bcPf/vY3bN68ecLX3TDcTJBwKIJtW7cDAEr8RRCKQI6PlVJERDQ+Qgi8+OKL+MxnPoNFixbhiCOOwNe//nVs27YNfr8fAHDXXXehoKAAJ598MhYsWID58+fjhBNOSHidW2+9FQ0NDTj00EPtW0fTpk3Dfffdh+XLl2PGjBl46623cP3113/imDweD1577TVUV1fjvPPOw7Rp03D55ZdjaGgIubm58Hg82LBhA84//3wcccQRuPLKK7F48WL8x3/8R/IvUBwhR95ky3A9PT3Iy8tDd3f3XqfQxsOMRBDp74VwaOjt6sZ9y/+APz72V5xw4nRcfMXXcMxxRyJQXprU70lERKkzNDSErVu3YurUqXC5WA17oPZ2Pffn/ZszNxNBSgSDYbtSqqI6ACHYMJOIiGgyMNxMBCkRCofjKqX8cGgOLiYmIiIAwGOPPZZQzh3/ccwxx6R6eGmP1VITQEoTAwNBtMUaZgZKoLMMnIiIor70pS9hzpw5Yz42snSc9h/DzUSQEq0tHejt6QMAFJUWwuVyQtN4uYmICMjJyUFOTk6qh5GxeFtqAoTCYWxrtNouFJcWQREKcvJ8KR4VERFRdmC4mQChwRB2NFnbS1dWlcE0Tbjd7hSPioiIKDsw3EyAoXAYzTusSqnKKeWQABcTExERTRKGmwkQCoXtxcRl5X5oDgcXExMREU0ShpsJ0N8/hNZouCktK4ZDZxk4ERHRZGG4STIpJdp37kJPdy8AoLikCC6XkzM3REREk4ThJsnCEQNN21oBAEUlBXA4VPjYU4qIiNLMa6+9hgULFqC8vBxCCDz77LMJj0spcfPNN6OsrAxutxvz5s3D5s2bUzPYEQ6KcLN8+XLU1NTA5XJhzpw5eOutt/Z47gMPPIBPf/rTKCgoQEFBAebNm7fX8ydbcCiE7XalVDmMiAGP15PiUREREe2f/v5+zJgxA8uXLx/z8TvvvBO//OUvcf/992PNmjXwer2YP38+hoaGJnmko6U83Dz55JNYsmQJli5dinXr1mHGjBmYP38+2tvbxzx/1apVuPDCC/Hqq69i9erVqKqqwhlnnIEdO3ZM8sjHFgyH0dJsjb2iqgwAK6WIiCj9nHXWWfjJT36CL3/5y6Mek1Li7rvvxk033YRzzjkH06dPx6OPPorm5uZRMzypkPJwc9ddd+GKK67AokWLcPTRR+P++++Hx+PBQw89NOb5jz32GL797W/j+OOPx1FHHYUHH3wQpmmitrZ2kkc+tmAwbC8mLq/0Q1EUOF0MN0REZJFSQppGaj6kTMrPsHXrVrS2tmLevHn2sby8PMyZMwerV69Oyvc4ECntBxAKhbB27VrceOON9jFFUTBv3rx9vjgDAwMIh8MoLCwc8/FgMIhgMGh/3dPTc2CD3hsBDPQPDveUKiuFrmucuSEiomHSxO4P303Jty44diYg1AN+ndZWa22p3+9POO73++3HUimlMzcdHR0wDOOALs73v/99lJeXJ6THeMuWLUNeXp79UVVVdcDj3hOhqNjV1Y+u3d0ArNYLulNnpRQREdEkSutOjnfccQeeeOIJrFq1Ci6Xa8xzbrzxRixZssT+uqenZ8ICTigYQtM2a+1PQWE+HJoDXp8HQogJ+X5ERJSGhGLNoKToeydDIBAAALS1taGsrMw+3tbWhuOPPz4p3+NApDTcFBcXQ1VVtLW1JRxva2uzL9ye/OxnP8Mdd9yB//u//8P06dP3eJ7T6YTT6UzKeD9JMBhCYzTcVFaXIRKOwJfDMnAiIhomhEjKraFUmjp1KgKBAGpra+0w09PTgzVr1uBb3/pWageHFN+W0nUds2bNSlgMHFscPHfu3D0+784778Rtt92GFStWYPbs2ZMx1H1imiZam62gFquU4i0pIiJKR319fVi/fj3Wr18PwFpEvH79ejQ2NkIIgWuvvRY/+clP8Nxzz+GDDz7AJZdcgvLycpx77rkpHTdwENyWWrJkCRYuXIjZs2fjpJNOwt13343+/n4sWrQIAHDJJZegoqICy5YtAwD893//N26++WY8/vjjqKmpsdfm+Hw++Hy+lP0cMa3N1mLiiqoyCEVwMTEREaWld955B5/73Ofsr2NLPBYuXIhHHnkEN9xwA/r7+3HllVeiq6sLp556KlasWLHHZSKTKeXh5oILLsDOnTtx8803o7W1FccffzxWrFhhLzJubGyEogxPMP36179GKBTCV77ylYTXWbp0KW655ZbJHPqYWlusPW78ZSXQNR1O1+TcEiMiIkqm0047ba+l40II3Hrrrbj11lsncVT7JuXhBgCuvvpqXH311WM+tmrVqoSvGxoaJn5A4zQwMIjdu7oAACWlRdCcLAMnIiKabCnfxC+TbKvfDgDIy8+F06nD43EnzDoRERHRxOM7bxI11DcCsCqlQqyUIiIiSgmGmyRqqG8CAFRUl0FKCRfX2xAREU06hpskathizdxUVJZBCLCnFBERUQow3CRRbOYmUFYCTeNiYiIiolRguEmSgYFBtDZbZeClgRLousYN/IiIiFKA4SZJGrY0QUoJX44XTpcTLrcLDsdBUWlPRESUVfjumySmaeCEk6bDMAyEw2H4cjypHhIREVFWYrhJkmNnTMPdv/kJ1r39PsyICbfbneohERERZSXelpoIimDbBSIiSmvLli3DiSeeiJycHJSWluLcc8/Fxo0bE84ZGhrC4sWLUVRUBJ/Ph/PPPx9tbW0pGvEwhpsJoGkOVkoREVFa+/vf/47FixfjzTffxMqVKxEOh3HGGWegv7/fPue6667DX//6Vzz11FP4+9//jubmZpx33nkpHLWFt6UmAMvAiYgo3a1YsSLh60ceeQSlpaVYu3YtPvOZz6C7uxu//e1v8fjjj+Pzn/88AODhhx/GtGnT8Oabb+JTn/pUKoYNgOFmQjhdOjRdS/UwiIjoICSlxODgUEq+t9vtghBiXM/t7u4GABQWFgIA1q5di3A4jHnz5tnnHHXUUaiursbq1asZbjKNz8eeUkRENLbBwSF8atqZKfneb368Ah7P/he8mKaJa6+9FqeccgqOPfZYAEBrayt0XUd+fn7CuX6/H62trckY7rgx3CSZqqjw+lgGTkREmWPx4sX48MMP8frrr6d6KPuE4SbJNJ3rbYiIaM/cbhfe/HjFJ584Qd97f1199dV4/vnn8dprr6GystI+HggEEAqF0NXVlTB709bWhkAgkIzhjhvDTZKx7QIREe2NEGJct4Ymm5QS3/nOd/DMM89g1apVmDp1asLjs2bNgqZpqK2txfnnnw8A2LhxIxobGzF37txUDNnGcJNkOmduiIgoAyxevBiPP/44/vKXvyAnJ8deR5OXlwe32428vDxcfvnlWLJkCQoLC5Gbm4vvfOc7mDt3bkoXEwMMN0ml6xp8OV7O3BARUdr79a9/DQA47bTTEo4//PDDuPTSSwEAv/jFL6AoCs4//3wEg0HMnz8f99133ySPdDSGmyTyeD045PCaVA+DiIjogEkpP/Ecl8uF5cuXY/ny5ZMwon3HHYqJiIgoozDcEBERUUZhuCEiIqKMwnBDREREGYXhhoiIiDIKww0REdEB2pfKIvpkybqODDdERETjpGkaAGBgYCDFI8kMoVAIAKCq6gG9Dve5ISIiGidVVZGfn4/29nYAgMfjgRAixaNKT6ZpYufOnfB4PHA4DiyeMNwQEREdgFiTyFjAofFTFAXV1dUHHBAZboiIiA6AEAJlZWUoLS1FOBxO9XDSmq7rUJQDXzHDcENERJQEqqoe8FoRSg4uKCYiIqKMwnBDREREGYXhhoiIiDJK1q25iW0Q1NPTk+KREBER0b6KvW/vy0Z/WRduent7AQBVVVUpHgkRERHtr97eXuTl5e31HCGzbM9o0zTR3NyMnJycpG601NPTg6qqKjQ1NSE3Nzdpr0uj8VpPLl7vycNrPXl4rSdPsq61lBK9vb0oLy//xHLxrJu5URQFlZWVE/b6ubm5/IMySXitJxev9+ThtZ48vNaTJxnX+pNmbGK4oJiIiIgyCsMNERERZRSGmyRxOp1YunQpnE5nqoeS8XitJxev9+ThtZ48vNaTJxXXOusWFBMREVFm48wNERERZRSGGyIiIsooDDdERESUURhukmT58uWoqamBy+XCnDlz8NZbb6V6SGll2bJlOPHEE5GTk4PS0lKce+652LhxY8I5Q0NDWLx4MYqKiuDz+XD++eejra0t4ZzGxkZ88YtfhMfjQWlpKf7zP/8TkUhkMn+UtHPHHXdACIFrr73WPsZrnTw7duzAv//7v6OoqAhutxvHHXcc3nnnHftxKSVuvvlmlJWVwe12Y968edi8eXPCa3R2duKiiy5Cbm4u8vPzcfnll6Ovr2+yf5SDnmEY+NGPfoSpU6fC7Xbj0EMPxW233ZawXT+v9/i89tprWLBgAcrLyyGEwLPPPpvweLKu6/vvv49Pf/rTcLlcqKqqwp133jm+AUs6YE888YTUdV0+9NBD8qOPPpJXXHGFzM/Pl21tbakeWtqYP3++fPjhh+WHH34o169fL88++2xZXV0t+/r67HOuuuoqWVVVJWtra+U777wjP/WpT8mTTz7ZfjwSichjjz1Wzps3T7777rvyxRdflMXFxfLGG29MxY+UFt566y1ZU1Mjp0+fLr/73e/ax3mtk6Ozs1NOmTJFXnrppXLNmjWyvr5evvzyy7Kurs4+54477pB5eXny2Wefle+995780pe+JKdOnSoHBwftc84880w5Y8YM+eabb8p//OMf8rDDDpMXXnhhKn6kg9rtt98ui4qK5PPPPy+3bt0qn3rqKenz+eQ999xjn8PrPT4vvvii/OEPfyiffvppCUA+88wzCY8n47p2d3dLv98vL7roIvnhhx/KP/zhD9Ltdsv//d//3e/xMtwkwUknnSQXL15sf20YhiwvL5fLli1L4ajSW3t7uwQg//73v0sppezq6pKapsmnnnrKPufjjz+WAOTq1aullNYfPkVRZGtrq33Or3/9a5mbmyuDweDk/gBpoLe3Vx5++OFy5cqV8rOf/awdbnitk+f73/++PPXUU/f4uGmaMhAIyP/5n/+xj3V1dUmn0yn/8Ic/SCml/Ne//iUByLfffts+56WXXpJCCLljx46JG3wa+uIXvygvu+yyhGPnnXeevOiii6SUvN7JMjLcJOu63nfffbKgoCDh75Dvf//78sgjj9zvMfK21AEKhUJYu3Yt5s2bZx9TFAXz5s3D6tWrUziy9Nbd3Q0AKCwsBACsXbsW4XA44TofddRRqK6utq/z6tWrcdxxx8Hv99vnzJ8/Hz09Pfjoo48mcfTpYfHixfjiF7+YcE0BXutkeu655zB79mx89atfRWlpKWbOnIkHHnjAfnzr1q1obW1NuNZ5eXmYM2dOwrXOz8/H7Nmz7XPmzZsHRVGwZs2ayfth0sDJJ5+M2tpabNq0CQDw3nvv4fXXX8dZZ50FgNd7oiTruq5evRqf+cxnoOu6fc78+fOxceNG7N69e7/GlHW9pZKto6MDhmEk/CUPAH6/Hxs2bEjRqNKbaZq49tprccopp+DYY48FALS2tkLXdeTn5yec6/f70draap8z1u9D7DEa9sQTT2DdunV4++23Rz3Ga5089fX1+PWvf40lS5bgv/7rv/D222/jmmuuga7rWLhwoX2txrqW8de6tLQ04XGHw4HCwkJe6xF+8IMfoKenB0cddRRUVYVhGLj99ttx0UUXAQCv9wRJ1nVtbW3F1KlTR71G7LGCgoJ9HhPDDR10Fi9ejA8//BCvv/56qoeSkZqamvDd734XK1euhMvlSvVwMpppmpg9ezZ++tOfAgBmzpyJDz/8EPfffz8WLlyY4tFlnj/+8Y947LHH8Pjjj+OYY47B+vXrce2116K8vJzXO8vwttQBKi4uhqqqoypJ2traEAgEUjSq9HX11Vfj+eefx6uvvprQvT0QCCAUCqGrqyvh/PjrHAgExvx9iD1GlrVr16K9vR0nnHACHA4HHA4H/v73v+OXv/wlHA4H/H4/r3WSlJWV4eijj044Nm3aNDQ2NgIYvlZ7+/sjEAigvb094fFIJILOzk5e6xH+8z//Ez/4wQ/w9a9/HccddxwuvvhiXHfddVi2bBkAXu+Jkqzrmsy/VxhuDpCu65g1axZqa2vtY6Zpora2FnPnzk3hyNKLlBJXX301nnnmGbzyyiujpiZnzZoFTdMSrvPGjRvR2NhoX+e5c+figw8+SPgDtHLlSuTm5o56g8lmX/jCF/DBBx9g/fr19sfs2bNx0UUX2Z/zWifHKaecMmpLg02bNmHKlCkAgKlTpyIQCCRc656eHqxZsybhWnd1dWHt2rX2Oa+88gpM08ScOXMm4adIHwMDA1CUxLc1VVVhmiYAXu+JkqzrOnfuXLz22msIh8P2OStXrsSRRx65X7ekALAUPBmeeOIJ6XQ65SOPPCL/9a9/ySuvvFLm5+cnVJLQ3n3rW9+SeXl5ctWqVbKlpcX+GBgYsM+56qqrZHV1tXzllVfkO++8I+fOnSvnzp1rPx4rTz7jjDPk+vXr5YoVK2RJSQnLk/dBfLWUlLzWyfLWW29Jh8Mhb7/9drl582b52GOPSY/HI3//+9/b59xxxx0yPz9f/uUvf5Hvv/++POecc8YsoZ05c6Zcs2aNfP311+Xhhx+e9aXJY1m4cKGsqKiwS8GffvppWVxcLG+44Qb7HF7v8ent7ZXvvvuufPfddyUAedddd8l3331Xbtu2TUqZnOva1dUl/X6/vPjii+WHH34on3jiCenxeFgKnkq/+tWvZHV1tdR1XZ500knyzTffTPWQ0gqAMT8efvhh+5zBwUH57W9/WxYUFEiPxyO//OUvy5aWloTXaWhokGeddZZ0u92yuLhYfu9735PhcHiSf5r0MzLc8Fonz1//+ld57LHHSqfTKY866ij5m9/8JuFx0zTlj370I+n3+6XT6ZRf+MIX5MaNGxPO2bVrl7zwwgulz+eTubm5ctGiRbK3t3cyf4y00NPTI7/73e/K6upq6XK55CGHHCJ/+MMfJpQW83qPz6uvvjrm39ELFy6UUibvur733nvy1FNPlU6nU1ZUVMg77rhjXONlV3AiIiLKKFxzQ0RERBmF4YaIiIgyCsMNERERZRSGGyIiIsooDDdERESUURhuiIiIKKMw3BAREVFGYbghIiKijMJwQ0QZ6bTTTsO11167z+evWrUKQohRDUOJKP04Uj0AIqJ9JYTAM888g3PPPfcTz3366aehadrED4qIDjoMN0SUUUKhEHRdR2FhYaqHQkQpwttSRDSpTjvtNFxzzTW44YYbUFhYiEAggFtuueUTn1dTUwMA+PKXvwwhhP31LbfcguOPPx4PPvggpk6dCpfLZX+f+NtS/+///T/Mnj0bOTk5CAQC+MY3voH29vY9fr9t27ZhwYIFKCgogNfrxTHHHIMXX3xxvD82EU0ihhsimnS/+93v4PV6sWbNGtx555249dZbsXLlyr0+5+233wYAPPzww2hpabG/BoC6ujr8+c9/xtNPP43169eP+fxwOIzbbrsN7733Hp599lk0NDTg0ksv3eP3W7x4MYLBIF577TV88MEH+O///m/4fL79/lmJaPLxthQRTbrp06dj6dKlAIDDDz8c9957L2pra3H66afv8TklJSUAgPz8fAQCgYTHQqEQHn30UfucsVx22WX254cccgh++ctf4sQTT0RfX9+YoaWxsRHnn38+jjvuOPs5RJQeOHNDRJNu+vTpCV+XlZXt9RbRJ5kyZcpegw0ArF27FgsWLEB1dTVycnLw2c9+FoAVYsZyzTXX4Cc/+QlOOeUULF26FO+///64x0dEk4vhhogm3cgqJiEETNMc9+t5vd69Pt7f34/58+cjNzcXjz32GN5++20888wzAKxZn7F885vfRH19PS6++GJ88MEHmD17Nn71q1+Ne4xENHkYbogobWiaBsMw9vt5GzZswK5du3DHHXfg05/+NI466qh9mimqqqrCVVddhaeffhrf+9738MADD4xn2EQ0yRhuiCht1NTUoLa2Fq2trdi9e/c+P6+6uhq6ruNXv/oV6uvr8dxzz+G2227b63OuvfZavPzyy9i6dSvWrVuHV199FdOmTTvQH4GIJgHDDRGljZ///OdYuXIlqqqqMHPmzH1+XklJCR555BE89dRTOProo3HHHXfgZz/72V6fYxgGFi9ejGnTpuHMM8/EEUccgfvuu+9AfwQimgRCSilTPQgiIiKiZOHMDREREWUUhhsiOig89thj8Pl8Y34cc8wxqR4eEaUR3pYiooNCb28v2traxnxM0zRMmTJlkkdEROmK4YaIiIgyCm9LERERUUZhuCEiIqKMwnBDREREGYXhhoiIiDIKww0RERFlFIYbIiIiyigMN0RERJRRGG6IiIgoo/x/qh6mE70fSsgAAAAASUVORK5CYII=", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sns.lineplot(data=sim_df, \n", + " x='n_trials',\n", + " y='metric', hue='n_features')" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "f65f5044", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-09T17:49:49.786914Z", + "start_time": "2024-04-09T17:49:49.783924Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "kernel\n", + "internal_noise_std\n", + "criteria\n", + "bla\n" + ] + } + ], + "source": [ + "for k in observer_params: \n", + " print(k)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "62579d26", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "toc": { + "base_numbering": 1, + "nav_menu": {}, + "number_sections": true, + "sideBar": true, + "skip_h1_title": true, + "title_cell": "Table of Contents", + "title_sidebar": "Contents", + "toc_cell": false, + "toc_position": {}, + "toc_section_display": true, + "toc_window_display": true + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 972098b3cdad7eb4534dca4a9056b05b668e49f7 Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Wed, 10 Apr 2024 08:56:41 +0200 Subject: [PATCH 11/17] renamed analysers -> extractors --- python/palin/kernels/classification_images.py | 11 ++++-- ...kernel_analyser.py => kernel_extractor.py} | 2 +- python/palin/kernels/linear_model.py | 21 +++++++++++ python/palin/kernels/lm_analyser.py | 2 +- python/palin/metrics/metrics.py | 2 +- python/palin/simulation/kernel_analyser.py | 36 ------------------- 6 files changed, 33 insertions(+), 41 deletions(-) rename python/palin/kernels/{kernel_analyser.py => kernel_extractor.py} (98%) create mode 100644 python/palin/kernels/linear_model.py delete mode 100644 python/palin/simulation/kernel_analyser.py diff --git a/python/palin/kernels/classification_images.py b/python/palin/kernels/classification_images.py index 012e1c7..5dda088 100644 --- a/python/palin/kernels/classification_images.py +++ b/python/palin/kernels/classification_images.py @@ -8,12 +8,15 @@ import pandas as pd import numpy as np -from .kernel_analyser import KernelAnalyser +from .kernel_extractor import KernelExtractor -class ClassificationImage(KernelAnalyser): +class ClassificationImage(KernelExtractor): @classmethod def extract_single_kernel(cls, data_df, feature_id = 'feature', value_id = 'value', response_id = 'response'): + + ## note this doesn't work for 1-int data + feature_average = data_df.groupby([feature_id,response_id])[value_id].mean().reset_index() positives = feature_average.loc[feature_average[response_id] == True].reset_index() negatives = feature_average.loc[feature_average[response_id] == False].reset_index() @@ -23,6 +26,10 @@ def extract_single_kernel(cls, data_df, feature_id = 'feature', value_id = 'valu kernels.index.names = ['feature'] return kernels + def __str__(self): + return 'Classification Image' + + # def compute_accuracy(data_df, control_kernel, session_identifiers = ['experimentor','type','subject','session'], trial_identifier = 'trial', stimulus_dimension='segment', stimulus_value = 'pitch', stimulus_response='response'): # ''' Computes participant's accuracy on the task as a measure of how well the participant performs diff --git a/python/palin/kernels/kernel_analyser.py b/python/palin/kernels/kernel_extractor.py similarity index 98% rename from python/palin/kernels/kernel_analyser.py rename to python/palin/kernels/kernel_extractor.py index c2b6514..d75edae 100644 --- a/python/palin/kernels/kernel_analyser.py +++ b/python/palin/kernels/kernel_extractor.py @@ -10,7 +10,7 @@ import numpy as np from abc import ABC, abstractmethod -class KernelAnalyser(ABC): +class KernelExtractor(ABC): @classmethod @abstractmethod diff --git a/python/palin/kernels/linear_model.py b/python/palin/kernels/linear_model.py new file mode 100644 index 0000000..c3f36fc --- /dev/null +++ b/python/palin/kernels/linear_model.py @@ -0,0 +1,21 @@ +#!/usr/bin/env python +''' +PALIN toolbox v0.1 +Decemberr 2022, Aynaz Adl Zarrabi, JJ Aucouturier (CNRS/UBFC) + +Functions for kernel calculating method in Classification images +''' + +import pandas as pd +import numpy as np +from .kernels import KernelAnalyser + +class LinearModel(KernelExtractor): + + @classmethod + def extract_single_kernel(cls, data_df, feature_id = 'feature', value_id = 'value', response_id = 'response'): + + raise NotImplementedError() + + + \ No newline at end of file diff --git a/python/palin/kernels/lm_analyser.py b/python/palin/kernels/lm_analyser.py index 84ee8ea..c3f36fc 100644 --- a/python/palin/kernels/lm_analyser.py +++ b/python/palin/kernels/lm_analyser.py @@ -10,7 +10,7 @@ import numpy as np from .kernels import KernelAnalyser -class LMAnalyser(KernelAnalyser): +class LinearModel(KernelExtractor): @classmethod def extract_single_kernel(cls, data_df, feature_id = 'feature', value_id = 'value', response_id = 'response'): diff --git a/python/palin/metrics/metrics.py b/python/palin/metrics/metrics.py index 8998615..7c1c397 100644 --- a/python/palin/metrics/metrics.py +++ b/python/palin/metrics/metrics.py @@ -7,7 +7,7 @@ def kernel_distance(kernel_1, kernel_2, type='CORR'): elif type == 'CORR': return kernel_correlation(kernel_1, kernel_2) else: - raise AttributeError('metric type %s unknown'%s) + raise AttributeError('metric type %s unknown'%type) def kernel_rms(kernel_1, kernel_2): diff --git a/python/palin/simulation/kernel_analyser.py b/python/palin/simulation/kernel_analyser.py deleted file mode 100644 index b1b3c65..0000000 --- a/python/palin/simulation/kernel_analyser.py +++ /dev/null @@ -1,36 +0,0 @@ - -from .analyser import Analyser -from palin.metrics import metrics as me - -class KernelAnalyser(Analyser): - - def __init__(self, kernel_analyser): - self.kernel_analyser = kernel_analyser - - def analyse(self, experiment, participant, participant_responses): - - true_kernel = self.kernel_analyser.normalize_kernel(participant.kernel) - - estimated_kernel = self.estimate_kernel(experiment, participant_responses) - - return self.kernel_correlation(estimated_kernel, true_kernel) - - def estimate_kernel(self, experiment, participant_responses, normalize=True): - - responses_df = self.to_df(experiment, participant_responses) - - kernel_df = self.kernel_analyser.extract_single_kernel(data_df = responses_df, - feature_id = 'feature', value_id = 'value', response_id = 'response') - - if normalize: - kernel_df = self.kernel_analyser.normalize_kernel(kernel_df) - - return list(kernel_df.kernel_value) - - def normalize_kernel(self, kernel): - - return self.kernel_analyser.normalize_kernel(kernel) - - def kernel_correlation(self, kernel_1, kernel_2): - - return me.kernel_distance(kernel_1, kernel_2, type='CORR') From 34dbb876b52775db03bf291248e0b34febdd6dde Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Wed, 10 Apr 2024 08:57:32 +0200 Subject: [PATCH 12/17] started refactoring internal noise --- .../results_subj_20111971.csv | 2101 +++++++++++++++++ python/palin/internal_noise/double_pass.py | 108 + .../internal_noise_extractor.py | 27 + python/sandbox.ipynb | 412 ++-- 4 files changed, 2464 insertions(+), 184 deletions(-) create mode 100644 data/pitch_interrogation/results_subj_20111971.csv create mode 100644 python/palin/internal_noise/double_pass.py create mode 100644 python/palin/internal_noise/internal_noise_extractor.py diff --git a/data/pitch_interrogation/results_subj_20111971.csv b/data/pitch_interrogation/results_subj_20111971.csv new file mode 100644 index 0000000..dc7bf3d --- /dev/null +++ b/data/pitch_interrogation/results_subj_20111971.csv @@ -0,0 +1,2101 @@ +subj,trial,block,date,stim,stim_order,response,rt,age,sex,param_index,segment_time,pitch +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_75.wav,0,True,2590,52,Homme,0,0.000000,-102.776376 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_75.wav,0,True,2590,52,Homme,1,0.071043,141.116849 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_75.wav,0,True,2590,52,Homme,2,0.142086,12.209007 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_75.wav,0,True,2590,52,Homme,3,0.213129,-138.758513 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_75.wav,0,True,2590,52,Homme,4,0.284172,4.940697 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_75.wav,0,True,2590,52,Homme,5,0.355215,67.499606 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_75.wav,0,True,2590,52,Homme,6,0.426259,61.725226 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_146.wav,1,False,2590,52,Homme,0,0.000000,92.610651 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_146.wav,1,False,2590,52,Homme,1,0.071043,40.250954 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_146.wav,1,False,2590,52,Homme,2,0.142086,99.988333 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_146.wav,1,False,2590,52,Homme,3,0.213129,115.543405 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_146.wav,1,False,2590,52,Homme,4,0.284172,-3.607960 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_146.wav,1,False,2590,52,Homme,5,0.355215,-91.494225 +20111971,0,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_146.wav,1,False,2590,52,Homme,6,0.426259,-109.708123 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_93.wav,0,False,3677,52,Homme,0,0.000000,89.760217 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_93.wav,0,False,3677,52,Homme,1,0.071043,18.591855 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_93.wav,0,False,3677,52,Homme,2,0.142086,63.582537 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_93.wav,0,False,3677,52,Homme,3,0.213129,147.491611 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_93.wav,0,False,3677,52,Homme,4,0.284172,-113.128196 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_93.wav,0,False,3677,52,Homme,5,0.355215,12.197118 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_93.wav,0,False,3677,52,Homme,6,0.426259,-36.730637 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_97.wav,1,True,3677,52,Homme,0,0.000000,-82.753908 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_97.wav,1,True,3677,52,Homme,1,0.071043,-85.130238 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_97.wav,1,True,3677,52,Homme,2,0.142086,-72.001027 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_97.wav,1,True,3677,52,Homme,3,0.213129,-75.442204 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_97.wav,1,True,3677,52,Homme,4,0.284172,147.061792 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_97.wav,1,True,3677,52,Homme,5,0.355215,126.876511 +20111971,1,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_97.wav,1,True,3677,52,Homme,6,0.426259,96.208887 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_147.wav,0,True,3390,52,Homme,0,0.000000,-109.572708 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_147.wav,0,True,3390,52,Homme,1,0.071043,-50.943910 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_147.wav,0,True,3390,52,Homme,2,0.142086,145.950821 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_147.wav,0,True,3390,52,Homme,3,0.213129,141.813801 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_147.wav,0,True,3390,52,Homme,4,0.284172,53.597843 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_147.wav,0,True,3390,52,Homme,5,0.355215,-21.310214 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_147.wav,0,True,3390,52,Homme,6,0.426259,-94.477021 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_63.wav,1,False,3390,52,Homme,0,0.000000,106.489910 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_63.wav,1,False,3390,52,Homme,1,0.071043,-87.090173 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_63.wav,1,False,3390,52,Homme,2,0.142086,63.865444 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_63.wav,1,False,3390,52,Homme,3,0.213129,-130.111458 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_63.wav,1,False,3390,52,Homme,4,0.284172,45.870405 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_63.wav,1,False,3390,52,Homme,5,0.355215,-60.104934 +20111971,2,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_63.wav,1,False,3390,52,Homme,6,0.426259,67.674520 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_185.wav,0,False,1259,52,Homme,0,0.000000,7.537788 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_185.wav,0,False,1259,52,Homme,1,0.071043,138.761382 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_185.wav,0,False,1259,52,Homme,2,0.142086,88.970452 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_185.wav,0,False,1259,52,Homme,3,0.213129,-106.980409 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_185.wav,0,False,1259,52,Homme,4,0.284172,-72.334155 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_185.wav,0,False,1259,52,Homme,5,0.355215,87.356426 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_185.wav,0,False,1259,52,Homme,6,0.426259,90.917936 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_199.wav,1,True,1259,52,Homme,0,0.000000,-30.664010 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_199.wav,1,True,1259,52,Homme,1,0.071043,2.060872 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_199.wav,1,True,1259,52,Homme,2,0.142086,-136.256691 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_199.wav,1,True,1259,52,Homme,3,0.213129,20.654546 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_199.wav,1,True,1259,52,Homme,4,0.284172,41.179386 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_199.wav,1,True,1259,52,Homme,5,0.355215,1.343346 +20111971,3,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_199.wav,1,True,1259,52,Homme,6,0.426259,140.228288 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_173.wav,0,True,1495,52,Homme,0,0.000000,-99.731768 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_173.wav,0,True,1495,52,Homme,1,0.071043,-42.486722 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_173.wav,0,True,1495,52,Homme,2,0.142086,49.610636 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_173.wav,0,True,1495,52,Homme,3,0.213129,-115.961177 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_173.wav,0,True,1495,52,Homme,4,0.284172,-68.693255 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_173.wav,0,True,1495,52,Homme,5,0.355215,105.434903 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_173.wav,0,True,1495,52,Homme,6,0.426259,5.248120 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_8.wav,1,False,1495,52,Homme,0,0.000000,88.027847 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_8.wav,1,False,1495,52,Homme,1,0.071043,-108.976227 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_8.wav,1,False,1495,52,Homme,2,0.142086,36.591048 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_8.wav,1,False,1495,52,Homme,3,0.213129,7.260113 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_8.wav,1,False,1495,52,Homme,4,0.284172,-133.690195 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_8.wav,1,False,1495,52,Homme,5,0.355215,9.464811 +20111971,4,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_8.wav,1,False,1495,52,Homme,6,0.426259,-67.780032 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_81.wav,0,True,2259,52,Homme,0,0.000000,35.884214 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_81.wav,0,True,2259,52,Homme,1,0.071043,19.404831 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_81.wav,0,True,2259,52,Homme,2,0.142086,121.693264 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_81.wav,0,True,2259,52,Homme,3,0.213129,29.127429 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_81.wav,0,True,2259,52,Homme,4,0.284172,71.322417 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_81.wav,0,True,2259,52,Homme,5,0.355215,138.687922 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_81.wav,0,True,2259,52,Homme,6,0.426259,110.537915 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_152.wav,1,False,2259,52,Homme,0,0.000000,-121.409464 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_152.wav,1,False,2259,52,Homme,1,0.071043,26.229918 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_152.wav,1,False,2259,52,Homme,2,0.142086,46.107283 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_152.wav,1,False,2259,52,Homme,3,0.213129,-122.378424 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_152.wav,1,False,2259,52,Homme,4,0.284172,64.911076 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_152.wav,1,False,2259,52,Homme,5,0.355215,129.744578 +20111971,5,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_152.wav,1,False,2259,52,Homme,6,0.426259,51.632825 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_2.wav,0,False,632,52,Homme,0,0.000000,-26.280713 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_2.wav,0,False,632,52,Homme,1,0.071043,83.932106 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_2.wav,0,False,632,52,Homme,2,0.142086,59.369452 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_2.wav,0,False,632,52,Homme,3,0.213129,8.881156 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_2.wav,0,False,632,52,Homme,4,0.284172,3.498385 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_2.wav,0,False,632,52,Homme,5,0.355215,-133.430007 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_2.wav,0,False,632,52,Homme,6,0.426259,94.606197 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_151.wav,1,True,632,52,Homme,0,0.000000,-67.748525 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_151.wav,1,True,632,52,Homme,1,0.071043,54.361913 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_151.wav,1,True,632,52,Homme,2,0.142086,-48.392138 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_151.wav,1,True,632,52,Homme,3,0.213129,35.257299 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_151.wav,1,True,632,52,Homme,4,0.284172,30.428121 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_151.wav,1,True,632,52,Homme,5,0.355215,28.910983 +20111971,6,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_151.wav,1,True,632,52,Homme,6,0.426259,-22.593444 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_196.wav,0,True,603,52,Homme,0,0.000000,-42.342747 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_196.wav,0,True,603,52,Homme,1,0.071043,-81.868734 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_196.wav,0,True,603,52,Homme,2,0.142086,-18.906552 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_196.wav,0,True,603,52,Homme,3,0.213129,-18.852092 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_196.wav,0,True,603,52,Homme,4,0.284172,52.116670 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_196.wav,0,True,603,52,Homme,5,0.355215,90.577409 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_196.wav,0,True,603,52,Homme,6,0.426259,29.772760 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_78.wav,1,False,603,52,Homme,0,0.000000,80.055785 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_78.wav,1,False,603,52,Homme,1,0.071043,117.831593 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_78.wav,1,False,603,52,Homme,2,0.142086,-32.666549 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_78.wav,1,False,603,52,Homme,3,0.213129,67.905321 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_78.wav,1,False,603,52,Homme,4,0.284172,84.716683 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_78.wav,1,False,603,52,Homme,5,0.355215,30.832945 +20111971,7,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_78.wav,1,False,603,52,Homme,6,0.426259,87.837740 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_0.wav,0,False,2039,52,Homme,0,0.000000,9.896041 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_0.wav,0,False,2039,52,Homme,1,0.071043,101.528400 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_0.wav,0,False,2039,52,Homme,2,0.142086,-68.097850 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_0.wav,0,False,2039,52,Homme,3,0.213129,-142.658303 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_0.wav,0,False,2039,52,Homme,4,0.284172,-120.248224 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_0.wav,0,False,2039,52,Homme,5,0.355215,31.293845 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_0.wav,0,False,2039,52,Homme,6,0.426259,-137.250528 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_38.wav,1,True,2039,52,Homme,0,0.000000,144.136513 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_38.wav,1,True,2039,52,Homme,1,0.071043,-64.103106 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_38.wav,1,True,2039,52,Homme,2,0.142086,-98.673112 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_38.wav,1,True,2039,52,Homme,3,0.213129,-23.920097 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_38.wav,1,True,2039,52,Homme,4,0.284172,-49.884553 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_38.wav,1,True,2039,52,Homme,5,0.355215,-104.927811 +20111971,8,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_38.wav,1,True,2039,52,Homme,6,0.426259,133.075001 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_148.wav,0,False,1213,52,Homme,0,0.000000,-84.148504 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_148.wav,0,False,1213,52,Homme,1,0.071043,116.395609 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_148.wav,0,False,1213,52,Homme,2,0.142086,22.272455 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_148.wav,0,False,1213,52,Homme,3,0.213129,-42.662376 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_148.wav,0,False,1213,52,Homme,4,0.284172,44.974228 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_148.wav,0,False,1213,52,Homme,5,0.355215,-100.807841 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_148.wav,0,False,1213,52,Homme,6,0.426259,75.062158 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_130.wav,1,True,1213,52,Homme,0,0.000000,-146.057737 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_130.wav,1,True,1213,52,Homme,1,0.071043,-49.781911 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_130.wav,1,True,1213,52,Homme,2,0.142086,74.893740 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_130.wav,1,True,1213,52,Homme,3,0.213129,-14.505163 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_130.wav,1,True,1213,52,Homme,4,0.284172,16.979815 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_130.wav,1,True,1213,52,Homme,5,0.355215,-66.512052 +20111971,9,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_130.wav,1,True,1213,52,Homme,6,0.426259,-59.569067 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_94.wav,0,False,628,52,Homme,0,0.000000,-0.652128 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_94.wav,0,False,628,52,Homme,1,0.071043,97.860897 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_94.wav,0,False,628,52,Homme,2,0.142086,48.932214 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_94.wav,0,False,628,52,Homme,3,0.213129,-23.097711 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_94.wav,0,False,628,52,Homme,4,0.284172,-47.481676 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_94.wav,0,False,628,52,Homme,5,0.355215,-120.450621 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_94.wav,0,False,628,52,Homme,6,0.426259,-116.887604 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_60.wav,1,True,628,52,Homme,0,0.000000,-89.296237 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_60.wav,1,True,628,52,Homme,1,0.071043,0.647875 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_60.wav,1,True,628,52,Homme,2,0.142086,-124.228045 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_60.wav,1,True,628,52,Homme,3,0.213129,-147.365900 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_60.wav,1,True,628,52,Homme,4,0.284172,-7.428030 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_60.wav,1,True,628,52,Homme,5,0.355215,-42.828577 +20111971,10,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_60.wav,1,True,628,52,Homme,6,0.426259,-114.882786 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_16.wav,0,True,2345,52,Homme,0,0.000000,141.243943 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_16.wav,0,True,2345,52,Homme,1,0.071043,-34.322435 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_16.wav,0,True,2345,52,Homme,2,0.142086,10.018864 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_16.wav,0,True,2345,52,Homme,3,0.213129,-24.066951 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_16.wav,0,True,2345,52,Homme,4,0.284172,45.502655 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_16.wav,0,True,2345,52,Homme,5,0.355215,107.276086 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_16.wav,0,True,2345,52,Homme,6,0.426259,58.110380 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_192.wav,1,False,2345,52,Homme,0,0.000000,46.973159 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_192.wav,1,False,2345,52,Homme,1,0.071043,-61.711820 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_192.wav,1,False,2345,52,Homme,2,0.142086,14.836428 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_192.wav,1,False,2345,52,Homme,3,0.213129,30.862549 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_192.wav,1,False,2345,52,Homme,4,0.284172,28.459321 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_192.wav,1,False,2345,52,Homme,5,0.355215,2.114815 +20111971,11,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_192.wav,1,False,2345,52,Homme,6,0.426259,86.651936 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_25.wav,0,True,1081,52,Homme,0,0.000000,-129.422108 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_25.wav,0,True,1081,52,Homme,1,0.071043,-12.331663 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_25.wav,0,True,1081,52,Homme,2,0.142086,-97.065740 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_25.wav,0,True,1081,52,Homme,3,0.213129,-6.253122 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_25.wav,0,True,1081,52,Homme,4,0.284172,31.933743 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_25.wav,0,True,1081,52,Homme,5,0.355215,-58.415946 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_25.wav,0,True,1081,52,Homme,6,0.426259,117.143598 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_76.wav,1,False,1081,52,Homme,0,0.000000,-119.681125 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_76.wav,1,False,1081,52,Homme,1,0.071043,66.441865 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_76.wav,1,False,1081,52,Homme,2,0.142086,-95.265303 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_76.wav,1,False,1081,52,Homme,3,0.213129,7.780656 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_76.wav,1,False,1081,52,Homme,4,0.284172,-90.368576 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_76.wav,1,False,1081,52,Homme,5,0.355215,-64.528472 +20111971,12,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_76.wav,1,False,1081,52,Homme,6,0.426259,-137.293439 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_164.wav,0,False,1065,52,Homme,0,0.000000,-99.029475 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_164.wav,0,False,1065,52,Homme,1,0.071043,-83.219544 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_164.wav,0,False,1065,52,Homme,2,0.142086,-76.160804 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_164.wav,0,False,1065,52,Homme,3,0.213129,-60.412119 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_164.wav,0,False,1065,52,Homme,4,0.284172,-135.438027 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_164.wav,0,False,1065,52,Homme,5,0.355215,-30.546522 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_164.wav,0,False,1065,52,Homme,6,0.426259,-142.367635 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_121.wav,1,True,1065,52,Homme,0,0.000000,-58.637887 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_121.wav,1,True,1065,52,Homme,1,0.071043,-104.347196 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_121.wav,1,True,1065,52,Homme,2,0.142086,149.905377 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_121.wav,1,True,1065,52,Homme,3,0.213129,-98.681631 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_121.wav,1,True,1065,52,Homme,4,0.284172,-147.265274 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_121.wav,1,True,1065,52,Homme,5,0.355215,64.587538 +20111971,13,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_121.wav,1,True,1065,52,Homme,6,0.426259,26.674605 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_106.wav,0,True,799,52,Homme,0,0.000000,13.442505 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_106.wav,0,True,799,52,Homme,1,0.071043,67.880832 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_106.wav,0,True,799,52,Homme,2,0.142086,105.927648 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_106.wav,0,True,799,52,Homme,3,0.213129,65.041696 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_106.wav,0,True,799,52,Homme,4,0.284172,-59.466654 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_106.wav,0,True,799,52,Homme,5,0.355215,55.710963 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_106.wav,0,True,799,52,Homme,6,0.426259,127.964857 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_140.wav,1,False,799,52,Homme,0,0.000000,-149.304179 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_140.wav,1,False,799,52,Homme,1,0.071043,148.600586 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_140.wav,1,False,799,52,Homme,2,0.142086,-115.715849 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_140.wav,1,False,799,52,Homme,3,0.213129,139.265939 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_140.wav,1,False,799,52,Homme,4,0.284172,45.121427 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_140.wav,1,False,799,52,Homme,5,0.355215,-93.318951 +20111971,14,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_140.wav,1,False,799,52,Homme,6,0.426259,-66.215565 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_46.wav,0,False,1473,52,Homme,0,0.000000,48.231571 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_46.wav,0,False,1473,52,Homme,1,0.071043,-13.386862 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_46.wav,0,False,1473,52,Homme,2,0.142086,107.175029 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_46.wav,0,False,1473,52,Homme,3,0.213129,24.056117 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_46.wav,0,False,1473,52,Homme,4,0.284172,72.951541 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_46.wav,0,False,1473,52,Homme,5,0.355215,123.539508 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_46.wav,0,False,1473,52,Homme,6,0.426259,50.410407 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_69.wav,1,True,1473,52,Homme,0,0.000000,-3.170538 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_69.wav,1,True,1473,52,Homme,1,0.071043,35.318973 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_69.wav,1,True,1473,52,Homme,2,0.142086,9.650212 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_69.wav,1,True,1473,52,Homme,3,0.213129,140.461686 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_69.wav,1,True,1473,52,Homme,4,0.284172,-72.489288 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_69.wav,1,True,1473,52,Homme,5,0.355215,-111.567531 +20111971,15,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_69.wav,1,True,1473,52,Homme,6,0.426259,62.840145 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_31.wav,0,True,2692,52,Homme,0,0.000000,-118.123136 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_31.wav,0,True,2692,52,Homme,1,0.071043,-54.324615 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_31.wav,0,True,2692,52,Homme,2,0.142086,-56.463303 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_31.wav,0,True,2692,52,Homme,3,0.213129,65.563679 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_31.wav,0,True,2692,52,Homme,4,0.284172,91.438424 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_31.wav,0,True,2692,52,Homme,5,0.355215,-2.661707 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_31.wav,0,True,2692,52,Homme,6,0.426259,-48.318391 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_67.wav,1,False,2692,52,Homme,0,0.000000,3.293259 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_67.wav,1,False,2692,52,Homme,1,0.071043,-46.547477 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_67.wav,1,False,2692,52,Homme,2,0.142086,54.624069 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_67.wav,1,False,2692,52,Homme,3,0.213129,-46.025939 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_67.wav,1,False,2692,52,Homme,4,0.284172,70.704507 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_67.wav,1,False,2692,52,Homme,5,0.355215,-47.199237 +20111971,16,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_67.wav,1,False,2692,52,Homme,6,0.426259,147.575842 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_111.wav,0,True,2453,52,Homme,0,0.000000,-76.898484 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_111.wav,0,True,2453,52,Homme,1,0.071043,128.576704 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_111.wav,0,True,2453,52,Homme,2,0.142086,84.475821 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_111.wav,0,True,2453,52,Homme,3,0.213129,13.962019 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_111.wav,0,True,2453,52,Homme,4,0.284172,80.950376 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_111.wav,0,True,2453,52,Homme,5,0.355215,105.627204 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_111.wav,0,True,2453,52,Homme,6,0.426259,86.259873 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_14.wav,1,False,2453,52,Homme,0,0.000000,-139.491371 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_14.wav,1,False,2453,52,Homme,1,0.071043,-89.621492 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_14.wav,1,False,2453,52,Homme,2,0.142086,-85.009614 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_14.wav,1,False,2453,52,Homme,3,0.213129,-29.902058 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_14.wav,1,False,2453,52,Homme,4,0.284172,-86.665261 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_14.wav,1,False,2453,52,Homme,5,0.355215,27.459037 +20111971,17,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_14.wav,1,False,2453,52,Homme,6,0.426259,33.245669 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_155.wav,0,True,1038,52,Homme,0,0.000000,-140.284917 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_155.wav,0,True,1038,52,Homme,1,0.071043,56.043903 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_155.wav,0,True,1038,52,Homme,2,0.142086,-2.142699 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_155.wav,0,True,1038,52,Homme,3,0.213129,-41.999388 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_155.wav,0,True,1038,52,Homme,4,0.284172,-69.522618 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_155.wav,0,True,1038,52,Homme,5,0.355215,29.697532 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_155.wav,0,True,1038,52,Homme,6,0.426259,40.565741 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_126.wav,1,False,1038,52,Homme,0,0.000000,23.450520 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_126.wav,1,False,1038,52,Homme,1,0.071043,102.584681 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_126.wav,1,False,1038,52,Homme,2,0.142086,38.224300 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_126.wav,1,False,1038,52,Homme,3,0.213129,-16.427695 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_126.wav,1,False,1038,52,Homme,4,0.284172,7.421137 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_126.wav,1,False,1038,52,Homme,5,0.355215,-9.369055 +20111971,18,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_126.wav,1,False,1038,52,Homme,6,0.426259,-89.176758 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_170.wav,0,False,575,52,Homme,0,0.000000,88.489327 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_170.wav,0,False,575,52,Homme,1,0.071043,-76.759591 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_170.wav,0,False,575,52,Homme,2,0.142086,131.535458 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_170.wav,0,False,575,52,Homme,3,0.213129,-66.304272 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_170.wav,0,False,575,52,Homme,4,0.284172,82.842237 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_170.wav,0,False,575,52,Homme,5,0.355215,39.682087 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_170.wav,0,False,575,52,Homme,6,0.426259,-39.313076 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_144.wav,1,True,575,52,Homme,0,0.000000,-68.167624 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_144.wav,1,True,575,52,Homme,1,0.071043,-79.458647 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_144.wav,1,True,575,52,Homme,2,0.142086,-79.660425 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_144.wav,1,True,575,52,Homme,3,0.213129,60.124898 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_144.wav,1,True,575,52,Homme,4,0.284172,21.367664 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_144.wav,1,True,575,52,Homme,5,0.355215,44.158096 +20111971,19,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_144.wav,1,True,575,52,Homme,6,0.426259,60.089593 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_142.wav,0,False,466,52,Homme,0,0.000000,129.881009 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_142.wav,0,False,466,52,Homme,1,0.071043,116.596688 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_142.wav,0,False,466,52,Homme,2,0.142086,48.203333 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_142.wav,0,False,466,52,Homme,3,0.213129,100.883154 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_142.wav,0,False,466,52,Homme,4,0.284172,-39.625904 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_142.wav,0,False,466,52,Homme,5,0.355215,-141.802649 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_142.wav,0,False,466,52,Homme,6,0.426259,58.691582 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_166.wav,1,True,466,52,Homme,0,0.000000,40.484109 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_166.wav,1,True,466,52,Homme,1,0.071043,-10.250913 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_166.wav,1,True,466,52,Homme,2,0.142086,-109.726305 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_166.wav,1,True,466,52,Homme,3,0.213129,-32.205058 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_166.wav,1,True,466,52,Homme,4,0.284172,141.461363 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_166.wav,1,True,466,52,Homme,5,0.355215,65.199031 +20111971,20,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_166.wav,1,True,466,52,Homme,6,0.426259,-54.014549 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_197.wav,0,False,683,52,Homme,0,0.000000,7.012988 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_197.wav,0,False,683,52,Homme,1,0.071043,64.551185 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_197.wav,0,False,683,52,Homme,2,0.142086,-65.392523 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_197.wav,0,False,683,52,Homme,3,0.213129,18.180118 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_197.wav,0,False,683,52,Homme,4,0.284172,-30.775220 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_197.wav,0,False,683,52,Homme,5,0.355215,95.802549 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_197.wav,0,False,683,52,Homme,6,0.426259,-129.373786 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_191.wav,1,True,683,52,Homme,0,0.000000,-3.321474 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_191.wav,1,True,683,52,Homme,1,0.071043,110.638678 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_191.wav,1,True,683,52,Homme,2,0.142086,142.170563 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_191.wav,1,True,683,52,Homme,3,0.213129,-110.761685 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_191.wav,1,True,683,52,Homme,4,0.284172,23.931067 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_191.wav,1,True,683,52,Homme,5,0.355215,-28.623113 +20111971,21,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_191.wav,1,True,683,52,Homme,6,0.426259,68.073722 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_108.wav,0,False,943,52,Homme,0,0.000000,92.203113 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_108.wav,0,False,943,52,Homme,1,0.071043,-74.681876 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_108.wav,0,False,943,52,Homme,2,0.142086,-18.773488 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_108.wav,0,False,943,52,Homme,3,0.213129,73.054230 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_108.wav,0,False,943,52,Homme,4,0.284172,-72.824646 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_108.wav,0,False,943,52,Homme,5,0.355215,140.895697 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_108.wav,0,False,943,52,Homme,6,0.426259,13.161932 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_114.wav,1,True,943,52,Homme,0,0.000000,-107.614700 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_114.wav,1,True,943,52,Homme,1,0.071043,-121.606705 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_114.wav,1,True,943,52,Homme,2,0.142086,26.820871 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_114.wav,1,True,943,52,Homme,3,0.213129,42.957584 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_114.wav,1,True,943,52,Homme,4,0.284172,-48.053802 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_114.wav,1,True,943,52,Homme,5,0.355215,-10.474627 +20111971,22,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_114.wav,1,True,943,52,Homme,6,0.426259,-131.069216 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_34.wav,0,False,357,52,Homme,0,0.000000,55.759121 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_34.wav,0,False,357,52,Homme,1,0.071043,56.428420 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_34.wav,0,False,357,52,Homme,2,0.142086,-58.759553 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_34.wav,0,False,357,52,Homme,3,0.213129,-145.130290 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_34.wav,0,False,357,52,Homme,4,0.284172,109.056087 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_34.wav,0,False,357,52,Homme,5,0.355215,-133.281135 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_34.wav,0,False,357,52,Homme,6,0.426259,-126.261912 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_179.wav,1,True,357,52,Homme,0,0.000000,31.793897 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_179.wav,1,True,357,52,Homme,1,0.071043,-7.766660 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_179.wav,1,True,357,52,Homme,2,0.142086,14.202215 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_179.wav,1,True,357,52,Homme,3,0.213129,-28.726082 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_179.wav,1,True,357,52,Homme,4,0.284172,-38.298342 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_179.wav,1,True,357,52,Homme,5,0.355215,97.025797 +20111971,23,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_179.wav,1,True,357,52,Homme,6,0.426259,-148.112175 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_129.wav,0,False,550,52,Homme,0,0.000000,121.236122 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_129.wav,0,False,550,52,Homme,1,0.071043,8.396736 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_129.wav,0,False,550,52,Homme,2,0.142086,-17.691364 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_129.wav,0,False,550,52,Homme,3,0.213129,73.711335 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_129.wav,0,False,550,52,Homme,4,0.284172,-117.430618 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_129.wav,0,False,550,52,Homme,5,0.355215,-12.936057 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_129.wav,0,False,550,52,Homme,6,0.426259,-63.494285 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_90.wav,1,True,550,52,Homme,0,0.000000,39.615876 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_90.wav,1,True,550,52,Homme,1,0.071043,-130.464689 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_90.wav,1,True,550,52,Homme,2,0.142086,46.838016 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_90.wav,1,True,550,52,Homme,3,0.213129,104.861302 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_90.wav,1,True,550,52,Homme,4,0.284172,-102.459680 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_90.wav,1,True,550,52,Homme,5,0.355215,-91.275011 +20111971,24,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_90.wav,1,True,550,52,Homme,6,0.426259,45.823426 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_116.wav,0,False,2428,52,Homme,0,0.000000,-80.686828 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_116.wav,0,False,2428,52,Homme,1,0.071043,-31.189533 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_116.wav,0,False,2428,52,Homme,2,0.142086,-144.914474 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_116.wav,0,False,2428,52,Homme,3,0.213129,-49.653212 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_116.wav,0,False,2428,52,Homme,4,0.284172,-94.646547 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_116.wav,0,False,2428,52,Homme,5,0.355215,-38.055332 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_116.wav,0,False,2428,52,Homme,6,0.426259,-90.510946 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_190.wav,1,True,2428,52,Homme,0,0.000000,-135.472764 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_190.wav,1,True,2428,52,Homme,1,0.071043,-16.311165 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_190.wav,1,True,2428,52,Homme,2,0.142086,-108.166759 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_190.wav,1,True,2428,52,Homme,3,0.213129,-73.778410 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_190.wav,1,True,2428,52,Homme,4,0.284172,-109.839915 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_190.wav,1,True,2428,52,Homme,5,0.355215,2.895785 +20111971,25,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_190.wav,1,True,2428,52,Homme,6,0.426259,14.515822 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_107.wav,0,False,441,52,Homme,0,0.000000,147.824484 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_107.wav,0,False,441,52,Homme,1,0.071043,-35.753560 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_107.wav,0,False,441,52,Homme,2,0.142086,-17.671801 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_107.wav,0,False,441,52,Homme,3,0.213129,145.037411 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_107.wav,0,False,441,52,Homme,4,0.284172,17.430899 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_107.wav,0,False,441,52,Homme,5,0.355215,-34.827913 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_107.wav,0,False,441,52,Homme,6,0.426259,-148.430397 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_157.wav,1,True,441,52,Homme,0,0.000000,20.473057 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_157.wav,1,True,441,52,Homme,1,0.071043,-103.427341 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_157.wav,1,True,441,52,Homme,2,0.142086,-58.670290 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_157.wav,1,True,441,52,Homme,3,0.213129,-88.181786 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_157.wav,1,True,441,52,Homme,4,0.284172,-145.892431 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_157.wav,1,True,441,52,Homme,5,0.355215,-121.197130 +20111971,26,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_157.wav,1,True,441,52,Homme,6,0.426259,3.215116 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_5.wav,0,False,632,52,Homme,0,0.000000,88.556797 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_5.wav,0,False,632,52,Homme,1,0.071043,120.959384 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_5.wav,0,False,632,52,Homme,2,0.142086,-116.065822 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_5.wav,0,False,632,52,Homme,3,0.213129,130.464712 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_5.wav,0,False,632,52,Homme,4,0.284172,88.167919 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_5.wav,0,False,632,52,Homme,5,0.355215,75.417329 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_5.wav,0,False,632,52,Homme,6,0.426259,65.499211 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_83.wav,1,True,632,52,Homme,0,0.000000,-23.907946 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_83.wav,1,True,632,52,Homme,1,0.071043,-0.791729 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_83.wav,1,True,632,52,Homme,2,0.142086,23.610634 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_83.wav,1,True,632,52,Homme,3,0.213129,-35.411923 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_83.wav,1,True,632,52,Homme,4,0.284172,101.109402 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_83.wav,1,True,632,52,Homme,5,0.355215,-51.929212 +20111971,27,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_83.wav,1,True,632,52,Homme,6,0.426259,-104.958378 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_70.wav,0,False,2103,52,Homme,0,0.000000,-95.640606 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_70.wav,0,False,2103,52,Homme,1,0.071043,17.584667 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_70.wav,0,False,2103,52,Homme,2,0.142086,9.439432 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_70.wav,0,False,2103,52,Homme,3,0.213129,26.204853 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_70.wav,0,False,2103,52,Homme,4,0.284172,19.735476 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_70.wav,0,False,2103,52,Homme,5,0.355215,-45.465161 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_70.wav,0,False,2103,52,Homme,6,0.426259,24.901866 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_24.wav,1,True,2103,52,Homme,0,0.000000,-144.276814 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_24.wav,1,True,2103,52,Homme,1,0.071043,-59.436611 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_24.wav,1,True,2103,52,Homme,2,0.142086,45.565590 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_24.wav,1,True,2103,52,Homme,3,0.213129,19.626340 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_24.wav,1,True,2103,52,Homme,4,0.284172,-127.586662 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_24.wav,1,True,2103,52,Homme,5,0.355215,59.214853 +20111971,28,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_24.wav,1,True,2103,52,Homme,6,0.426259,-70.996219 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_58.wav,0,False,1083,52,Homme,0,0.000000,-52.909251 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_58.wav,0,False,1083,52,Homme,1,0.071043,-4.560860 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_58.wav,0,False,1083,52,Homme,2,0.142086,-106.285240 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_58.wav,0,False,1083,52,Homme,3,0.213129,-64.474310 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_58.wav,0,False,1083,52,Homme,4,0.284172,-121.964639 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_58.wav,0,False,1083,52,Homme,5,0.355215,35.204504 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_58.wav,0,False,1083,52,Homme,6,0.426259,-7.933790 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_103.wav,1,True,1083,52,Homme,0,0.000000,107.674069 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_103.wav,1,True,1083,52,Homme,1,0.071043,149.413476 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_103.wav,1,True,1083,52,Homme,2,0.142086,-1.049319 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_103.wav,1,True,1083,52,Homme,3,0.213129,-7.353867 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_103.wav,1,True,1083,52,Homme,4,0.284172,-2.169492 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_103.wav,1,True,1083,52,Homme,5,0.355215,-94.854916 +20111971,29,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_103.wav,1,True,1083,52,Homme,6,0.426259,119.487430 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_22.wav,0,True,3261,52,Homme,0,0.000000,131.811490 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_22.wav,0,True,3261,52,Homme,1,0.071043,-17.710289 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_22.wav,0,True,3261,52,Homme,2,0.142086,-106.310722 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_22.wav,0,True,3261,52,Homme,3,0.213129,-118.997283 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_22.wav,0,True,3261,52,Homme,4,0.284172,-44.158651 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_22.wav,0,True,3261,52,Homme,5,0.355215,-65.057904 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_22.wav,0,True,3261,52,Homme,6,0.426259,142.657358 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_89.wav,1,False,3261,52,Homme,0,0.000000,109.966045 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_89.wav,1,False,3261,52,Homme,1,0.071043,3.952874 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_89.wav,1,False,3261,52,Homme,2,0.142086,14.687736 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_89.wav,1,False,3261,52,Homme,3,0.213129,-59.041416 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_89.wav,1,False,3261,52,Homme,4,0.284172,-42.151762 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_89.wav,1,False,3261,52,Homme,5,0.355215,-148.779325 +20111971,30,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_89.wav,1,False,3261,52,Homme,6,0.426259,-61.315288 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_3.wav,0,False,682,52,Homme,0,0.000000,139.821339 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_3.wav,0,False,682,52,Homme,1,0.071043,-90.088416 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_3.wav,0,False,682,52,Homme,2,0.142086,-144.376143 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_3.wav,0,False,682,52,Homme,3,0.213129,-83.117215 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_3.wav,0,False,682,52,Homme,4,0.284172,-15.266959 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_3.wav,0,False,682,52,Homme,5,0.355215,-78.645111 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_3.wav,0,False,682,52,Homme,6,0.426259,18.566710 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_87.wav,1,True,682,52,Homme,0,0.000000,123.541183 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_87.wav,1,True,682,52,Homme,1,0.071043,-79.641893 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_87.wav,1,True,682,52,Homme,2,0.142086,-129.036775 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_87.wav,1,True,682,52,Homme,3,0.213129,-12.372422 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_87.wav,1,True,682,52,Homme,4,0.284172,47.099802 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_87.wav,1,True,682,52,Homme,5,0.355215,133.796504 +20111971,31,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_87.wav,1,True,682,52,Homme,6,0.426259,125.051187 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_160.wav,0,False,1597,52,Homme,0,0.000000,21.342691 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_160.wav,0,False,1597,52,Homme,1,0.071043,-76.780347 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_160.wav,0,False,1597,52,Homme,2,0.142086,-127.843887 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_160.wav,0,False,1597,52,Homme,3,0.213129,-126.126744 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_160.wav,0,False,1597,52,Homme,4,0.284172,-33.722090 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_160.wav,0,False,1597,52,Homme,5,0.355215,18.600024 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_160.wav,0,False,1597,52,Homme,6,0.426259,-57.157597 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_168.wav,1,True,1597,52,Homme,0,0.000000,20.996757 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_168.wav,1,True,1597,52,Homme,1,0.071043,53.221671 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_168.wav,1,True,1597,52,Homme,2,0.142086,15.731623 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_168.wav,1,True,1597,52,Homme,3,0.213129,99.382807 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_168.wav,1,True,1597,52,Homme,4,0.284172,-57.914754 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_168.wav,1,True,1597,52,Homme,5,0.355215,26.961730 +20111971,32,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_168.wav,1,True,1597,52,Homme,6,0.426259,-63.149674 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_95.wav,0,True,909,52,Homme,0,0.000000,144.813706 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_95.wav,0,True,909,52,Homme,1,0.071043,36.420023 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_95.wav,0,True,909,52,Homme,2,0.142086,-15.581887 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_95.wav,0,True,909,52,Homme,3,0.213129,-108.080315 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_95.wav,0,True,909,52,Homme,4,0.284172,44.827040 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_95.wav,0,True,909,52,Homme,5,0.355215,-140.857646 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_95.wav,0,True,909,52,Homme,6,0.426259,-19.601185 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_68.wav,1,False,909,52,Homme,0,0.000000,-95.161618 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_68.wav,1,False,909,52,Homme,1,0.071043,-119.152564 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_68.wav,1,False,909,52,Homme,2,0.142086,18.051976 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_68.wav,1,False,909,52,Homme,3,0.213129,-26.870716 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_68.wav,1,False,909,52,Homme,4,0.284172,87.472746 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_68.wav,1,False,909,52,Homme,5,0.355215,-56.607347 +20111971,33,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_68.wav,1,False,909,52,Homme,6,0.426259,148.066508 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_133.wav,0,False,521,52,Homme,0,0.000000,-33.116176 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_133.wav,0,False,521,52,Homme,1,0.071043,-79.722902 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_133.wav,0,False,521,52,Homme,2,0.142086,-0.174059 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_133.wav,0,False,521,52,Homme,3,0.213129,82.274364 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_133.wav,0,False,521,52,Homme,4,0.284172,-109.731995 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_133.wav,0,False,521,52,Homme,5,0.355215,-72.489270 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_133.wav,0,False,521,52,Homme,6,0.426259,11.511705 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_13.wav,1,True,521,52,Homme,0,0.000000,-66.984077 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_13.wav,1,True,521,52,Homme,1,0.071043,5.429279 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_13.wav,1,True,521,52,Homme,2,0.142086,12.572717 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_13.wav,1,True,521,52,Homme,3,0.213129,-71.562953 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_13.wav,1,True,521,52,Homme,4,0.284172,-107.999901 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_13.wav,1,True,521,52,Homme,5,0.355215,86.606735 +20111971,34,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_13.wav,1,True,521,52,Homme,6,0.426259,-82.122177 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_184.wav,0,False,1092,52,Homme,0,0.000000,86.245131 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_184.wav,0,False,1092,52,Homme,1,0.071043,106.604050 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_184.wav,0,False,1092,52,Homme,2,0.142086,-48.425154 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_184.wav,0,False,1092,52,Homme,3,0.213129,48.927001 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_184.wav,0,False,1092,52,Homme,4,0.284172,-82.972934 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_184.wav,0,False,1092,52,Homme,5,0.355215,73.552976 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_184.wav,0,False,1092,52,Homme,6,0.426259,-131.359115 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_50.wav,1,True,1092,52,Homme,0,0.000000,96.336182 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_50.wav,1,True,1092,52,Homme,1,0.071043,-104.561128 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_50.wav,1,True,1092,52,Homme,2,0.142086,-130.066913 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_50.wav,1,True,1092,52,Homme,3,0.213129,-24.308766 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_50.wav,1,True,1092,52,Homme,4,0.284172,40.127472 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_50.wav,1,True,1092,52,Homme,5,0.355215,49.388454 +20111971,35,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_50.wav,1,True,1092,52,Homme,6,0.426259,116.704022 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_189.wav,0,False,566,52,Homme,0,0.000000,53.448621 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_189.wav,0,False,566,52,Homme,1,0.071043,82.292801 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_189.wav,0,False,566,52,Homme,2,0.142086,-89.509706 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_189.wav,0,False,566,52,Homme,3,0.213129,61.203077 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_189.wav,0,False,566,52,Homme,4,0.284172,-64.080431 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_189.wav,0,False,566,52,Homme,5,0.355215,71.408242 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_189.wav,0,False,566,52,Homme,6,0.426259,-96.299976 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_162.wav,1,True,566,52,Homme,0,0.000000,-28.080103 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_162.wav,1,True,566,52,Homme,1,0.071043,-58.839442 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_162.wav,1,True,566,52,Homme,2,0.142086,8.883261 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_162.wav,1,True,566,52,Homme,3,0.213129,109.746189 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_162.wav,1,True,566,52,Homme,4,0.284172,134.765505 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_162.wav,1,True,566,52,Homme,5,0.355215,-8.935646 +20111971,36,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_162.wav,1,True,566,52,Homme,6,0.426259,114.162759 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_139.wav,0,False,521,52,Homme,0,0.000000,-131.535185 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_139.wav,0,False,521,52,Homme,1,0.071043,-10.702864 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_139.wav,0,False,521,52,Homme,2,0.142086,-8.370040 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_139.wav,0,False,521,52,Homme,3,0.213129,83.706839 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_139.wav,0,False,521,52,Homme,4,0.284172,-28.836111 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_139.wav,0,False,521,52,Homme,5,0.355215,8.499607 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_139.wav,0,False,521,52,Homme,6,0.426259,-85.859123 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_42.wav,1,True,521,52,Homme,0,0.000000,-6.709342 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_42.wav,1,True,521,52,Homme,1,0.071043,35.704202 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_42.wav,1,True,521,52,Homme,2,0.142086,-71.421689 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_42.wav,1,True,521,52,Homme,3,0.213129,-126.906461 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_42.wav,1,True,521,52,Homme,4,0.284172,10.231121 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_42.wav,1,True,521,52,Homme,5,0.355215,128.933526 +20111971,37,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_42.wav,1,True,521,52,Homme,6,0.426259,-76.727395 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_21.wav,0,False,541,52,Homme,0,0.000000,84.422922 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_21.wav,0,False,541,52,Homme,1,0.071043,34.734306 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_21.wav,0,False,541,52,Homme,2,0.142086,84.348012 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_21.wav,0,False,541,52,Homme,3,0.213129,-112.005491 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_21.wav,0,False,541,52,Homme,4,0.284172,147.407394 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_21.wav,0,False,541,52,Homme,5,0.355215,-6.622355 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_21.wav,0,False,541,52,Homme,6,0.426259,125.674103 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_84.wav,1,True,541,52,Homme,0,0.000000,79.222174 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_84.wav,1,True,541,52,Homme,1,0.071043,61.816109 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_84.wav,1,True,541,52,Homme,2,0.142086,-111.712238 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_84.wav,1,True,541,52,Homme,3,0.213129,96.584947 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_84.wav,1,True,541,52,Homme,4,0.284172,-11.292098 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_84.wav,1,True,541,52,Homme,5,0.355215,57.720124 +20111971,38,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_84.wav,1,True,541,52,Homme,6,0.426259,-122.021307 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_124.wav,0,True,685,52,Homme,0,0.000000,-7.963711 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_124.wav,0,True,685,52,Homme,1,0.071043,-56.081883 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_124.wav,0,True,685,52,Homme,2,0.142086,-78.115299 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_124.wav,0,True,685,52,Homme,3,0.213129,-24.811935 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_124.wav,0,True,685,52,Homme,4,0.284172,-9.003272 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_124.wav,0,True,685,52,Homme,5,0.355215,13.712214 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_124.wav,0,True,685,52,Homme,6,0.426259,140.048390 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_35.wav,1,False,685,52,Homme,0,0.000000,-80.907759 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_35.wav,1,False,685,52,Homme,1,0.071043,-44.446048 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_35.wav,1,False,685,52,Homme,2,0.142086,-51.579277 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_35.wav,1,False,685,52,Homme,3,0.213129,-66.764099 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_35.wav,1,False,685,52,Homme,4,0.284172,-35.478686 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_35.wav,1,False,685,52,Homme,5,0.355215,-86.823570 +20111971,39,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_35.wav,1,False,685,52,Homme,6,0.426259,26.550026 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_19.wav,0,False,433,52,Homme,0,0.000000,-23.596543 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_19.wav,0,False,433,52,Homme,1,0.071043,-71.824414 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_19.wav,0,False,433,52,Homme,2,0.142086,88.506579 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_19.wav,0,False,433,52,Homme,3,0.213129,-79.935804 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_19.wav,0,False,433,52,Homme,4,0.284172,97.974212 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_19.wav,0,False,433,52,Homme,5,0.355215,-89.439384 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_19.wav,0,False,433,52,Homme,6,0.426259,-131.198163 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_154.wav,1,True,433,52,Homme,0,0.000000,-56.341735 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_154.wav,1,True,433,52,Homme,1,0.071043,15.133004 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_154.wav,1,True,433,52,Homme,2,0.142086,67.588138 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_154.wav,1,True,433,52,Homme,3,0.213129,4.827765 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_154.wav,1,True,433,52,Homme,4,0.284172,-119.124529 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_154.wav,1,True,433,52,Homme,5,0.355215,137.124750 +20111971,40,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_154.wav,1,True,433,52,Homme,6,0.426259,-61.627299 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_112.wav,0,True,1049,52,Homme,0,0.000000,40.318333 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_112.wav,0,True,1049,52,Homme,1,0.071043,28.779991 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_112.wav,0,True,1049,52,Homme,2,0.142086,-86.990654 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_112.wav,0,True,1049,52,Homme,3,0.213129,-136.064498 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_112.wav,0,True,1049,52,Homme,4,0.284172,89.286191 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_112.wav,0,True,1049,52,Homme,5,0.355215,99.616935 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_112.wav,0,True,1049,52,Homme,6,0.426259,-61.253639 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_11.wav,1,False,1049,52,Homme,0,0.000000,106.632802 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_11.wav,1,False,1049,52,Homme,1,0.071043,30.235531 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_11.wav,1,False,1049,52,Homme,2,0.142086,-31.934811 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_11.wav,1,False,1049,52,Homme,3,0.213129,-70.817469 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_11.wav,1,False,1049,52,Homme,4,0.284172,-134.947845 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_11.wav,1,False,1049,52,Homme,5,0.355215,-61.866249 +20111971,41,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_11.wav,1,False,1049,52,Homme,6,0.426259,61.370028 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_57.wav,0,True,646,52,Homme,0,0.000000,-38.971396 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_57.wav,0,True,646,52,Homme,1,0.071043,127.210639 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_57.wav,0,True,646,52,Homme,2,0.142086,-100.465383 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_57.wav,0,True,646,52,Homme,3,0.213129,-139.526819 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_57.wav,0,True,646,52,Homme,4,0.284172,-149.467980 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_57.wav,0,True,646,52,Homme,5,0.355215,-50.432071 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_57.wav,0,True,646,52,Homme,6,0.426259,15.305878 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_167.wav,1,False,646,52,Homme,0,0.000000,-97.244470 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_167.wav,1,False,646,52,Homme,1,0.071043,55.519403 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_167.wav,1,False,646,52,Homme,2,0.142086,-125.285214 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_167.wav,1,False,646,52,Homme,3,0.213129,-87.843825 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_167.wav,1,False,646,52,Homme,4,0.284172,-127.750284 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_167.wav,1,False,646,52,Homme,5,0.355215,-93.631866 +20111971,42,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_167.wav,1,False,646,52,Homme,6,0.426259,6.691804 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_174.wav,0,True,525,52,Homme,0,0.000000,12.449350 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_174.wav,0,True,525,52,Homme,1,0.071043,17.986555 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_174.wav,0,True,525,52,Homme,2,0.142086,-72.720888 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_174.wav,0,True,525,52,Homme,3,0.213129,41.369679 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_174.wav,0,True,525,52,Homme,4,0.284172,-146.787018 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_174.wav,0,True,525,52,Homme,5,0.355215,3.271800 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_174.wav,0,True,525,52,Homme,6,0.426259,26.686198 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_177.wav,1,False,525,52,Homme,0,0.000000,16.306046 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_177.wav,1,False,525,52,Homme,1,0.071043,49.193464 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_177.wav,1,False,525,52,Homme,2,0.142086,-57.450827 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_177.wav,1,False,525,52,Homme,3,0.213129,-71.200742 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_177.wav,1,False,525,52,Homme,4,0.284172,75.759547 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_177.wav,1,False,525,52,Homme,5,0.355215,-147.097868 +20111971,43,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_177.wav,1,False,525,52,Homme,6,0.426259,-23.614561 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_32.wav,0,True,455,52,Homme,0,0.000000,-83.957947 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_32.wav,0,True,455,52,Homme,1,0.071043,68.475222 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_32.wav,0,True,455,52,Homme,2,0.142086,-59.489465 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_32.wav,0,True,455,52,Homme,3,0.213129,64.566697 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_32.wav,0,True,455,52,Homme,4,0.284172,-27.267557 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_32.wav,0,True,455,52,Homme,5,0.355215,94.356275 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_32.wav,0,True,455,52,Homme,6,0.426259,27.666308 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_120.wav,1,False,455,52,Homme,0,0.000000,20.081065 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_120.wav,1,False,455,52,Homme,1,0.071043,100.844988 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_120.wav,1,False,455,52,Homme,2,0.142086,-34.199178 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_120.wav,1,False,455,52,Homme,3,0.213129,-3.979999 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_120.wav,1,False,455,52,Homme,4,0.284172,-132.448085 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_120.wav,1,False,455,52,Homme,5,0.355215,-95.704719 +20111971,44,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_120.wav,1,False,455,52,Homme,6,0.426259,-2.125632 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_18.wav,0,True,1070,52,Homme,0,0.000000,-126.424441 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_18.wav,0,True,1070,52,Homme,1,0.071043,-57.286238 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_18.wav,0,True,1070,52,Homme,2,0.142086,14.494248 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_18.wav,0,True,1070,52,Homme,3,0.213129,11.325267 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_18.wav,0,True,1070,52,Homme,4,0.284172,-20.022709 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_18.wav,0,True,1070,52,Homme,5,0.355215,-67.838631 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_18.wav,0,True,1070,52,Homme,6,0.426259,-75.619086 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_66.wav,1,False,1070,52,Homme,0,0.000000,96.429433 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_66.wav,1,False,1070,52,Homme,1,0.071043,13.373052 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_66.wav,1,False,1070,52,Homme,2,0.142086,112.602816 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_66.wav,1,False,1070,52,Homme,3,0.213129,110.292573 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_66.wav,1,False,1070,52,Homme,4,0.284172,-89.729138 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_66.wav,1,False,1070,52,Homme,5,0.355215,-67.456514 +20111971,45,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_66.wav,1,False,1070,52,Homme,6,0.426259,79.997172 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_72.wav,0,True,595,52,Homme,0,0.000000,-108.464526 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_72.wav,0,True,595,52,Homme,1,0.071043,78.835335 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_72.wav,0,True,595,52,Homme,2,0.142086,134.553834 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_72.wav,0,True,595,52,Homme,3,0.213129,5.396534 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_72.wav,0,True,595,52,Homme,4,0.284172,7.798595 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_72.wav,0,True,595,52,Homme,5,0.355215,65.510626 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_72.wav,0,True,595,52,Homme,6,0.426259,-103.798030 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_182.wav,1,False,595,52,Homme,0,0.000000,20.855134 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_182.wav,1,False,595,52,Homme,1,0.071043,131.000404 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_182.wav,1,False,595,52,Homme,2,0.142086,-24.691908 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_182.wav,1,False,595,52,Homme,3,0.213129,128.422786 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_182.wav,1,False,595,52,Homme,4,0.284172,-128.848387 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_182.wav,1,False,595,52,Homme,5,0.355215,118.792618 +20111971,46,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_182.wav,1,False,595,52,Homme,6,0.426259,-92.475253 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_12.wav,0,True,664,52,Homme,0,0.000000,-11.936919 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_12.wav,0,True,664,52,Homme,1,0.071043,-51.249998 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_12.wav,0,True,664,52,Homme,2,0.142086,42.322915 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_12.wav,0,True,664,52,Homme,3,0.213129,-19.839410 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_12.wav,0,True,664,52,Homme,4,0.284172,46.127041 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_12.wav,0,True,664,52,Homme,5,0.355215,34.596861 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_12.wav,0,True,664,52,Homme,6,0.426259,143.594573 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_49.wav,1,False,664,52,Homme,0,0.000000,-83.600042 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_49.wav,1,False,664,52,Homme,1,0.071043,-14.728623 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_49.wav,1,False,664,52,Homme,2,0.142086,25.142138 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_49.wav,1,False,664,52,Homme,3,0.213129,135.875151 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_49.wav,1,False,664,52,Homme,4,0.284172,60.117986 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_49.wav,1,False,664,52,Homme,5,0.355215,-135.086661 +20111971,47,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_49.wav,1,False,664,52,Homme,6,0.426259,-32.809615 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_17.wav,0,True,1189,52,Homme,0,0.000000,91.198655 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_17.wav,0,True,1189,52,Homme,1,0.071043,44.952547 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_17.wav,0,True,1189,52,Homme,2,0.142086,-82.852461 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_17.wav,0,True,1189,52,Homme,3,0.213129,-89.451177 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_17.wav,0,True,1189,52,Homme,4,0.284172,-149.534475 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_17.wav,0,True,1189,52,Homme,5,0.355215,-107.621144 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_17.wav,0,True,1189,52,Homme,6,0.426259,-93.535165 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_134.wav,1,False,1189,52,Homme,0,0.000000,85.320049 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_134.wav,1,False,1189,52,Homme,1,0.071043,2.147850 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_134.wav,1,False,1189,52,Homme,2,0.142086,140.355465 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_134.wav,1,False,1189,52,Homme,3,0.213129,98.923070 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_134.wav,1,False,1189,52,Homme,4,0.284172,20.388975 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_134.wav,1,False,1189,52,Homme,5,0.355215,-4.239426 +20111971,48,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_134.wav,1,False,1189,52,Homme,6,0.426259,83.444299 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_141.wav,0,False,944,52,Homme,0,0.000000,137.275446 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_141.wav,0,False,944,52,Homme,1,0.071043,43.805847 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_141.wav,0,False,944,52,Homme,2,0.142086,-129.344909 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_141.wav,0,False,944,52,Homme,3,0.213129,-123.799171 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_141.wav,0,False,944,52,Homme,4,0.284172,-103.584410 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_141.wav,0,False,944,52,Homme,5,0.355215,8.047141 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_141.wav,0,False,944,52,Homme,6,0.426259,-108.188423 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_47.wav,1,True,944,52,Homme,0,0.000000,11.243959 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_47.wav,1,True,944,52,Homme,1,0.071043,-131.885563 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_47.wav,1,True,944,52,Homme,2,0.142086,22.720944 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_47.wav,1,True,944,52,Homme,3,0.213129,-98.981706 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_47.wav,1,True,944,52,Homme,4,0.284172,-117.392555 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_47.wav,1,True,944,52,Homme,5,0.355215,-7.362816 +20111971,49,0,2024-03-08T16:13:15.419Z,male_vraiment_flat_47.wav,1,True,944,52,Homme,6,0.426259,149.963589 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,1008,52,Homme,0,0.000000,-33.837960 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,1008,52,Homme,1,0.071043,102.134309 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,1008,52,Homme,2,0.142086,100.949665 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,1008,52,Homme,3,0.213129,77.352428 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,1008,52,Homme,4,0.284172,-1.995321 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,1008,52,Homme,5,0.355215,-13.382838 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,1008,52,Homme,6,0.426259,-42.807835 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,1008,52,Homme,0,0.000000,80.130674 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,1008,52,Homme,1,0.071043,138.574149 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,1008,52,Homme,2,0.142086,75.493630 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,1008,52,Homme,3,0.213129,-91.745449 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,1008,52,Homme,4,0.284172,67.674634 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,1008,52,Homme,5,0.355215,136.412365 +20111971,50,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,1008,52,Homme,6,0.426259,13.296001 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,574,52,Homme,0,0.000000,-63.308139 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,574,52,Homme,1,0.071043,-111.693367 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,574,52,Homme,2,0.142086,-61.444624 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,574,52,Homme,3,0.213129,137.201589 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,574,52,Homme,4,0.284172,-132.973462 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,574,52,Homme,5,0.355215,-126.405577 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,574,52,Homme,6,0.426259,-119.840486 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,574,52,Homme,0,0.000000,-59.283835 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,574,52,Homme,1,0.071043,33.418752 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,574,52,Homme,2,0.142086,-98.686452 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,574,52,Homme,3,0.213129,137.870403 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,574,52,Homme,4,0.284172,-113.384751 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,574,52,Homme,5,0.355215,-122.497954 +20111971,51,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,574,52,Homme,6,0.426259,-121.154526 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,924,52,Homme,0,0.000000,85.260205 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,924,52,Homme,1,0.071043,-4.684566 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,924,52,Homme,2,0.142086,133.406345 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,924,52,Homme,3,0.213129,110.454503 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,924,52,Homme,4,0.284172,38.373367 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,924,52,Homme,5,0.355215,75.992097 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,924,52,Homme,6,0.426259,-87.651019 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,924,52,Homme,0,0.000000,-11.484944 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,924,52,Homme,1,0.071043,-70.368872 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,924,52,Homme,2,0.142086,-35.616146 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,924,52,Homme,3,0.213129,0.109627 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,924,52,Homme,4,0.284172,2.553157 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,924,52,Homme,5,0.355215,-21.302793 +20111971,52,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,924,52,Homme,6,0.426259,-116.307336 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,949,52,Homme,0,0.000000,-30.403680 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,949,52,Homme,1,0.071043,-60.531290 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,949,52,Homme,2,0.142086,-84.335778 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,949,52,Homme,3,0.213129,-15.670285 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,949,52,Homme,4,0.284172,-56.852158 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,949,52,Homme,5,0.355215,50.399162 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,949,52,Homme,6,0.426259,83.384475 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,949,52,Homme,0,0.000000,116.322519 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,949,52,Homme,1,0.071043,-36.491811 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,949,52,Homme,2,0.142086,56.992902 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,949,52,Homme,3,0.213129,-102.405714 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,949,52,Homme,4,0.284172,18.027278 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,949,52,Homme,5,0.355215,92.986932 +20111971,53,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,949,52,Homme,6,0.426259,-12.148577 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,584,52,Homme,0,0.000000,-44.196026 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,584,52,Homme,1,0.071043,72.435582 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,584,52,Homme,2,0.142086,30.880154 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,584,52,Homme,3,0.213129,-98.055697 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,584,52,Homme,4,0.284172,83.700413 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,584,52,Homme,5,0.355215,23.865121 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,584,52,Homme,6,0.426259,-44.006115 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,584,52,Homme,0,0.000000,85.332288 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,584,52,Homme,1,0.071043,-113.949520 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,584,52,Homme,2,0.142086,22.848070 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,584,52,Homme,3,0.213129,-135.528843 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,584,52,Homme,4,0.284172,76.460330 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,584,52,Homme,5,0.355215,72.455461 +20111971,54,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,584,52,Homme,6,0.426259,-135.542556 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,False,707,52,Homme,0,0.000000,108.108554 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,False,707,52,Homme,1,0.071043,47.804173 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,False,707,52,Homme,2,0.142086,-38.721105 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,False,707,52,Homme,3,0.213129,108.595174 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,False,707,52,Homme,4,0.284172,94.751032 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,False,707,52,Homme,5,0.355215,-22.399732 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,False,707,52,Homme,6,0.426259,88.139884 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,True,707,52,Homme,0,0.000000,-131.156457 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,True,707,52,Homme,1,0.071043,-97.865916 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,True,707,52,Homme,2,0.142086,61.528867 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,True,707,52,Homme,3,0.213129,-10.532302 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,True,707,52,Homme,4,0.284172,-59.471070 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,True,707,52,Homme,5,0.355215,77.665776 +20111971,55,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,True,707,52,Homme,6,0.426259,-95.375701 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,739,52,Homme,0,0.000000,-58.370476 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,739,52,Homme,1,0.071043,112.073529 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,739,52,Homme,2,0.142086,29.472628 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,739,52,Homme,3,0.213129,-22.374222 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,739,52,Homme,4,0.284172,-146.515998 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,739,52,Homme,5,0.355215,47.280720 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,739,52,Homme,6,0.426259,140.553925 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,739,52,Homme,0,0.000000,87.984579 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,739,52,Homme,1,0.071043,-52.749156 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,739,52,Homme,2,0.142086,-81.744540 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,739,52,Homme,3,0.213129,-103.539742 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,739,52,Homme,4,0.284172,51.143910 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,739,52,Homme,5,0.355215,89.293467 +20111971,56,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,739,52,Homme,6,0.426259,-33.289981 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,True,593,52,Homme,0,0.000000,-48.933192 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,True,593,52,Homme,1,0.071043,23.459372 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,True,593,52,Homme,2,0.142086,-82.944560 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,True,593,52,Homme,3,0.213129,-41.749231 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,True,593,52,Homme,4,0.284172,4.976289 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,True,593,52,Homme,5,0.355215,52.438424 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,True,593,52,Homme,6,0.426259,-117.325248 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,False,593,52,Homme,0,0.000000,-47.296851 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,False,593,52,Homme,1,0.071043,-58.430070 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,False,593,52,Homme,2,0.142086,-0.935981 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,False,593,52,Homme,3,0.213129,-128.690729 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,False,593,52,Homme,4,0.284172,49.658863 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,False,593,52,Homme,5,0.355215,66.569477 +20111971,57,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,False,593,52,Homme,6,0.426259,92.598952 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,False,517,52,Homme,0,0.000000,-0.886832 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,False,517,52,Homme,1,0.071043,48.604994 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,False,517,52,Homme,2,0.142086,33.352714 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,False,517,52,Homme,3,0.213129,-55.356586 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,False,517,52,Homme,4,0.284172,-13.903711 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,False,517,52,Homme,5,0.355215,54.096530 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,False,517,52,Homme,6,0.426259,-77.791606 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,True,517,52,Homme,0,0.000000,104.278510 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,True,517,52,Homme,1,0.071043,120.742750 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,True,517,52,Homme,2,0.142086,116.963717 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,True,517,52,Homme,3,0.213129,-30.167489 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,True,517,52,Homme,4,0.284172,58.482575 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,True,517,52,Homme,5,0.355215,-35.240720 +20111971,58,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,True,517,52,Homme,6,0.426259,-49.851341 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,False,402,52,Homme,0,0.000000,20.648074 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,False,402,52,Homme,1,0.071043,145.233438 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,False,402,52,Homme,2,0.142086,42.346521 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,False,402,52,Homme,3,0.213129,-116.594338 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,False,402,52,Homme,4,0.284172,94.892274 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,False,402,52,Homme,5,0.355215,-123.170662 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,False,402,52,Homme,6,0.426259,83.715702 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,True,402,52,Homme,0,0.000000,-62.105340 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,True,402,52,Homme,1,0.071043,-52.997588 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,True,402,52,Homme,2,0.142086,-76.077591 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,True,402,52,Homme,3,0.213129,-18.807121 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,True,402,52,Homme,4,0.284172,-115.396331 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,True,402,52,Homme,5,0.355215,-128.292537 +20111971,59,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,True,402,52,Homme,6,0.426259,-78.650880 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,571,52,Homme,0,0.000000,-100.568741 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,571,52,Homme,1,0.071043,57.843647 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,571,52,Homme,2,0.142086,-30.946862 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,571,52,Homme,3,0.213129,-117.622484 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,571,52,Homme,4,0.284172,12.634833 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,571,52,Homme,5,0.355215,-81.533692 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,571,52,Homme,6,0.426259,-72.293995 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,571,52,Homme,0,0.000000,130.517111 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,571,52,Homme,1,0.071043,138.869679 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,571,52,Homme,2,0.142086,-34.276776 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,571,52,Homme,3,0.213129,76.935346 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,571,52,Homme,4,0.284172,-118.523911 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,571,52,Homme,5,0.355215,-103.328524 +20111971,60,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,571,52,Homme,6,0.426259,-14.442096 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,847,52,Homme,0,0.000000,-78.850505 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,847,52,Homme,1,0.071043,-96.953533 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,847,52,Homme,2,0.142086,-38.365791 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,847,52,Homme,3,0.213129,77.506607 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,847,52,Homme,4,0.284172,-64.506238 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,847,52,Homme,5,0.355215,15.353748 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,847,52,Homme,6,0.426259,121.287299 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,847,52,Homme,0,0.000000,111.266402 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,847,52,Homme,1,0.071043,99.799676 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,847,52,Homme,2,0.142086,45.272629 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,847,52,Homme,3,0.213129,-145.406877 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,847,52,Homme,4,0.284172,46.363124 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,847,52,Homme,5,0.355215,90.908213 +20111971,61,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,847,52,Homme,6,0.426259,-13.802222 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,729,52,Homme,0,0.000000,-87.527114 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,729,52,Homme,1,0.071043,-24.885537 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,729,52,Homme,2,0.142086,25.492299 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,729,52,Homme,3,0.213129,-85.109295 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,729,52,Homme,4,0.284172,41.982644 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,729,52,Homme,5,0.355215,-147.448489 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,729,52,Homme,6,0.426259,3.412386 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,729,52,Homme,0,0.000000,52.176539 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,729,52,Homme,1,0.071043,52.904766 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,729,52,Homme,2,0.142086,-138.473207 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,729,52,Homme,3,0.213129,-65.217652 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,729,52,Homme,4,0.284172,3.928053 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,729,52,Homme,5,0.355215,69.229623 +20111971,62,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,729,52,Homme,6,0.426259,-85.157528 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,True,1117,52,Homme,0,0.000000,113.461811 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,True,1117,52,Homme,1,0.071043,60.375974 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,True,1117,52,Homme,2,0.142086,-103.339599 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,True,1117,52,Homme,3,0.213129,103.179307 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,True,1117,52,Homme,4,0.284172,81.101135 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,True,1117,52,Homme,5,0.355215,-3.861127 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,True,1117,52,Homme,6,0.426259,-77.158959 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,False,1117,52,Homme,0,0.000000,43.823319 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,False,1117,52,Homme,1,0.071043,72.049148 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,False,1117,52,Homme,2,0.142086,-136.415247 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,False,1117,52,Homme,3,0.213129,44.015310 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,False,1117,52,Homme,4,0.284172,7.208530 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,False,1117,52,Homme,5,0.355215,18.587432 +20111971,63,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,False,1117,52,Homme,6,0.426259,60.126473 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,917,52,Homme,0,0.000000,12.794375 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,917,52,Homme,1,0.071043,72.488609 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,917,52,Homme,2,0.142086,82.753367 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,917,52,Homme,3,0.213129,-11.724600 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,917,52,Homme,4,0.284172,8.499299 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,917,52,Homme,5,0.355215,84.468722 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,917,52,Homme,6,0.426259,-88.580062 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,917,52,Homme,0,0.000000,-17.910938 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,917,52,Homme,1,0.071043,24.825304 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,917,52,Homme,2,0.142086,-141.305904 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,917,52,Homme,3,0.213129,39.379988 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,917,52,Homme,4,0.284172,-132.932424 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,917,52,Homme,5,0.355215,-6.123363 +20111971,64,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,917,52,Homme,6,0.426259,-0.737662 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,2639,52,Homme,0,0.000000,107.175705 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,2639,52,Homme,1,0.071043,81.997533 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,2639,52,Homme,2,0.142086,53.236564 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,2639,52,Homme,3,0.213129,108.962563 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,2639,52,Homme,4,0.284172,-22.910156 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,2639,52,Homme,5,0.355215,133.743101 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,2639,52,Homme,6,0.426259,98.652547 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,2639,52,Homme,0,0.000000,62.995907 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,2639,52,Homme,1,0.071043,-119.801161 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,2639,52,Homme,2,0.142086,-125.261471 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,2639,52,Homme,3,0.213129,110.918732 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,2639,52,Homme,4,0.284172,-27.635219 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,2639,52,Homme,5,0.355215,57.926930 +20111971,65,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,2639,52,Homme,6,0.426259,-85.703842 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1493,52,Homme,0,0.000000,-40.862052 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1493,52,Homme,1,0.071043,93.193290 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1493,52,Homme,2,0.142086,71.046063 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1493,52,Homme,3,0.213129,-144.093496 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1493,52,Homme,4,0.284172,-1.218193 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1493,52,Homme,5,0.355215,94.223966 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1493,52,Homme,6,0.426259,-56.349938 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1493,52,Homme,0,0.000000,-104.432443 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1493,52,Homme,1,0.071043,71.901933 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1493,52,Homme,2,0.142086,62.017491 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1493,52,Homme,3,0.213129,-148.109936 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1493,52,Homme,4,0.284172,21.087169 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1493,52,Homme,5,0.355215,98.793360 +20111971,66,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1493,52,Homme,6,0.426259,84.960800 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,False,1773,52,Homme,0,0.000000,-95.735908 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,False,1773,52,Homme,1,0.071043,84.596174 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,False,1773,52,Homme,2,0.142086,30.815879 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,False,1773,52,Homme,3,0.213129,80.998062 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,False,1773,52,Homme,4,0.284172,4.635713 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,False,1773,52,Homme,5,0.355215,-66.322755 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,False,1773,52,Homme,6,0.426259,13.571979 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,True,1773,52,Homme,0,0.000000,14.191871 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,True,1773,52,Homme,1,0.071043,-146.480257 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,True,1773,52,Homme,2,0.142086,53.736102 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,True,1773,52,Homme,3,0.213129,76.339598 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,True,1773,52,Homme,4,0.284172,128.682971 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,True,1773,52,Homme,5,0.355215,-84.474700 +20111971,67,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,True,1773,52,Homme,6,0.426259,41.341932 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,False,1894,52,Homme,0,0.000000,-99.515509 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,False,1894,52,Homme,1,0.071043,-34.266668 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,False,1894,52,Homme,2,0.142086,14.847828 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,False,1894,52,Homme,3,0.213129,69.933849 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,False,1894,52,Homme,4,0.284172,112.308778 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,False,1894,52,Homme,5,0.355215,84.391608 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,False,1894,52,Homme,6,0.426259,-74.687150 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,True,1894,52,Homme,0,0.000000,-146.338275 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,True,1894,52,Homme,1,0.071043,17.632346 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,True,1894,52,Homme,2,0.142086,135.683559 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,True,1894,52,Homme,3,0.213129,133.054558 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,True,1894,52,Homme,4,0.284172,-31.983178 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,True,1894,52,Homme,5,0.355215,-117.937109 +20111971,68,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,True,1894,52,Homme,6,0.426259,-78.681829 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,876,52,Homme,0,0.000000,-133.801400 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,876,52,Homme,1,0.071043,34.189717 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,876,52,Homme,2,0.142086,-145.714669 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,876,52,Homme,3,0.213129,1.717896 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,876,52,Homme,4,0.284172,99.036025 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,876,52,Homme,5,0.355215,56.473042 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,876,52,Homme,6,0.426259,113.578937 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,876,52,Homme,0,0.000000,126.187147 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,876,52,Homme,1,0.071043,44.969184 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,876,52,Homme,2,0.142086,-108.017243 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,876,52,Homme,3,0.213129,6.480803 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,876,52,Homme,4,0.284172,89.811831 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,876,52,Homme,5,0.355215,60.034007 +20111971,69,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,876,52,Homme,6,0.426259,63.317816 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1623,52,Homme,0,0.000000,-54.423844 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1623,52,Homme,1,0.071043,81.067183 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1623,52,Homme,2,0.142086,-60.396049 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1623,52,Homme,3,0.213129,-65.685418 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1623,52,Homme,4,0.284172,141.607211 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1623,52,Homme,5,0.355215,37.879388 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1623,52,Homme,6,0.426259,-52.972183 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1623,52,Homme,0,0.000000,125.556012 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1623,52,Homme,1,0.071043,102.885047 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1623,52,Homme,2,0.142086,-23.318884 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1623,52,Homme,3,0.213129,96.270063 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1623,52,Homme,4,0.284172,-32.661499 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1623,52,Homme,5,0.355215,-7.829717 +20111971,70,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1623,52,Homme,6,0.426259,-13.047753 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,1359,52,Homme,0,0.000000,82.321174 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,1359,52,Homme,1,0.071043,-139.171806 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,1359,52,Homme,2,0.142086,-25.451767 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,1359,52,Homme,3,0.213129,-113.179723 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,1359,52,Homme,4,0.284172,-97.955774 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,1359,52,Homme,5,0.355215,43.444463 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,1359,52,Homme,6,0.426259,-9.291608 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,1359,52,Homme,0,0.000000,46.869845 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,1359,52,Homme,1,0.071043,-22.303854 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,1359,52,Homme,2,0.142086,54.218629 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,1359,52,Homme,3,0.213129,-37.706610 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,1359,52,Homme,4,0.284172,48.467677 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,1359,52,Homme,5,0.355215,-36.671620 +20111971,71,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,1359,52,Homme,6,0.426259,-103.238186 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,True,2002,52,Homme,0,0.000000,-133.486308 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,True,2002,52,Homme,1,0.071043,-51.704384 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,True,2002,52,Homme,2,0.142086,123.734410 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,True,2002,52,Homme,3,0.213129,-122.063627 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,True,2002,52,Homme,4,0.284172,105.373754 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,True,2002,52,Homme,5,0.355215,42.489978 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,True,2002,52,Homme,6,0.426259,65.536300 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,False,2002,52,Homme,0,0.000000,-67.009894 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,False,2002,52,Homme,1,0.071043,-124.385437 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,False,2002,52,Homme,2,0.142086,-32.338754 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,False,2002,52,Homme,3,0.213129,-145.840775 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,False,2002,52,Homme,4,0.284172,-6.786611 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,False,2002,52,Homme,5,0.355215,89.278278 +20111971,72,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,False,2002,52,Homme,6,0.426259,-47.823672 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,964,52,Homme,0,0.000000,49.290737 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,964,52,Homme,1,0.071043,5.814602 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,964,52,Homme,2,0.142086,-14.528706 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,964,52,Homme,3,0.213129,53.076799 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,964,52,Homme,4,0.284172,-30.290069 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,964,52,Homme,5,0.355215,134.741064 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,964,52,Homme,6,0.426259,54.746527 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,964,52,Homme,0,0.000000,117.441793 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,964,52,Homme,1,0.071043,-117.459261 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,964,52,Homme,2,0.142086,-45.020491 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,964,52,Homme,3,0.213129,-67.699150 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,964,52,Homme,4,0.284172,-122.755451 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,964,52,Homme,5,0.355215,-10.702133 +20111971,73,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,964,52,Homme,6,0.426259,66.943327 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,422,52,Homme,0,0.000000,-29.536298 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,422,52,Homme,1,0.071043,90.685935 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,422,52,Homme,2,0.142086,-77.044346 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,422,52,Homme,3,0.213129,-75.264885 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,422,52,Homme,4,0.284172,-129.490236 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,422,52,Homme,5,0.355215,-48.940612 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,422,52,Homme,6,0.426259,-95.647001 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,422,52,Homme,0,0.000000,-108.869549 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,422,52,Homme,1,0.071043,-22.660114 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,422,52,Homme,2,0.142086,-141.096375 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,422,52,Homme,3,0.213129,-24.815065 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,422,52,Homme,4,0.284172,102.804681 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,422,52,Homme,5,0.355215,112.365201 +20111971,74,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,422,52,Homme,6,0.426259,95.196821 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,789,52,Homme,0,0.000000,30.953431 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,789,52,Homme,1,0.071043,-50.543389 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,789,52,Homme,2,0.142086,-40.325616 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,789,52,Homme,3,0.213129,130.397773 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,789,52,Homme,4,0.284172,-66.278306 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,789,52,Homme,5,0.355215,127.583751 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,789,52,Homme,6,0.426259,-120.769688 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,789,52,Homme,0,0.000000,-70.174686 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,789,52,Homme,1,0.071043,-64.753986 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,789,52,Homme,2,0.142086,-116.293490 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,789,52,Homme,3,0.213129,-63.059369 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,789,52,Homme,4,0.284172,102.899256 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,789,52,Homme,5,0.355215,-142.936640 +20111971,75,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,789,52,Homme,6,0.426259,-16.173865 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,True,774,52,Homme,0,0.000000,-0.845919 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,True,774,52,Homme,1,0.071043,-101.665398 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,True,774,52,Homme,2,0.142086,-128.909269 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,True,774,52,Homme,3,0.213129,-98.956601 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,True,774,52,Homme,4,0.284172,-120.693020 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,True,774,52,Homme,5,0.355215,-126.286795 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,True,774,52,Homme,6,0.426259,121.368949 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,False,774,52,Homme,0,0.000000,117.470857 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,False,774,52,Homme,1,0.071043,-78.886002 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,False,774,52,Homme,2,0.142086,14.587652 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,False,774,52,Homme,3,0.213129,69.368451 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,False,774,52,Homme,4,0.284172,64.657305 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,False,774,52,Homme,5,0.355215,7.845227 +20111971,76,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,False,774,52,Homme,6,0.426259,-11.003085 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1289,52,Homme,0,0.000000,47.448278 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1289,52,Homme,1,0.071043,97.426800 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1289,52,Homme,2,0.142086,-100.706472 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1289,52,Homme,3,0.213129,-21.542212 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1289,52,Homme,4,0.284172,-35.096541 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1289,52,Homme,5,0.355215,33.270062 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1289,52,Homme,6,0.426259,35.804127 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1289,52,Homme,0,0.000000,43.543409 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1289,52,Homme,1,0.071043,103.015481 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1289,52,Homme,2,0.142086,72.119204 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1289,52,Homme,3,0.213129,-134.244223 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1289,52,Homme,4,0.284172,118.896008 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1289,52,Homme,5,0.355215,-31.136245 +20111971,77,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1289,52,Homme,6,0.426259,41.834207 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,1071,52,Homme,0,0.000000,32.600333 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,1071,52,Homme,1,0.071043,42.125884 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,1071,52,Homme,2,0.142086,124.172285 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,1071,52,Homme,3,0.213129,52.679052 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,1071,52,Homme,4,0.284172,-111.889461 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,1071,52,Homme,5,0.355215,64.478579 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,1071,52,Homme,6,0.426259,22.023880 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,1071,52,Homme,0,0.000000,24.338681 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,1071,52,Homme,1,0.071043,-76.255610 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,1071,52,Homme,2,0.142086,16.829571 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,1071,52,Homme,3,0.213129,3.085792 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,1071,52,Homme,4,0.284172,81.658793 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,1071,52,Homme,5,0.355215,73.758354 +20111971,78,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,1071,52,Homme,6,0.426259,103.644220 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1025,52,Homme,0,0.000000,74.549472 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1025,52,Homme,1,0.071043,28.548945 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1025,52,Homme,2,0.142086,-70.639605 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1025,52,Homme,3,0.213129,105.678511 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1025,52,Homme,4,0.284172,54.429698 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1025,52,Homme,5,0.355215,38.972413 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1025,52,Homme,6,0.426259,36.313071 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1025,52,Homme,0,0.000000,140.907348 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1025,52,Homme,1,0.071043,56.647301 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1025,52,Homme,2,0.142086,-121.852756 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1025,52,Homme,3,0.213129,24.887877 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1025,52,Homme,4,0.284172,-16.147612 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1025,52,Homme,5,0.355215,22.171837 +20111971,79,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1025,52,Homme,6,0.426259,-49.022546 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,2865,52,Homme,0,0.000000,143.598511 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,2865,52,Homme,1,0.071043,23.645136 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,2865,52,Homme,2,0.142086,-118.740497 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,2865,52,Homme,3,0.213129,-109.046436 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,2865,52,Homme,4,0.284172,66.022521 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,2865,52,Homme,5,0.355215,-13.059175 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,2865,52,Homme,6,0.426259,22.700660 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,2865,52,Homme,0,0.000000,69.316576 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,2865,52,Homme,1,0.071043,-9.395360 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,2865,52,Homme,2,0.142086,-16.210020 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,2865,52,Homme,3,0.213129,5.282415 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,2865,52,Homme,4,0.284172,-92.031474 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,2865,52,Homme,5,0.355215,-71.382142 +20111971,80,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,2865,52,Homme,6,0.426259,-144.168558 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,679,52,Homme,0,0.000000,-44.932226 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,679,52,Homme,1,0.071043,12.460519 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,679,52,Homme,2,0.142086,58.855712 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,679,52,Homme,3,0.213129,26.967779 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,679,52,Homme,4,0.284172,139.969902 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,679,52,Homme,5,0.355215,49.325586 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,679,52,Homme,6,0.426259,89.552624 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,679,52,Homme,0,0.000000,99.637695 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,679,52,Homme,1,0.071043,129.019395 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,679,52,Homme,2,0.142086,85.352544 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,679,52,Homme,3,0.213129,122.275637 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,679,52,Homme,4,0.284172,45.838224 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,679,52,Homme,5,0.355215,149.126562 +20111971,81,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,679,52,Homme,6,0.426259,9.632372 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,858,52,Homme,0,0.000000,-135.344658 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,858,52,Homme,1,0.071043,-76.172858 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,858,52,Homme,2,0.142086,-130.999312 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,858,52,Homme,3,0.213129,-146.306144 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,858,52,Homme,4,0.284172,-78.266251 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,858,52,Homme,5,0.355215,30.254136 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,858,52,Homme,6,0.426259,-114.179281 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,858,52,Homme,0,0.000000,102.170357 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,858,52,Homme,1,0.071043,20.715456 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,858,52,Homme,2,0.142086,81.972821 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,858,52,Homme,3,0.213129,-125.018297 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,858,52,Homme,4,0.284172,103.374214 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,858,52,Homme,5,0.355215,-81.704677 +20111971,82,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,858,52,Homme,6,0.426259,85.109238 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,False,362,52,Homme,0,0.000000,-36.418372 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,False,362,52,Homme,1,0.071043,84.104587 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,False,362,52,Homme,2,0.142086,132.070943 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,False,362,52,Homme,3,0.213129,-36.088233 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,False,362,52,Homme,4,0.284172,-93.351425 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,False,362,52,Homme,5,0.355215,57.665522 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,False,362,52,Homme,6,0.426259,137.323922 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,True,362,52,Homme,0,0.000000,71.293232 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,True,362,52,Homme,1,0.071043,32.860121 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,True,362,52,Homme,2,0.142086,-85.825735 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,True,362,52,Homme,3,0.213129,70.628085 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,True,362,52,Homme,4,0.284172,126.928038 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,True,362,52,Homme,5,0.355215,120.083362 +20111971,83,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,True,362,52,Homme,6,0.426259,92.661740 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,639,52,Homme,0,0.000000,-40.071689 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,639,52,Homme,1,0.071043,-31.963638 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,639,52,Homme,2,0.142086,-69.463296 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,639,52,Homme,3,0.213129,-118.841278 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,639,52,Homme,4,0.284172,80.615651 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,639,52,Homme,5,0.355215,-132.443518 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,639,52,Homme,6,0.426259,21.803113 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,639,52,Homme,0,0.000000,-103.630506 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,639,52,Homme,1,0.071043,-84.165473 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,639,52,Homme,2,0.142086,-14.577431 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,639,52,Homme,3,0.213129,28.146235 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,639,52,Homme,4,0.284172,-80.575165 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,639,52,Homme,5,0.355215,-32.118902 +20111971,84,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,639,52,Homme,6,0.426259,78.303148 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,663,52,Homme,0,0.000000,69.664553 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,663,52,Homme,1,0.071043,-40.692966 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,663,52,Homme,2,0.142086,-94.283336 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,663,52,Homme,3,0.213129,7.777910 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,663,52,Homme,4,0.284172,26.713191 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,663,52,Homme,5,0.355215,137.292776 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,663,52,Homme,6,0.426259,-136.153804 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,663,52,Homme,0,0.000000,17.402596 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,663,52,Homme,1,0.071043,-44.390985 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,663,52,Homme,2,0.142086,-32.370244 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,663,52,Homme,3,0.213129,33.896100 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,663,52,Homme,4,0.284172,130.098177 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,663,52,Homme,5,0.355215,-117.346579 +20111971,85,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,663,52,Homme,6,0.426259,65.375118 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,True,1174,52,Homme,0,0.000000,104.124735 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,True,1174,52,Homme,1,0.071043,-92.067392 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,True,1174,52,Homme,2,0.142086,-108.808255 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,True,1174,52,Homme,3,0.213129,99.267416 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,True,1174,52,Homme,4,0.284172,-26.685302 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,True,1174,52,Homme,5,0.355215,97.824367 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,True,1174,52,Homme,6,0.426259,-69.402109 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,False,1174,52,Homme,0,0.000000,-104.498046 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,False,1174,52,Homme,1,0.071043,27.454942 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,False,1174,52,Homme,2,0.142086,-81.084240 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,False,1174,52,Homme,3,0.213129,-66.105426 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,False,1174,52,Homme,4,0.284172,-18.843418 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,False,1174,52,Homme,5,0.355215,59.447118 +20111971,86,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,False,1174,52,Homme,6,0.426259,86.357299 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,457,52,Homme,0,0.000000,-57.363512 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,457,52,Homme,1,0.071043,98.212837 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,457,52,Homme,2,0.142086,141.769894 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,457,52,Homme,3,0.213129,137.732142 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,457,52,Homme,4,0.284172,20.834317 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,457,52,Homme,5,0.355215,-134.972350 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,457,52,Homme,6,0.426259,-28.162434 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,457,52,Homme,0,0.000000,16.220058 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,457,52,Homme,1,0.071043,97.172848 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,457,52,Homme,2,0.142086,121.919735 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,457,52,Homme,3,0.213129,69.049273 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,457,52,Homme,4,0.284172,124.256579 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,457,52,Homme,5,0.355215,30.981006 +20111971,87,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,457,52,Homme,6,0.426259,-67.410158 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,True,855,52,Homme,0,0.000000,98.226066 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,True,855,52,Homme,1,0.071043,119.322928 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,True,855,52,Homme,2,0.142086,-139.339853 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,True,855,52,Homme,3,0.213129,-46.932317 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,True,855,52,Homme,4,0.284172,-13.288809 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,True,855,52,Homme,5,0.355215,94.861826 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,True,855,52,Homme,6,0.426259,-84.397607 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,False,855,52,Homme,0,0.000000,-73.767207 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,False,855,52,Homme,1,0.071043,23.213677 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,False,855,52,Homme,2,0.142086,-14.939662 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,False,855,52,Homme,3,0.213129,-71.864469 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,False,855,52,Homme,4,0.284172,-38.295965 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,False,855,52,Homme,5,0.355215,-52.851418 +20111971,88,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,False,855,52,Homme,6,0.426259,-70.943671 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,507,52,Homme,0,0.000000,-118.782832 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,507,52,Homme,1,0.071043,-35.995173 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,507,52,Homme,2,0.142086,21.697311 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,507,52,Homme,3,0.213129,22.125919 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,507,52,Homme,4,0.284172,-42.995885 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,507,52,Homme,5,0.355215,-84.376770 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,507,52,Homme,6,0.426259,-12.230862 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,507,52,Homme,0,0.000000,-123.489900 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,507,52,Homme,1,0.071043,8.804262 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,507,52,Homme,2,0.142086,-15.205517 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,507,52,Homme,3,0.213129,7.550940 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,507,52,Homme,4,0.284172,97.551926 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,507,52,Homme,5,0.355215,56.352460 +20111971,89,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,507,52,Homme,6,0.426259,-146.779345 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,387,52,Homme,0,0.000000,-11.669164 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,387,52,Homme,1,0.071043,-18.385217 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,387,52,Homme,2,0.142086,88.645793 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,387,52,Homme,3,0.213129,-2.720338 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,387,52,Homme,4,0.284172,-37.224869 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,387,52,Homme,5,0.355215,-143.685714 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,387,52,Homme,6,0.426259,-125.491494 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,387,52,Homme,0,0.000000,-40.599677 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,387,52,Homme,1,0.071043,73.648850 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,387,52,Homme,2,0.142086,15.923898 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,387,52,Homme,3,0.213129,-109.098836 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,387,52,Homme,4,0.284172,134.536605 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,387,52,Homme,5,0.355215,127.784516 +20111971,90,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,387,52,Homme,6,0.426259,-136.569602 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,False,2008,52,Homme,0,0.000000,-112.052653 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,False,2008,52,Homme,1,0.071043,-21.378049 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,False,2008,52,Homme,2,0.142086,71.395950 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,False,2008,52,Homme,3,0.213129,66.817796 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,False,2008,52,Homme,4,0.284172,25.203350 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,False,2008,52,Homme,5,0.355215,-37.010641 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,False,2008,52,Homme,6,0.426259,88.032365 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,True,2008,52,Homme,0,0.000000,-50.449081 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,True,2008,52,Homme,1,0.071043,28.423389 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,True,2008,52,Homme,2,0.142086,-105.344692 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,True,2008,52,Homme,3,0.213129,-99.811505 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,True,2008,52,Homme,4,0.284172,142.698740 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,True,2008,52,Homme,5,0.355215,-90.971946 +20111971,91,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,True,2008,52,Homme,6,0.426259,19.642948 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,3869,52,Homme,0,0.000000,58.982225 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,3869,52,Homme,1,0.071043,126.482844 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,3869,52,Homme,2,0.142086,-120.324305 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,3869,52,Homme,3,0.213129,54.493295 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,3869,52,Homme,4,0.284172,74.680181 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,3869,52,Homme,5,0.355215,99.124880 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,3869,52,Homme,6,0.426259,-32.505202 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,3869,52,Homme,0,0.000000,77.429006 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,3869,52,Homme,1,0.071043,25.170622 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,3869,52,Homme,2,0.142086,-65.854422 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,3869,52,Homme,3,0.213129,106.380035 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,3869,52,Homme,4,0.284172,126.948212 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,3869,52,Homme,5,0.355215,88.675782 +20111971,92,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,3869,52,Homme,6,0.426259,-129.822255 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,718,52,Homme,0,0.000000,-41.207511 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,718,52,Homme,1,0.071043,-36.343841 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,718,52,Homme,2,0.142086,111.477084 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,718,52,Homme,3,0.213129,5.942406 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,718,52,Homme,4,0.284172,108.539673 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,718,52,Homme,5,0.355215,-120.732661 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,718,52,Homme,6,0.426259,-22.824839 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,718,52,Homme,0,0.000000,-84.088119 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,718,52,Homme,1,0.071043,11.677970 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,718,52,Homme,2,0.142086,70.948823 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,718,52,Homme,3,0.213129,101.030552 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,718,52,Homme,4,0.284172,35.233409 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,718,52,Homme,5,0.355215,70.014692 +20111971,93,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,718,52,Homme,6,0.426259,-21.284009 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,1727,52,Homme,0,0.000000,27.345676 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,1727,52,Homme,1,0.071043,118.378449 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,1727,52,Homme,2,0.142086,35.467907 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,1727,52,Homme,3,0.213129,-5.979973 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,1727,52,Homme,4,0.284172,18.578162 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,1727,52,Homme,5,0.355215,-9.540782 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,1727,52,Homme,6,0.426259,-13.092534 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,1727,52,Homme,0,0.000000,-51.664448 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,1727,52,Homme,1,0.071043,-83.789448 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,1727,52,Homme,2,0.142086,-129.204529 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,1727,52,Homme,3,0.213129,-2.729810 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,1727,52,Homme,4,0.284172,-63.338530 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,1727,52,Homme,5,0.355215,57.342517 +20111971,94,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,1727,52,Homme,6,0.426259,30.309816 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,531,52,Homme,0,0.000000,14.171085 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,531,52,Homme,1,0.071043,-68.153896 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,531,52,Homme,2,0.142086,-24.679362 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,531,52,Homme,3,0.213129,-58.364866 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,531,52,Homme,4,0.284172,-35.694955 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,531,52,Homme,5,0.355215,-79.701050 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,531,52,Homme,6,0.426259,-70.571097 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,531,52,Homme,0,0.000000,78.626852 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,531,52,Homme,1,0.071043,124.163952 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,531,52,Homme,2,0.142086,-62.289103 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,531,52,Homme,3,0.213129,54.806982 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,531,52,Homme,4,0.284172,75.809549 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,531,52,Homme,5,0.355215,87.233703 +20111971,95,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,531,52,Homme,6,0.426259,-95.916715 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,497,52,Homme,0,0.000000,-132.910898 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,497,52,Homme,1,0.071043,-40.348113 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,497,52,Homme,2,0.142086,-144.469254 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,497,52,Homme,3,0.213129,-148.365603 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,497,52,Homme,4,0.284172,29.209812 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,497,52,Homme,5,0.355215,-68.789467 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,497,52,Homme,6,0.426259,116.539457 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,497,52,Homme,0,0.000000,102.527130 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,497,52,Homme,1,0.071043,114.037020 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,497,52,Homme,2,0.142086,-45.723055 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,497,52,Homme,3,0.213129,-109.210749 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,497,52,Homme,4,0.284172,-29.266312 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,497,52,Homme,5,0.355215,-77.798514 +20111971,96,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,497,52,Homme,6,0.426259,-133.179439 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,710,52,Homme,0,0.000000,90.503303 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,710,52,Homme,1,0.071043,6.970948 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,710,52,Homme,2,0.142086,67.030496 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,710,52,Homme,3,0.213129,131.765290 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,710,52,Homme,4,0.284172,144.593501 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,710,52,Homme,5,0.355215,16.017944 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,710,52,Homme,6,0.426259,-146.021483 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,710,52,Homme,0,0.000000,-102.946331 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,710,52,Homme,1,0.071043,143.002978 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,710,52,Homme,2,0.142086,-77.255333 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,710,52,Homme,3,0.213129,139.308503 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,710,52,Homme,4,0.284172,53.797207 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,710,52,Homme,5,0.355215,-97.855801 +20111971,97,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,710,52,Homme,6,0.426259,15.451057 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,759,52,Homme,0,0.000000,94.448216 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,759,52,Homme,1,0.071043,52.639741 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,759,52,Homme,2,0.142086,12.600351 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,759,52,Homme,3,0.213129,53.097554 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,759,52,Homme,4,0.284172,-62.165310 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,759,52,Homme,5,0.355215,18.022684 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,759,52,Homme,6,0.426259,-9.714791 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,759,52,Homme,0,0.000000,41.960803 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,759,52,Homme,1,0.071043,-15.216637 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,759,52,Homme,2,0.142086,-141.495937 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,759,52,Homme,3,0.213129,-73.120481 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,759,52,Homme,4,0.284172,-46.277227 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,759,52,Homme,5,0.355215,60.235867 +20111971,98,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,759,52,Homme,6,0.426259,0.915299 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,True,1231,52,Homme,0,0.000000,98.558580 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,True,1231,52,Homme,1,0.071043,119.886109 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,True,1231,52,Homme,2,0.142086,-7.976954 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,True,1231,52,Homme,3,0.213129,7.397873 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,True,1231,52,Homme,4,0.284172,8.946833 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,True,1231,52,Homme,5,0.355215,-77.850016 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,True,1231,52,Homme,6,0.426259,-8.433981 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,False,1231,52,Homme,0,0.000000,-144.911109 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,False,1231,52,Homme,1,0.071043,-110.844671 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,False,1231,52,Homme,2,0.142086,35.068695 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,False,1231,52,Homme,3,0.213129,-95.248162 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,False,1231,52,Homme,4,0.284172,-45.012706 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,False,1231,52,Homme,5,0.355215,79.801624 +20111971,99,1,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,False,1231,52,Homme,6,0.426259,-47.761682 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,727,52,Homme,0,0.000000,-33.837960 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,727,52,Homme,1,0.071043,102.134309 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,727,52,Homme,2,0.142086,100.949665 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,727,52,Homme,3,0.213129,77.352428 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,727,52,Homme,4,0.284172,-1.995321 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,727,52,Homme,5,0.355215,-13.382838 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_36.wav,0,False,727,52,Homme,6,0.426259,-42.807835 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,727,52,Homme,0,0.000000,80.130674 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,727,52,Homme,1,0.071043,138.574149 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,727,52,Homme,2,0.142086,75.493630 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,727,52,Homme,3,0.213129,-91.745449 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,727,52,Homme,4,0.284172,67.674634 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,727,52,Homme,5,0.355215,136.412365 +20111971,100,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_137.wav,1,True,727,52,Homme,6,0.426259,13.296001 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,779,52,Homme,0,0.000000,-63.308139 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,779,52,Homme,1,0.071043,-111.693367 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,779,52,Homme,2,0.142086,-61.444624 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,779,52,Homme,3,0.213129,137.201589 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,779,52,Homme,4,0.284172,-132.973462 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,779,52,Homme,5,0.355215,-126.405577 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_172.wav,0,True,779,52,Homme,6,0.426259,-119.840486 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,779,52,Homme,0,0.000000,-59.283835 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,779,52,Homme,1,0.071043,33.418752 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,779,52,Homme,2,0.142086,-98.686452 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,779,52,Homme,3,0.213129,137.870403 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,779,52,Homme,4,0.284172,-113.384751 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,779,52,Homme,5,0.355215,-122.497954 +20111971,101,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_10.wav,1,False,779,52,Homme,6,0.426259,-121.154526 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,3313,52,Homme,0,0.000000,85.260205 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,3313,52,Homme,1,0.071043,-4.684566 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,3313,52,Homme,2,0.142086,133.406345 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,3313,52,Homme,3,0.213129,110.454503 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,3313,52,Homme,4,0.284172,38.373367 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,3313,52,Homme,5,0.355215,75.992097 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_86.wav,0,True,3313,52,Homme,6,0.426259,-87.651019 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,3313,52,Homme,0,0.000000,-11.484944 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,3313,52,Homme,1,0.071043,-70.368872 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,3313,52,Homme,2,0.142086,-35.616146 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,3313,52,Homme,3,0.213129,0.109627 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,3313,52,Homme,4,0.284172,2.553157 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,3313,52,Homme,5,0.355215,-21.302793 +20111971,102,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_188.wav,1,False,3313,52,Homme,6,0.426259,-116.307336 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,1470,52,Homme,0,0.000000,-30.403680 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,1470,52,Homme,1,0.071043,-60.531290 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,1470,52,Homme,2,0.142086,-84.335778 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,1470,52,Homme,3,0.213129,-15.670285 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,1470,52,Homme,4,0.284172,-56.852158 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,1470,52,Homme,5,0.355215,50.399162 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_187.wav,0,False,1470,52,Homme,6,0.426259,83.384475 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,1470,52,Homme,0,0.000000,116.322519 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,1470,52,Homme,1,0.071043,-36.491811 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,1470,52,Homme,2,0.142086,56.992902 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,1470,52,Homme,3,0.213129,-102.405714 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,1470,52,Homme,4,0.284172,18.027278 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,1470,52,Homme,5,0.355215,92.986932 +20111971,103,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_73.wav,1,True,1470,52,Homme,6,0.426259,-12.148577 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,437,52,Homme,0,0.000000,-44.196026 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,437,52,Homme,1,0.071043,72.435582 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,437,52,Homme,2,0.142086,30.880154 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,437,52,Homme,3,0.213129,-98.055697 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,437,52,Homme,4,0.284172,83.700413 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,437,52,Homme,5,0.355215,23.865121 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_27.wav,0,False,437,52,Homme,6,0.426259,-44.006115 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,437,52,Homme,0,0.000000,85.332288 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,437,52,Homme,1,0.071043,-113.949520 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,437,52,Homme,2,0.142086,22.848070 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,437,52,Homme,3,0.213129,-135.528843 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,437,52,Homme,4,0.284172,76.460330 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,437,52,Homme,5,0.355215,72.455461 +20111971,104,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_9.wav,1,True,437,52,Homme,6,0.426259,-135.542556 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,True,1244,52,Homme,0,0.000000,108.108554 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,True,1244,52,Homme,1,0.071043,47.804173 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,True,1244,52,Homme,2,0.142086,-38.721105 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,True,1244,52,Homme,3,0.213129,108.595174 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,True,1244,52,Homme,4,0.284172,94.751032 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,True,1244,52,Homme,5,0.355215,-22.399732 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_161.wav,0,True,1244,52,Homme,6,0.426259,88.139884 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,False,1244,52,Homme,0,0.000000,-131.156457 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,False,1244,52,Homme,1,0.071043,-97.865916 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,False,1244,52,Homme,2,0.142086,61.528867 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,False,1244,52,Homme,3,0.213129,-10.532302 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,False,1244,52,Homme,4,0.284172,-59.471070 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,False,1244,52,Homme,5,0.355215,77.665776 +20111971,105,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_61.wav,1,False,1244,52,Homme,6,0.426259,-95.375701 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,632,52,Homme,0,0.000000,-58.370476 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,632,52,Homme,1,0.071043,112.073529 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,632,52,Homme,2,0.142086,29.472628 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,632,52,Homme,3,0.213129,-22.374222 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,632,52,Homme,4,0.284172,-146.515998 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,632,52,Homme,5,0.355215,47.280720 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_20.wav,0,False,632,52,Homme,6,0.426259,140.553925 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,632,52,Homme,0,0.000000,87.984579 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,632,52,Homme,1,0.071043,-52.749156 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,632,52,Homme,2,0.142086,-81.744540 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,632,52,Homme,3,0.213129,-103.539742 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,632,52,Homme,4,0.284172,51.143910 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,632,52,Homme,5,0.355215,89.293467 +20111971,106,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_181.wav,1,True,632,52,Homme,6,0.426259,-33.289981 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,False,491,52,Homme,0,0.000000,-48.933192 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,False,491,52,Homme,1,0.071043,23.459372 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,False,491,52,Homme,2,0.142086,-82.944560 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,False,491,52,Homme,3,0.213129,-41.749231 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,False,491,52,Homme,4,0.284172,4.976289 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,False,491,52,Homme,5,0.355215,52.438424 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_175.wav,0,False,491,52,Homme,6,0.426259,-117.325248 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,True,491,52,Homme,0,0.000000,-47.296851 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,True,491,52,Homme,1,0.071043,-58.430070 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,True,491,52,Homme,2,0.142086,-0.935981 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,True,491,52,Homme,3,0.213129,-128.690729 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,True,491,52,Homme,4,0.284172,49.658863 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,True,491,52,Homme,5,0.355215,66.569477 +20111971,107,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_136.wav,1,True,491,52,Homme,6,0.426259,92.598952 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,True,757,52,Homme,0,0.000000,-0.886832 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,True,757,52,Homme,1,0.071043,48.604994 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,True,757,52,Homme,2,0.142086,33.352714 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,True,757,52,Homme,3,0.213129,-55.356586 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,True,757,52,Homme,4,0.284172,-13.903711 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,True,757,52,Homme,5,0.355215,54.096530 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_176.wav,0,True,757,52,Homme,6,0.426259,-77.791606 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,False,757,52,Homme,0,0.000000,104.278510 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,False,757,52,Homme,1,0.071043,120.742750 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,False,757,52,Homme,2,0.142086,116.963717 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,False,757,52,Homme,3,0.213129,-30.167489 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,False,757,52,Homme,4,0.284172,58.482575 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,False,757,52,Homme,5,0.355215,-35.240720 +20111971,108,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_65.wav,1,False,757,52,Homme,6,0.426259,-49.851341 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,True,1625,52,Homme,0,0.000000,20.648074 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,True,1625,52,Homme,1,0.071043,145.233438 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,True,1625,52,Homme,2,0.142086,42.346521 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,True,1625,52,Homme,3,0.213129,-116.594338 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,True,1625,52,Homme,4,0.284172,94.892274 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,True,1625,52,Homme,5,0.355215,-123.170662 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_117.wav,0,True,1625,52,Homme,6,0.426259,83.715702 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,False,1625,52,Homme,0,0.000000,-62.105340 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,False,1625,52,Homme,1,0.071043,-52.997588 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,False,1625,52,Homme,2,0.142086,-76.077591 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,False,1625,52,Homme,3,0.213129,-18.807121 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,False,1625,52,Homme,4,0.284172,-115.396331 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,False,1625,52,Homme,5,0.355215,-128.292537 +20111971,109,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_153.wav,1,False,1625,52,Homme,6,0.426259,-78.650880 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,650,52,Homme,0,0.000000,-100.568741 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,650,52,Homme,1,0.071043,57.843647 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,650,52,Homme,2,0.142086,-30.946862 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,650,52,Homme,3,0.213129,-117.622484 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,650,52,Homme,4,0.284172,12.634833 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,650,52,Homme,5,0.355215,-81.533692 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_115.wav,0,True,650,52,Homme,6,0.426259,-72.293995 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,650,52,Homme,0,0.000000,130.517111 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,650,52,Homme,1,0.071043,138.869679 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,650,52,Homme,2,0.142086,-34.276776 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,650,52,Homme,3,0.213129,76.935346 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,650,52,Homme,4,0.284172,-118.523911 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,650,52,Homme,5,0.355215,-103.328524 +20111971,110,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_51.wav,1,False,650,52,Homme,6,0.426259,-14.442096 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,694,52,Homme,0,0.000000,-78.850505 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,694,52,Homme,1,0.071043,-96.953533 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,694,52,Homme,2,0.142086,-38.365791 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,694,52,Homme,3,0.213129,77.506607 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,694,52,Homme,4,0.284172,-64.506238 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,694,52,Homme,5,0.355215,15.353748 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_110.wav,0,False,694,52,Homme,6,0.426259,121.287299 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,694,52,Homme,0,0.000000,111.266402 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,694,52,Homme,1,0.071043,99.799676 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,694,52,Homme,2,0.142086,45.272629 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,694,52,Homme,3,0.213129,-145.406877 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,694,52,Homme,4,0.284172,46.363124 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,694,52,Homme,5,0.355215,90.908213 +20111971,111,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_39.wav,1,True,694,52,Homme,6,0.426259,-13.802222 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,352,52,Homme,0,0.000000,-87.527114 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,352,52,Homme,1,0.071043,-24.885537 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,352,52,Homme,2,0.142086,25.492299 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,352,52,Homme,3,0.213129,-85.109295 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,352,52,Homme,4,0.284172,41.982644 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,352,52,Homme,5,0.355215,-147.448489 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_1.wav,0,False,352,52,Homme,6,0.426259,3.412386 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,352,52,Homme,0,0.000000,52.176539 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,352,52,Homme,1,0.071043,52.904766 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,352,52,Homme,2,0.142086,-138.473207 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,352,52,Homme,3,0.213129,-65.217652 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,352,52,Homme,4,0.284172,3.928053 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,352,52,Homme,5,0.355215,69.229623 +20111971,112,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_113.wav,1,True,352,52,Homme,6,0.426259,-85.157528 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,False,2049,52,Homme,0,0.000000,113.461811 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,False,2049,52,Homme,1,0.071043,60.375974 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,False,2049,52,Homme,2,0.142086,-103.339599 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,False,2049,52,Homme,3,0.213129,103.179307 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,False,2049,52,Homme,4,0.284172,81.101135 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,False,2049,52,Homme,5,0.355215,-3.861127 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_64.wav,0,False,2049,52,Homme,6,0.426259,-77.158959 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,True,2049,52,Homme,0,0.000000,43.823319 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,True,2049,52,Homme,1,0.071043,72.049148 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,True,2049,52,Homme,2,0.142086,-136.415247 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,True,2049,52,Homme,3,0.213129,44.015310 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,True,2049,52,Homme,4,0.284172,7.208530 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,True,2049,52,Homme,5,0.355215,18.587432 +20111971,113,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_7.wav,1,True,2049,52,Homme,6,0.426259,60.126473 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,691,52,Homme,0,0.000000,12.794375 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,691,52,Homme,1,0.071043,72.488609 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,691,52,Homme,2,0.142086,82.753367 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,691,52,Homme,3,0.213129,-11.724600 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,691,52,Homme,4,0.284172,8.499299 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,691,52,Homme,5,0.355215,84.468722 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_53.wav,0,True,691,52,Homme,6,0.426259,-88.580062 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,691,52,Homme,0,0.000000,-17.910938 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,691,52,Homme,1,0.071043,24.825304 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,691,52,Homme,2,0.142086,-141.305904 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,691,52,Homme,3,0.213129,39.379988 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,691,52,Homme,4,0.284172,-132.932424 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,691,52,Homme,5,0.355215,-6.123363 +20111971,114,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_180.wav,1,False,691,52,Homme,6,0.426259,-0.737662 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,1496,52,Homme,0,0.000000,107.175705 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,1496,52,Homme,1,0.071043,81.997533 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,1496,52,Homme,2,0.142086,53.236564 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,1496,52,Homme,3,0.213129,108.962563 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,1496,52,Homme,4,0.284172,-22.910156 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,1496,52,Homme,5,0.355215,133.743101 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_131.wav,0,True,1496,52,Homme,6,0.426259,98.652547 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,1496,52,Homme,0,0.000000,62.995907 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,1496,52,Homme,1,0.071043,-119.801161 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,1496,52,Homme,2,0.142086,-125.261471 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,1496,52,Homme,3,0.213129,110.918732 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,1496,52,Homme,4,0.284172,-27.635219 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,1496,52,Homme,5,0.355215,57.926930 +20111971,115,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_156.wav,1,False,1496,52,Homme,6,0.426259,-85.703842 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1287,52,Homme,0,0.000000,-40.862052 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1287,52,Homme,1,0.071043,93.193290 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1287,52,Homme,2,0.142086,71.046063 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1287,52,Homme,3,0.213129,-144.093496 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1287,52,Homme,4,0.284172,-1.218193 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1287,52,Homme,5,0.355215,94.223966 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_125.wav,0,False,1287,52,Homme,6,0.426259,-56.349938 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1287,52,Homme,0,0.000000,-104.432443 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1287,52,Homme,1,0.071043,71.901933 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1287,52,Homme,2,0.142086,62.017491 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1287,52,Homme,3,0.213129,-148.109936 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1287,52,Homme,4,0.284172,21.087169 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1287,52,Homme,5,0.355215,98.793360 +20111971,116,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_88.wav,1,True,1287,52,Homme,6,0.426259,84.960800 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,True,951,52,Homme,0,0.000000,-95.735908 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,True,951,52,Homme,1,0.071043,84.596174 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,True,951,52,Homme,2,0.142086,30.815879 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,True,951,52,Homme,3,0.213129,80.998062 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,True,951,52,Homme,4,0.284172,4.635713 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,True,951,52,Homme,5,0.355215,-66.322755 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_132.wav,0,True,951,52,Homme,6,0.426259,13.571979 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,False,951,52,Homme,0,0.000000,14.191871 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,False,951,52,Homme,1,0.071043,-146.480257 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,False,951,52,Homme,2,0.142086,53.736102 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,False,951,52,Homme,3,0.213129,76.339598 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,False,951,52,Homme,4,0.284172,128.682971 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,False,951,52,Homme,5,0.355215,-84.474700 +20111971,117,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_40.wav,1,False,951,52,Homme,6,0.426259,41.341932 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,True,973,52,Homme,0,0.000000,-99.515509 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,True,973,52,Homme,1,0.071043,-34.266668 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,True,973,52,Homme,2,0.142086,14.847828 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,True,973,52,Homme,3,0.213129,69.933849 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,True,973,52,Homme,4,0.284172,112.308778 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,True,973,52,Homme,5,0.355215,84.391608 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_15.wav,0,True,973,52,Homme,6,0.426259,-74.687150 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,False,973,52,Homme,0,0.000000,-146.338275 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,False,973,52,Homme,1,0.071043,17.632346 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,False,973,52,Homme,2,0.142086,135.683559 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,False,973,52,Homme,3,0.213129,133.054558 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,False,973,52,Homme,4,0.284172,-31.983178 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,False,973,52,Homme,5,0.355215,-117.937109 +20111971,118,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_186.wav,1,False,973,52,Homme,6,0.426259,-78.681829 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,1733,52,Homme,0,0.000000,-133.801400 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,1733,52,Homme,1,0.071043,34.189717 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,1733,52,Homme,2,0.142086,-145.714669 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,1733,52,Homme,3,0.213129,1.717896 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,1733,52,Homme,4,0.284172,99.036025 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,1733,52,Homme,5,0.355215,56.473042 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_52.wav,0,False,1733,52,Homme,6,0.426259,113.578937 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,1733,52,Homme,0,0.000000,126.187147 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,1733,52,Homme,1,0.071043,44.969184 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,1733,52,Homme,2,0.142086,-108.017243 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,1733,52,Homme,3,0.213129,6.480803 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,1733,52,Homme,4,0.284172,89.811831 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,1733,52,Homme,5,0.355215,60.034007 +20111971,119,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_118.wav,1,True,1733,52,Homme,6,0.426259,63.317816 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1044,52,Homme,0,0.000000,-54.423844 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1044,52,Homme,1,0.071043,81.067183 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1044,52,Homme,2,0.142086,-60.396049 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1044,52,Homme,3,0.213129,-65.685418 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1044,52,Homme,4,0.284172,141.607211 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1044,52,Homme,5,0.355215,37.879388 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_195.wav,0,True,1044,52,Homme,6,0.426259,-52.972183 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1044,52,Homme,0,0.000000,125.556012 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1044,52,Homme,1,0.071043,102.885047 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1044,52,Homme,2,0.142086,-23.318884 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1044,52,Homme,3,0.213129,96.270063 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1044,52,Homme,4,0.284172,-32.661499 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1044,52,Homme,5,0.355215,-7.829717 +20111971,120,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_105.wav,1,False,1044,52,Homme,6,0.426259,-13.047753 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,603,52,Homme,0,0.000000,82.321174 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,603,52,Homme,1,0.071043,-139.171806 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,603,52,Homme,2,0.142086,-25.451767 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,603,52,Homme,3,0.213129,-113.179723 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,603,52,Homme,4,0.284172,-97.955774 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,603,52,Homme,5,0.355215,43.444463 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_28.wav,0,True,603,52,Homme,6,0.426259,-9.291608 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,603,52,Homme,0,0.000000,46.869845 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,603,52,Homme,1,0.071043,-22.303854 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,603,52,Homme,2,0.142086,54.218629 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,603,52,Homme,3,0.213129,-37.706610 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,603,52,Homme,4,0.284172,48.467677 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,603,52,Homme,5,0.355215,-36.671620 +20111971,121,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_92.wav,1,False,603,52,Homme,6,0.426259,-103.238186 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,False,534,52,Homme,0,0.000000,-133.486308 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,False,534,52,Homme,1,0.071043,-51.704384 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,False,534,52,Homme,2,0.142086,123.734410 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,False,534,52,Homme,3,0.213129,-122.063627 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,False,534,52,Homme,4,0.284172,105.373754 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,False,534,52,Homme,5,0.355215,42.489978 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_165.wav,0,False,534,52,Homme,6,0.426259,65.536300 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,True,534,52,Homme,0,0.000000,-67.009894 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,True,534,52,Homme,1,0.071043,-124.385437 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,True,534,52,Homme,2,0.142086,-32.338754 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,True,534,52,Homme,3,0.213129,-145.840775 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,True,534,52,Homme,4,0.284172,-6.786611 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,True,534,52,Homme,5,0.355215,89.278278 +20111971,122,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_99.wav,1,True,534,52,Homme,6,0.426259,-47.823672 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,680,52,Homme,0,0.000000,49.290737 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,680,52,Homme,1,0.071043,5.814602 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,680,52,Homme,2,0.142086,-14.528706 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,680,52,Homme,3,0.213129,53.076799 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,680,52,Homme,4,0.284172,-30.290069 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,680,52,Homme,5,0.355215,134.741064 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_43.wav,0,True,680,52,Homme,6,0.426259,54.746527 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,680,52,Homme,0,0.000000,117.441793 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,680,52,Homme,1,0.071043,-117.459261 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,680,52,Homme,2,0.142086,-45.020491 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,680,52,Homme,3,0.213129,-67.699150 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,680,52,Homme,4,0.284172,-122.755451 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,680,52,Homme,5,0.355215,-10.702133 +20111971,123,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_169.wav,1,False,680,52,Homme,6,0.426259,66.943327 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,420,52,Homme,0,0.000000,-29.536298 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,420,52,Homme,1,0.071043,90.685935 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,420,52,Homme,2,0.142086,-77.044346 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,420,52,Homme,3,0.213129,-75.264885 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,420,52,Homme,4,0.284172,-129.490236 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,420,52,Homme,5,0.355215,-48.940612 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_138.wav,0,False,420,52,Homme,6,0.426259,-95.647001 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,420,52,Homme,0,0.000000,-108.869549 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,420,52,Homme,1,0.071043,-22.660114 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,420,52,Homme,2,0.142086,-141.096375 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,420,52,Homme,3,0.213129,-24.815065 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,420,52,Homme,4,0.284172,102.804681 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,420,52,Homme,5,0.355215,112.365201 +20111971,124,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_45.wav,1,True,420,52,Homme,6,0.426259,95.196821 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,1323,52,Homme,0,0.000000,30.953431 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,1323,52,Homme,1,0.071043,-50.543389 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,1323,52,Homme,2,0.142086,-40.325616 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,1323,52,Homme,3,0.213129,130.397773 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,1323,52,Homme,4,0.284172,-66.278306 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,1323,52,Homme,5,0.355215,127.583751 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_56.wav,0,True,1323,52,Homme,6,0.426259,-120.769688 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,1323,52,Homme,0,0.000000,-70.174686 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,1323,52,Homme,1,0.071043,-64.753986 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,1323,52,Homme,2,0.142086,-116.293490 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,1323,52,Homme,3,0.213129,-63.059369 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,1323,52,Homme,4,0.284172,102.899256 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,1323,52,Homme,5,0.355215,-142.936640 +20111971,125,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_104.wav,1,False,1323,52,Homme,6,0.426259,-16.173865 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,False,340,52,Homme,0,0.000000,-0.845919 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,False,340,52,Homme,1,0.071043,-101.665398 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,False,340,52,Homme,2,0.142086,-128.909269 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,False,340,52,Homme,3,0.213129,-98.956601 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,False,340,52,Homme,4,0.284172,-120.693020 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,False,340,52,Homme,5,0.355215,-126.286795 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_150.wav,0,False,340,52,Homme,6,0.426259,121.368949 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,True,340,52,Homme,0,0.000000,117.470857 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,True,340,52,Homme,1,0.071043,-78.886002 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,True,340,52,Homme,2,0.142086,14.587652 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,True,340,52,Homme,3,0.213129,69.368451 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,True,340,52,Homme,4,0.284172,64.657305 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,True,340,52,Homme,5,0.355215,7.845227 +20111971,126,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_54.wav,1,True,340,52,Homme,6,0.426259,-11.003085 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1055,52,Homme,0,0.000000,47.448278 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1055,52,Homme,1,0.071043,97.426800 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1055,52,Homme,2,0.142086,-100.706472 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1055,52,Homme,3,0.213129,-21.542212 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1055,52,Homme,4,0.284172,-35.096541 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1055,52,Homme,5,0.355215,33.270062 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_109.wav,0,True,1055,52,Homme,6,0.426259,35.804127 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1055,52,Homme,0,0.000000,43.543409 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1055,52,Homme,1,0.071043,103.015481 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1055,52,Homme,2,0.142086,72.119204 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1055,52,Homme,3,0.213129,-134.244223 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1055,52,Homme,4,0.284172,118.896008 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1055,52,Homme,5,0.355215,-31.136245 +20111971,127,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_100.wav,1,False,1055,52,Homme,6,0.426259,41.834207 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,697,52,Homme,0,0.000000,32.600333 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,697,52,Homme,1,0.071043,42.125884 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,697,52,Homme,2,0.142086,124.172285 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,697,52,Homme,3,0.213129,52.679052 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,697,52,Homme,4,0.284172,-111.889461 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,697,52,Homme,5,0.355215,64.478579 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_30.wav,0,False,697,52,Homme,6,0.426259,22.023880 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,697,52,Homme,0,0.000000,24.338681 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,697,52,Homme,1,0.071043,-76.255610 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,697,52,Homme,2,0.142086,16.829571 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,697,52,Homme,3,0.213129,3.085792 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,697,52,Homme,4,0.284172,81.658793 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,697,52,Homme,5,0.355215,73.758354 +20111971,128,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_123.wav,1,True,697,52,Homme,6,0.426259,103.644220 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1070,52,Homme,0,0.000000,74.549472 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1070,52,Homme,1,0.071043,28.548945 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1070,52,Homme,2,0.142086,-70.639605 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1070,52,Homme,3,0.213129,105.678511 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1070,52,Homme,4,0.284172,54.429698 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1070,52,Homme,5,0.355215,38.972413 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_80.wav,0,True,1070,52,Homme,6,0.426259,36.313071 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1070,52,Homme,0,0.000000,140.907348 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1070,52,Homme,1,0.071043,56.647301 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1070,52,Homme,2,0.142086,-121.852756 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1070,52,Homme,3,0.213129,24.887877 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1070,52,Homme,4,0.284172,-16.147612 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1070,52,Homme,5,0.355215,22.171837 +20111971,129,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_158.wav,1,False,1070,52,Homme,6,0.426259,-49.022546 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,1930,52,Homme,0,0.000000,143.598511 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,1930,52,Homme,1,0.071043,23.645136 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,1930,52,Homme,2,0.142086,-118.740497 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,1930,52,Homme,3,0.213129,-109.046436 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,1930,52,Homme,4,0.284172,66.022521 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,1930,52,Homme,5,0.355215,-13.059175 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_127.wav,0,True,1930,52,Homme,6,0.426259,22.700660 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,1930,52,Homme,0,0.000000,69.316576 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,1930,52,Homme,1,0.071043,-9.395360 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,1930,52,Homme,2,0.142086,-16.210020 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,1930,52,Homme,3,0.213129,5.282415 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,1930,52,Homme,4,0.284172,-92.031474 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,1930,52,Homme,5,0.355215,-71.382142 +20111971,130,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_101.wav,1,False,1930,52,Homme,6,0.426259,-144.168558 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,653,52,Homme,0,0.000000,-44.932226 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,653,52,Homme,1,0.071043,12.460519 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,653,52,Homme,2,0.142086,58.855712 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,653,52,Homme,3,0.213129,26.967779 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,653,52,Homme,4,0.284172,139.969902 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,653,52,Homme,5,0.355215,49.325586 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_119.wav,0,False,653,52,Homme,6,0.426259,89.552624 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,653,52,Homme,0,0.000000,99.637695 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,653,52,Homme,1,0.071043,129.019395 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,653,52,Homme,2,0.142086,85.352544 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,653,52,Homme,3,0.213129,122.275637 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,653,52,Homme,4,0.284172,45.838224 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,653,52,Homme,5,0.355215,149.126562 +20111971,131,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_6.wav,1,True,653,52,Homme,6,0.426259,9.632372 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,1636,52,Homme,0,0.000000,-135.344658 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,1636,52,Homme,1,0.071043,-76.172858 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,1636,52,Homme,2,0.142086,-130.999312 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,1636,52,Homme,3,0.213129,-146.306144 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,1636,52,Homme,4,0.284172,-78.266251 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,1636,52,Homme,5,0.355215,30.254136 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_26.wav,0,True,1636,52,Homme,6,0.426259,-114.179281 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,1636,52,Homme,0,0.000000,102.170357 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,1636,52,Homme,1,0.071043,20.715456 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,1636,52,Homme,2,0.142086,81.972821 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,1636,52,Homme,3,0.213129,-125.018297 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,1636,52,Homme,4,0.284172,103.374214 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,1636,52,Homme,5,0.355215,-81.704677 +20111971,132,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_98.wav,1,False,1636,52,Homme,6,0.426259,85.109238 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,True,2706,52,Homme,0,0.000000,-36.418372 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,True,2706,52,Homme,1,0.071043,84.104587 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,True,2706,52,Homme,2,0.142086,132.070943 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,True,2706,52,Homme,3,0.213129,-36.088233 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,True,2706,52,Homme,4,0.284172,-93.351425 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,True,2706,52,Homme,5,0.355215,57.665522 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_59.wav,0,True,2706,52,Homme,6,0.426259,137.323922 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,False,2706,52,Homme,0,0.000000,71.293232 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,False,2706,52,Homme,1,0.071043,32.860121 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,False,2706,52,Homme,2,0.142086,-85.825735 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,False,2706,52,Homme,3,0.213129,70.628085 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,False,2706,52,Homme,4,0.284172,126.928038 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,False,2706,52,Homme,5,0.355215,120.083362 +20111971,133,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_74.wav,1,False,2706,52,Homme,6,0.426259,92.661740 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,2511,52,Homme,0,0.000000,-40.071689 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,2511,52,Homme,1,0.071043,-31.963638 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,2511,52,Homme,2,0.142086,-69.463296 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,2511,52,Homme,3,0.213129,-118.841278 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,2511,52,Homme,4,0.284172,80.615651 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,2511,52,Homme,5,0.355215,-132.443518 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_41.wav,0,True,2511,52,Homme,6,0.426259,21.803113 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,2511,52,Homme,0,0.000000,-103.630506 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,2511,52,Homme,1,0.071043,-84.165473 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,2511,52,Homme,2,0.142086,-14.577431 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,2511,52,Homme,3,0.213129,28.146235 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,2511,52,Homme,4,0.284172,-80.575165 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,2511,52,Homme,5,0.355215,-32.118902 +20111971,134,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_198.wav,1,False,2511,52,Homme,6,0.426259,78.303148 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,644,52,Homme,0,0.000000,69.664553 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,644,52,Homme,1,0.071043,-40.692966 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,644,52,Homme,2,0.142086,-94.283336 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,644,52,Homme,3,0.213129,7.777910 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,644,52,Homme,4,0.284172,26.713191 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,644,52,Homme,5,0.355215,137.292776 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_135.wav,0,True,644,52,Homme,6,0.426259,-136.153804 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,644,52,Homme,0,0.000000,17.402596 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,644,52,Homme,1,0.071043,-44.390985 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,644,52,Homme,2,0.142086,-32.370244 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,644,52,Homme,3,0.213129,33.896100 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,644,52,Homme,4,0.284172,130.098177 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,644,52,Homme,5,0.355215,-117.346579 +20111971,135,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_149.wav,1,False,644,52,Homme,6,0.426259,65.375118 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,False,788,52,Homme,0,0.000000,104.124735 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,False,788,52,Homme,1,0.071043,-92.067392 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,False,788,52,Homme,2,0.142086,-108.808255 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,False,788,52,Homme,3,0.213129,99.267416 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,False,788,52,Homme,4,0.284172,-26.685302 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,False,788,52,Homme,5,0.355215,97.824367 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_194.wav,0,False,788,52,Homme,6,0.426259,-69.402109 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,True,788,52,Homme,0,0.000000,-104.498046 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,True,788,52,Homme,1,0.071043,27.454942 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,True,788,52,Homme,2,0.142086,-81.084240 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,True,788,52,Homme,3,0.213129,-66.105426 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,True,788,52,Homme,4,0.284172,-18.843418 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,True,788,52,Homme,5,0.355215,59.447118 +20111971,136,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_193.wav,1,True,788,52,Homme,6,0.426259,86.357299 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,399,52,Homme,0,0.000000,-57.363512 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,399,52,Homme,1,0.071043,98.212837 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,399,52,Homme,2,0.142086,141.769894 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,399,52,Homme,3,0.213129,137.732142 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,399,52,Homme,4,0.284172,20.834317 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,399,52,Homme,5,0.355215,-134.972350 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_145.wav,0,False,399,52,Homme,6,0.426259,-28.162434 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,399,52,Homme,0,0.000000,16.220058 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,399,52,Homme,1,0.071043,97.172848 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,399,52,Homme,2,0.142086,121.919735 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,399,52,Homme,3,0.213129,69.049273 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,399,52,Homme,4,0.284172,124.256579 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,399,52,Homme,5,0.355215,30.981006 +20111971,137,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_85.wav,1,True,399,52,Homme,6,0.426259,-67.410158 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,False,1286,52,Homme,0,0.000000,98.226066 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,False,1286,52,Homme,1,0.071043,119.322928 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,False,1286,52,Homme,2,0.142086,-139.339853 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,False,1286,52,Homme,3,0.213129,-46.932317 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,False,1286,52,Homme,4,0.284172,-13.288809 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,False,1286,52,Homme,5,0.355215,94.861826 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_4.wav,0,False,1286,52,Homme,6,0.426259,-84.397607 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,True,1286,52,Homme,0,0.000000,-73.767207 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,True,1286,52,Homme,1,0.071043,23.213677 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,True,1286,52,Homme,2,0.142086,-14.939662 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,True,1286,52,Homme,3,0.213129,-71.864469 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,True,1286,52,Homme,4,0.284172,-38.295965 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,True,1286,52,Homme,5,0.355215,-52.851418 +20111971,138,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_163.wav,1,True,1286,52,Homme,6,0.426259,-70.943671 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,1196,52,Homme,0,0.000000,-118.782832 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,1196,52,Homme,1,0.071043,-35.995173 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,1196,52,Homme,2,0.142086,21.697311 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,1196,52,Homme,3,0.213129,22.125919 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,1196,52,Homme,4,0.284172,-42.995885 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,1196,52,Homme,5,0.355215,-84.376770 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_62.wav,0,False,1196,52,Homme,6,0.426259,-12.230862 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,1196,52,Homme,0,0.000000,-123.489900 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,1196,52,Homme,1,0.071043,8.804262 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,1196,52,Homme,2,0.142086,-15.205517 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,1196,52,Homme,3,0.213129,7.550940 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,1196,52,Homme,4,0.284172,97.551926 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,1196,52,Homme,5,0.355215,56.352460 +20111971,139,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_77.wav,1,True,1196,52,Homme,6,0.426259,-146.779345 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,547,52,Homme,0,0.000000,-11.669164 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,547,52,Homme,1,0.071043,-18.385217 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,547,52,Homme,2,0.142086,88.645793 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,547,52,Homme,3,0.213129,-2.720338 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,547,52,Homme,4,0.284172,-37.224869 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,547,52,Homme,5,0.355215,-143.685714 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_143.wav,0,False,547,52,Homme,6,0.426259,-125.491494 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,547,52,Homme,0,0.000000,-40.599677 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,547,52,Homme,1,0.071043,73.648850 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,547,52,Homme,2,0.142086,15.923898 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,547,52,Homme,3,0.213129,-109.098836 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,547,52,Homme,4,0.284172,134.536605 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,547,52,Homme,5,0.355215,127.784516 +20111971,140,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_102.wav,1,True,547,52,Homme,6,0.426259,-136.569602 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,True,1405,52,Homme,0,0.000000,-112.052653 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,True,1405,52,Homme,1,0.071043,-21.378049 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,True,1405,52,Homme,2,0.142086,71.395950 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,True,1405,52,Homme,3,0.213129,66.817796 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,True,1405,52,Homme,4,0.284172,25.203350 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,True,1405,52,Homme,5,0.355215,-37.010641 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_178.wav,0,True,1405,52,Homme,6,0.426259,88.032365 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,False,1405,52,Homme,0,0.000000,-50.449081 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,False,1405,52,Homme,1,0.071043,28.423389 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,False,1405,52,Homme,2,0.142086,-105.344692 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,False,1405,52,Homme,3,0.213129,-99.811505 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,False,1405,52,Homme,4,0.284172,142.698740 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,False,1405,52,Homme,5,0.355215,-90.971946 +20111971,141,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_37.wav,1,False,1405,52,Homme,6,0.426259,19.642948 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,1247,52,Homme,0,0.000000,58.982225 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,1247,52,Homme,1,0.071043,126.482844 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,1247,52,Homme,2,0.142086,-120.324305 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,1247,52,Homme,3,0.213129,54.493295 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,1247,52,Homme,4,0.284172,74.680181 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,1247,52,Homme,5,0.355215,99.124880 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_91.wav,0,True,1247,52,Homme,6,0.426259,-32.505202 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,1247,52,Homme,0,0.000000,77.429006 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,1247,52,Homme,1,0.071043,25.170622 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,1247,52,Homme,2,0.142086,-65.854422 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,1247,52,Homme,3,0.213129,106.380035 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,1247,52,Homme,4,0.284172,126.948212 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,1247,52,Homme,5,0.355215,88.675782 +20111971,142,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_33.wav,1,False,1247,52,Homme,6,0.426259,-129.822255 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,300,52,Homme,0,0.000000,-41.207511 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,300,52,Homme,1,0.071043,-36.343841 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,300,52,Homme,2,0.142086,111.477084 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,300,52,Homme,3,0.213129,5.942406 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,300,52,Homme,4,0.284172,108.539673 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,300,52,Homme,5,0.355215,-120.732661 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_44.wav,0,False,300,52,Homme,6,0.426259,-22.824839 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,300,52,Homme,0,0.000000,-84.088119 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,300,52,Homme,1,0.071043,11.677970 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,300,52,Homme,2,0.142086,70.948823 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,300,52,Homme,3,0.213129,101.030552 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,300,52,Homme,4,0.284172,35.233409 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,300,52,Homme,5,0.355215,70.014692 +20111971,143,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_159.wav,1,True,300,52,Homme,6,0.426259,-21.284009 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,949,52,Homme,0,0.000000,27.345676 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,949,52,Homme,1,0.071043,118.378449 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,949,52,Homme,2,0.142086,35.467907 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,949,52,Homme,3,0.213129,-5.979973 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,949,52,Homme,4,0.284172,18.578162 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,949,52,Homme,5,0.355215,-9.540782 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_23.wav,0,False,949,52,Homme,6,0.426259,-13.092534 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,949,52,Homme,0,0.000000,-51.664448 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,949,52,Homme,1,0.071043,-83.789448 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,949,52,Homme,2,0.142086,-129.204529 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,949,52,Homme,3,0.213129,-2.729810 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,949,52,Homme,4,0.284172,-63.338530 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,949,52,Homme,5,0.355215,57.342517 +20111971,144,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_122.wav,1,True,949,52,Homme,6,0.426259,30.309816 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,511,52,Homme,0,0.000000,14.171085 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,511,52,Homme,1,0.071043,-68.153896 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,511,52,Homme,2,0.142086,-24.679362 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,511,52,Homme,3,0.213129,-58.364866 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,511,52,Homme,4,0.284172,-35.694955 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,511,52,Homme,5,0.355215,-79.701050 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_82.wav,0,False,511,52,Homme,6,0.426259,-70.571097 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,511,52,Homme,0,0.000000,78.626852 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,511,52,Homme,1,0.071043,124.163952 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,511,52,Homme,2,0.142086,-62.289103 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,511,52,Homme,3,0.213129,54.806982 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,511,52,Homme,4,0.284172,75.809549 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,511,52,Homme,5,0.355215,87.233703 +20111971,145,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_29.wav,1,True,511,52,Homme,6,0.426259,-95.916715 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,619,52,Homme,0,0.000000,-132.910898 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,619,52,Homme,1,0.071043,-40.348113 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,619,52,Homme,2,0.142086,-144.469254 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,619,52,Homme,3,0.213129,-148.365603 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,619,52,Homme,4,0.284172,29.209812 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,619,52,Homme,5,0.355215,-68.789467 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_171.wav,0,True,619,52,Homme,6,0.426259,116.539457 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,619,52,Homme,0,0.000000,102.527130 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,619,52,Homme,1,0.071043,114.037020 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,619,52,Homme,2,0.142086,-45.723055 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,619,52,Homme,3,0.213129,-109.210749 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,619,52,Homme,4,0.284172,-29.266312 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,619,52,Homme,5,0.355215,-77.798514 +20111971,146,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_183.wav,1,False,619,52,Homme,6,0.426259,-133.179439 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,196,52,Homme,0,0.000000,90.503303 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,196,52,Homme,1,0.071043,6.970948 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,196,52,Homme,2,0.142086,67.030496 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,196,52,Homme,3,0.213129,131.765290 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,196,52,Homme,4,0.284172,144.593501 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,196,52,Homme,5,0.355215,16.017944 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_48.wav,0,True,196,52,Homme,6,0.426259,-146.021483 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,196,52,Homme,0,0.000000,-102.946331 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,196,52,Homme,1,0.071043,143.002978 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,196,52,Homme,2,0.142086,-77.255333 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,196,52,Homme,3,0.213129,139.308503 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,196,52,Homme,4,0.284172,53.797207 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,196,52,Homme,5,0.355215,-97.855801 +20111971,147,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_79.wav,1,False,196,52,Homme,6,0.426259,15.451057 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,1633,52,Homme,0,0.000000,94.448216 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,1633,52,Homme,1,0.071043,52.639741 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,1633,52,Homme,2,0.142086,12.600351 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,1633,52,Homme,3,0.213129,53.097554 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,1633,52,Homme,4,0.284172,-62.165310 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,1633,52,Homme,5,0.355215,18.022684 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_96.wav,0,False,1633,52,Homme,6,0.426259,-9.714791 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,1633,52,Homme,0,0.000000,41.960803 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,1633,52,Homme,1,0.071043,-15.216637 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,1633,52,Homme,2,0.142086,-141.495937 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,1633,52,Homme,3,0.213129,-73.120481 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,1633,52,Homme,4,0.284172,-46.277227 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,1633,52,Homme,5,0.355215,60.235867 +20111971,148,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_55.wav,1,True,1633,52,Homme,6,0.426259,0.915299 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,False,945,52,Homme,0,0.000000,98.558580 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,False,945,52,Homme,1,0.071043,119.886109 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,False,945,52,Homme,2,0.142086,-7.976954 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,False,945,52,Homme,3,0.213129,7.397873 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,False,945,52,Homme,4,0.284172,8.946833 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,False,945,52,Homme,5,0.355215,-77.850016 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_71.wav,0,False,945,52,Homme,6,0.426259,-8.433981 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,True,945,52,Homme,0,0.000000,-144.911109 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,True,945,52,Homme,1,0.071043,-110.844671 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,True,945,52,Homme,2,0.142086,35.068695 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,True,945,52,Homme,3,0.213129,-95.248162 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,True,945,52,Homme,4,0.284172,-45.012706 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,True,945,52,Homme,5,0.355215,79.801624 +20111971,149,2,2024-03-08T16:13:15.419Z,male_vraiment_flat_128.wav,1,True,945,52,Homme,6,0.426259,-47.761682 diff --git a/python/palin/internal_noise/double_pass.py b/python/palin/internal_noise/double_pass.py new file mode 100644 index 0000000..9fad4f2 --- /dev/null +++ b/python/palin/internal_noise/double_pass.py @@ -0,0 +1,108 @@ +#!/usr/bin/env python +''' +PALIN toolbox v0.1 +December 2022, Aynaz Adl Zarrabi, JJ Aucouturier (CNRS/UBFC) + +Functions for kernel calculating method in Classification images +''' + +import pandas as pd +import numpy as np +from .internal_noise_extractor import InternalNoiseExtractor +from ..simulation.linear_observer import LinearObserver +from ..simulation.simple_experiment import SimpleExperiment +from ..simulation.trial import Int2Trial, Int1Trial + +class DoublePass(InternalNoiseExtractor): + + @classmethod + def extract_single_internal_noise(cls,data_df, trial_id, stim_id = 'stim', feature_id = 'feature', value_id = 'value', response_id = 'response'): + + double_pass_id = 'double_pass_id' # column by which to identify double pass trials + + # index double pass trials + data_df = cls.index_double_pass_trials(data_df, trial_id=trial_id, value_id = value_id, double_pass_id = double_pass_id) + # compute probability of agreement over double pass + prob_agree = compute_prob_agreement(data_df, trial_id=trial_id, response_id=response_id, double_pass_id=double_pass_id) + # compute probability of choosing first response option + prob_first = compute_prob_first(data_df, trial_id=trial_id, response_id=response_id, stim_id=stim_id, double_pass_id=double_pass_id) + + return 0 + + def __str__(self): + return 'Double-Pass method' + + @classmethod + def index_double_pass_trials(cls, data_df, trial_id='trial',double_pass_id='double_pass_id',value_id='stim_parameter_id'): + ''' identify repeated trials in experimental sessions (i.e. 'double pass trials'), and tag them with a unique id stored in a new column. + ''' + # represent the several values of a given trial (ex. 6 features for interval 1, 6 features for interval 2) as a tuple + frozen_set_df = data_df.groupby(trial_id).agg({value_id: lambda group: tuple(group)}).reset_index() + + # count how many trials have each unique pair of stimuli + pass_count_df = frozen_set_df.groupby(value_id).agg({trial_id: ['nunique','first','last']}) + pass_count_df.columns = ["_".join(x) for x in pass_count_df.columns.ravel()] + pass_count_df = pass_count_df.reset_index() + + # identify pairs of stimuli that have 2 trials (i.e. for which there has been a double pass) + double_pass_df = pass_count_df[pass_count_df['%s_nunique'%trial_id]==2].reset_index(drop=True) + + # assign unique id + double_pass_df[double_pass_id] = double_pass_df.index + + # join to base dataset + double_pass_df = double_pass_df.melt(id_vars=double_pass_id, + value_vars=['%s_first'%trial_id,'%s_last'%trial_id], + var_name='%s_type'%trial_id, + value_name=trial_id) + data_df= pd.merge(data_df, double_pass_df[[trial_id, double_pass_id]], + how="left", on=trial_id) + return data_df + + + @classmethod + def compute_prob_agreement(cls,data_df, trial_id='trial', response_id='response', double_pass_id='double_pass_id'): + # computes the probability of agreement between two responses to a repeated stimuli on the double pass trials + + # compute agreements for each double_pass trial + def same_answer(group, trial_id, response_id): + d = group.groupby(trial_id).agg({response_id: lambda group: tuple(group)}).reset_index() + return d.response.nunique()==1 + agrees = data_df.groupby(double_pass_id).apply(lambda group: same_answer(group, trial_id, response_id)) + + # return agreement probability + return agrees.sum()/len(agrees) + + @classmethod + def compute_prob_first(cls, data_df, trial_id='trial', response_id='response', stim_id='stim_order', double_pass_id='double_pass_id'): + # Computes probability that responds true to the first interval across the subset of double_pass trialslumn (e.g. double_pass_id) identifying repeated trials. Use utils.index_double_pass_trials to create that column if doesn't exist. + + # compute first response for each double_pass trial + def first_option(group, stim_id, response_id): + resp = group.sort_values(by=stim_id)[response_id].iloc[0] + return resp==1 + firsts = data_df[data_df[double_pass_id].notna()].groupby(trial_id).apply(lambda group: first_option(group, stim_id, response_id)) + + return firsts.sum()/len(firsts) + + @classmethod + def simulate_observer(cls,internal_noise_std,criteria, n_trials, n_blocks=1): + + # simulate observer with (criteria, internal_noise_sigma) + # in the midterm, this should be done with a Simulation object, for which we need a prob_a, prob_first analyser + + obs = LinearObserver(kernel=[1], internal_noise_std=internal_noise_std, criteria=criteria) + exp = SimpleExperiment(n_trials=n_trials, trial_type=Int2Trial, n_features=1, external_noise_std=1) + + responses_pass_1 = obs.respond_to_experiment(exp) + responses_pass_2 = obs.respond_to_experiment(exp) + + # probability interval 1 (average of prob in both pass) + prob_first = (np.mean(responses_pass_1) + np.mean(responses_pass_2))/2 + + #probability of agreement between pass + prob_agree = np.mean(responses_pass_1==responses_pass_2) + + return prob_agree,prob_first + + \ No newline at end of file diff --git a/python/palin/internal_noise/internal_noise_extractor.py b/python/palin/internal_noise/internal_noise_extractor.py new file mode 100644 index 0000000..be6fbb6 --- /dev/null +++ b/python/palin/internal_noise/internal_noise_extractor.py @@ -0,0 +1,27 @@ +#!/usr/bin/env python +''' +PALIN toolbox v0.1 +Decemberr 2022, Aynaz Adl Zarrabi, JJ Aucouturier (CNRS/UBFC) + +Functions for kernel calculating method in Classification images +''' + +import pandas as pd +import numpy as np +from abc import ABC, abstractmethod + +class InternalNoiseExtractor(ABC): + + @classmethod + @abstractmethod + def extract_single_internal_noise(cls,data_df, trial_id = 'trial_id', feature_id = 'feature', value_id = 'value', response_id = 'response'): + raise NotImplementedError() + + @classmethod + def extract_internal_noise(cls,data_df, group_ids, trial_id, feature_id, value_id, response_id, normalize = True): + + # for each level in group, extract internal_noise + return data_df.groupby(group_ids).apply(lambda group: cls.extract_single_internal_noise(group, + trial_id, feature_id, value_id, response_id)).reset_index() + + \ No newline at end of file diff --git a/python/sandbox.ipynb b/python/sandbox.ipynb index e2f9fab..872ddbb 100644 --- a/python/sandbox.ipynb +++ b/python/sandbox.ipynb @@ -2,12 +2,12 @@ "cells": [ { "cell_type": "code", - "execution_count": 94, - "id": "9f82673e", + "execution_count": 1, + "id": "264735f2", "metadata": { "ExecuteTime": { - "end_time": "2024-04-09T18:19:01.978718Z", - "start_time": "2024-04-09T18:19:01.941618Z" + "end_time": "2024-04-10T04:07:14.254091Z", + "start_time": "2024-04-10T04:07:14.212928Z" } }, "outputs": [], @@ -18,12 +18,12 @@ }, { "cell_type": "code", - "execution_count": 113, - "id": "8fa531a7", + "execution_count": 2, + "id": "c7f458e5", "metadata": { "ExecuteTime": { - "end_time": "2024-04-09T18:34:55.185980Z", - "start_time": "2024-04-09T18:34:55.140103Z" + "end_time": "2024-04-10T04:07:15.786461Z", + "start_time": "2024-04-10T04:07:14.480236Z" } }, "outputs": [], @@ -37,11 +37,11 @@ { "cell_type": "code", "execution_count": 3, - "id": "31fd8e73", + "id": "187bfd56", "metadata": { "ExecuteTime": { - "end_time": "2024-04-09T16:44:59.134464Z", - "start_time": "2024-04-09T16:44:58.278104Z" + "end_time": "2024-04-10T04:07:15.833288Z", + "start_time": "2024-04-10T04:07:15.787409Z" } }, "outputs": [], @@ -51,12 +51,12 @@ }, { "cell_type": "code", - "execution_count": 128, - "id": "b2b99fd0", + "execution_count": 7, + "id": "edb2ad9c", "metadata": { "ExecuteTime": { - "end_time": "2024-04-09T18:43:47.753878Z", - "start_time": "2024-04-09T18:43:47.708766Z" + "end_time": "2024-04-10T04:13:23.133408Z", + "start_time": "2024-04-10T04:13:23.083499Z" } }, "outputs": [], @@ -64,7 +64,7 @@ "from palin.simulation.simple_experiment import SimpleExperiment as Exp\n", "from palin.simulation.trial import Int2Trial, Int1Trial \n", "from palin.simulation.linear_observer import LinearObserver as Obs\n", - "from palin.simulation.kernel_analyser import KernelAnalyser as Analyser\n", + "from palin.simulation.kernel_distance import KernelDistance as Analyser\n", "from palin.kernels.classification_images import ClassificationImage\n", "from palin.simulation.simulation import Simulation as Sim" ] @@ -72,7 +72,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "22041899", + "id": "a860c359", "metadata": { "ExecuteTime": { "end_time": "2024-04-09T16:49:31.299979Z", @@ -96,11 +96,12 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "386b6eb7", + "execution_count": 15, + "id": "8d87b6cc", "metadata": { "ExecuteTime": { - "start_time": "2024-04-09T19:20:58.342Z" + "end_time": "2024-04-10T04:42:23.899935Z", + "start_time": "2024-04-10T04:42:23.752329Z" }, "scrolled": false }, @@ -109,145 +110,23 @@ "name": "stdout", "output_type": "stream", "text": [ - "generated 100 runs\n", - "{'n_trials': 1, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 1, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 1, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 1, 'trial_type': , 'n_features': 32, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 1, 'trial_type': , 'n_features': 42, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 1, 'trial_type': , 'n_features': 52, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 1, 'trial_type': , 'n_features': 62, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 1, 'trial_type': , 'n_features': 72, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 1, 'trial_type': , 'n_features': 82, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 1, 'trial_type': , 'n_features': 92, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 101, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 101, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 101, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 101, 'trial_type': , 'n_features': 32, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 101, 'trial_type': , 'n_features': 42, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 101, 'trial_type': , 'n_features': 52, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 101, 'trial_type': , 'n_features': 62, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 101, 'trial_type': , 'n_features': 72, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 101, 'trial_type': , 'n_features': 82, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 101, 'trial_type': , 'n_features': 92, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 201, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 201, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 201, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "....................................................................................................\n", - "{'n_trials': 201, 'trial_type': , 'n_features': 32, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 201, 'trial_type': , 'n_features': 42, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 201, 'trial_type': , 'n_features': 52, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 201, 'trial_type': , 'n_features': 62, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 201, 'trial_type': , 'n_features': 72, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 201, 'trial_type': , 'n_features': 82, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 201, 'trial_type': , 'n_features': 92, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 301, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 301, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 301, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 301, 'trial_type': , 'n_features': 32, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 301, 'trial_type': , 'n_features': 42, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 301, 'trial_type': , 'n_features': 52, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 301, 'trial_type': , 'n_features': 62, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 301, 'trial_type': , 'n_features': 72, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 301, 'trial_type': , 'n_features': 82, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 301, 'trial_type': , 'n_features': 92, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 401, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 401, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 401, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 401, 'trial_type': , 'n_features': 32, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 401, 'trial_type': , 'n_features': 42, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 401, 'trial_type': , 'n_features': 52, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "....................................................................................................\n", - "{'n_trials': 401, 'trial_type': , 'n_features': 62, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 401, 'trial_type': , 'n_features': 72, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 401, 'trial_type': , 'n_features': 82, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 401, 'trial_type': , 'n_features': 92, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 501, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 501, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 501, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 501, 'trial_type': , 'n_features': 32, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 501, 'trial_type': , 'n_features': 42, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 501, 'trial_type': , 'n_features': 52, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 501, 'trial_type': , 'n_features': 62, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 501, 'trial_type': , 'n_features': 72, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 501, 'trial_type': , 'n_features': 82, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 501, 'trial_type': , 'n_features': 92, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 601, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 601, 'trial_type': , 'n_features': 12, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - "....................................................................................................\n", - "{'n_trials': 601, 'trial_type': , 'n_features': 22, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_analyser': }\n", - ".........." + "generated 8 runs\n", + "{'n_trials': 100, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".\n", + "{'n_trials': 100, 'trial_type': , 'n_features': 3, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".\n", + "{'n_trials': 100, 'trial_type': , 'n_features': 4, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".\n", + "{'n_trials': 100, 'trial_type': , 'n_features': 5, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".\n", + "{'n_trials': 100, 'trial_type': , 'n_features': 6, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".\n", + "{'n_trials': 100, 'trial_type': , 'n_features': 7, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".\n", + "{'n_trials': 100, 'trial_type': , 'n_features': 8, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".\n", + "{'n_trials': 100, 'trial_type': , 'n_features': 9, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".\n" ] } ], @@ -257,17 +136,18 @@ "observer_params = {'kernel':['random'],\n", " 'internal_noise_std':[1], \n", " 'criteria':[0]}\n", - "experiment_params = {'n_trials':np.arange(1,1000,100),\n", + "experiment_params = {'n_trials':[100],#np.arange(1,1000,100),\n", " 'trial_type': [Int2Trial],\n", - " 'n_features': np.arange(2,100,10),\n", + " 'n_features': np.arange(2,10,1),\n", " 'external_noise_std': [100]}\n", - "analyser_params = {'kernel_analyser':[ClassificationImage]}\n", + "analyser_params = {'kernel_extractor':[ClassificationImage], \n", + " 'distance':['CORR']}\n", "\n", "\n", "sim = Sim(Exp, experiment_params, \n", " Obs, observer_params, \n", " Analyser, analyser_params)\n", - "sim_df = sim.run_all(n_samples=100)\n", + "sim_df = sim.run_all(n_samples=1)\n", "\n", "\n", "\n", @@ -276,28 +156,28 @@ }, { "cell_type": "code", - "execution_count": 151, - "id": "3c925055", + "execution_count": 17, + "id": "59b42cc5", "metadata": { "ExecuteTime": { - "end_time": "2024-04-09T19:19:35.346726Z", - "start_time": "2024-04-09T19:19:34.771230Z" + "end_time": "2024-04-10T04:42:50.935778Z", + "start_time": "2024-04-10T04:42:50.744219Z" } }, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, - "execution_count": 151, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGxCAYAAACeKZf2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf4UlEQVR4nO3de3wcZb0/8M8zszN7zf2ym2tT7uXSUlqoBVTUQgFPBUFF5EApCActIlQOyhEpglgORxGUIkcQkJ8giAIil2JPoCJYCrSUm/SSpmnS5tY0zT3Zy8zz+2N2J7tJWtp0k+3uft4vY5PZ2c2TKe1++szzfb5CSilBRERElCGUVA+AiIiIKJkYboiIiCijMNwQERFRRmG4ISIioozCcENEREQZheGGiIiIMgrDDREREWUUhhsiIiLKKI5UD2CymaaJ5uZm5OTkQAiR6uEQERHRPpBSore3F+Xl5VCUvc/NZF24aW5uRlVVVaqHQUREROPQ1NSEysrKvZ6TdeEmJycHgHVxcnNzUzwaIiIi2hc9PT2oqqqy38f3JuvCTexWVG5uLsMNERFRmtmXJSVcUExEREQZheGGiIiIMgrDDREREWUUhhsiIiLKKAw3RERElFEYboiIiCijpDTcvPbaa1iwYAHKy8shhMCzzz77ic9ZtWoVTjjhBDidThx22GF45JFHJnycRERElD5SGm76+/sxY8YMLF++fJ/O37p1K774xS/ic5/7HNavX49rr70W3/zmN/Hyyy9P8EiJiIgoXaR0E7+zzjoLZ5111j6ff//992Pq1Kn4+c9/DgCYNm0aXn/9dfziF7/A/PnzJ2qYRERElEbSas3N6tWrMW/evIRj8+fPx+rVq1M0IiIiIjrYpFX7hdbWVvj9/oRjfr8fPT09GBwchNvtHvWcYDCIYDBof93T0zPh4yQiIqLUSauZm/FYtmwZ8vLy7A92BCciIspsaRVuAoEA2traEo61tbUhNzd3zFkbALjxxhvR3d1tfzQ1NU3GUImIiChF0uq21Ny5c/Hiiy8mHFu5ciXmzp27x+c4nU44nc6JHhoRUdaRUgKQgAQgZdzX0c+jH9I6OfE4Es/Z1/OkfW7sWOx7m8OfI+51E54PRP/vk3+25D2w7/b6Ent+0Lrue3vq3h6Xe3xpGf/AqHPkXr9U3R7kHnLE3sc1gVIabvr6+lBXV2d/vXXrVqxfvx6FhYWorq7GjTfeiB07duDRRx8FAFx11VW49957ccMNN+Cyyy7DK6+8gj/+8Y944YUXUvUjEBFNKvvN3TSH39TN2Jt74tf2OaYJSBPSlNavUgKmmXiulHHnjH7d4efFHSPaAzMcTun3T2m4eeedd/C5z33O/nrJkiUAgIULF+KRRx5BS0sLGhsb7cenTp2KF154Addddx3uueceVFZW4sEHH2QZOBHZ4v/Fb/0DfsRsgnWS/XXC7EHs+YiFAtjPtWYAAMRmCCCtIGD/y3fErII5/L0SZxLix4i42YgxwoOMCy3RYJI2hLB/FfbXAtEvog8L67h9TMQ9V0T/l3gOxIjnxs4T0cfiz4//2v7eexzwfvxsE3LqfryoGPtzRK/XXgeS+LhhGIhEDITDEUQMA5FIBEbERMSIIBK2Hhv+iFjnRT+PHQ+Hw4gY5vCxcATFpUVYcOQxyfuZ95OQnziflVl6enqQl5eH7u5u5Obmpno4RGnPTJgVkJDSGH6DtmcKYrMAiTMKY884jJxdSHyTT5y1GP1Y9om9uSv2GzqEEn2zBwQUQLHe3IUQ1ucJIUBYz1XiPoeAUKKfCwGoCoT9mgJCUYefq8RCSez7RING7G1WjBjrno4lPDzy2Ig37DGOCbGHN/UJYpomIuGI/YYejn0ejgy/4dvHYmEgLhyEY1+HEQknnh8OW68T/5qhUDjxNUY8bgeOcGTscUUMGHHHYp9PVAQ48ujD8NRLv03qa+7P+3darbkhovGzg0XEgDTCkIYBM2JAmhHrmBmBNIzED9MYsd4hMVSkZZgYc0YBSJxVECPOjT0++jljz0DEHYs7XyTMIMTPTGBEKIl+Hhc4hCIgFGX4nGjAEEKMeN34MWDU8eFDI362EZ/vb1gwTRNGxEDEsN5EYzMCpmHanxvRx6xzDCsg2MetX+036uix4Tfm6OORyPDn9jmxxyMwjMTXtD+PfR2OIBx9jVFhxH6txNkJI26Wwvr+EZhmGv63vw+s/7RUqIoC1aFCVWMfivWrY8TXqgqHQ00816FiSk1lSn8OhhuiNBC7tSJNCWlEosEkEhdMjNEBxYwPKSakaUxOGBl1e0DEvWEnHo+/nQBYswoCI86PzR6MfB0RPyNhfR6bvbDe/JXoG7wSHdbIqfzRtymGz9nTLYyxZiPiDuzp+KhPxzo+9q2G+HFLKREKhhAKRxAaDCMUCiEcCiMUtD4PhcIIBUMIBkMIhUIIDoXsx2LHQsEQwqFI9PMwwmHrOaFQGKFQ2Hq90PA54XA4+nnY/jwSsX61QoMJMzbDluUURYGqKlY4sN/8R4aCPQcFh8Nhfe4YDgmO2HkOBxyqCocWe8wBR9zjjtjXugZNc0DTNDgcKnRdg6Zp0HSHfVzTdWi6Aw6Hdcz+Nfqc2GycELE/j8N/ToUY/no4WA9/rUQDuaZpKf29YLghmgTxi0ATgkjEgBkfUIwxwolpQBqxWzlJWnMhFAjF+oCiQChq4tdCSbwVEb1NgVhoGBVcYgEkensESJwdiIYW6/jwjIaI+9x6SuKshv1CI18vYbZh7CCQSqZpYqB/EL09fejt6UNPTx96unvQ09WL7u5e9HT1oqen1358oH/QDhhWgLDCQzg8HChiMwvpxnrDU6CoivWrokBRhP25Gn98xOfqiM9F7Fh0ZiF2vv0aqgJVUe2AoajDj6nxsxGOuBkHVYWmOaBqDuuYqkLTtbg3/FgocFhBweGAwzkcIHQ9GhY0R/TPy/DPjPgQEAsJijJmQEj8ABB9DYHh87CH59FoDDdE4xQfWMxIBDISghkOw4yEYYbDkJHo55EIZCRizZyYyQonYkQgift8VHCJDy9qNLTEzVzE/uJVoqEkFm5EfFgYETYm4LbGwcQwDPT3DQyHk+5edHf1oLurFz3dvXGhpRd9Pf3o7e1DX08/+vr60d83gIH+gUm5bWH9K99hv1E77H/BO6Bq1uda9F/9sX+hO7Tov/Bj/2J3OOx/xTti/7KP/SteV6E5rDfwhDd5pxNOXYsGAmX4e6pK9PtoUB1WwHA4VCixN+JosEm4lQaMesOO/29vrNkD+/gYMwjDjyUGhYTjQDR8MCxkKoYbojjxlTamaUKGwzDDIZiRcPRzK7DISASmEQ0tRmQc30lAqNGwERdAhj+PBoy4gKIoCoSIhhMlbv/N2MyKGL6tAyVu7Qbi/4KPf+MYMYOSQSKRCPp6+xPDye4ea9akOzGg9PX2o7e3H329fejrHUB/Xz8G+geTMg5VVeFyu+B2O+H2uOD2uOH2uODxuOH2uOH1euDxuuHxuqOzBSp0XbeDhK7r0J0anLoGzalD13U4nRqcTpd1m0F3QBHDMxijZgDigkR8wEiYXcDw5wkzC0gMAPGvT3SwY7ihjDdyMzBpGMMhJRyGGZ1xkZGIdcwYvj20P4SiQqgqhMNh/ao67GOKqgKqFV4Ue2Yk/k0ibg1KbBZFwJqFSZhFSZxtsV8jw950pJQY6B9ET3cvunZ3o6erF11dPejptmZPYoElFlB6e/vRFw0qfX0DGBocSso4NM0Bl9tlBxSXxwWP2wojbq8bHo8bXp8HHo8HXp8bvhwvvF4PcvNykFeQC6/XY8126Jp928QR/e8hts4i/vZLQhiJD7BEtF8YbigtjdwZ1TRNwDDsWRYzFlqisyzWDIsB04js960hO6ioDiukOBxQYkEmGloU1ZG4fiRunUpsBkbYa1XiHhfxa0wyaxZlaHAI3dEZEyuY9KIn9mt33G2d6AxLX28/+nqt2zr9fQPW7+kB0nUtIZyMnDnxeIdnT7w+L3w+Nzw+L3JyfcjN98HjtmZUNM0BVbVu58TCiOpQ7bUcw6HF+pqIUovhhtJCbO8TY2gIoZ4uGEODkEbEWs8SnWnZv0ogAeFQo4ElbqYlGlistSnWv7BHhRZ72j8utMTOiV9LkMazKVJKhENhdPdEb+d0WYthY7d0enr60NttBRIroFi3dOxw0j+AUDB0wONQVTV6O8cFdzSkeLyxWzqxgBKdNfF54fV54PN54MvxISfXB7fHZa8h2dPsiRJbZKoMrxFJ1983IrIw3NBBS5omTCOCyMAAwr1diPT1wgwF9/4koUA4rBkWkRBaFAglepvIoSYGEmA4mNjHMy+0mKaJcCiM3bu7sbOtAzvbd6GjvRO7dnaic1cXOnbuwu5dXdjd2W2Fme7epFTnuNxOe6YkFlLiZ1BcHhe8sRmUHA9yvF54c7zw5frgdrugOzXo0VJWXdftMBILKI7YDIojcW8OIspeDDd00LDXwxgRRPp6Ee7rQaS/DzKS2KNEcbrgcLmB6CyLoqiA4oiubYmVISeGFiWuisgOJ/GhJf42URoxDAPhUBhdu7uxs30X2ls70NGxOxpYdqOjvRO7d3Wha/f4A4vDocITvXXjdrvg9rqtWzzu2NfRWZXo+hOf12P9muODL8cD1eGAHp05sfbYiN3mGb6dE7vFY932Gd77g+tOiGg8GG4oZezt9Q0DRjiIcF8vIv19MAb6rbJpm4Dq8cDh9kJ1uaE4HHa58nDpc2JQGbXxW5qQUtq7oO6OzqbsbNuFjp3WDMuuXbuxq70TnZ3d0YW24wssbo8LuXk5yMm1bt/k5FizJTm5PuTm5iAnz4eC/Dzk5efC6XFaAUS1yoetfT00u7Q4tjGZoioJsyjxa1DS6feAiNIfww1NGrtnkGHdbjKCQ4j09yEy0AdjcCBxzYyiwOHxweHxQXW6ouFFgaI5oDj06LqY9PlXvWmaGBoKRgNLJzradmHnzl3YFZtl6ehC567d1gxLdy96DzCw5Ob6rModnxc5edbXObk5yM/PRX5hHpxuJxzRGRWnywmnU4fu1Id3OY1taKY5EmZWiIjSAcMNTajYjrxmtJ+RFWj6YQz0wwgm7iUiHA44vDlweLxQdCcgpbXuxeGA6tCja2UO/rUU4VAYrS3t+Oj9DdjwUR02/qsO9XXbsLOtYxyBxY3cPJ89o+LL9cLn80RnXHLgy/UhPz8H+QV5cLlddjBxOnU7tMQ2WItt2+7QrI3bGFiIKFMx3FBSxdbNWC0GIjAiYZjBIUQG+mEMDoxaEKzoTji8Pji8ORAOhxVoorvvKroORXUMb0h3kDFNE4ODQ9hW34R/fbAJGz7ajE0fb8G2rU3Y3dm9x+fFAkvs9o8vZziw+HKtmZe8/BzkF+TC7XLZfWOcLid0pw6XS4/badaRuDOt5mBgIaKsx3BDB8ReN2NajRzNaJsBY3AAxuAAIoP9kJHEHXxVlycaaHxQVMfw+hqhQNE1KA7Nuu10EAWacCiMvt5+bPx4CzZ8tAkbPqpD3aataNq2A4MDY28Y5w+UoLK6DGWVAZRX+OEvL0VhUT5cThdUh7UWxel2wqXr0F1Ou4/NcGBJvEVERET7huGG9luskaPdfiDa4NEYGkBkcACRgf7EjfKEgMPjtW45eX0QQkAaVhNICQlFd0LRYoEmtbMO9tqYzi58/MEmfPzhJmz6eAu2bmlC8/aWMW8rqQ4VlVVlqKwuR1mlH2XlflRUlyEvNxdOl47c/Bzk5PjgcjutTr3R3j5caEtENDEYbugT2Z2sDRNmJGQHEzMSgTE0iMhg/6gFwUJR7dtNDo83+jqG1dlaCCiaFg00jpQtDA4FQxgaCqJlexs+/tcmfPT+RmzZ1IDGrduxs31XdBfkRB6vG9U1FaioKkNZhR+BslL4y0vh9XrgdOr2gl6X29p4zuVyMsAQEU0yhhsaZeS6mVjLAglARsIwBgetCqehkQuCNWjeHDh8OVBdbuu1ovvWCCEgVBWqpts7Ak8WwzAQDIYw0D+Ihi2N+NeHG7HxozrUb2lEU8MO9HT3jvm8wqJ8VE+tREWlFWT8ZSUoLi2CrmtwupzIiy7wjQ8yXO9CRJR6DDc05roZSNOaZYGAjIQRGehHZKBv9IJgpwtadIZG0Z3W65kGzEjY6qOkKlA1a28aoUz8bZjYbExPTx82f7wFH32wEXUbt2Lb1iZsb2xBcGj0DsdCCJRV+KNBJmDPyHhzvNB0B1wuF3JyvMjJzYnusOuEy+1ikCEiOkgx3GQ5aZrWol/DsG8rSSFgBoOI9Fub6kljxIJgt3c40GjacDiK7SSsqFCdLivQxBpKJplhGAgOBTE0FEJnx2589P4GfPzRZtTXbUNTww607Ggbs/GipmuonlKB6qkVKK8sQ3l5KYr8RXA6rQW9LpcTXp8Hefm5di8jl9vJBb1ERGmE4SbLxW49QQgYQ0MI9/ciMtA3YkGwAofXa91y8vjsW0rSNGGGwwBktNJJn/AN9sLhCF5/9U2sWvkGtm5pRFPjDuzauXvMc70+D2oOqcaUaJAJlJcivyDPrkRyunR4fV7k5vmsHkfRIONw8I8FEVE649/iWS7Y1YlQZ8fo9TOqGq1uyoHD7bHDipQmzEgY0jStDfa0ydlgzzRNbPhwM35xx/1Y88a6UY8Xlxah5pBKVNdYt5asRb5eCCGhqlaQ8fg8yMvLgcfjgSt6a0nT+EeAiCjT8G/2LGaEghhsbrK/VjTdCjO+HKvlQfR2kpTSKvs2TXuDPdXlnpQN9qSU2Nm+Cw/e+3s8/eQLCAVDEELgpJNn4rAjp6K8MgB/oAQOTQOkhKIocLqc8Hjd1iZ4HjdcLifcHjeDDBFRluDf9lksMjgAwKpy8pRXQY0uCAYSK6YAxK2jmbwN9vp6+/Hisyvxm1/9P7S3dQAAjph2KC64+BwUFOUPz8i4XcgryBvuWu12QdO1CR8fEREdnBhuspgxaN2KUl0uO9jE9rOBNAFVTckGe0NDQax/5wMs//lDeG/dRwCAvPxcXLjwyzjqmMPhcjlROaXc6qcUbUlAREQUw3CTxYwha+ZG0Z3WOppoX6dUbbAXDoXR1NiM3y7/PV766yuIhCNQFAVnfunzOP2szwJCIFBWiqqaCuTk+iZtXERElF4YbrKYEbR6IsU21UvFBnuAVda9s30X/vrnl/HYQ39C564uAMAx04/CNxadB4/HDV+OF1OmVqHEX8SybCIi2iuGmywlpbQ35FNdHqvEe5LbBEgpsbuzG2+tXoeH7nscGz7aDAAoLC7Av1/2FRwx7VCYhkR5ZSkqp1TA43FP6viIiCg9MdxkKTM4ZG3aJwQUpz7pwaanuxf1m7fh0QeexKsr34BhGHA4HPi3807H/H/7HAYHh+D1eTGlpgJFJYXsz0RERPuM4SZLRaL72iiaDsUxeZVFAwODaN7eguefXok//+F5dHf1AACOn3UsLv7mV6FpGgzTxKGH1aCiqoyLhYmIaL8x3GQpI1oGrmiTM2sTCobQ1roTa95Yh8ce+hO2bG4AAJQGirHwigtw+FGHoL9vAAXF+ZhSU4n8grwJHxMREWUmhpssFduRWNF1YAJLvCORCDp2dmLjR5vxx8eewxur3oJpmtCdGs796tmYv+Bz6O3ug2lKHHH0YSgrL2X7AyIiOiB8F8lSdqWU7pyQcm8pJTo7dmNbw3aseO4VPP/M39DX2w8AOOnkE/Dvl38Fuq6ht6cfgbJSVE+thC/Hm/RxEBFR9mG4yULSNO1KKcXpBJJ8W6q7qwfN21vx9ur1+NPjz6Gh3mrxUF4ZwKX/8XUcMe1QdHZ0weNx4+jjalDqL4YyifvpEBFRZmO4yUKxxcQQClTNmbQ1NwP9A2je0YZNG7bgL39cgTdffwdSSrjcTpx/4QLM/+Jp6OnpQ09XL6qnVqBqSgXcbldSvjcREVEMw00WMu1KKWsX4gMVHAqirXUnGht24JWX/4GX/lKL/n5rwfKpp83BNxadD5dLR0dHJwoKC1AztRKFxQUs7yYiognBcJOFInGLiRV1/LeDIpEIdrbtwvbGZqxf9yGeffIlNG3bAQCorqnEoqsuxOFHTcWuji5IKXHo4VNRURlgeTcREU0ohpssZFdKac5xVUqZpoldO3dje+MONNQ34aXnavHm62sBAF6vB1/99y/h9LM/i/6+Aexs24WSQDGm1FQiLz83qT8HERHRWBhuspARHJ65Ecq+3xqSUqK7qwfbtzWjtbkdr/99DV78Sy2GBocghMDnTj8FX1/4ZbjcLrS3dcDtceOoYw6Hv6yE5d1ERDRp+I6TZaRpQIbDAADV6drnmZu+3n40b29Ba/NO/OujTfjLH1/EjqZWAMChh9dg0VUX4tAjatC1uxudu3ajvCKAqikVLO8mIqJJx3CTZSKD0UopRYGqf3Kl1NBQEC072tCyvRUtzW148S+1eHv1uwCAnFwfLrz0PJw272SEQmG0NrcjNy8Hhx15CEpKi1jeTUREKcFwk2WMoeG2C9hL+AiHI2hv3Yntjc3Y3dmFN/+xFi88uxLBYAhCETjj7NPw1X//EjxuNzo7dkNKYMohVaisLofL5ZysH4eIiGgUhpssYwzG1ts4IRR19OOGgV0du9G0rRm7d3Vh65ZteOr3z6G1pR0AcOTRh+Gyqy7ElEOq0N83gNbWnSgsyseUqVUoLMpneTcREaUcw02WiS0mVjUtYTGxlBK7O7uxvakZHe2d6N7djb88tQLr3n4fAFBQmIeLLvsKTvnsSTAMA22tHdA0Bw4/cirKKwLQ9MnrLE5ERLQ3DDdZJqGnVHQxcU93L5q3t6GtpR3BYBCvv7oGLzy7EuFwBKqq4Oxz5uG8r/8b3B4Xerp70d83gNJACaZMrURuXk4qfxwiIqJRGG6yiBmJQEYiAABFdwGKgoH+Afzrg43o6+vH1s3b8IffPYOOnZ0AgOOOn4ZL/+PrqKgqsxcMuz1uTDv2CPjLSqCqo29rERERpRrDTRaJLSYWqgpFc0AIgcGBIdTXNeKFZ/+GD979GABQXFKIS674Gk6cOxMA0LmrC+FQGOWVZaiaUg6vz5Oyn4GIiOiTMNxkkVgZuKLpdk+ph//3Cfz+t0/BNE1omgMLzp+Pc75yJpwuJ4YGh7B7Vzdy83NwxLRDUVxSyPJuIiI66DHcZBF75kbTIRQFjQ3b8egDTwIAZp00HRdf8TUEykphGiZ2tu+CgMCUQ1neTURE6YXhJovEFhOrug4hFGz6uB4AUD21Ev9589UAgL6+fvR096G4uADV0fJuIiKidMJwk0XM+EopRcGmDVsAAFXV5YiEI+jo2A2nruOIow5BWbmf5d1ERJSWGG6yhBEOQxoGACvcQAhs3mDN3JT4i7CzfRf8gRJUs7ybiIjSHMNNljAG+wEAwuGAojogFAVbt2wDAPjLS3H0cUeiNFDM8m4iIkp7DDdZwkiolFIQiUTQtK0ZAHD44VNRVuFP5fCIiIiShnW9WSLWdiFWBr6jqRXhUBia5sCUQ6tSPDoiIqLkYbjJEsZQXLgRCrZs2goAKPUXw+fzpnJoREREScVwkwVM04QRCgKILiZWBDZ9bFVKBSr8cDr1VA6PiIgoqRhusoAMhwHTBDA8c1MXnbkprwhAZ7ghIqIMwnCTBSKD0Z2JHRqEQwWEQH2dVSlVUV3GmRsiIsooDDdZINZ2QdF1KIoK0zTRuHU7AKDmkCrO3BARUUZhuMkCCYuJVRXN21sRCoXhcKiomVoNIUSKR0hERJQ8DDdZINZTSok2zKzb1AAAKCktRm6+L4UjIyIiSj6GmwxnmgbMaKWUqjsBoQxXSpWX8JYUERFlHIabDGcGQ4CUAAChaRCKsPe4Ka/kYmIiIso8DDcZzl5MrOkQigoIBfWbrUqpyuoyOF3OVA6PiIgo6RhuMpy9mFjXoagqpJTY1mBVSlXVVEDXtVQOj4iIKOkYbjKcHW4cOqAoaNnRhuBQEKqqouaQKigK/xMgIqLMwne2DCaltCulRHSPm9jOxCWlRcjLz03l8IiIiCZEysPN8uXLUVNTA5fLhTlz5uCtt97a6/l33303jjzySLjdblRVVeG6667D0NDQJI02vUjTgBkOAQBUTQcUgY3RSil/eQnX2xARUUZKabh58sknsWTJEixduhTr1q3DjBkzMH/+fLS3t495/uOPP44f/OAHWLp0KT7++GP89re/xZNPPon/+q//muSRpwdjKGhVSglhVUoJBVs2WjM3ZWyYSUREGSql4eauu+7CFVdcgUWLFuHoo4/G/fffD4/Hg4ceemjM8//5z3/ilFNOwTe+8Q3U1NTgjDPOwIUXXviJsz3ZalSllKJg65ZYpVQ5Z26IiCgjpSzchEIhrF27FvPmzRsejKJg3rx5WL169ZjPOfnkk7F27Vo7zNTX1+PFF1/E2WefvcfvEwwG0dPTk/CRLRLaLihWi4Vt9ValVHVNJWduiIgoIzlS9Y07OjpgGAb8fn/Ccb/fjw0bNoz5nG984xvo6OjAqaeeCiklIpEIrrrqqr3ellq2bBl+/OMfJ3Xs6cIIxsKNBqE60NrcjsHBISiKguqplVBVNcUjJCIiSr6ULyjeH6tWrcJPf/pT3HfffVi3bh2efvppvPDCC7jtttv2+Jwbb7wR3d3d9kdTU9Mkjjh1pDRhBq22CyLaU2rzxnoAQHFpIQpYKUVERBkqZTM3xcXFUFUVbW1tCcfb2toQCATGfM6PfvQjXHzxxfjmN78JADjuuOPQ39+PK6+8Ej/84Q/H3LPF6XTC6cy+tSXSMIcrpXQr3GzaEK2UKiuBy+1K5fCIiIgmTMpmbnRdx6xZs1BbW2sfM00TtbW1mDt37pjPGRgYGBVgYrdWZLR/Elli620gBIQjsVKqvCLAxcRERJSxUjZzAwBLlizBwoULMXv2bJx00km4++670d/fj0WLFgEALrnkElRUVGDZsmUAgAULFuCuu+7CzJkzMWfOHNTV1eFHP/oRFixYwPUjI0RilVK6E0JRAEVg65ZGAEBFNRtmEhFR5kppuLnggguwc+dO3HzzzWhtbcXxxx+PFStW2IuMGxsbE2ZqbrrpJgghcNNNN2HHjh0oKSnBggULcPvtt6fqRzhoGYNxlVJCASDQUG+tN6qqLofOcENERBlKyCy7n9PT04O8vDx0d3cjNzczF9VKKdGzZSOMgT7oBUVwFQewq7sPp8/5ChRF4IHH78KJc09I9TCJiIj22f68f6dVtRTtI2nCDFmVUoqmQ6gK6jZYlVJFxYUoKCpI5eiIiIgmFMNNBjIjBmQkDGD4ttRwpVQpPB53KodHREQ0oRhuMpBdKaUoEA4HoAhs3hDrKVXKxcRERJTRGG4yUKynlBqtlBJiuKdURWUZFxMTEVFGY7jJQLGZGxG9JSUBbNtq9ZSqnFLOmRsiIspoDDcZRkoTRjC2mFiDUBR0duxGX28/hBCorqmEpmspHiUREdHEYbjJMNI0YYbjK6Uc2PixtZi4qLgABYV5EEKkcohEREQTiuEmw8hIBDISAQComg6hCGyO6ynl9XlTOTwiIqIJx3CTYSKx9TaqalVKCQV1GxsAAGXlfq63ISKijMdwk2GMweGeUoCAUIYrpcoqA3C6GG6IiCizMdxkECkljOAQAGu9DRQBCbCnFBERZRWGm0wiTZhxlVKKomJ3Zzd6e/ogBFBVU8HbUkRElPEYbjJIfKWUcOiAomBTtFKqoKgAhUX5rJQiIqKMx3CTQcxwBNIwAACKrkFRVbunVCBQAq/Pk8rhERERTQqGmwwSibZdEA4HFMWqlNqy0eopFajww+lypnJ4REREk4LhJoPYlVKaExCAUATq66KVUhUsAyciouzAcJMhpGnCDEUrpXQdEAoglOGeUtVsmElERNmB4SZDSGnCDIUARHtKqQq6dneju6sHAFBdU8mZGyIiygoMN5nClDBD0TJwhwahqNj8cT0AoKAoHwWF+VBVNZUjJCIimhQMNxnCCIUgTRMAIDQdQlGx4eM6AECgjJVSRESUPRhuMoQx2A8AEA4NiqJAKAJbNkUrpcpK4Xa7Ujk8IiKiScNwkwGklIgErYaZqu4EhIAQCrbWNQIAAhWlXExMRERZg+EmEyS0XdABIQBFYNtWq6dUZXUFXGyYSUREWYLhJgNYbResSimhaRBCQU93H3Z3dgMAqqewYSYREWUPhpsMYBrD4UbRNAiHAxv/ZS0mzi/IQ35hPhwORyqHSERENGkYbjKAGQoCCZVSww0z/WUl8OWwUoqIiLIHw00GGG67oEOJLibesqkBAFBWXgq3253C0REREU0uhps0J00Tht12wWkvJq7fYvWU8peXcmdiIiLKKgw3ac5quxCrlNLsMvBt9VZPqYqqMnYDJyKirMJwk+7M+J5SOoRQ0Nvbj85duwEAVdUVnLkhIqKswnCT5hIrpXQIdXgxcV5+LgqK8qDpWiqHSERENKkYbtKcGRwEpAQgAIcDQnVg0wYr3ATKS+DzeVM7QCIioknGcJPGpJSIDFltFxQ9ViklULfR6inlD5TC42UZOBERZReGm3QW33YhViklFGzdYvWU8peXsu0CERFlHYabNGa1XYirlIKAUBRsq4/2lKoMsO0CERFlHYabNCZHVEpBEejt7UfHzk4AQOUUVkoREVH2YbhJY6ZhwAyHAQCKQ4eiqNi8sR4AkJuXg4LCPM7cEBFR1mG4SWPm4CAAaa21cagQqmqXgQfKSuD1eSCESO0giYiIJhnDTZoa2XZBEdZ6m1hPqdKyEuTk+lI4QiIiotRguElTCW0XdB2AVSlVX2f1lCorL+UtKSIiykoMN+nKHA43quaMZhthV0oFKgJcTExERFmJ4SZNSVPCiLZdEJoGCAX9/YPY2b4LAFBdXcGZGyIiykoMN2nKjIQhY5VSmgZFVbFpg1Up5cvxoqA4nzM3RESUlRhu0lB82wUoCoSiAoqCzdFwU1bhh9fjhqLwt5eIiLIP3/3SkTRhRiul1GjbBaGoqIvuceMPlMCXy4aZRESUnRhu0tDInYkFrMXEdk+pshI4Xc4UjpCIiCh1GG7SkDTjy8CjMzdCwbb67QCAQHkp19sQEVHWYrhJQ1bDzNhiYt2qlBocQntbBwCgij2liIgoizHcpCEzFIKMWOFGaA4IRaBuQz2klPD6PCgqLuBtKSIiyloMN2kmvu2CUFQIoUCoDmzaYPWUKiv3w+11Q1XVVA6TiIgoZRhu0kxi2wUngJE9pYqR42OlFBERZS+Gm3QTXyml6xACEIqC+rpYpVQpXG5XKkdIRESUUgw3acZaTDwcbuxKqa3RnlJlbJhJRETZjeEmzUjDSNjjBkKgf2AIbS07AQCV1WWslCIioqzGcJNGpJQwwmFIIwIAUBw6hLDW20gp4fG4UVxSyEopIiLKagw36cQcbrsgVKsEXKgqNm2MVkpV+OF2u6BpjlSOkoiIKKUYbtKIlCbM4HCllAQgVNWulPKXlcCbw0opIiLKbgw3aUSaJozoYmJVd0JIQAgF9ZsbAAClgRJ4PO4UjpCIiCj1GG7SiDRMyGi4EboOKAJQBBq3Wj2l/GUlXExMRERZj+EmjUgjYpeBq5oGQGBwIIjWWKVUVTkXExMRUdZjuEkT0jRhRsKQhgEAEA4NUATqNjfANE243C4U+ws5c0NERFmP4SZNxLddEA4NQihQFBWbN9QDsCqlXE4nNF1L5TCJiIhSjuEmXZjD4UbVdUhICNWBLdHFxIFACXw+L4QQKRwkERFR6jHcpAnTGK6UUnQXBAChCNTXbQMAlASK4c3xpHCEREREBweGm3RhGgkNM6MdM+1KKfaUIiIisjDcpAEpJYzIcKWUolkhZmhwCK3N7QCA8soAXKyUIiIiYrhJC6YJaYQB0wQACIcDUBTU1TXCMAw4XU74A8WcuSEiIsI4w80111yDX/7yl6OO33vvvbj22mv367WWL1+OmpoauFwuzJkzB2+99dZez+/q6sLixYtRVlYGp9OJI444Ai+++OJ+fc90k9B2QdMghICiqKjbuBUAUFZeCs2pswyciIgI4ww3f/7zn3HKKaeMOn7yySfjT3/60z6/zpNPPoklS5Zg6dKlWLduHWbMmIH58+ejvb19zPNDoRBOP/10NDQ04E9/+hM2btyIBx54ABUVFeP5MdKGNM3hW1K6EzAloCjYstkKN4HyUni9blZKERERARhX++hdu3YhLy9v1PHc3Fx0dHTs8+vcdddduOKKK7Bo0SIAwP33348XXngBDz30EH7wgx+MOv+hhx5CZ2cn/vnPf0LTrP1campqxvMjpBVpJIYbKQBFUVG/OVopVVoMHxtmEhERARjnzM1hhx2GFStWjDr+0ksv4ZBDDtmn1wiFQli7di3mzZs3PBhFwbx587B69eoxn/Pcc89h7ty5WLx4Mfx+P4499lj89Kc/hRHdtTdTWW0XwgAARXNCAIAisC1WKVVeCpfblboBEhERHUTGNXOzZMkSXH311di5cyc+//nPAwBqa2vx85//HHffffc+vUZHRwcMw4Df70847vf7sWHDhjGfU19fj1deeQUXXXQRXnzxRdTV1eHb3/42wuEwli5dOuZzgsEggtH1KgDQ09OzT+M7WEjThDlGGfjgYBCtzW0AgLKKUq63ISIiihpXuLnssssQDAZx++2347bbbgNg3R769a9/jUsuuSSpA4xnmiZKS0vxm9/8BqqqYtasWdixYwf+53/+Z4/hZtmyZfjxj388YWOaaNI0ISNhQFqVUopDA4RA/ZYmRCIGdKeO0kAJK6WIiIiixl0K/q1vfQvbt29HW1sbenp6UF9fv1/Bpri4GKqqoq2tLeF4W1sbAoHAmM8pKyvDEUccAVVV7WPTpk1Da2srQtGZjZFuvPFGdHd32x9NTU37PMaDgjQTZ20gIVQFWzYNV0q5XE7O3BAREUUd8D43JSUl8Pl8+/08Xdcxa9Ys1NbW2sdM00RtbS3mzp075nNOOeUU1NXVwYzu9wIAmzZtQllZGXR97Dd3p9OJ3NzchI90Yhrx4cYJSAmhqKjb1AAA8JeVwuVxJQQ+IiKibLbPt6VOOOEE1NbWoqCgADNnztxr2fG6dev26TWXLFmChQsXYvbs2TjppJNw9913o7+/366euuSSS1BRUYFly5YBsGaL7r33Xnz3u9/Fd77zHWzevBk//elPcc011+zrj5F+TANmxAo3qu6ElIBQFNRHG2aWBoqQ42OlFBERUcw+h5tzzjkHTqe1vf+5556blG9+wQUXYOfOnbj55pvR2tqK448/HitWrLAXGTc2NkJRhieXqqqq8PLLL+O6667D9OnTUVFRge9+97v4/ve/n5TxHGyklDCN4cXEQnNCCABCoLHBqpTyB0rh9rhTOEoiIqKDi5BSyv15gmEYeOONNzB9+nTk5+dP0LAmTk9PD/Ly8tDd3X3Q36KShoFQXw/6G+sBKeGtnArhUBEWDnxm5jkIhyO46fbrMO+s01BYlJ/q4RIREU2Y/Xn/3u81N6qq4owzzsDu3bvHPUDaN1KakOEwrHtRwuopJQQatjYhHI5A0zSUlpVwMTEREVGccS0oPvbYY1FfX5/ssdAI0jRhhBI7gQuhoG5jAwAgUFEKl9PJMnAiIqI44wo3P/nJT3D99dfj+eefR0tLC3p6ehI+KDmkYULGLSaGNCFUB7ZEFxMHykrgcrugaeParoiIiCgjjetd8eyzzwYAfOlLX0qompJSQgiR8e0QJoOUMrHtgtMJCVh73ETDjT9QipxcVkoRERHFG1e4efXVV5M9DhpJymg3cKt1hKJHe0pBoDHaU6o0UAy3m5VSRERE8cYVbqZOnYqqqqpRe91IKdNvB+CDlDRNSGnCDMUaZkZ7SgWDaN5h7ersL2dPKSIiopHGteZm6tSp2Llz56jjnZ2dmDp16gEPigBIEzIcAhCtlFLV6P42zQiHwnA4HAiwpxQREdEo4wo3sbU1I/X19cHlch3woAgwDWO4Ukp3RjOOgrqNVk+pQHkpnG4nXC5nKodJRER00Nmv21JLliwBAAgh8KMf/Qgej8d+zDAMrFmzBscff3xSB5i1Yt3AEauUkhDK8GLiQLRhpqZrKRwkERHRwWe/ws27774LwJq5+eCDDxKaVeq6jhkzZuD6669P7giz0Mi2C4ruhIS0ysBjDTMDxfCxpxQREdEo+xVuYlVSixYtwj333HPQty9IW6YJSBNmeHiPGwFAQqJx2w4AQKm/BB6vZy8vQkRElJ3Gtebm4YcfRm5uLurq6vDyyy9jcHAQgDXjQAdOSjNaBh5tmKlblVJDwTBatrcCiK654WJiIiKiUcYVbjo7O/GFL3wBRxxxBM4++2y0tLQAAC6//HJ873vfS+oAs1F8sIGiQCgqAIHtjS0IBkNQHSpK/cVwuhhuiIiIRhpXuLn22muhaRoaGxsTFhVfcMEFWLFiRdIGl62kkXhLCpCAIrApVilVVgq3182ZGyIiojGMaxO/v/3tb3j55ZdRWVmZcPzwww/Htm3bkjKwbDWq7YLuBEwJRXOgPq5SStc17nFDREQ0hnHN3PT39yfM2MR0dnbC6eS+Kwck2nZBxs3cSCkBRUX9Zis4+gMl8Po8Y+41RERElO3GFW4+/elP49FHH7W/FkLANE3ceeed+NznPpe0wWUjaZoAZMIGfkLEKqWiPaX8xfDlsAyciIhoLOO6LXXnnXfiC1/4At555x2EQiHccMMN+Oijj9DZ2Yk33ngj2WPMLtKENAx7Az+hWbeegsEwmrdbPaVKy4p5S4qIiGgPxjVzc+yxx2Ljxo049dRTcc4556C/vx/nnXce3n33XRx66KHJHmNWMQ0DRnS9jVBVKKoKCGD79lYMDQ5BURT4y0rZdoGIiGgPxjVzAwAulwunn346ZsyYAdM0AQBvv/02AOBLX/pSckaXjUwTMhLfU0oCQkFdbGfishJ43G7O3BAREe3BuMLNihUrcPHFF6Ozs3PUxn1CCBiGkZTBZRu77UJcpZSUJhSHZrddKKvwQ3NqLAMnIiLag3HdlvrOd76Dr33ta2huboZpmgkfDDYHINZ2IRS3x42UQFzDTH+gBB6PG4oyrt86IiKijDeud8i2tjYsWbIEfr8/2ePJalKagJQww0EAsYaZgCmBpmhPqRJWShEREe3VuMLNV77yFaxatSrJQyEZnf2SkQgAQNF0CADBYMiulPIHirmYmIiIaC/Gtebm3nvvxVe/+lX84x//wHHHHQdN0xIev+aaa5IyuGwjjYi9eZ9QHRCKAmlKtOxox+DAIIQi4C8rYU8pIiKivRhXuPnDH/6Av/3tb3C5XFi1alXCTrlCCIabcbDaLpiJbRdilVJxOxO7PewpRUREtDfjCjc//OEP8eMf/xg/+MEPuLA1WaJtF+yGmU6rUkqoKuqiDTPLKvzsKUVERPQJxpVMQqEQLrjgAgabJIq1XYiFm9jMjVCHG2b6AyVwuV1wOMa9PREREVHGG1c6WbhwIZ588slkjyW7xSqlQlallBqtlDJMiabGZgBASaAYvpzRDUuJiIho2LimAAzDwJ133omXX34Z06dPH7Wg+K677krK4LKJaRiQEQMyuk+QojshjQiGhkLY0dQKwKqUGqsbOxEREQ0bV7j54IMPMHPmTADAhx9+mPBY/OJi2nfSNGAa0Z5SDg0QAhACra0dGOgfgBACJf4SrrchIiL6BOMKN6+++mqyx5HVRlZKqbrT2q1YCHtn4hJ/EbxeVkoRERF9Eq4IPhjE2i7ELSaWUkIIBXWbrUqp8soANI09pYiIiD4Jw81BQI5YTKw4Y5VSCurtPW5K4XTp0HRtby9FRESU9RhuDgLSNGFKmdAwU0IiYgJN26KVUv4i9pQiIiLaBww3BwFpRADDhDSjlVKaDiElQsEQmrcPV0p5vayUIiIi+iQMNylmLyaORNsuaLpVKaUoaGvrQF9vPwCgJFDC9TZERET7gOEm1aJtF2QkfmdiE4DAls2NAKKVUh43y8CJiIj2AcNNitltF0KJlVJQBDZHe0qVVwSg6ayUIiIi2hcMN6lmV0oNLyaGKaEoKuq3RCulyqxbUpy5ISIi+mQMNylmGgakKWHEysBjlVKGie3RSqlSfzF8Pi93fyYiItoHDDcpJk0DUhrRdTaAousQAILhCFp2tAEASgJF8LJhJhER0T5huEmhWKWUjLZdUHSn9YAQ2NneiZ7uXgCAP8CeUkRERPuK4SaVom0XjHB8pZQEANRFe0oVlxTC7fFwMTEREdE+YrhJIWmOXkwspQkIBXUbGwAAZRV+6JrGmRsiIqJ9xHCTQlKakEBcw0zd6imlKNi6xdrjJlBeCs3JMnAiIqJ95Uj1ALKZNCKAxHDDTN0FmBJhGNjeGK2UCpTA63VDUZhDiYiI9gXfMVPEXkxsRKx1NkJA0TRIAYRCht1TqqSUDTOJiIj2B8NNqkTbLtg9pXTrtpMAsGvXbnR39QCwZm6cLmeqRklERJR2GG5SxG67EI4tJnbZMzhbNls7ExcWF8DjdXG9DRER0X5guEkV04SU8T2l9Gi4UVC3qQEAUF7hh67rnLkhIiLaDww3KWKaBkTCYuJYGThQX2fN3ATKS6GzYSYREdF+YbhJEWkakGI43MRuS4UNie2NLQCs9TYujwuqqqZyqERERGmF4SYF7EqpSMQ6IBQIhwNSAqFQGC07rEqpUn8RcnyslCIiItofDDepEG27YEZ7SqmxSikBdO7uxu7ObgBAib8YLrcrZcMkIiJKRww3KWC3XQgPr7cBrEqp+k3Wepv8wjx4vB4uJiYiItpPDDcpYLddiFVKOZ2AaYWbzZu2AgDKKwPQdAcXExMREe0ntl9IAWlEICDiFhM7rXU4ALZuaQIAlJWXsmEmERHRODDcTDIpJUzDgIzbwE/RnYA0ETYFdjRZlVL+shK4XE5oGn+LiIiI9gdvS002KQFTDldKKQqE6oAEEAqH0byjDYDVU8rLnlJERET7jeFmko1uu+CEEAJCAl27+9DZsRsAUFJaDI/HncKREhERpSeGm8kWa7sQd0tKSgkoAnV1DQCAvPwceHO8cLFSioiIaL8x3Ewy0zQgAJjB4cXEkKbVMDPaU6qisgyaw8HFxEREROPA1aqTTBoRQAgY8T2lzGilVH0jACBQ4YeDZeBERETjwnAziaQ0oxv4ATJi7U4c2+MmFDGwI9pTyh8ohtPphKZrqRwuERFRWuJtqclkSmtn4oi13kaoKhTVAQmJUNgcrpTyF8Pn9UAIkcrREhERpSWGm0k03HYhOmujWwuGBYCenl67UqrUX8wycCIionFiuJlEw20XEncmhhDYUtcIKSVycn3w5Xi53oaIiGicDopws3z5ctTU1MDlcmHOnDl466239ul5TzzxBIQQOPfccyd2gEkiI1bbhfjFxJASwHBPqYqqMiiKAqeL4YaIiGg8Uh5unnzySSxZsgRLly7FunXrMGPGDMyfPx/t7e17fV5DQwOuv/56fPrTn56kkR4YKSVM0wCU4Z5S1h43JgxpoiG+p5TOnlJERETjlfJwc9ddd+GKK67AokWLcPTRR+P++++Hx+PBQw89tMfnGIaBiy66CD/+8Y9xyCGHTOJoD4A0rQXFca0X1OjMTThkYMf2VgCAv7wUDl3jbSkiIqJxSmm4CYVCWLt2LebNm2cfUxQF8+bNw+rVq/f4vFtvvRWlpaW4/PLLJ2OYSSGjlVJGdGdi4XBAqCpgSgTDEbREw01JaRF8PlZKERERjVdK97np6OiAYRjw+/0Jx/1+PzZs2DDmc15//XX89re/xfr16/fpewSDQQSjuwEDQE9Pz7jHe0BMExISMr4TOAApgP6+AXTs7AQAFJcUwcdKKSIionFL+W2p/dHb24uLL74YDzzwAIqLi/fpOcuWLUNeXp79UVVVNcGjHJvddmFEpZSAQF20Usrr8yA3zwcne0oRERGNW0pnboqLi6GqKtra2hKOt7W1IRAIjDp/y5YtaGhowIIFC+xjpmkCABwOBzZu3IhDDz004Tk33ngjlixZYn/d09OTkoAzVtsFSAkIoG5zAwCgsrociqpwvQ0REdEBSGm40XUds2bNQm1trV3ObZomamtrcfXVV486/6ijjsIHH3yQcOymm25Cb28v7rnnnjFDi9PphNOZ2pmQWNsFIZSEmRtIiYghsa0+WilV4YemsVKKiIjoQKS8t9SSJUuwcOFCzJ49GyeddBLuvvtu9Pf3Y9GiRQCASy65BBUVFVi2bBlcLheOPfbYhOfn5+cDwKjjB5VY2wWYkIYBINYw00AoEsaOpmilVKAEulPnzA0REdEBSHm4ueCCC7Bz507cfPPNaG1txfHHH48VK1bYi4wbGxuhKGm1NGgUaZrREnCr7YJwaBCKAmlEEA4baN5hhZtSfxE8HjdUVU3lcImIiNJaysMNAFx99dVj3oYCgFWrVu31uY888kjyB5RkUpqQInExsXVcoq9vCB3tVqVUUWkRvD5PysZJRESUCdJ7SiRNjGq74IxWSgmB+i3bYJomPF43cvNy4Ha7UjxaIiKi9MZwM8HGarug2pVSAnWbGgDEekoJLiYmIiI6QAw3E02agGkCYzTMjEQMNGzdDgAorwjAoTm4mJiIiOgAMdxMMKvtAiBNIxpyAEXTIaVEMBRBc6xSqrwETl1nN3AiIqIDxHAzweTItguaDqEogDQRjpho3mFtYOj3F8PldsHhOCjWeBMREaUthpsJJqNtF4xg3C0pABJA/+AgdrZ1AACKS4vgy2GlFBER0YFiuJlgsbYLZigx3AgA9XWNME0TLrczWinlTuFIiYiIMgPDzQSKb7sQW0ysRsvAR1ZKQQguJiYiIkoChpsJJE0TkDK6gV90zY3ujK63iaCxYQcAoKIyAE1zsBs4ERFREjDcTCRTWh+GYZWEI1opZUoEgxHs2G5VSgXKS6FpGmduiIiIkoDhZgLF2i7E728jhACkRDgSQct2q1KqxF8Cp0uHpmupHC4REVFGYLiZQLG2CyMXE0tIDA6F0B6tlCrxF8Hn86ZsnERERJmE4WaC7LHtAqKVUluaYBgGnC4ncnN98HhZBk5ERJQMDDcTJdp2Ib5SStHjKqU2NgAAKqoCEELAxZ2JiYiIkoLhZoJYlVLWZn2xSinVafWUCoUiaNxmVUqVVwbgcDjYMJOIiChJGG4miDSl1XYhErY7gAuHBilNBEMh7GhqAQAEykqh6ayUIiIiShaGmwkSa7tgjqyUMiXCYQMtze0AAH9ZCXRd48wNERFRkjDcTJCRbRdii4mllBgYDKO9NVopVVoEr89jBR8iIiI6YAw3E0Ca8W0X4nYmBiAEsK2hCZFIBLpTQ06eD74cloETERElC8PNBJDSarsARUm4LSWlhJTA5mhPqfLKAFRFYdsFIiKiJGK4mQixtgtA4m0pKREKh7F9WzMAoKKyDEJRuZiYiIgoiRhuJoA0zYRmmRAKhMNhVUoFI9ge7SlVVuGHrnExMRERUTIx3EwAaSS2XVATekoZaI1VSgVKoDlZBk5ERJRMDDdJFt92wQgNAQAUpzP2IAaDQbS17ARgVUp5PG4oCn8biIiIkoXvqskW13bBHFEpJQE0bN2BcDgMTXMgNz8XObmslCIiIkomhpsks9ouyFF73EgpASmxpW4bAKtSSiiClVJERERJxnCTZFbbBQBSwgzHzdxIiWAorlKqqgxCgOttiIiIkozhJsnstgvRYCMUFUJVo+Emgu1Nw5VSmsbFxERERMnGcJNkMmK1XTCCiT2lpDQRDoftSqlS9pQiIiKaEAw3SSRNE1LGFhNHw01CpVQYba1WpVRpaRFcHhccDkeqhktERJSRGG6SaKy2C6quRx8DGhuaEQqGoDpU5BXkIjfHl8rhEhERZSSGm2SSsFIMAMPuKeWK9pQyhyulKvwQQsDldqVqpERERBmL4WYCSNOAjIQBAIquA5AIhSJoamwBYFVKAYLrbYiIiCYAw80EiG3eJ1QViuoATImhUAg7opVS5ZUBaJqDlVJEREQTgOFmAphxt6QAqyVDOBRBW4tVKRUoK7HKwLmBHxERUdIx3EwAY8RiYkiJoWAIrdGeUsX+YrjdTmgaK6WIiIiSjeFmAozuKSXR2NSG4FAQqqogvyAX3hz2lCIiIpoIDDcTYHiPG+u2lBkxUF/XCAAIlPuhCAUejztl4yMiIspkvC+SZNIwII0IAOu2lJQSoXAETY1WT6nK6jJIsKcUEVGmMQwD4XA41cNIa7quQ1EOfN6F4SbJ7J5SDgeEokKaBoLBMJq3D1dKOVSVZeBERBlCSonW1lZ0dXWleihpT1EUTJ06Fbp+YO+RDDdJFgs3amy9jZQIxvWU8peVQHNqcLFSiogoI8SCTWlpKTweD4QQqR5SWjJNE83NzWhpaUF1dfUBXUeGmySLhZvYYmKYEsGh4UqpUn8xnLoOTddSNUQiIkoSwzDsYFNUVJTq4aS9kpISNDc3IxKJQNPG/z7JBcVJNlalVNP2NgwNDkFRFBQU5sPn8zLZExFlgNgaG4/Hk+KRZIbY7SjDMA7odRhukswYcVvKNAxsrW8CAATKSwABeHP4h4CIKJPwH6zJkazryHCTRGYkDJgmAGvmRkqJYCiMpm1WpVRFVTkEwMXEREREE4jhJomM4BAAQDg0CEUBpLXepnlHGwCgojIARVG5mJiIiD5Ra2srTj/9dHi9XuTn56d6OGmF4SaJzCEr3AxXSpkIhiL2YuJAeSl0XePMDRERfaJf/OIXaGlpwfr167Fp06akvW5NTQ3uvvvupL3ewYjVUkkUm7mxK6WiPaXaomXgJf5iOHQNOiuliIjoE2zZsgWzZs3C4YcfnuqhjCkUCh3wfjQThTM3STQq3JgS27e3YWBgEEIRKCwugNfrTsrui0REdPA77bTTcM011+CGG25AYWEhAoEAbrnllk98Xk1NDf785z/j0UcfhRACl156KQCgq6sL3/zmN1FSUoLc3Fx8/vOfx3vvvWc/b8uWLTjnnHPg9/vh8/lw4okn4v/+7/8SxrNt2zZcd911EELYC3hvueUWHH/88QljuPvuu1FTU2N/femll+Lcc8/F7bffjvLychx55JEAgKamJnzta19Dfn4+CgsLcc4556ChocF+3qpVq3DSSSfZt9dOOeUUbNu2bf8u5H7iu2ySSClhBAcBAEo0yYYNA9u27gAA+P0lEBDwsWEmEVFW+d3vfgev14s1a9bgzjvvxK233oqVK1fu9Tlvv/02zjzzTHzta19DS0sL7rnnHgDAV7/6VbS3t+Oll17C2rVrccIJJ+ALX/gCOjs7AQB9fX04++yzUVtbi3fffRdnnnkmFixYgMZGq7/h008/jcrKStx6661oaWlBS0vLfv0stbW12LhxI1auXInnn38e4XAY8+fPR05ODv7xj3/gjTfegM/nw5lnnolQKIRIJIJzzz0Xn/3sZ/H+++9j9erVuPLKKye8uoy3pZJEhuMrpaI9pYIhbG+K9pSaUgYJEy63K5XDJCKiSTZ9+nQsXboUAHD44Yfj3nvvRW1tLU4//fQ9PqekpAROpxNutxuBQAAA8Prrr+Ott95Ce3s7nE7rDsHPfvYzPPvss/jTn/6EK6+8EjNmzMCMGTPs17ntttvwzDPP4LnnnsPVV1+NwsJCqKqKnJwc+3X3h9frxYMPPmjfjvr9738P0zTx4IMP2oHl4YcfRn5+PlatWoXZs2eju7sb//Zv/4ZDDz0UADBt2rT9/r77izM3SRKJztoITYMQ0UqpYAjN261KqfLKMiiKwoaZRERZZvr06Qlfl5WVob29fb9f57333kNfXx+Kiorg8/nsj61bt2LLli0ArJmb66+/HtOmTUN+fj58Ph8+/vhje+bmQB133HEJ62zee+891NXVIScnxx5PYWEhhoaGsGXLFhQWFuLSSy/F/PnzsWDBAtxzzz37PVs0Hpy5SRLN44NvymGIDPZbB6LdwFtbhyulNI2VUkRE2WZkGwEhBMzoTP/+6OvrQ1lZGVatWjXqsVip+PXXX4+VK1fiZz/7GQ477DC43W585StfQSi6e/6eKIoCKWXCsbE6nHu9iUsr+vr6MGvWLDz22GOjzi0pKQFgzeRcc801WLFiBZ588kncdNNNWLlyJT71qU/tdUwHguEmSYSqwuH1AbD+45DSxOBQcLhhZqAYuq5x5oaIiMblhBNOQGtrKxwOR8JC33hvvPEGLr30Unz5y18GYIWP+MW9gNXiYGR7g5KSErS2tkJKad9eWr9+/T6N6cknn0RpaSlyc3P3eN7MmTMxc+ZM3HjjjZg7dy4ef/zxCQ03vC01UaREc3MH+vsGIIRAUXEhXB4XVFVN9ciIiCgNzZs3D3PnzsW5556Lv/3tb2hoaMA///lP/PCHP8Q777wDwFrT8/TTT2P9+vV477338I1vfGPULFFNTQ1ee+017NixAx0dHQCsKqqdO3fizjvvxJYtW7B8+XK89NJLnzimiy66CMXFxTjnnHPwj3/8A1u3bsWqVatwzTXXYPv27di6dStuvPFGrF69Gtu2bcPf/vY3bN68ecLX3TDcTJBwKIJtW7cDAEr8RRCKQI6PlVJERDQ+Qgi8+OKL+MxnPoNFixbhiCOOwNe//nVs27YNfr8fAHDXXXehoKAAJ598MhYsWID58+fjhBNOSHidW2+9FQ0NDTj00EPtW0fTpk3Dfffdh+XLl2PGjBl46623cP3113/imDweD1577TVUV1fjvPPOw7Rp03D55ZdjaGgIubm58Hg82LBhA84//3wcccQRuPLKK7F48WL8x3/8R/IvUBwhR95ky3A9PT3Iy8tDd3f3XqfQxsOMRBDp74VwaOjt6sZ9y/+APz72V5xw4nRcfMXXcMxxRyJQXprU70lERKkzNDSErVu3YurUqXC5WA17oPZ2Pffn/ZszNxNBSgSDYbtSqqI6ACHYMJOIiGgyMNxMBCkRCofjKqX8cGgOLiYmIiIAwGOPPZZQzh3/ccwxx6R6eGmP1VITQEoTAwNBtMUaZgZKoLMMnIiIor70pS9hzpw5Yz42snSc9h/DzUSQEq0tHejt6QMAFJUWwuVyQtN4uYmICMjJyUFOTk6qh5GxeFtqAoTCYWxrtNouFJcWQREKcvJ8KR4VERFRdmC4mQChwRB2NFnbS1dWlcE0Tbjd7hSPioiIKDsw3EyAoXAYzTusSqnKKeWQABcTExERTRKGmwkQCoXtxcRl5X5oDgcXExMREU0ShpsJ0N8/hNZouCktK4ZDZxk4ERHRZGG4STIpJdp37kJPdy8AoLikCC6XkzM3REREk4ThJsnCEQNN21oBAEUlBXA4VPjYU4qIiNLMa6+9hgULFqC8vBxCCDz77LMJj0spcfPNN6OsrAxutxvz5s3D5s2bUzPYEQ6KcLN8+XLU1NTA5XJhzpw5eOutt/Z47gMPPIBPf/rTKCgoQEFBAebNm7fX8ydbcCiE7XalVDmMiAGP15PiUREREe2f/v5+zJgxA8uXLx/z8TvvvBO//OUvcf/992PNmjXwer2YP38+hoaGJnmko6U83Dz55JNYsmQJli5dinXr1mHGjBmYP38+2tvbxzx/1apVuPDCC/Hqq69i9erVqKqqwhlnnIEdO3ZM8sjHFgyH0dJsjb2iqgwAK6WIiCj9nHXWWfjJT36CL3/5y6Mek1Li7rvvxk033YRzzjkH06dPx6OPPorm5uZRMzypkPJwc9ddd+GKK67AokWLcPTRR+P++++Hx+PBQw89NOb5jz32GL797W/j+OOPx1FHHYUHH3wQpmmitrZ2kkc+tmAwbC8mLq/0Q1EUOF0MN0REZJFSQppGaj6kTMrPsHXrVrS2tmLevHn2sby8PMyZMwerV69Oyvc4ECntBxAKhbB27VrceOON9jFFUTBv3rx9vjgDAwMIh8MoLCwc8/FgMIhgMGh/3dPTc2CD3hsBDPQPDveUKiuFrmucuSEiomHSxO4P303Jty44diYg1AN+ndZWa22p3+9POO73++3HUimlMzcdHR0wDOOALs73v/99lJeXJ6THeMuWLUNeXp79UVVVdcDj3hOhqNjV1Y+u3d0ArNYLulNnpRQREdEkSutOjnfccQeeeOIJrFq1Ci6Xa8xzbrzxRixZssT+uqenZ8ICTigYQtM2a+1PQWE+HJoDXp8HQogJ+X5ERJSGhGLNoKToeydDIBAAALS1taGsrMw+3tbWhuOPPz4p3+NApDTcFBcXQ1VVtLW1JRxva2uzL9ye/OxnP8Mdd9yB//u//8P06dP3eJ7T6YTT6UzKeD9JMBhCYzTcVFaXIRKOwJfDMnAiIhomhEjKraFUmjp1KgKBAGpra+0w09PTgzVr1uBb3/pWageHFN+W0nUds2bNSlgMHFscPHfu3D0+784778Rtt92GFStWYPbs2ZMx1H1imiZam62gFquU4i0pIiJKR319fVi/fj3Wr18PwFpEvH79ejQ2NkIIgWuvvRY/+clP8Nxzz+GDDz7AJZdcgvLycpx77rkpHTdwENyWWrJkCRYuXIjZs2fjpJNOwt13343+/n4sWrQIAHDJJZegoqICy5YtAwD893//N26++WY8/vjjqKmpsdfm+Hw++Hy+lP0cMa3N1mLiiqoyCEVwMTEREaWld955B5/73Ofsr2NLPBYuXIhHHnkEN9xwA/r7+3HllVeiq6sLp556KlasWLHHZSKTKeXh5oILLsDOnTtx8803o7W1FccffzxWrFhhLzJubGyEogxPMP36179GKBTCV77ylYTXWbp0KW655ZbJHPqYWlusPW78ZSXQNR1O1+TcEiMiIkqm0047ba+l40II3Hrrrbj11lsncVT7JuXhBgCuvvpqXH311WM+tmrVqoSvGxoaJn5A4zQwMIjdu7oAACWlRdCcLAMnIiKabCnfxC+TbKvfDgDIy8+F06nD43EnzDoRERHRxOM7bxI11DcCsCqlQqyUIiIiSgmGmyRqqG8CAFRUl0FKCRfX2xAREU06hpskathizdxUVJZBCLCnFBERUQow3CRRbOYmUFYCTeNiYiIiolRguEmSgYFBtDZbZeClgRLousYN/IiIiFKA4SZJGrY0QUoJX44XTpcTLrcLDsdBUWlPRESUVfjumySmaeCEk6bDMAyEw2H4cjypHhIREVFWYrhJkmNnTMPdv/kJ1r39PsyICbfbneohERERZSXelpoIimDbBSIiSmvLli3DiSeeiJycHJSWluLcc8/Fxo0bE84ZGhrC4sWLUVRUBJ/Ph/PPPx9tbW0pGvEwhpsJoGkOVkoREVFa+/vf/47FixfjzTffxMqVKxEOh3HGGWegv7/fPue6667DX//6Vzz11FP4+9//jubmZpx33nkpHLWFt6UmAMvAiYgo3a1YsSLh60ceeQSlpaVYu3YtPvOZz6C7uxu//e1v8fjjj+Pzn/88AODhhx/GtGnT8Oabb+JTn/pUKoYNgOFmQjhdOjRdS/UwiIjoICSlxODgUEq+t9vtghBiXM/t7u4GABQWFgIA1q5di3A4jHnz5tnnHHXUUaiursbq1asZbjKNz8eeUkRENLbBwSF8atqZKfneb368Ah7P/he8mKaJa6+9FqeccgqOPfZYAEBrayt0XUd+fn7CuX6/H62trckY7rgx3CSZqqjw+lgGTkREmWPx4sX48MMP8frrr6d6KPuE4SbJNJ3rbYiIaM/cbhfe/HjFJ584Qd97f1199dV4/vnn8dprr6GystI+HggEEAqF0NXVlTB709bWhkAgkIzhjhvDTZKx7QIREe2NEGJct4Ymm5QS3/nOd/DMM89g1apVmDp1asLjs2bNgqZpqK2txfnnnw8A2LhxIxobGzF37txUDNnGcJNkOmduiIgoAyxevBiPP/44/vKXvyAnJ8deR5OXlwe32428vDxcfvnlWLJkCQoLC5Gbm4vvfOc7mDt3bkoXEwMMN0ml6xp8OV7O3BARUdr79a9/DQA47bTTEo4//PDDuPTSSwEAv/jFL6AoCs4//3wEg0HMnz8f99133ySPdDSGmyTyeD045PCaVA+DiIjogEkpP/Ecl8uF5cuXY/ny5ZMwon3HHYqJiIgoozDcEBERUUZhuCEiIqKMwnBDREREGYXhhoiIiDIKww0REdEB2pfKIvpkybqODDdERETjpGkaAGBgYCDFI8kMoVAIAKCq6gG9Dve5ISIiGidVVZGfn4/29nYAgMfjgRAixaNKT6ZpYufOnfB4PHA4DiyeMNwQEREdgFiTyFjAofFTFAXV1dUHHBAZboiIiA6AEAJlZWUoLS1FOBxO9XDSmq7rUJQDXzHDcENERJQEqqoe8FoRSg4uKCYiIqKMwnBDREREGYXhhoiIiDJK1q25iW0Q1NPTk+KREBER0b6KvW/vy0Z/WRduent7AQBVVVUpHgkRERHtr97eXuTl5e31HCGzbM9o0zTR3NyMnJycpG601NPTg6qqKjQ1NSE3Nzdpr0uj8VpPLl7vycNrPXl4rSdPsq61lBK9vb0oLy//xHLxrJu5URQFlZWVE/b6ubm5/IMySXitJxev9+ThtZ48vNaTJxnX+pNmbGK4oJiIiIgyCsMNERERZRSGmyRxOp1YunQpnE5nqoeS8XitJxev9+ThtZ48vNaTJxXXOusWFBMREVFm48wNERERZRSGGyIiIsooDDdERESUURhukmT58uWoqamBy+XCnDlz8NZbb6V6SGll2bJlOPHEE5GTk4PS0lKce+652LhxY8I5Q0NDWLx4MYqKiuDz+XD++eejra0t4ZzGxkZ88YtfhMfjQWlpKf7zP/8TkUhkMn+UtHPHHXdACIFrr73WPsZrnTw7duzAv//7v6OoqAhutxvHHXcc3nnnHftxKSVuvvlmlJWVwe12Y968edi8eXPCa3R2duKiiy5Cbm4u8vPzcfnll6Ovr2+yf5SDnmEY+NGPfoSpU6fC7Xbj0EMPxW233ZawXT+v9/i89tprWLBgAcrLyyGEwLPPPpvweLKu6/vvv49Pf/rTcLlcqKqqwp133jm+AUs6YE888YTUdV0+9NBD8qOPPpJXXHGFzM/Pl21tbakeWtqYP3++fPjhh+WHH34o169fL88++2xZXV0t+/r67HOuuuoqWVVVJWtra+U777wjP/WpT8mTTz7ZfjwSichjjz1Wzps3T7777rvyxRdflMXFxfLGG29MxY+UFt566y1ZU1Mjp0+fLr/73e/ax3mtk6Ozs1NOmTJFXnrppXLNmjWyvr5evvzyy7Kurs4+54477pB5eXny2Wefle+995780pe+JKdOnSoHBwftc84880w5Y8YM+eabb8p//OMf8rDDDpMXXnhhKn6kg9rtt98ui4qK5PPPPy+3bt0qn3rqKenz+eQ999xjn8PrPT4vvvii/OEPfyiffvppCUA+88wzCY8n47p2d3dLv98vL7roIvnhhx/KP/zhD9Ltdsv//d//3e/xMtwkwUknnSQXL15sf20YhiwvL5fLli1L4ajSW3t7uwQg//73v0sppezq6pKapsmnnnrKPufjjz+WAOTq1aullNYfPkVRZGtrq33Or3/9a5mbmyuDweDk/gBpoLe3Vx5++OFy5cqV8rOf/awdbnitk+f73/++PPXUU/f4uGmaMhAIyP/5n/+xj3V1dUmn0yn/8Ic/SCml/Ne//iUByLfffts+56WXXpJCCLljx46JG3wa+uIXvygvu+yyhGPnnXeevOiii6SUvN7JMjLcJOu63nfffbKgoCDh75Dvf//78sgjj9zvMfK21AEKhUJYu3Yt5s2bZx9TFAXz5s3D6tWrUziy9Nbd3Q0AKCwsBACsXbsW4XA44TofddRRqK6utq/z6tWrcdxxx8Hv99vnzJ8/Hz09Pfjoo48mcfTpYfHixfjiF7+YcE0BXutkeu655zB79mx89atfRWlpKWbOnIkHHnjAfnzr1q1obW1NuNZ5eXmYM2dOwrXOz8/H7Nmz7XPmzZsHRVGwZs2ayfth0sDJJ5+M2tpabNq0CQDw3nvv4fXXX8dZZ50FgNd7oiTruq5evRqf+cxnoOu6fc78+fOxceNG7N69e7/GlHW9pZKto6MDhmEk/CUPAH6/Hxs2bEjRqNKbaZq49tprccopp+DYY48FALS2tkLXdeTn5yec6/f70draap8z1u9D7DEa9sQTT2DdunV4++23Rz3Ga5089fX1+PWvf40lS5bgv/7rv/D222/jmmuuga7rWLhwoX2txrqW8de6tLQ04XGHw4HCwkJe6xF+8IMfoKenB0cddRRUVYVhGLj99ttx0UUXAQCv9wRJ1nVtbW3F1KlTR71G7LGCgoJ9HhPDDR10Fi9ejA8//BCvv/56qoeSkZqamvDd734XK1euhMvlSvVwMpppmpg9ezZ++tOfAgBmzpyJDz/8EPfffz8WLlyY4tFlnj/+8Y947LHH8Pjjj+OYY47B+vXrce2116K8vJzXO8vwttQBKi4uhqqqoypJ2traEAgEUjSq9HX11Vfj+eefx6uvvprQvT0QCCAUCqGrqyvh/PjrHAgExvx9iD1GlrVr16K9vR0nnHACHA4HHA4H/v73v+OXv/wlHA4H/H4/r3WSlJWV4eijj044Nm3aNDQ2NgIYvlZ7+/sjEAigvb094fFIJILOzk5e6xH+8z//Ez/4wQ/w9a9/HccddxwuvvhiXHfddVi2bBkAXu+Jkqzrmsy/VxhuDpCu65g1axZqa2vtY6Zpora2FnPnzk3hyNKLlBJXX301nnnmGbzyyiujpiZnzZoFTdMSrvPGjRvR2NhoX+e5c+figw8+SPgDtHLlSuTm5o56g8lmX/jCF/DBBx9g/fr19sfs2bNx0UUX2Z/zWifHKaecMmpLg02bNmHKlCkAgKlTpyIQCCRc656eHqxZsybhWnd1dWHt2rX2Oa+88gpM08ScOXMm4adIHwMDA1CUxLc1VVVhmiYAXu+JkqzrOnfuXLz22msIh8P2OStXrsSRRx65X7ekALAUPBmeeOIJ6XQ65SOPPCL/9a9/ySuvvFLm5+cnVJLQ3n3rW9+SeXl5ctWqVbKlpcX+GBgYsM+56qqrZHV1tXzllVfkO++8I+fOnSvnzp1rPx4rTz7jjDPk+vXr5YoVK2RJSQnLk/dBfLWUlLzWyfLWW29Jh8Mhb7/9drl582b52GOPSY/HI3//+9/b59xxxx0yPz9f/uUvf5Hvv/++POecc8YsoZ05c6Zcs2aNfP311+Xhhx+e9aXJY1m4cKGsqKiwS8GffvppWVxcLG+44Qb7HF7v8ent7ZXvvvuufPfddyUAedddd8l3331Xbtu2TUqZnOva1dUl/X6/vPjii+WHH34on3jiCenxeFgKnkq/+tWvZHV1tdR1XZ500knyzTffTPWQ0gqAMT8efvhh+5zBwUH57W9/WxYUFEiPxyO//OUvy5aWloTXaWhokGeddZZ0u92yuLhYfu9735PhcHiSf5r0MzLc8Fonz1//+ld57LHHSqfTKY866ij5m9/8JuFx0zTlj370I+n3+6XT6ZRf+MIX5MaNGxPO2bVrl7zwwgulz+eTubm5ctGiRbK3t3cyf4y00NPTI7/73e/K6upq6XK55CGHHCJ/+MMfJpQW83qPz6uvvjrm39ELFy6UUibvur733nvy1FNPlU6nU1ZUVMg77rhjXONlV3AiIiLKKFxzQ0RERBmF4YaIiIgyCsMNERERZRSGGyIiIsooDDdERESUURhuiIiIKKMw3BAREVFGYbghIiKijMJwQ0QZ6bTTTsO11167z+evWrUKQohRDUOJKP04Uj0AIqJ9JYTAM888g3PPPfcTz3366aehadrED4qIDjoMN0SUUUKhEHRdR2FhYaqHQkQpwttSRDSpTjvtNFxzzTW44YYbUFhYiEAggFtuueUTn1dTUwMA+PKXvwwhhP31LbfcguOPPx4PPvggpk6dCpfLZX+f+NtS/+///T/Mnj0bOTk5CAQC+MY3voH29vY9fr9t27ZhwYIFKCgogNfrxTHHHIMXX3xxvD82EU0ihhsimnS/+93v4PV6sWbNGtx555249dZbsXLlyr0+5+233wYAPPzww2hpabG/BoC6ujr8+c9/xtNPP43169eP+fxwOIzbbrsN7733Hp599lk0NDTg0ksv3eP3W7x4MYLBIF577TV88MEH+O///m/4fL79/lmJaPLxthQRTbrp06dj6dKlAIDDDz8c9957L2pra3H66afv8TklJSUAgPz8fAQCgYTHQqEQHn30UfucsVx22WX254cccgh++ctf4sQTT0RfX9+YoaWxsRHnn38+jjvuOPs5RJQeOHNDRJNu+vTpCV+XlZXt9RbRJ5kyZcpegw0ArF27FgsWLEB1dTVycnLw2c9+FoAVYsZyzTXX4Cc/+QlOOeUULF26FO+///64x0dEk4vhhogm3cgqJiEETNMc9+t5vd69Pt7f34/58+cjNzcXjz32GN5++20888wzAKxZn7F885vfRH19PS6++GJ88MEHmD17Nn71q1+Ne4xENHkYbogobWiaBsMw9vt5GzZswK5du3DHHXfg05/+NI466qh9mimqqqrCVVddhaeffhrf+9738MADD4xn2EQ0yRhuiCht1NTUoLa2Fq2trdi9e/c+P6+6uhq6ruNXv/oV6uvr8dxzz+G2227b63OuvfZavPzyy9i6dSvWrVuHV199FdOmTTvQH4GIJgHDDRGljZ///OdYuXIlqqqqMHPmzH1+XklJCR555BE89dRTOProo3HHHXfgZz/72V6fYxgGFi9ejGnTpuHMM8/EEUccgfvuu+9AfwQimgRCSilTPQgiIiKiZOHMDREREWUUhhsiOig89thj8Pl8Y34cc8wxqR4eEaUR3pYiooNCb28v2traxnxM0zRMmTJlkkdEROmK4YaIiIgyCm9LERERUUZhuCEiIqKMwnBDREREGYXhhoiIiDIKww0RERFlFIYbIiIiyigMN0RERJRRGG6IiIgoo/x/qh6mE70fSsgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGxCAYAAACKvAkXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiRUlEQVR4nO3deVxU5eIG8GdmYBa2YZVdEURREXBBQlt+FoVLZmZlZqmYdfW6ZNwySVKzW7bcTFNvWZaZZtnNpR0zSssyV0QMUREFRFaVGdaBmTm/P5SpSVxAmDPDPN/PZz73cjhzeA4pPL7nPe+RCIIggIiIiMiOSMUOQERERGRpLEBERERkd1iAiIiIyO6wABEREZHdYQEiIiIiu8MCRERERHaHBYiIiIjsDgsQERER2R0HsQNYI6PRiLNnz8LV1RUSiUTsOERERHQdBEFAVVUVAgICIJVefYyHBagZZ8+eRXBwsNgxiIiIqBUKCwsRFBR01X1YgJrh6uoK4OI30M3NTeQ0REREdD20Wi2Cg4NNv8evhgWoGU2Xvdzc3FiAiIiIbMz1TF/hJGgiIiKyOyxAREREZHdYgIiIiMjusAARERGR3WEBIiIiIrvDAkRERER2hwWIiIiI7A4LEBEREdkdFiAiIiKyO6IWoJ9//hkjR45EQEAAJBIJtm7des337NixA/369YNCoUC3bt3w4YcfXrbPypUrERISAqVSibi4OOzdu7ftwxMREZHNErUA1dTUIDo6GitXrryu/U+dOoURI0ZgyJAhOHToEGbPno0pU6Zg27Ztpn02btyI5ORkLFiwAAcPHkR0dDQSExNRVlbWXqdBRERENkYiCIIgdgjg4nM7tmzZgnvvvfeK+zz77LP45ptvcOTIEdO2hx56CJWVlUhLSwMAxMXFITY2FitWrAAAGI1GBAcHY+bMmZg7d+51ZdFqtVCr1dBoNHwWGBERkY1oye9vm5oDtHv3biQkJJhtS0xMxO7duwEADQ0NOHDggNk+UqkUCQkJpn3EVFGtw485pcgp0aKqvlHsOERERHbLpp4GX1JSAl9fX7Ntvr6+0Gq1qKurw4ULF2AwGJrdJycn54rH1el00Ol0po+1Wm3bBr9k/+nzmLr+oOljN6UDAtxVCPJQIcBdhUD3S//rcfH/+7goIJVe+4m2RERE1DI2VYDay+LFi/HCCy+0+9eRSaXoHeCGoso6VNY2Qluvh7akCjklVc3u7yiTwF/992KkRKC7EwI9VPBXK6F0lLV7biIioo7GpgqQn58fSktLzbaVlpbCzc0NKpUKMpkMMpms2X38/PyueNyUlBQkJyebPtZqtQgODm7b8ADu7OWLO3tdHJ2q0elxtrIORZdeZyvrUHShDmcr61FUWYcSbT0aDQIKztei4HztFY/p7aK4WIo8VAhQXyxJTaNJge4quDs5QiLhKBIREdFf2VQBio+Px7fffmu2bfv27YiPjwcAyOVy9O/fH+np6abJ1EajEenp6ZgxY8YVj6tQKKBQKNotd3OcFQ4I93VFuK9rs5/XG4wordKZilFTUbpYki7+/9oGAyqqdaio1iHzjKbZ4zjJZWaX1y5ebrs4ihTgroSfmxIOMpuaCkZERHTDRC1A1dXVyM3NNX186tQpHDp0CJ6enujcuTNSUlJQVFSEjz76CAAwdepUrFixAnPmzMHkyZPx448/4rPPPsM333xjOkZycjImTpyIAQMGYODAgVi6dClqamqQlJRk8fO7EQ4yqWkUJzbk8s8LggBNXSPO/KUQ/TmiVI+iC3WoqNahtsGA3LJq5JZVN/t1pBLAz01pmnfUdKktwF2FoEsfOytsqicTERFdk6i/2fbv348hQ4aYPm66DDVx4kR8+OGHKC4uRkFBgenzXbt2xTfffIOnnnoKy5YtQ1BQEFavXo3ExETTPmPHjkV5eTnmz5+PkpISxMTEIC0t7bKJ0bZOIpHA3UkOdyc5IgPVze5T32hAsabeNIp05q+X2jR1KK6sR4PBiLOaepzV1GMfLjR7HHcnR9PltUD3vxclJXxcFLzMRkRENsVq1gGyJvayDpDRKKCiWmdejMxGkWqhrddf8zhyB+mlUqT8sxw1vTxU8FMroXDgZG0iImpfLfn9zWsbdkwqlaCTmxKd3JTo19mj2X2q6htxtvLiKNJfi1LTJbdSbT0a9EacqqjBqYqaZo8hkQA+LgrTqFGYtzNuCvNCv84evIuNiIhEwRGgZtjLCFBbaDQYUaKpN7+TTVNnNjepvtHY7HvlDlIM6OKBwd28ER/mhahANSdkExFRq3EEiCzGUSZFsKcTgj2dmv28IAi4UNtodifbkSINfs2tQFmVDr+dPIffTp4DALgoHDCwqycGhXkhPswLPf3cuBAkERG1C44ANYMjQO1PEATkVdRcLEC5Fdiddw6VteaPB/FwckR8mBfiw7wxKMwLod7OnGxNRERX1JLf3yxAzWABsjyjUcDREi12XxoR2pN3DjUNBrN9fN0UGBR28XLZ4G7eCHRXiZSWiIisEQvQDWIBEl+jwYjDZzTYfbICv508h/35F9CgN59L1MXL6dLlMm/Eh3rBx9Wyi1kSEZF1YQG6QSxA1qe+0YCDBRew++Q5/JpbgcwzGhiM5n90u/u6YNCly2VxoV5QqxxFSktERGJgAbpBLEDWr1qnx75T5/HbpRGi7GIt/vonWSoBIgPViA/zwqAwb8SGeMBJzjn/REQdGQvQDWIBsj0Xahrwe965S3eVVeBkufmaRI4yCfoGe1wqRF6I6ezOxRmJiDoYFqAbxAJk+0q19ZcmVFfg19xzKKqsM/u80lGK2BBP0yWzyEA1ZLzlnojIprEA3SAWoI5FEAQUnq8zXS777eQ5VFTrzPZxVTogruvF0aFB3bzQw9eVt9wTEdkYFqAbxALUsQmCgNyyavyae7EQ/Z537rJnnnk5y03zhwaFeaGLlxMLERGRlWMBukEsQPbFYBSQfVZrGiHae+o86hrN1yAKUCsRH+aNwd0urlLtr+YaRERE1oYF6AaxANm3Br0RmWcq8VvuxTlEGQWVaDCYr0EU6u1sGiG6KdQTXi5cg4iISGwsQDeIBYj+qq7BgAP5F/DrpRGirDOV+NsSRIjwc8Xgbhcvlw3s6glXJdcgIiKyNBagG8QCRFejrW/E3rzzplvuc0qqzD4vk0rQJ1CNQZce2dG/iweUjrzlnoiovbEA3SAWIGqJimqdaQ2i3SfP4VSF+RpEcpkU/bq4myZURwe7w1EmFSktEVHHxQJ0g1iA6Eacray7+MiOkxXYffIcijX1Zp93UTjgrXExuD3CV6SEREQdU0t+f/PZAERtLMBdhTH9gzCmfxAEQcDpc7V/rkGUW4ELtY34bN8ZFiAiIhGxABG1I4lEgq7ezujq7YzxcV2w++Q5jHvvd2QVacSORkRk1zgRgciC+gSpIZEARZV1l61GTURElsMCRGRBLgoHhPm4AAAOn6kUNwwRkR1jASKysKggNQAgs5CXwYiIxMICRGRhUYEXCxBHgIiIxMMCRGRhUcHuAIDDZzTgKhREROJgASKysF7+bnCQSnCupgFFlXVixyEiskssQEQWpnSUoYefK4CLo0BERGR5LEBEIogKcgcAZHIeEBGRKFiAiEQQfelOsMO8E4yISBQsQEQiaBoBOlKkgdHIidBERJbGAkQkgu6+LlA6SlGl0yPvb0+PJyKi9scCRCQCB5kUvQMuXgbLKqoUNwwRkR0SvQCtXLkSISEhUCqViIuLw969e6+4b2NjIxYtWoSwsDAolUpER0cjLS3NbJ+qqirMnj0bXbp0gUqlwqBBg7Bv3772Pg2iFuOK0ERE4hG1AG3cuBHJyclYsGABDh48iOjoaCQmJqKsrKzZ/VNTU7Fq1SosX74c2dnZmDp1KkaPHo2MjAzTPlOmTMH27duxbt06ZGVl4a677kJCQgKKioosdVpE1yX60jwgrghNRGR5EkHEpWjj4uIQGxuLFStWAACMRiOCg4Mxc+ZMzJ0797L9AwICMG/ePEyfPt20bcyYMVCpVFi/fj3q6urg6uqKL774AiNGjDDt079/fwwbNgz//ve/ryuXVquFWq2GRqOBm5vbDZ4lUfNOllfjjjd2QuEgxZEXEuEoE31AlojIprXk97doP3EbGhpw4MABJCQk/BlGKkVCQgJ2797d7Ht0Oh2USqXZNpVKhV27dgEA9Ho9DAbDVfe50nG1Wq3Zi6i9dfVyhqvCATq9EcdLq8SOQ0RkV0QrQBUVFTAYDPD19TXb7uvri5KSkmbfk5iYiCVLluDEiRMwGo3Yvn07Nm/ejOLiYgCAq6sr4uPj8eKLL+Ls2bMwGAxYv349du/ebdqnOYsXL4ZarTa9goOD2+5Eia5AKpWgT9N6QFwRmojIomxqzH3ZsmUIDw9HREQE5HI5ZsyYgaSkJEilf57GunXrIAgCAgMDoVAo8NZbb2HcuHFm+/xdSkoKNBqN6VVYWGiJ0yEyrQfEeUBERJYlWgHy9vaGTCZDaWmp2fbS0lL4+fk1+x4fHx9s3boVNTU1yM/PR05ODlxcXBAaGmraJywsDDt37kR1dTUKCwuxd+9eNDY2mu3zdwqFAm5ubmYvIkuI5p1gRESiEK0AyeVy9O/fH+np6aZtRqMR6enpiI+Pv+p7lUolAgMDodfrsWnTJowaNeqyfZydneHv748LFy5g27Ztze5DJLaoYHcAwLHSKtQ3GsQNQ0RkRxzE/OLJycmYOHEiBgwYgIEDB2Lp0qWoqalBUlISAGDChAkIDAzE4sWLAQB79uxBUVERYmJiUFRUhIULF8JoNGLOnDmmY27btg2CIKBHjx7Izc3FM888g4iICNMxiaxJgFoJbxc5Kqob8MdZLfp38RA7EhGRXRC1AI0dOxbl5eWYP38+SkpKEBMTg7S0NNPE6IKCArO5O/X19UhNTUVeXh5cXFwwfPhwrFu3Du7u7qZ9NBoNUlJScObMGXh6emLMmDF46aWX4OjoaOnTI7omiUSCqCB3/JhThsNnKlmAiIgsRNR1gKwV1wEiS1r6w3Es/eEE7usbiCVjY8SOQ0Rks2xiHSAiuqhpRehM3glGRGQxLEBEImtaCyivogZV9Y0ipyEisg8sQEQi83ZRINBdBUEAsop4OzwRkSWwABFZgSiuCE1EZFEsQERWgCtCExFZFgsQkRXgitBERJbFAkRkBSIvFaCiyjqcq9aJnIaIqONjASKyAm5KR4T6OAPgPCAiIktgASKyElwPiIjIcliAiKwE7wQjIrIcFiAiK/HnnWAa8Ak1RETtiwWIyEr0DnCDg1SCimodijX1YschIurQWICIrITSUYbuvq4AuB4QEVF7YwEisiJN84AyOQ+IiKhdsQARWRGuCE1EZBksQERW5K93ghmNnAhNRNReWICIrEgPP1coHKSoqtfj9LkaseMQEXVYLEBEVsRRJkWvADcAXA+IiKg9sQARWRmuCE1E1P5YgIisDFeEJiJqfyxARFam6U6wP85qoDcYxQ1DRNRBsQARWZlQb2e4KhxQ32jEibJqseMQEXVILEBEVkYqlSAysOkyWKW4YYiIOigWICIrFBXMFaGJiNoTCxCRFYoKdAfAESAiovbCAkRkhZruBMsprkJ9o0HkNEREHQ8LEJEVCvJQwdNZDr1RwNFirdhxiIg6HBYgIiskkUi4HhARUTtiASKyUlFcEZqIqN2wABFZqWiOABERtRsWICIr1TQCdLK8GtU6vbhhiIg6GNEL0MqVKxESEgKlUom4uDjs3bv3ivs2NjZi0aJFCAsLg1KpRHR0NNLS0sz2MRgMeP7559G1a1eoVCqEhYXhxRdfhCAI7X0qRG3Kx1WBALUSggBkcRSIiKhNiVqANm7ciOTkZCxYsAAHDx5EdHQ0EhMTUVZW1uz+qampWLVqFZYvX47s7GxMnToVo0ePRkZGhmmfV199FW+//TZWrFiBo0eP4tVXX8Vrr72G5cuXW+q0iNpM0yhQVlGlqDmIiDoaiSDi0EhcXBxiY2OxYsUKAIDRaERwcDBmzpyJuXPnXrZ/QEAA5s2bh+nTp5u2jRkzBiqVCuvXrwcA3H333fD19cX7779/xX2uRavVQq1WQ6PRwM3N7UZOkeiG/HdHLl5LO4YRUf5Y+XA/seMQEVm1lvz+Fm0EqKGhAQcOHEBCQsKfYaRSJCQkYPfu3c2+R6fTQalUmm1TqVTYtWuX6eNBgwYhPT0dx48fBwBkZmZi165dGDZs2BWz6HQ6aLVasxeRNYi+NALEFaGJiNqWaAWooqICBoMBvr6+Ztt9fX1RUlLS7HsSExOxZMkSnDhxAkajEdu3b8fmzZtRXFxs2mfu3Ll46KGHEBERAUdHR/Tt2xezZ8/G+PHjr5hl8eLFUKvVpldwcHDbnCTRDWp6KGrh+Tqcr2kQOQ0RUcch+iTolli2bBnCw8MREREBuVyOGTNmICkpCVLpn6fx2Wef4eOPP8aGDRtw8OBBrF27Fv/5z3+wdu3aKx43JSUFGo3G9CosLLTE6RBdk1rliK7ezgA4CkRE1JZEK0De3t6QyWQoLS01215aWgo/P79m3+Pj44OtW7eipqYG+fn5yMnJgYuLC0JDQ037PPPMM6ZRoD59+uDRRx/FU089hcWLF18xi0KhgJubm9mLyFpwRWgiorYnWgGSy+Xo378/0tPTTduMRiPS09MRHx9/1fcqlUoEBgZCr9dj06ZNGDVqlOlztbW1ZiNCACCTyWA0Gtv2BIgsJIrzgIiI2pyDmF88OTkZEydOxIABAzBw4EAsXboUNTU1SEpKAgBMmDABgYGBptGbPXv2oKioCDExMSgqKsLChQthNBoxZ84c0zFHjhyJl156CZ07d0bv3r2RkZGBJUuWYPLkyaKcI9GNaloROvOMBoIgQCKRiJyIiMj2iVqAxo4di/LycsyfPx8lJSWIiYlBWlqaaWJ0QUGB2WhOfX09UlNTkZeXBxcXFwwfPhzr1q2Du7u7aZ/ly5fj+eefxz//+U+UlZUhICAA//jHPzB//nxLnx5Rm+gdoIZMKkF5lQ4l2nr4q1ViRyIisnmirgNkrbgOEFmboUt/Rk5JFd55pD+GRjY/R46IyN7ZxDpARHT9uB4QEVHbYgEisgFRwbwTjIioLbEAEdmAv44A8ao1EdGNYwEisgE9/Fwhd5BCW69H/rlaseMQEdk8FiAiG+Aok6KX/8UJfZmcB0REdMNYgIhsBFeEJiJqOyxARDaCK0ITEbUdFiAiG9G0IvSRIi30Bj7ahYjoRrAAEdmIUB8XOMtlqGs0ILe8Wuw4REQ2jQWIyEbIpBJEBl6aB1TIeUBERDeCBYjIhkQHuwPgnWBERDeKBYjIhvBOMCKitsECRGRDmlaEzinRQqc3iBuGiMiGsQAR2ZAgDxU8nBzRaBCQU1wldhwiaoXjpVX4LquYj7URGQsQkQ2RSCRcD4jIhmWd0WDUil8x7eOD2LC3QOw4do0FiMjGNK0HlMl5QEQ2paiyDpPX7kNd48XL14u/zUGxpk7kVPaLBYjIxvThCBCRzdHWNyJpzV6UV+kQ4eeK6GB3VOv0SN1yhJfCRMICRGRjmkaAcsuqUaPTi5yGiK6l0WDEP9cfxPHSanRyVeCDSbF4/f4oOMokSM8pw1eHi8WOaJdYgIhsTCc3JfzclDAKwJEiXgYjsmaCICB1yxHsyq2Ak1yGDybFIsBdhe6+rpgxJBwA8MKXf+BCTYPISe0PCxCRDeJ6QES24b87TmLj/kJIJcCKh/uaVnMHgGn/F4Yevq44V9OAF7/OFjGlfWIBIrJBXBGayPp9cagIr287BgB44Z7euD3C1+zzcgcpXhnTBxIJsDmjCDuOlYkR026xABHZII4AEVm3vafO45n/HQYATLm5Kx6ND2l2v76dPTB5cFcAwLwtR1DNeX0WwwJEZIOiAt0BAAXnazl3gMjK5JVX44l1+9FgMGJobz88N7znVff/113dEeypQlFlHV5Py7FQSmIBIrJBaidHhHg5AQAOcyI0kdU4V61D0of7UFnbiOhgd7w5NgZSqeSq73GSO2Dx6CgAwEe/52P/6fOWiGr3WICIbFTTitBZnAdEZBXqGw14Yt0B5J+rRbCnCqsnDIBKLruu994c7o0H+gdBEIBnNx1GfSOf9dfeWICIbFQUV4QmshpGo4B//S8TB/IvwE3pgDWTYuHjqmjRMVJH9IK3iwIny2uw8qfcdkpKTViAiGxU051gXBGaSHyvbTuGbw4Xw1EmwapHB6BbJ9cWH0Pt5IgXR/UGALy94ySOFmvbOib9BQsQkY3qHeAGqQQo1epQqq0XOw6R3dqwpwDv7DwJAHjt/ijEh3m1+ljD+vgjsbcv9EYBz246DL3B2FYx6W9YgIhslJPcAeGX/pWZWVgpbhgiO7XjWBme/+IIAGB2QjhG9w264WO+OCoSrkoHHD6jwZpfT9/w8ah5LEBENozrARGJJ/usFjM2ZMBgFHBfv0A8eUd4mxy3k5sSqSMu3jr/xvZjyD9X0ybHJXMsQEQ2LIorQhOJokRTj8kf7kO1To/4UC+8cl8UJJKr3+7eEg8OCMagMC/UNxoxd1MWnxjfDqyiAK1cuRIhISFQKpWIi4vD3r17r7hvY2MjFi1ahLCwMCiVSkRHRyMtLc1sn5CQEEgkkste06dPb+9TIbKopifDZxVp+AOSyEKqdXpM/nAfSrT16NbJBe880h9yh7b9dSqRSPDKfVFQOkqxO+8cNu4rbNPjkxUUoI0bNyI5ORkLFizAwYMHER0djcTERJSVNf9MlNTUVKxatQrLly9HdnY2pk6ditGjRyMjI8O0z759+1BcXGx6bd++HQDwwAMPWOSciCwlws8NcpkUlbWNKDhfK3Ycog5PbzBi5oaDyC7WwttFjjWTYqF2cmyXr9XZywn/urMHAOClb4/yZoc2JnoBWrJkCR5//HEkJSWhV69eeOedd+Dk5IQPPvig2f3XrVuH5557DsOHD0doaCimTZuG4cOH44033jDt4+PjAz8/P9Pr66+/RlhYGG677TZLnRaRRcgdpOjpf2kiNOcBEbUrQRCw8Ks/8NOxcigdpVg9MRbBnk7t+jWTBocgOkiNqno9nt96hCO9bUjUAtTQ0IADBw4gISHBtE0qlSIhIQG7d+9u9j06nQ5KpdJsm0qlwq5du674NdavX4/Jkye36fVZImvRtCL0Yd4JRtSuVv9yCut/L4BEAiwd2xcxl+bgtScHmRSvjImCg1SC77NL8d2Rknb/mvZC1AJUUVEBg8EAX19fs+2+vr4oKWn+P3JiYiKWLFmCEydOwGg0Yvv27di8eTOKi4ub3X/r1q2orKzEpEmTrphDp9NBq9WavYhshelOMD4TjKjdfJdVjJe+PQoAmDe8J4ZG+lnsa/f0d8M//y8MADD/iz9QWcsHILcF0S+BtdSyZcsQHh6OiIgIyOVyzJgxA0lJSZBKmz+V999/H8OGDUNAQMAVj7l48WKo1WrTKzg4uL3iE7W5phWhjxRpYDByeJyorR0suIDZGw8BACbGd8FjN3e1eIbpt3dDt04uqKjW4d/fHLX41++IRC1A3t7ekMlkKC0tNdteWloKP7/m27WPjw+2bt2Kmpoa5OfnIycnBy4uLggNDb1s3/z8fPzwww+YMmXKVXOkpKRAo9GYXoWFnG1PtiPMxwVOchlqGww4WV4tdhyiDqXgXC0eX7sfOr0Rd0R0wvyRvUWZTqFwkOHVMX0gkQCfHziDX06UWzxDRyNqAZLL5ejfvz/S09NN24xGI9LT0xEfH3/V9yqVSgQGBkKv12PTpk0YNWrUZfusWbMGnTp1wogRI656LIVCATc3N7MXka2QSSWIDLj0YFTOAyJqM5W1DZj04V6cq2lAZKAb3hrXFzKpeHNJ+3fxxMT4EABAyuYs1DboRcvSEYh+CSw5ORnvvfce1q5di6NHj2LatGmoqalBUlISAGDChAlISUkx7b9nzx5s3rwZeXl5+OWXXzB06FAYjUbMmTPH7LhGoxFr1qzBxIkT4eDgYNFzIrI0rghN1LZ0egP+se4A8sprEKBW4oOJsXBWiP+75JnEHgh0V+HMhTr8Z9txsePYNNH/a44dOxbl5eWYP38+SkpKEBMTg7S0NNPE6IKCArP5PfX19UhNTUVeXh5cXFwwfPhwrFu3Du7u7mbH/eGHH1BQUIDJkydb8nSIRBHFJ8MTtRlBEDB3Uxb2nDoPF4UDPkiKRSc35bXfaAHOCge8NDoSk9bsw5rfTuHuaH/06+whdiybJBG4qMBltFot1Go1NBoNL4eRTcg/V4PbXt8BuUyKIy8ktvmqtET2ZMn243gr/QQcpBKsSYrFLeE+Yke6TPLGQ9icUYTuvi74euYt/Dt/SUt+f/M7RtQBdPZ0gruTIxoMRuSUcBkHotb63/5CvJV+AgDw0uhIqyw/APD83b3g5SzH8dJq/HdHrthxbBILEFEHIJFI0Cfw0kRozgMiapVfcyuQsjkLADB9SBjGxnYWOdGVeTjLsfCe3gCAlT/l4nhplciJbA8LEFEHEc0VoYla7URpFaauPwC9UcDI6ADTM7is2d1R/kjo2QmNBgFzPj/MdcBaiAWIqIPgnWBErVNWVY9Ja/ahql6PAV088Pr9UZCKeLv79ZJIJHjx3ki4KhxwqLASa387LXYkm8ICRNRBNK0IfaKsiuuDEF2n2gY9pqzdj6LKOnT1dsa7EwZA6SgTO9Z181erMHd4BADg9W3HUHi+VuREtoMFiKiD8HVTwtdNAaMA/HGWE6GJrsVgFPDkp4dw+IwGHk6OWDMpFp7OcrFjtdi42M6I6+qJukYDntuSxSfGXycWIKIOpOnJ8FwRmujaXvrmKLZnl0LuIMV7EwYgxNtZ7EitIpVK8MqYKCgcpPjlRAU+P3BG7Eg2gQWIqAOJCuQ8IKLr8eGvp/DBr6cAAEsejMaAEE+RE92Yrt7OeOrO7gCAf39zFOVVOpETWT8WIKIOhCtCE13b9uxSLPo6GwDw7NAI3B0VIHKitjHl5q6IDHSDpq4RC7/8Q+w4Vo8FiKgDaRoBOn2uFpraRpHTEFmfrDMazPokA0YBGDcwGFNvCxU7UptxkEnx6pgoyKQSfJNVjG1/lIgdyaqxABF1IB7OcnT2dAIAHC6qFDcMkZU5c6EWk9fuQ12jAbeEe2PRqEhIJNZ/u3tL9A5Q4x+3Xix1z289Ak0d/yF0JSxARB0M1wMiupy2vhGTP9yH8iodIvxc8d/x/eAo65i/AmfdEY5Qb2eUVemw+NujYsexWh3zvz6RHYvmnWBEZhoNRvxz/UEcL62Gr5sCH0yKhavSUexY7UbpKMMrY6IAAJ/uK8RvuRUiJ7JOLEBEHQxHgIj+JAgC5m3Jwq7cCjjJZXh/YiwC3FVix2p3A7t64pGbLj7LbO7mLNQ1GEROZH1YgIg6mMhANaQSoERbjzJtvdhxiES18qdcfLb/DKQSYOXD/RB56UYBe/Ds0Aj4q5UoOF+LN384LnYcq8MCRNTBOCsc0K2TCwA+GZ7s2xeHivCf7y/+4n/hnt4YEtFJ5ESW5ap0xEujIwEAq3/J4/IYf9OqAjRr1iy89dZbl21fsWIFZs+efaOZiOgGNa0IncUfeGSn9p46j2f+dxgA8PgtXfFofIi4gURye4Qv7okOgFEA5nx+GI0Go9iRrEarCtCmTZswePDgy7YPGjQIn3/++Q2HIqIbE31pHhBHgMge5ZVX44l1+9FgMGJobz+kDOspdiRRLRjZCx5OjsgpqcKqnSfFjmM1WlWAzp07B7X68uuobm5uqKjgbHMisfW5NAJ0+EwlH4xIduVctQ5JH+5DZW0jYoLd8ebYGEilHWutn5byclFgwcjeAIC30nORW1YlciLr0KoC1K1bN6SlpV22/bvvvkNoaMdZVZPIVvX0d4WjTIILtY04c6FO7DhEFlHfaMDjH+1H/rlaBHuqsHriAKjkMrFjWYVRMQEY0sMHDQYjnt2UBaOR/zByaM2bkpOTMWPGDJSXl+P2228HAKSnp+ONN97A0qVL2zIfEbWCwkGGCD83ZBVpkHmmEsGXVocm6qiMRgH/+iwTBwsq4aZ0wJpJA+HtohA7ltWQSCT49+g+uGvJThzIv4B1v+dj4qAQsWOJqlUjQJMnT8Ybb7yB999/H0OGDMGQIUOwfv16vP3223j88cfbOiMRtQLXAyJ78uq2HHyTVQxHmQTvThhguhOS/hTorsLcYREAgNfSclBUad+jw62+DX7atGk4c+YMSktLodVqkZeXhwkTJrRlNiK6AVwRmuzFx3vysWpnHgDgtfujcFOol8iJrNf4uC6IDfFATYMB87Zk2fUcwRteB8jHxwcuLmzaRNYmKvjiCNCRIg0MvN5PHdSOY2WY/8UfAICnErpjdN8gkRNZN6lUgsX3RUEuk2LHsXJsPVQkdiTRXPccoH79+iE9PR0eHh7o27fvVZ+ge/DgwTYJR0St183HBSpHGWoaDMgrr0a4r6vYkYjaVPZZLaZ/fBAGo4Ax/YIw645uYkeyCd06ueDJhHC8vu0YFn2VjVvCfexyvtR1F6BRo0ZBobj4Dbr33nvbKw8RtREHmRSRgW7Yd/oCMs9oWICoQynR1GPyh/tQ02BAfKgXFt/X56r/MCdzT9waiq8PF+NosRYvfJWN5eP6ih3J4q67AC1YsAAAYDAYMGTIEERFRcHd3b29chFRG4gKcse+0xdw+Ewl7u/PSwPUMVTr9Ej6cB9KtPXo1skF7zzaH3IHPtmpJRxlUrw2JgqjVu7CV5lncW9MAO7o6St2LItq8Z8YmUyGu+66CxcuXGiPPETUhngnGHU0eoMRMzYcxNFiLbxd5FgzKRZqlaPYsWxSnyA1Hr/l4tp987YcQVV9o8iJLKtVlTkyMhJ5eXltnYWI2ljTnWDZxVo06PkMILJtgiBgwZd/YMexcigdpVg9MZZrXN2g2Qnd0cXLCSXaerzyXY7YcSyqVQXo3//+N55++ml8/fXXKC4uhlarNXsRkXXo4uUEN6UDGvRGHC/l8vdk2977JQ8f7ymARAIse6gvYoLdxY5k81RyGRbf1wcA8PGeAuzJOydyIstpVQEaPnw4MjMzcc899yAoKAgeHh7w8PCAu7s7PDw82jojEbWSRCIxPRk+k0+GJxv2bVYxXv724ghF6oheSOztJ3KijmNQmDfGDQwGAMzdnIX6RoPIiSyjVY/C+Omnn9o6BxG1k6ggNXblVuBwoQbj48ROQ9RyBwsu4KmNhwAAE+O7YPLgEFHzdERzh/XEjzllOFVRg2XpJ/Ds0AixI7W7Vo0Ade3aFbfeeituu+02s9ett96Krl27tuhYK1euREhICJRKJeLi4rB3794r7tvY2IhFixYhLCwMSqUS0dHRzT6UtaioCI888gi8vLygUqnQp08f7N+/v8XnSdQRcASIbFn+uRo8vnY/dHojEnp2wvyRvXm7eztQqxzx4qhIAMC7P+fhSFHHv3Gi1QWovLz8su3nz59vUQHauHEjkpOTsWDBAhw8eBDR0dFITExEWVlZs/unpqZi1apVWL58ObKzszF16lSMHj0aGRkZpn0uXLiAwYMHw9HREd999x2ys7Pxxhtv8NIc2a3oSytCnyirRl2DfQxtU8dQWduApA/34VxNAyID3bDsob6QSVl+2stdvf0wIsofBqOAZzcdht7QsW+ckAiteBCIVCpFaWkpfHx8zLbn5+ejV69eqKmpua7jxMXFITY2FitWrAAAGI1GBAcHY+bMmZg7d+5l+wcEBGDevHmYPn26aduYMWOgUqmwfv16AMDcuXPx66+/4pdffmnpaZlotVqo1WpoNBq4ubm1+jhE1kAQBAx8OR3lVTp8PjUeA0I8xY5EdE06vQGPvr8Xe0+dR4Baia3TB6OTm1LsWB1eeZUOCUt2QlPXiGeHRmDa/4WJHalFWvL7u0VzgJKTkwFcnFj5/PPPw8npz9sPDQYD9uzZg5iYmOs6VkNDAw4cOICUlBTTNqlUioSEBOzevbvZ9+h0OiiV5n8BVCoVdu3aZfr4yy+/RGJiIh544AHs3LkTgYGB+Oc//3nVp9TrdDrodDrTx7yTjToSiUSC6CA1fjhahswzGhYgsnqCIGDO54ex99R5uCoc8EFSLMuPhfi4KvD83b3w9P8y8eYPx5HY2xehPh3zeZ8tugSWkZGBjIwMCIKArKws08cZGRnIyclBdHQ0Pvzww+s6VkVFBQwGA3x9zVee9PX1RUlJSbPvSUxMxJIlS3DixAkYjUZs374dmzdvRnFxsWmfvLw8vP322wgPD8e2bdswbdo0zJo1C2vXrr1ilsWLF0OtVptewcHB13UORLaiaR7QYc4DIhvw5vbj+OLQWThIJfjvI/0Q4ceReEsa0y8Qt4R7o0FvxNzNWTB20Icpt2gEqOnur6SkJCxbtszil4eWLVuGxx9/HBEREZBIJAgLC0NSUhI++OAD0z5GoxEDBgzAyy+/DADo27cvjhw5gnfeeQcTJ05s9rgpKSmm0S3g4ggQSxB1JFwRmmzF//YX4q0fcwEAL42OxC3hPtd4B7U1iUSCl0f3QeLSn7H31Hls2FuAR27qInasNteqSdBr1qyBm5sbcnNzsW3bNtTV1QG4OGx5vby9vSGTyVBaWmq2vbS0FH5+za/v4OPjg61bt6Kmpgb5+fnIycmBi4sLQkNDTfv4+/ujV69eZu/r2bMnCgoKrphFoVDAzc3N7EXUkTSNAJ2qqIGmzr6Wuyfb8WtuBVI2ZwEApg8Jw9jYziInsl/Bnk54JrEHAOCV73JQrKkTOVHba1UBOn/+PO644w50794dw4cPN12Ceuyxx/Cvf/3ruo4hl8vRv39/pKenm7YZjUakp6cjPj7+qu9VKpUIDAyEXq/Hpk2bMGrUKNPnBg8ejGPHjpntf/z4cXTp0vHaK9H18nSWI9hTBQB2cXsr2Z7jpVWYuv4A9EYBI6MD8K87e4gdye5NiA9B387uqNbpkbrlSIsGOWxBqwrQ7Nmz4ejoiIKCArOJ0GPHjm12XZ4rSU5OxnvvvYe1a9fi6NGjmDZtGmpqapCUlAQAmDBhgtkk6T179mDz5s3Iy8vDL7/8gqFDh8JoNGLOnDmmfZ566in8/vvvePnll5Gbm4sNGzbg3XffNbtzjMgecT0gslZlVfVIWrMPVfV6xIZ44PX7oyDl7e6ik0kleG1MFOQyKdJzyvDV4eJrv8mGtGol6O+//x7btm1DUFCQ2fbw8HDk5+df93HGjh2L8vJyzJ8/HyUlJYiJiUFaWpppYnRBQQGk0j87Wn19PVJTU5GXlwcXFxcMHz4c69atg7u7u2mf2NhYbNmyBSkpKVi0aBG6du2KpUuXYvz48a05VaIOIypQjW8OF+NwIUeAyHrUNugxZe1+FFXWoau3M959dACUjjKxY9El4b6umD6kG9784The+PIP3NzNG57OcrFjtYlWrQPk6uqKgwcPIjw8HK6ursjMzERoaCj279+PxMREnDtn2w9T4zpA1BHtPnkO4977HQFqJX5LuUPsOEQwGAX8Y90B/HC0FB5Ojtjyz8EI8XYWOxb9TYPeiJHLd+FYaRVG9w3Em2NjxI50RS35/d2qS2C33HILPvroI9PHEokERqMRr732GoYMGdKaQxJRO+sTpIZEApzV1KO8SnftNxC1s39/k40fjpZC7iDF6okDWH6slNxBilfvj4JUAmzJKMJPx5p/WoOtaVUBeu211/Duu+9i2LBhaGhowJw5cxAZGYmff/4Zr776altnJKI24KJwQNilBc24HhCJbc2vp7Dm19MAgCUPRqN/Fy7Qac1igt2RNPjio67mbc5CtU4vcqIb16oCFBkZiWPHjuHmm2/GqFGjUFNTg/vuuw8ZGRkIC7OtZbOJ7EnTekCZXA+IRLQ9uxSLvs4GADw7NAJ3RwWInIiux7/u6o5gTxXOaurxelqO2HFuWKsmQQMXb0W/8847ER0dDaPx4gPT9u3bBwC455572iYdEbWp6CB3bD5YxBEgEs2B/POY9UkGBAEYNzAYU28LvfabyCo4yR2weHQUHnl/Dz76PR8jowNs+tE6rSpAaWlpePTRR3H+/PnL1gWQSCQwGPjEaSJr9NcVoQVBgETCW43Jcg6fqcSkD/ahrtGA27r7YNGoSP4ZtDE3h3vjgf5B+N+BM3h202F8M+sWm71rr1WXwGbOnIkHH3wQZ8+ehdFoNHux/BBZr57+bnCQSnC+pgFnLnS8lV3JemWf1eLR9/eiSqfHwK6eeOeR/nCUtepXEIksdUQv+LgqcLK8Bit/yhU7Tqu16k9faWkpkpOTL3uQKRFZN6WjDBH+rgCALK4ITRZyorQKj76/B5q6RvTt7I4PJsVCJbfNUQMC1E6OWHRPbwDA2ztO4mixVuRErdOqAnT//fdjx44dbRyFiCyBK0KTJZ2qqMH41XtwrqYBkYFu+DBpIFwUrZ5+SlZiWB9/DO3tB71RwLObDkNvMIodqcVa9adwxYoVeOCBB/DLL7+gT58+cHR0NPv8rFmz2iQcEbW96CA1NuwBV4Smdld4vhbj3/sdZVU6RPi5Yt3kOKhVjtd+I9mERaN647eTFTh8RoMPfj2FJ261rbvAW1WAPvnkE3z//fdQKpXYsWOH2SQ2iUTCAkRkxfoEugO4+FBUo1HgM5eoXRRr6vDw6t9xVlOPMB9nrHssDh4d5BEKdFEnNyVSR/TCnE2HsWT7cST29kMXL9tZzLJVl8DmzZuHF154ARqNBqdPn8apU6dMr7y8vLbOSERtqLuvC5SOUlTp9MirqBE7DnVAZVX1GP/eHhSer0MXLyd8POUm+LgqxI5F7eCBAUEY3M0L9Y1GzN2UZVNPjG9VAWpoaMDYsWPNHlRKRLbBQSZF74Cm2+ErxQ1DHc75mgY8snoP8ipqEOiuwsdT4uCnVoodi9qJRCLB4tFRUDpKsTvvHDbuKxQ70nVrVYOZOHEiNm7c2NZZiMhC/roeEFFb0dQ24pHVe3C8tBq+bgpseDwOQR5OYseidtbZywlP39UDAPDSt0dRqq0XOdH1adUcIIPBgNdeew3btm1DVFTUZZOglyxZ0ibhiKh9RPNOMGpjVfWNmLBmL7KLtfB2kePjKTfZ1HwQujFJg7viq8yzyDyjwfNbj2DVo/2tfpHLVhWgrKws9O3bFwBw5MgRs89Z+wkT0Z8jQNlntWg0GLkgHd2Q2gY9Jn+4D5mFlXB3csT6KXHo1slF7FhkQTKpBK/eH4W739qF77NL8d2REgzv4y92rKtqVQH66aef2joHEVlQiJczXJUOqKrX41hJFSID1WJHIhtV32jAlLX7se/0BbgqHbD+sThE+LmJHYtEEOHnhn/+Xxje+jEX87/4A4PCvODuZL13/vGffUR2SCqVcB4Q3TCd3oCp6w/gt5Pn4CyXYe3kgSzTdm767d3QrZMLKqp1+Pc3R8WOc1UsQER2qmlF6KyiSlFzkG1qNBgxc0MGdhwrh9JRig8mxaJfZw+xY5HIFA4yvDomChIJ8PmBM/jlRLnYka6IBYjITkVfGgHK5IrQ1EIGo4DkzzLxfXYp5A5SrJ4Qi7hQL7FjkZXo38UDE+NDAAApm7NQo9OLG+gKWICI7FTTCNCx0irUNxrEDUM2w2gUMOfzw/gq8ywcZRK880g/3BzuLXYssjLPJPZAoLsKZy7U4Y3vj4sdp1ksQER2yl+thLeLHAajgD/O2ubTnMmyBEFA6hdHsOngGcikEiwf1xe3R/iKHYuskLPCAS/f1wcAsOa3UzhYcEHkRJdjASKyUxKJxDQKxBWh6VoEQcCir7OxYU8BJBJgyYPRGBpp3bc5k7hu6+6D+/oFQhCAuZsOo0FvXU+MZwEismO8E4yuhyAIeG3bMaz59TQA4NUxURgVEyhuKLIJz4/oBS9nOY6XVuO/O3LFjmOGBYjIjnFFaLoeb6Xn4u0dJwEAL94biQcHBIuciGyFh7McC+/pDQBY+VMujpdWiZzoTyxARHasaQQor7wG2vpGkdOQNXpn50m8+cPFSaypI3ri0Zu6iJyIbM3dUf5I6OmLRsPFCfQGo3U8MZ4FiMiOebkoEOiuAgAc4WUw+ps1v57CK9/lALh4V8+UW0JFTkS2SCKR4N/3RsJV4YBDhZX48LfTYkcCwAJEZPeigy+tB8QCRH+xYU8BXvgqGwAw6/ZumD6km8iJyJb5qZVIGd4TAPCfbcdQeL5W5EQsQER2j3eC0d9tOnAG87ZmAQCeuDUUT93ZXeRE1BE8FBuMuK6eqGs04LktWRAEcS+FsQAR2TneCUZ/9VXmWTzzeSYEAZgY3wUpwyIgkUjEjkUdgFQqwStjoqBwkOKXExX4/MAZcfOI+tWJSHR9AtWQSICiyjqcq9aJHYdE9P0fJZi98RCMwsV/rS8Y2Zvlh9pUV29n04ji+j0Foo4COYj2lYnIKrgqHRHq7YyT5TU4fEaDIRGdxI5EIthxrAwzNmTAYBQwum8gXhrdB1Ipyw+1vSk3d4WDVIJHbuoiasG2ihGglStXIiQkBEqlEnFxcdi7d+8V921sbMSiRYsQFhYGpVKJ6OhopKWlme2zcOFCSCQSs1dERER7nwaRzYriekB27bfcCvxj3QE0GIwY0ccfr98fBRnLD7UTB5kUU24JhdJRJmoO0QvQxo0bkZycjAULFuDgwYOIjo5GYmIiysrKmt0/NTUVq1atwvLly5GdnY2pU6di9OjRyMjIMNuvd+/eKC4uNr127dplidMhskmcB2S/9p0+j8fW7odOb0RCz05Y+lAMHGSi/2oganei/ylfsmQJHn/8cSQlJaFXr15455134OTkhA8++KDZ/detW4fnnnsOw4cPR2hoKKZNm4bhw4fjjTfeMNvPwcEBfn5+ppe3N59WTHQlf70TTOw7M8hyDhVWImnNPtQ1GnBLuDdWPNwPjiw/ZCdE/ZPe0NCAAwcOICEhwbRNKpUiISEBu3fvbvY9Op0OSqXSbJtKpbpshOfEiRMICAhAaGgoxo8fj4KCgivm0Ol00Gq1Zi8ie9I7wA0OUgkqqhtwVlMvdhyygD/OajDh/T2o1ulxU6gn3n10gOiXJIgsSdQCVFFRAYPBAF9fX7Ptvr6+KCkpafY9iYmJWLJkCU6cOAGj0Yjt27dj8+bNKC4uNu0TFxeHDz/8EGlpaXj77bdx6tQp3HLLLaiqav4ZJIsXL4ZarTa9goP5nBuyL0pHGbr7ugIADhdWihuG2t3x0io8+v5eaOv16N/FA+9PjIVKzvJD9sXmxjqXLVuG8PBwREREQC6XY8aMGUhKSoJU+uepDBs2DA888ACioqKQmJiIb7/9FpWVlfjss8+aPWZKSgo0Go3pVVhYaKnTIbIaXBHaPuSVV+Ph9/bgfE0DooLUWJMUC2cFbwgm+yNqAfL29oZMJkNpaanZ9tLSUvj5+TX7Hh8fH2zduhU1NTXIz89HTk4OXFxcEBp65WfUuLu7o3v37sjNzW328wqFAm5ubmYvInvDFaE7vsLztRi/eg8qqnWI8HPFR5MHwk3pKHYsIlGIWoDkcjn69++P9PR00zaj0Yj09HTEx8df9b1KpRKBgYHQ6/XYtGkTRo0adcV9q6urcfLkSfj7+7dZdqKOpulOsKwzGhit5GnN1HbOVtZh3Hu/o1hTj26dXLB+ShzcneRixyISjeiXwJKTk/Hee+9h7dq1OHr0KKZNm4aamhokJSUBACZMmICUlBTT/nv27MHmzZuRl5eHX375BUOHDoXRaMScOXNM+zz99NPYuXMnTp8+jd9++w2jR4+GTCbDuHHjLH5+RLaiu68rFA5SVOn0OHWuRuw41IbKtPUYv3oPzlyoQ4iXEzZMiYO3i0LsWESiEv3C79ixY1FeXo758+ejpKQEMTExSEtLM02MLigoMJvfU19fj9TUVOTl5cHFxQXDhw/HunXr4O7ubtrnzJkzGDduHM6dOwcfHx/cfPPN+P333+Hj42Pp0yOyGY4yKXoHuOFgQSWyzmgQ5uMidiRqA+eqdRi/eg9OVdQg0F2Fjx+/CZ3clNd+I1EHJxG46MdltFot1Go1NBoN5wORXVn45R/48LfTSBocggUje4sdh25QZW0Dxr23B0eLtfBzU+Kzf8Sjs5eT2LGI2k1Lfn+LfgmMiKwHV4TuOLT1jZj4wV4cLdbC20WBjx+PY/kh+gsWICIyaboT7I+zGugNRnHDUKvV6PSYvGYfMs9o4OHkiI+nxPGSJtHfsAARkUmotzNcFQ6obzTieGm12HGoFeobDZiydj/251+Am9IB6x6LQw8/V7FjEVkdFiAiMpFKJYgMbLoMViluGGoxnd6AJ9YdwO68c3BROGDt5IGm/55EZI4FiIjMRHFFaJvUaDBi+scZ+Pl4OVSOMnwwKRZ9O3uIHYvIarEAEZGZaK4IbXP0BiNmf3oIPxwthdxBitUTB2BgV0+xYxFZNRYgIjLTdCfYsZIq1DcaRE5D12I0Cpjz+WF8k1UMR5kEqx7tj8HdvMWORWT1WICIyEyguwpeznLojQKyi7Vix6GrEAQB87ZmYXNGEWRSCZaP64chPTqJHYvIJrAAEZEZiUTy53pAhZXihqErEgQBL3yVjU/2FkIqAZaOjcHQyOYfIk1El2MBIqLLmJ4MX8SJ0NZIEAS88l0OPvztNADgtfujMTI6QNxQRDaGBYiILhMdzBWhrdmbP5zAqp/zAAAvjY7E/f2DRE5EZHtYgIjoMn0C3QEAJ8urUa3TixuGzPx3Ry7eSj8BAJh/dy+Mj+siciIi28QCRESX8XFVIECthCAAWRwFshrv7zqF19KOAQCeHRqByTd3FTkRke1iASKiZkVxPSCrsv73fLz4dTYA4Mk7wjHt/8JETkRk21iAiKhZUZwHZDX+t78QqVuPAAD+cVsoZieEi5yIyPaxABFRs5pWhM7kCJCovsw8i2c3HQYATBoUgrlDIyCRSERORWT7WICIqFlND9E8c6EO56p1IqexT2lHSvDUxkMwCsC4gZ2xYGQvlh+iNsICRETNUqscEertDIDrAYnhp5wyzPzkIAxGAff1C8RL90ay/BC1IRYgIrqiP1eEZgGypF0nKvCP9QfQaBAwIsofr42JglTK8kPUlliAiOiKeCeY5e09dR5TPtqHBr0Rd/byxdKxMXCQ8Uc1UVvj3yoiuiLTitBFGgiCIHKaju9gwQUkrdmL+kYjbuvugxUP94Ujyw9Ru+DfLCK6ol7+asikEpRX6VCirRc7Tod2pEiDiR/sRU2DAYPCvLDq0f5QOMjEjkXUYbEAEdEVqeQydPd1BQBkch5QuzlWUoVH39+Dqno9BnTxwOqJA6B0ZPkhak8sQER0VVGBTQsiVoobpIM6WV6N8at/x4XaRkQHu2NNUiyc5A5ixyLq8FiAiOiquCJ0+8k/V4OH3/sdFdUN6OXvho+SBsJV6Sh2LCK7wAJERFcV/Zc7wTgRuu0UVdbh4ff2oFSrQ3gnF6x7bCDUTiw/RJbCAkREV9XDzxVyBym09XqcPlcrdpwOoVRbj4ff+x1FlXXo6u2Mjx+Pg5eLQuxYRHaFBYiIrspRJkUvfzcAnAfUFiqqdXj4vd+Rf64WwZ4qbHg8Dp1clWLHIrI7LEBEdE3Rl1aE5p1gN0ZvMGLa+gM4WV4Df7USG6bcBH+1SuxYRHaJBYiIrokrQreN5T/mYt/pC3BROGD9lDgEezqJHYnIbrEAEdE1Na0IfeSsBnqDUeQ0tmnvqfNY/uMJAMBLoyMR5uMiciIi+2YVBWjlypUICQmBUqlEXFwc9u7de8V9GxsbsWjRIoSFhUGpVCI6OhppaWlX3P+VV16BRCLB7Nmz2yE5kX0I9XaBi8IB9Y1G5JZXix3H5mhqGzH70wwYBeC+foEYFRModiQiuyd6Adq4cSOSk5OxYMECHDx4ENHR0UhMTERZWVmz+6empmLVqlVYvnw5srOzMXXqVIwePRoZGRmX7btv3z6sWrUKUVFR7X0aRB2aVCpBZOClidCcB9QigiAgZcthnNXUI8TLCYtGRYodiYhgBQVoyZIlePzxx5GUlIRevXrhnXfegZOTEz744INm91+3bh2ee+45DB8+HKGhoZg2bRqGDx+ON954w2y/6upqjB8/Hu+99x48PDwscSpEHVrTekCZnAfUIhv3FeLbrBI4SCVY9lBfuCi4yjORNRC1ADU0NODAgQNISEgwbZNKpUhISMDu3bubfY9Op4NSaX7LqEqlwq5du8y2TZ8+HSNGjDA7NhG1Xp8grgjdUrllVVj41R8AgKcTeyA62F3cQERkIuo/RSoqKmAwGODr62u23dfXFzk5Oc2+JzExEUuWLMGtt96KsLAwpKenY/PmzTAYDKZ9Pv30Uxw8eBD79u27rhw6nQ46nc70sVarbcXZEHVsTSNAOSVa6PQGPqn8GuobDZj5ySHUNxpxczdvPHFLqNiRiOgvRL8E1lLLli1DeHg4IiIiIJfLMWPGDCQlJUEqvXgqhYWFePLJJ/Hxxx9fNlJ0JYsXL4ZarTa9goOD2/MUiGxSkIcKHk6OaDQIOFpcJXYcq/dqWg6OFmvh6SzHkgejIZVKxI5ERH8hagHy9vaGTCZDaWmp2fbS0lL4+fk1+x4fHx9s3boVNTU1yM/PR05ODlxcXBAaevFfVwcOHEBZWRn69esHBwcHODg4YOfOnXjrrbfg4OBgNlLUJCUlBRqNxvQqLCxs+5MlsnESiYTrAV2nn3LKsObX0wCA/zwQhU5uXOmZyNqIWoDkcjn69++P9PR00zaj0Yj09HTEx8df9b1KpRKBgYHQ6/XYtGkTRo0aBQC44447kJWVhUOHDpleAwYMwPjx43Ho0CHIZJcP2ysUCri5uZm9iOhyXBH62sq09Xj6f5kAgEmDQnB7hO813kFEYhD9doTk5GRMnDgRAwYMwMCBA7F06VLU1NQgKSkJADBhwgQEBgZi8eLFAIA9e/agqKgIMTExKCoqwsKFC2E0GjFnzhwAgKurKyIjzW8zdXZ2hpeX12XbiahlOAJ0dUajgH/9LxPnahrQ098Nc4dFiB2JiK5A9AI0duxYlJeXY/78+SgpKUFMTAzS0tJME6MLCgpM83sAoL6+HqmpqcjLy4OLiwuGDx+OdevWwd3dXaQzILIfUZdWhM4tr0a1Ts9buv9m9a48/HKiAkpHKZaPi4HSkRPFiayVRBAEQewQ1kar1UKtVkOj0fByGNHfxC9OR7GmHp8+cRNuCvUSO47VOHymEmPe/g2NBgEvj+6Dh+M6ix2JyO605Pe3zd0FRkTiiro0DyiL6wGZVOv0mPVJBhoNAoZF+mHcQN5JSmTtWICIqEWiuCL0ZRZ88QdOn6tFgFqJV+6LgkTCW96JrB0LEBG1SLRpIjRHgADgi0NF2HTwDKQSYOlDfaF2chQ7EhFdBxYgImqRPoEXL4EVnK/FhZoGkdOIq/B8LVK3HAEAzLg9HAO7eoqciIiuFwsQEbWI2skRIV5OAIDDRfY7CtRoMGLWpxmo0ukxoIsHZt3eTexIRNQCLEBE1GKm9YAKK0XNIaZlP5xARkElXJUOWPpQDBxk/HFKZEv4N5aIWqzpTrBMO50HtPvkOazckQsAWHxfHwR5OImciIhaigWIiFosOtgdgH2uCH2hpgFPbTwEQQDGDgjG3VEBYkciolZgASKiFusd4AapBCir0qFEUy92HIsRBAFzNh1GibYeoT7OWHBPL7EjEVErsQARUYs5yR3Q3dcVgH2tB7R+TwG2Z5dCLpPirYf6wknOR4EQ2SoWICJqlaZ5QPZyGexYSRX+/XU2AGDO0B6IvLQcABHZJhYgImqVKDtaELG+0YBZn2RApzfitu4+mDy4q9iRiOgGsQARUav8dUXojv5M5Ze/PYpjpVXwdlHgPw9EQyrloy6IbB0LEBG1Sg8/V8hlUmjqGlFwvlbsOO1me3YpPtqdDwB448Fo+LgqRE5ERG2BBYiIWkXuIEVP/6aJ0B3zMliJph5zPs8EADx+S1fc1t1H5ERE1FZYgIio1TryitAGo4CnNh7ChdpGRAa64ZnECLEjEVEbYgEiolb7806wjjcC9M7Ok9iddw5Ochneeqgv5A78cUnUkfBvNBG1WtOK0EfOamAwdpyJ0BkFF7Bk+3EAwMJ7eiPUx0XkRETU1liAiKjVwnxc4CSXobbBgNyyarHjtImq+kbM+jQDBqOAu6P88UD/ILEjEVE7YAEiolaTSSWmBQE7yorQz289gsLzdQh0V+Gl0X0gkfCWd6KOiAWIiG5IdAdaEXrzwTPYeugsZFIJ3hoXA7XKUexIRNROWICI6IZ0lBWhT1fU4PmtRwAAs+8IR/8uniInIqL2xAJERDekaUXoo8Va6PQGccO0UoPeiFmfZqCmwYC4rp7455BuYkcionbGAkRENyTYUwUPJ0c0GgQcK6kSO06rvLH9GA6f0UCtcsSbY2Mg46MuiDo8FiAiuiESiQR9Lo0C2eKK0LtOVGDVzjwAwKtjohDgrhI5ERFZAgsQEd2wqEt3gtnaitDnqnV46rNDAICH4zpjaKSfuIGIyGJYgIjohtniitCCIOCZzw+jvEqH8E4ueH5EL7EjEZEFsQAR0Q1rWhH6RFkVahv04oa5Tmt/O40fc8ogd5DirXF9oZLLxI5ERBbEAkREN8zXTQlfNwWMAnCkSCt2nGvKPqvFy9/lAADmDe+Jnv5uIiciIktjASKiNvHnekCVoua4lroGA2Z+chANeiMSenbChPguYkciIhGwABFRm2haEdra7wRb9HU2TpbXoJOrAq/dH81HXRDZKRYgImoTtjAClHakGJ/sLYBEArw5NgaeznKxIxGRSKyiAK1cuRIhISFQKpWIi4vD3r17r7hvY2MjFi1ahLCwMCiVSkRHRyMtLc1sn7fffhtRUVFwc3ODm5sb4uPj8d1337X3aRDZtaY7wfLP1aKytkHkNJc7W1mHZzdlAQD+cWsYBnfzFjkREYlJ9AK0ceNGJCcnY8GCBTh48CCio6ORmJiIsrKyZvdPTU3FqlWrsHz5cmRnZ2Pq1KkYPXo0MjIyTPsEBQXhlVdewYEDB7B//37cfvvtGDVqFP744w9LnRaR3XF3kqOLlxMA67sd3mAUMHvjIWjqGhEdpMa/7uoudiQiEplEEARBzABxcXGIjY3FihUrAABGoxHBwcGYOXMm5s6de9n+AQEBmDdvHqZPn27aNmbMGKhUKqxfv/6KX8fT0xOvv/46HnvssWtm0mq1UKvV0Gg0cHPj3SFE12vmJxn4KvMsnknsgelW9Dytt9JPYMn243CWy/Dtk7egi5ez2JGIqB205Pe3qCNADQ0NOHDgABISEkzbpFIpEhISsHv37mbfo9PpoFQqzbapVCrs2rWr2f0NBgM+/fRT1NTUID4+/orH1Gq1Zi8iajnTRGgrWhH6QP55LEs/AQD49+hIlh8iAiByAaqoqIDBYICvr6/Zdl9fX5SUlDT7nsTERCxZsgQnTpyA0WjE9u3bsXnzZhQXF5vtl5WVBRcXFygUCkydOhVbtmxBr17Nr/S6ePFiqNVq0ys4OLhtTpDIzvQJtK4VoTV1jZj1ySEYjAJG9w3E6L5BYkciIish+hygllq2bBnCw8MREREBuVyOGTNmICkpCVKp+an06NEDhw4dwp49ezBt2jRMnDgR2dnZzR4zJSUFGo3G9CosLLTEqRB1OJGBakglQIm2HmXaelGzCIKA57ZkoaiyDp09nbBoVG9R8xCRdRG1AHl7e0Mmk6G0tNRse2lpKfz8mn8ooY+PD7Zu3Yqamhrk5+cjJycHLi4uCA0NNdtPLpejW7du6N+/PxYvXozo6GgsW7as2WMqFArTHWNNLyJqOWeFA7p1cgEg/npA/9t/Bt8cLoaDVIK3xvWFq9JR1DxEZF1ELUByuRz9+/dHenq6aZvRaER6evoV5+s0USqVCAwMhF6vx6ZNmzBq1Kir7m80GqHT6dokNxFdmTWsB3SyvBoLvrx412fyXd0Rc+lZZURETRzEDpCcnIyJEydiwIABGDhwIJYuXYqamhokJSUBACZMmIDAwEAsXrwYALBnzx4UFRUhJiYGRUVFWLhwIYxGI+bMmWM6ZkpKCoYNG4bOnTujqqoKGzZswI4dO7Bt2zZRzpHInkQHqfH5gTOijQDp9AbM+iQDdY0GDArzwtRbw0TJQUTWTfQCNHbsWJSXl2P+/PkoKSlBTEwM0tLSTBOjCwoKzOb31NfXIzU1FXl5eXBxccHw4cOxbt06uLu7m/YpKyvDhAkTUFxcDLVajaioKGzbtg133nmnpU+PyO78dQRIEASLP2ri9bRj+OOsFh5OjnhzbAykUj7qgoguJ/o6QNaI6wARtZ5Ob0Dkgm1oNAj4+Zkh6HxpcURL2HGsDJPW7AMArJ4wAAm9fK/xDiLqSGxmHSAi6ngUDjL09L/4gyfTgvOAyqt0ePp/mQCAifFdWH6I6KpYgIiozTU9F8xSE6GNRgH/+l8mKqobEOHnipThPS3ydYnIdrEAEVGb+3MekGUmQn/w6yn8fLwcCgcplo/rC6WjzCJfl4hsFwsQEbW56EsF6EiRBgZj+04zPFKkwatpOQCA5+/uhXBf13b9ekTUMbAAEVGb69bJBSpHGWoaDMgrr263r1Oj02PWJxloNAi4q5cvxsd1brevRUQdCwsQEbU5mVSCyMCmidDtdxnsha/+QF5FDfzclHh1TJTFb7knItvFAkRE7aK9V4T++vBZfLb/DCQSYOlDMfBwlrfL1yGijokFiIjaRdOdYO0xAlR4vhYpm7MAADOGdMNNoV5t/jWIqGNjASKidtE0EfroWS0a9MY2O67eYMSTn2agql6Pfp3d8eQd4W12bCKyHyxARNQuung5Qa1yRIPBiGMlVW123LfST+BgQSVcFQ5Y9lBfOMj4Y4yIWo4/OYioXUgkkr9cBqtsk2PuyTuHFT/lAgBeuq8Pgj0t95gNIupYWICIqN205YrQlbUNmL3xEIwCcH//INwTHXDDxyQi+8UCRETtpq1WhBYEAXM3ZaFYU4+u3s544Z7ebZCOiOwZCxARtZumidDHS6tQ12Bo9XE+2VuItD9K4CiT4K2H+sJZ4dBGCYnIXrEAEVG78VMr0clVAaMA/HG2daNAJ0qrsOjrPwAAcxIj0OfSZTUiohvBAkRE7arpMlhr1gOqbzRg5icZqG804pZwbzx2c9c2TkdE9ooFiIja1Y1MhH7luxzklFTB20WONx6MhlTKR10QUdtgASKidvVnAWrZCFD60VJ8+NtpAMDrD0Sjk6uyraMRkR1jASKidtV0CexURQ00dY3X9Z4ybT2e+fwwAGDy4K4Y0qNTe8UjIjvFAkRE7crTWY5gTxUAIOs6RoGMRgHJn2XifE0Devm74dlhPdo7IhHZIRYgImp3f06Errzmvu/+kodduRVQOcrw1ri+UDjI2jccEdklFiAianfR1zkROrOwEv/ZdgwAsPCeXujWyaW9oxGRnWIBIqJ2dz0rQlfr9Jj1aQb0RgEj+vjjwQHBFkpHRPaIBYiI2l1koBoSCVCsqUdZVX2z+8zfegT552oR6K7Cy/f1gUTCW96JqP2wABFRu3NROKCbz8XLWYcLLx8F2ppRhM0ZRZBKgGUPxUCtcrR0RCKyMyxARGQRpstgReYFqOBcLVK3HgEAzLojHANCPC0djYjsEAsQEVlEdPDlE6EbDUbM/DQD1To9YkM8MGNIN5HSEZG9YQEiIovoE/jnitCCIAAA3tx+HJmFlXBTOmDpQ33hIOOPJCKyDAexAxCRfejp7wYHqQTnaxpw5kIdCs/X4u2dJwEAr4yJQqC7SuSERGRP+M8tIrIIpaMMEf6uAICdx8vx1GeHIAjAuIHBGN7HX+R0RGRvWICIyGKaJkIv+iobpVodwnyc8fzdvcQNRUR2ySoK0MqVKxESEgKlUom4uDjs3bv3ivs2NjZi0aJFCAsLg1KpRHR0NNLS0sz2Wbx4MWJjY+Hq6opOnTrh3nvvxbFjx9r7NIjoGppWhG4wGCGXSbF8XD84yXklnogsT/QCtHHjRiQnJ2PBggU4ePAgoqOjkZiYiLKysmb3T01NxapVq7B8+XJkZ2dj6tSpGD16NDIyMkz77Ny5E9OnT8fvv/+O7du3o7GxEXfddRdqamosdVpE1IymESAAmDssAr0C3MQLQ0R2TSI03Y4hkri4OMTGxmLFihUAAKPRiODgYMycORNz5869bP+AgADMmzcP06dPN20bM2YMVCoV1q9f3+zXKC8vR6dOnbBz507ceuut18yk1WqhVquh0Wjg5sYf0ERtRRAEzNt6BE6OMswb0ZOrPRNRm2rJ729Rx54bGhpw4MABpKSkmLZJpVIkJCRg9+7dzb5Hp9NBqVSabVOpVNi1a9cVv45Gc3HhNU9PLrBGJCaJRIKXR/cROwYRkbiXwCoqKmAwGODr62u23dfXFyUlJc2+JzExEUuWLMGJEydgNBqxfft2bN68GcXFxc3ubzQaMXv2bAwePBiRkZHN7qPT6aDVas1eRERE1HGJPgeopZYtW4bw8HBERERALpdjxowZSEpKglTa/KlMnz4dR44cwaeffnrFYy5evBhqtdr0Cg7mU6iJiIg6MlELkLe3N2QyGUpLS822l5aWws/Pr9n3+Pj4YOvWraipqUF+fj5ycnLg4uKC0NDQy/adMWMGvv76a/z0008ICgq6Yo6UlBRoNBrTq7Cw8MZOjIiIiKyaqAVILpejf//+SE9PN20zGo1IT09HfHz8Vd+rVCoRGBgIvV6PTZs2YdSoUabPCYKAGTNmYMuWLfjxxx/RtWvXqx5LoVDAzc3N7EVEREQdl+gLcCQnJ2PixIkYMGAABg4ciKVLl6KmpgZJSUkAgAkTJiAwMBCLFy8GAOzZswdFRUWIiYlBUVERFi5cCKPRiDlz5piOOX36dGzYsAFffPEFXF1dTfOJ1Go1VCout09ERGTvRC9AY8eORXl5OebPn4+SkhLExMQgLS3NNDG6oKDAbH5PfX09UlNTkZeXBxcXFwwfPhzr1q2Du7u7aZ+3334bAPB///d/Zl9rzZo1mDRpUnufEhEREVk50dcBskZcB4iIiMj2tOT3t83dBUZERER0o1iAiIiIyO6wABEREZHdYQEiIiIiu8MCRERERHaHBYiIiIjsDgsQERER2R3RF0K0Rk1LI/Gp8ERERLaj6ff29SxxyALUjKqqKgDgU+GJiIhsUFVVFdRq9VX34UrQzTAajTh79ixcXV0hkUja9NharRbBwcEoLCy0y1Wm7f38AX4PeP72ff4Avwf2fv5A+30PBEFAVVUVAgICzB6j1RyOADVDKpUiKCioXb+GvT913t7PH+D3gOdv3+cP8Htg7+cPtM/34FojP004CZqIiIjsDgsQERER2R0WIAtTKBRYsGABFAqF2FFEYe/nD/B7wPO37/MH+D2w9/MHrON7wEnQREREZHc4AkRERER2hwWIiIiI7A4LEBEREdkdFiALWLx4MWJjY+Hq6opOnTrh3nvvxbFjx8SOZVFvv/02oqKiTGs+xMfH47vvvhM7lmheeeUVSCQSzJ49W+woFrNw4UJIJBKzV0REhNixLKqoqAiPPPIIvLy8oFKp0KdPH+zfv1/sWBYTEhJy2Z8BiUSC6dOnix3NIgwGA55//nl07doVKpUKYWFhePHFF6/rsQ0dRVVVFWbPno0uXbpApVJh0KBB2LdvnyhZuBCiBezcuRPTp09HbGws9Ho9nnvuOdx1113Izs6Gs7Oz2PEsIigoCK+88grCw8MhCALWrl2LUaNGISMjA7179xY7nkXt27cPq1atQlRUlNhRLK5379744YcfTB87ONjPj6ALFy5g8ODBGDJkCL777jv4+PjgxIkT8PDwEDuaxezbtw8Gg8H08ZEjR3DnnXfigQceEDGV5bz66qt4++23sXbtWvTu3Rv79+9HUlIS1Go1Zs2aJXY8i5gyZQqOHDmCdevWISAgAOvXr0dCQgKys7MRGBho2TACWVxZWZkAQNi5c6fYUUTl4eEhrF69WuwYFlVVVSWEh4cL27dvF2677TbhySefFDuSxSxYsECIjo4WO4Zonn32WeHmm28WO4ZVefLJJ4WwsDDBaDSKHcUiRowYIUyePNls23333SeMHz9epESWVVtbK8hkMuHrr782296vXz9h3rx5Fs/DS2Ai0Gg0AABPT0+Rk4jDYDDg008/RU1NDeLj48WOY1HTp0/HiBEjkJCQIHYUUZw4cQIBAQEIDQ3F+PHjUVBQIHYki/nyyy8xYMAAPPDAA+jUqRP69u2L9957T+xYomloaMD69esxefLkNn/morUaNGgQ0tPTcfz4cQBAZmYmdu3ahWHDhomczDL0ej0MBgOUSqXZdpVKhV27dlk+kMUrl50zGAzCiBEjhMGDB4sdxeIOHz4sODs7CzKZTFCr1cI333wjdiSL+uSTT4TIyEihrq5OEATB7kaAvv32W+Gzzz4TMjMzhbS0NCE+Pl7o3LmzoNVqxY5mEQqFQlAoFEJKSopw8OBBYdWqVYJSqRQ+/PBDsaOJYuPGjYJMJhOKiorEjmIxBoNBePbZZwWJRCI4ODgIEolEePnll8WOZVHx8fHCbbfdJhQVFQl6vV5Yt26dIJVKhe7du1s8CwuQhU2dOlXo0qWLUFhYKHYUi9PpdMKJEyeE/fv3C3PnzhW8vb2FP/74Q+xYFlFQUCB06tRJyMzMNG2ztwL0dxcuXBDc3Nzs5jKoo6OjEB8fb7Zt5syZwk033SRSInHdddddwt133y12DIv65JNPhKCgIOGTTz4RDh8+LHz00UeCp6enXZXg3Nxc4dZbbxUACDKZTIiNjRXGjx8vREREWDwLC5AFTZ8+XQgKChLy8vLEjmIV7rjjDuGJJ54QO4ZFbNmyxfQXvukFQJBIJIJMJhP0er3YEUUxYMAAYe7cuWLHsIjOnTsLjz32mNm2//73v0JAQIBIicRz+vRpQSqVClu3bhU7ikUFBQUJK1asMNv24osvCj169BApkXiqq6uFs2fPCoIgCA8++KAwfPhwi2fgHCALEAQBM2bMwJYtW/Djjz+ia9euYkeyCkajETqdTuwYFnHHHXcgKysLhw4dMr0GDBiA8ePH49ChQ5DJZGJHtLjq6mqcPHkS/v7+YkexiMGDB1+2/MXx48fRpUsXkRKJZ82aNejUqRNGjBghdhSLqq2thVRq/mtXJpPBaDSKlEg8zs7O8Pf3x4ULF7Bt2zaMGjXK4hns5x5UEU2fPh0bNmzAF198AVdXV5SUlAAA1Go1VCqVyOksIyUlBcOGDUPnzp1RVVWFDRs2YMeOHdi2bZvY0SzC1dUVkZGRZtucnZ3h5eV12faO6umnn8bIkSPRpUsXnD17FgsWLIBMJsO4cePEjmYRTz31FAYNGoSXX34ZDz74IPbu3Yt3330X7777rtjRLMpoNGLNmjWYOHGiXS2DAAAjR47ESy+9hM6dO6N3797IyMjAkiVLMHnyZLGjWcy2bdsgCAJ69OiB3NxcPPPMM4iIiEBSUpLlw1h8zMkOAWj2tWbNGrGjWczkyZOFLl26CHK5XPDx8RHuuOMO4fvvvxc7lqjsbQ7Q2LFjBX9/f0EulwuBgYHC2LFjhdzcXLFjWdRXX30lREZGCgqFQoiIiBDeffddsSNZ3LZt2wQAwrFjx8SOYnFarVZ48sknhc6dOwtKpVIIDQ0V5s2bJ+h0OrGjWczGjRuF0NBQQS6XC35+fsL06dOFyspKUbLwafBERERkdzgHiIiIiOwOCxARERHZHRYgIiIisjssQERERGR3WICIiIjI7rAAERERkd1hASIiIiK7wwJEREREdocFiIisXklJCe688044OzvD3d1d7DhE1AGwABGR1XvzzTdRXFyMQ4cO4fjx42123JCQECxdurTNjkdEtsO+nkRHRDbp5MmT6N+/P8LDw8WO0qyGhgbI5XKxYxBRC3AEiIgs4v/+7/8wa9YszJkzB56envDz88PChQuv+b6QkBBs2rQJH330ESQSCSZNmgQAqKysxJQpU+Dj4wM3NzfcfvvtyMzMNL3v5MmTGDVqFHx9feHi4oLY2Fj88MMPZnny8/Px1FNPQSKRQCKRAAAWLlyImJgYswxLly5FSEiI6eNJkybh3nvvxUsvvYSAgAD06NEDAFBYWIgHH3wQ7u7u8PT0xKhRo3D69GnT+3bs2IGBAweaLuUNHjwY+fn5LftGElGbYAEiIotZu3YtnJ2dsWfPHrz22mtYtGgRtm/fftX37Nu3D0OHDsWDDz6I4uJiLFu2DADwwAMPoKysDN999x0OHDiAfv364Y477sD58+cBANXV1Rg+fDjS09ORkZGBoUOHYuTIkSgoKAAAbN68GUFBQVi0aBGKi4tRXFzconNJT0/HsWPHsH37dnz99ddobGxEYmIiXF1d8csvv+DXX3+Fi4sLhg4dioaGBuj1etx777247bbbcPjwYezevRtPPPGEqXgRkWXxEhgRWUxUVBQWLFgAAAgPD8eKFSuQnp6OO++884rv8fHxgUKhgEqlgp+fHwBg165d2Lt3L8rKyqBQKAAA//nPf7B161Z8/vnneOKJJxAdHY3o6GjTcV588UVs2bIFX375JWbMmAFPT0/IZDK4urqajtsSzs7OWL16tenS1/r162E0GrF69WpTqVmzZg3c3d2xY8cODBgwABqNBnfffTfCwsIAAD179mzx1yWitsERICKymKioKLOP/f39UVZW1uLjZGZmorq6Gl5eXnBxcTG9Tp06hZMnTwK4OAL09NNPo2fPnnB3d4eLiwuOHj1qGgG6UX369DGb95OZmYnc3Fy4urqa8nh6eqK+vh4nT56Ep6cnJk2ahMTERIwcORLLli1r8agTEbUdjgARkcU4OjqafSyRSGA0Glt8nOrqavj7+2PHjh2Xfa7pNvmnn34a27dvx3/+8x9069YNKpUK999/PxoaGq56bKlUCkEQzLY1NjZetp+zs/Nlmfr374+PP/74sn19fHwAXBwRmjVrFtLS0rBx40akpqZi+/btuOmmm66aiYjaHgsQEdmcfv36oaSkBA4ODmaTk//q119/xaRJkzB69GgAFwvKXyckA4BcLofBYDDb5uPjg5KSEgiCYLqUdejQoevKtHHjRnTq1Alubm5X3K9v377o27cvUlJSEB8fjw0bNrAAEYmAl8CIyOYkJCQgPj4e9957L77//nucPn0av/32G+bNm4f9+/cDuDjHaPPmzTh06BAyMzPx8MMPXzbaFBISgp9//hlFRUWoqKgAcPHusPLycrz22ms4efIkVq5cie++++6amcaPHw9vb2+MGjUKv/zyC06dOoUdO3Zg1qxZOHPmDE6dOoWUlBTs3r0b+fn5+P7773HixAnOAyISCQsQEdkciUSCb7/9FrfeeiuSkpLQvXt3PPTQQ8jPz4evry8AYMmSJfDw8MCgQYMwcuRIJCYmol+/fmbHWbRoEU6fPo2wsDDTZaqePXviv//9L1auXIno6Gjs3bsXTz/99DUzOTk54eeff0bnzp1x3333oWfPnnjsscdQX18PNzc3ODk5IScnB2PGjEH37t3xxBNPYPr06fjHP/7R9t8gIromifD3i91EREREHRxHgIiIiMjusAARkag+/vhjs1vZ//rq3bu32PGIqIPiJTAiElVVVRVKS0ub/ZyjoyO6dOli4UREZA9YgIiIiMju8BIYERER2R0WICIiIrI7LEBERERkd1iAiIiIyO6wABEREZHdYQEiIiIiu8MCRERERHaHBYiIiIjszv8DZgkN4fc4/zsAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -308,41 +188,205 @@ ], "source": [ "sns.lineplot(data=sim_df, \n", - " x='n_trials',\n", - " y='metric', hue='n_features')" + " x='n_features',\n", + " y='metric')#, hue='n_features')" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "1d2dda2d", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-10T05:45:07.904380Z", + "start_time": "2024-04-10T05:45:07.847512Z" + } + }, + "outputs": [], + "source": [ + "def index_double_pass_trials(data_df, trial_id='trial',double_pass_id='double_pass_id',value_id='stim_parameter_id'):\n", + " \n", + " # represent the several values of a given trial (ex. 6 features for interval 1, 6 features for interval 2) as a frozenset\n", + " frozen_set_df = data_df.groupby(trial_id).agg({value_id: lambda group: tuple(group)}).reset_index()\n", + "\n", + " # count how many trials have each unique pair of stimuli\n", + " pass_count_df = frozen_set_df.groupby(value_id).agg({trial_id: ['nunique','first','last']})\n", + " pass_count_df.columns = [\"_\".join(x) for x in pass_count_df.columns.ravel()]\n", + " pass_count_df = pass_count_df.reset_index()\n", + "\n", + " # identify pairs of stimuli that have 2 trials (i.e. for which there has been a double pass)\n", + " double_pass_df = pass_count_df[pass_count_df['%s_nunique'%trial_id]==2].reset_index(drop=True)\n", + " \n", + " # assign unique id\n", + " double_pass_df[double_pass_id] = double_pass_df.index\n", + "\n", + " # join to base dataset\n", + " double_pass_df = double_pass_df.melt(id_vars=double_pass_id, \n", + " value_vars=['%s_first'%trial_id,'%s_last'%trial_id], \n", + " var_name='%s_type'%trial_id, \n", + " value_name=trial_id)\n", + " data_df= pd.merge(data_df, double_pass_df[[trial_id, double_pass_id]], \n", + " how=\"left\", on=trial_id)\n", + " return data_df " ] }, { "cell_type": "code", - "execution_count": 67, - "id": "f65f5044", + "execution_count": 75, + "id": "6cf44e37", "metadata": { "ExecuteTime": { - "end_time": "2024-04-09T17:49:49.786914Z", - "start_time": "2024-04-09T17:49:49.783924Z" + "end_time": "2024-04-10T05:45:08.457461Z", + "start_time": "2024-04-10T05:45:08.403620Z" + } + }, + "outputs": [], + "source": [ + "def compute_prob_agreement(data_df, trial_id='trial', response_id='response', order_id='stim_order', double_pass_id='double_pass_id'):\n", + " # computes the probability of agreement between two responses to a repeated stimuli on the double pass trials \n", + "\n", + " def same_answer(group, trial_id, response_id): \n", + " d = group.groupby(trial_id).agg({response_id: lambda group: tuple(group)}).reset_index()\n", + " return d.response.nunique()==1\n", + " \n", + " # compute agreements for each double_pass trial\n", + " agrees = data_df.groupby(double_pass_id).apply(lambda group: same_answer(group, trial_id, response_id))\n", + " \n", + " # return agreement probability\n", + " return agrees.sum()/len(agrees)" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "id": "99e19273", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-10T06:12:08.125017Z", + "start_time": "2024-04-10T06:12:08.066174Z" } }, "outputs": [ { - "name": "stdout", + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data_df.trial.iloc[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "0712267b", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-10T06:14:59.604305Z", + "start_time": "2024-04-10T06:14:59.550411Z" + } + }, + "outputs": [], + "source": [ + "def compute_prob_interval1(data_df, trial_id='trial', response_id='response', stim_id='stim_order', double_pass_id='double_pass_id', p_int_1_identifier = 'p_int1'):\n", + " ''' Computes probability that each subject defined unique in session_identifiers responds true to the first interval, i.e. to the stimulus in each trial identified by order_identifier = 0\n", + " This computes p_int1 only on the subset of repeated trials, and assumes that the dataset already has a column (e.g. double_pass_id) identifying repeated trials. Use utils.index_double_pass_trials to create that column if doesn't exist. \n", + " '''\n", + "\n", + " def first_answer(group, stim_id, response_id): \n", + " resp = group.sort_values(by=stim_id)[response_id].iloc[0]\n", + " return resp==1\n", + " \n", + " # compute agreements for each double_pass trial\n", + " firsts = data_df[data_df[double_pass_id].notna()].groupby(trial_id).apply(lambda group: first_answer(group, stim_id, response_id))\n", + " \n", + " return firsts.sum()/len(firsts)" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "f93df38c", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-10T06:15:00.751582Z", + "start_time": "2024-04-10T06:15:00.656700Z" + } + }, + "outputs": [ + { + "name": "stderr", "output_type": "stream", "text": [ - "kernel\n", - "internal_noise_std\n", - "criteria\n", - "bla\n" + "C:\\Users\\Aucouturier\\AppData\\Local\\Temp\\ipykernel_18576\\1815507022.py:8: FutureWarning: Index.ravel returning ndarray is deprecated; in a future version this will return a view on self.\n", + " pass_count_df.columns = [\"_\".join(x) for x in pass_count_df.columns.ravel()]\n" ] + }, + { + "data": { + "text/plain": [ + "0.5" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "for k in observer_params: \n", - " print(k)" + "data_df = pd.read_csv('../data/pitch_interrogation/results_subj_20111971.csv')\n", + "data_df = index_double_pass_trials(data_df, trial_id='trial',double_pass_id='double_pass_id',value_id='pitch')\n", + "compute_prob_interval1(data_df, trial_id='trial', response_id='response', stim_id='stim_order', double_pass_id='double_pass_id') \n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "id": "3df8cfe1", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-10T05:29:57.912823Z", + "start_time": "2024-04-10T05:29:57.802132Z" + }, + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.72" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def same_answer(group, trial_id='trial', response_id='response'):\n", + " \n", + " d = group.groupby(trial_id).agg({response_id: lambda group: tuple(group)}).reset_index()\n", + " return d.response.nunique()==1\n", + " \n", + "\n", + "d = data_df.groupby('double_pass_id').apply(lambda group: same_answer(group))\n", + "d.sum()/len(d)\n", + "\n", + "\n" ] }, { "cell_type": "code", "execution_count": null, - "id": "62579d26", + "id": "612dc5a9", "metadata": {}, "outputs": [], "source": [] From 3e42e89e6251203ad24b56f13668d480c61e8a0e Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Wed, 10 Apr 2024 08:58:09 +0200 Subject: [PATCH 13/17] made kernel_distance with keyword --- python/palin/simulation/kernel_distance.py | 39 ++++++++++++++++++++++ 1 file changed, 39 insertions(+) create mode 100644 python/palin/simulation/kernel_distance.py diff --git a/python/palin/simulation/kernel_distance.py b/python/palin/simulation/kernel_distance.py new file mode 100644 index 0000000..0789e27 --- /dev/null +++ b/python/palin/simulation/kernel_distance.py @@ -0,0 +1,39 @@ + +from .analyser import Analyser +from palin.metrics import metrics as me + +class KernelDistance(Analyser): + + def __init__(self, kernel_extractor, distance='CORR'): + self.kernel_extractor = kernel_extractor + self.distance = distance + + def analyse(self, experiment, participant, participant_responses): + + true_kernel = self.kernel_extractor.normalize_kernel(participant.kernel) + + estimated_kernel = self.estimate_kernel(experiment, participant_responses) + + return self.compute_distance(estimated_kernel, true_kernel) + + def estimate_kernel(self, experiment, participant_responses, normalize=True): + + responses_df = self.to_df(experiment, participant_responses) + + kernel_df = self.kernel_extractor.extract_single_kernel(data_df = responses_df, + feature_id = 'feature', value_id = 'value', response_id = 'response') + + if normalize: + kernel_df = self.kernel_extractor.normalize_kernel(kernel_df) + + return list(kernel_df.kernel_value) + + def normalize_kernel(self, kernel): + + return self.kernel_extractor.normalize_kernel(kernel) + + def compute_distance(self, kernel_1, kernel_2): + return me.kernel_distance(kernel_1, kernel_2, type=self.distance) + + + \ No newline at end of file From efbaa7324177999dd4208026c3d27f2ef8c40dd6 Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Thu, 11 Apr 2024 06:22:00 +0200 Subject: [PATCH 14/17] added internal noise in sim --- python/model.csv | 5001 +++++++++++++++++ python/palin/internal_noise/double_pass.py | 78 +- .../__pycache__/simulation.cpython-38.pyc | Bin 2445 -> 2501 bytes python/palin/simulation/analyser.py | 4 +- .../simulation/double_pass_experiment.py | 23 + .../simulation/double_pass_statistics.py | 20 + .../palin/simulation/internal_noise_value.py | 32 + python/palin/simulation/simulation.py | 45 +- python/sandbox.ipynb | 959 +++- 9 files changed, 5963 insertions(+), 199 deletions(-) create mode 100644 python/model.csv create mode 100644 python/palin/simulation/double_pass_experiment.py create mode 100644 python/palin/simulation/double_pass_statistics.py create mode 100644 python/palin/simulation/internal_noise_value.py diff --git a/python/model.csv b/python/model.csv new file mode 100644 index 0000000..2c57d2a --- /dev/null +++ b/python/model.csv @@ -0,0 +1,5001 @@ +,n_trials,n_repeated,trial_type,n_features,external_noise_std,kernel,internal_noise_std,criteria,run,metric +0,100,100,,1,1,[1],0.0,-5,0,"(1.0, 1.0)" +1,100,100,,1,1,[1],0.0,-5,1,"(1.0, 1.0)" +2,100,100,,1,1,[1],0.0,-5,2,"(1.0, 1.0)" +3,100,100,,1,1,[1],0.0,-5,3,"(1.0, 1.0)" +4,100,100,,1,1,[1],0.0,-5,4,"(1.0, 1.0)" +5,100,100,,1,1,[1],0.0,-5,5,"(1.0, 1.0)" +6,100,100,,1,1,[1],0.0,-5,6,"(1.0, 1.0)" +7,100,100,,1,1,[1],0.0,-5,7,"(1.0, 1.0)" +8,100,100,,1,1,[1],0.0,-5,8,"(1.0, 1.0)" +9,100,100,,1,1,[1],0.0,-5,9,"(1.0, 1.0)" +10,100,100,,1,1,[1],0.0,-4,0,"(1.0, 1.0)" +11,100,100,,1,1,[1],0.0,-4,1,"(1.0, 1.0)" +12,100,100,,1,1,[1],0.0,-4,2,"(1.0, 1.0)" +13,100,100,,1,1,[1],0.0,-4,3,"(1.0, 1.0)" +14,100,100,,1,1,[1],0.0,-4,4,"(1.0, 1.0)" +15,100,100,,1,1,[1],0.0,-4,5,"(1.0, 0.99)" +16,100,100,,1,1,[1],0.0,-4,6,"(1.0, 1.0)" +17,100,100,,1,1,[1],0.0,-4,7,"(1.0, 1.0)" +18,100,100,,1,1,[1],0.0,-4,8,"(1.0, 0.99)" +19,100,100,,1,1,[1],0.0,-4,9,"(1.0, 0.97)" +20,100,100,,1,1,[1],0.0,-3,0,"(1.0, 0.98)" +21,100,100,,1,1,[1],0.0,-3,1,"(1.0, 1.0)" +22,100,100,,1,1,[1],0.0,-3,2,"(1.0, 1.0)" +23,100,100,,1,1,[1],0.0,-3,3,"(1.0, 0.99)" +24,100,100,,1,1,[1],0.0,-3,4,"(1.0, 0.98)" +25,100,100,,1,1,[1],0.0,-3,5,"(1.0, 0.99)" +26,100,100,,1,1,[1],0.0,-3,6,"(1.0, 1.0)" +27,100,100,,1,1,[1],0.0,-3,7,"(1.0, 0.99)" +28,100,100,,1,1,[1],0.0,-3,8,"(1.0, 1.0)" +29,100,100,,1,1,[1],0.0,-3,9,"(1.0, 0.98)" +30,100,100,,1,1,[1],0.0,-2,0,"(1.0, 0.89)" +31,100,100,,1,1,[1],0.0,-2,1,"(1.0, 0.89)" +32,100,100,,1,1,[1],0.0,-2,2,"(1.0, 0.9)" +33,100,100,,1,1,[1],0.0,-2,3,"(1.0, 0.92)" +34,100,100,,1,1,[1],0.0,-2,4,"(1.0, 0.93)" +35,100,100,,1,1,[1],0.0,-2,5,"(1.0, 0.92)" +36,100,100,,1,1,[1],0.0,-2,6,"(1.0, 0.89)" +37,100,100,,1,1,[1],0.0,-2,7,"(1.0, 0.9)" +38,100,100,,1,1,[1],0.0,-2,8,"(1.0, 0.9)" +39,100,100,,1,1,[1],0.0,-2,9,"(1.0, 0.95)" +40,100,100,,1,1,[1],0.0,-1,0,"(1.0, 0.78)" +41,100,100,,1,1,[1],0.0,-1,1,"(1.0, 0.74)" +42,100,100,,1,1,[1],0.0,-1,2,"(1.0, 0.83)" +43,100,100,,1,1,[1],0.0,-1,3,"(1.0, 0.82)" +44,100,100,,1,1,[1],0.0,-1,4,"(1.0, 0.72)" +45,100,100,,1,1,[1],0.0,-1,5,"(1.0, 0.83)" +46,100,100,,1,1,[1],0.0,-1,6,"(1.0, 0.85)" +47,100,100,,1,1,[1],0.0,-1,7,"(1.0, 0.79)" +48,100,100,,1,1,[1],0.0,-1,8,"(1.0, 0.76)" +49,100,100,,1,1,[1],0.0,-1,9,"(1.0, 0.74)" +50,100,100,,1,1,[1],0.0,0,0,"(1.0, 0.53)" +51,100,100,,1,1,[1],0.0,0,1,"(1.0, 0.45)" +52,100,100,,1,1,[1],0.0,0,2,"(1.0, 0.44)" +53,100,100,,1,1,[1],0.0,0,3,"(1.0, 0.49)" +54,100,100,,1,1,[1],0.0,0,4,"(1.0, 0.49)" +55,100,100,,1,1,[1],0.0,0,5,"(1.0, 0.53)" +56,100,100,,1,1,[1],0.0,0,6,"(1.0, 0.53)" +57,100,100,,1,1,[1],0.0,0,7,"(1.0, 0.62)" +58,100,100,,1,1,[1],0.0,0,8,"(1.0, 0.57)" +59,100,100,,1,1,[1],0.0,0,9,"(1.0, 0.49)" +60,100,100,,1,1,[1],0.0,1,0,"(1.0, 0.27)" +61,100,100,,1,1,[1],0.0,1,1,"(1.0, 0.22)" +62,100,100,,1,1,[1],0.0,1,2,"(1.0, 0.24)" +63,100,100,,1,1,[1],0.0,1,3,"(1.0, 0.23)" +64,100,100,,1,1,[1],0.0,1,4,"(1.0, 0.24)" +65,100,100,,1,1,[1],0.0,1,5,"(1.0, 0.27)" +66,100,100,,1,1,[1],0.0,1,6,"(1.0, 0.31)" +67,100,100,,1,1,[1],0.0,1,7,"(1.0, 0.31)" +68,100,100,,1,1,[1],0.0,1,8,"(1.0, 0.24)" +69,100,100,,1,1,[1],0.0,1,9,"(1.0, 0.22)" +70,100,100,,1,1,[1],0.0,2,0,"(1.0, 0.07)" +71,100,100,,1,1,[1],0.0,2,1,"(1.0, 0.09)" +72,100,100,,1,1,[1],0.0,2,2,"(1.0, 0.1)" +73,100,100,,1,1,[1],0.0,2,3,"(1.0, 0.09)" +74,100,100,,1,1,[1],0.0,2,4,"(1.0, 0.07)" +75,100,100,,1,1,[1],0.0,2,5,"(1.0, 0.05)" +76,100,100,,1,1,[1],0.0,2,6,"(1.0, 0.07)" +77,100,100,,1,1,[1],0.0,2,7,"(1.0, 0.11)" +78,100,100,,1,1,[1],0.0,2,8,"(1.0, 0.08)" +79,100,100,,1,1,[1],0.0,2,9,"(1.0, 0.07)" +80,100,100,,1,1,[1],0.0,3,0,"(1.0, 0.0)" +81,100,100,,1,1,[1],0.0,3,1,"(1.0, 0.03)" +82,100,100,,1,1,[1],0.0,3,2,"(1.0, 0.01)" +83,100,100,,1,1,[1],0.0,3,3,"(1.0, 0.0)" +84,100,100,,1,1,[1],0.0,3,4,"(1.0, 0.04)" +85,100,100,,1,1,[1],0.0,3,5,"(1.0, 0.03)" +86,100,100,,1,1,[1],0.0,3,6,"(1.0, 0.01)" +87,100,100,,1,1,[1],0.0,3,7,"(1.0, 0.04)" +88,100,100,,1,1,[1],0.0,3,8,"(1.0, 0.02)" +89,100,100,,1,1,[1],0.0,3,9,"(1.0, 0.03)" +90,100,100,,1,1,[1],0.0,4,0,"(1.0, 0.0)" +91,100,100,,1,1,[1],0.0,4,1,"(1.0, 0.0)" +92,100,100,,1,1,[1],0.0,4,2,"(1.0, 0.0)" +93,100,100,,1,1,[1],0.0,4,3,"(1.0, 0.0)" +94,100,100,,1,1,[1],0.0,4,4,"(1.0, 0.0)" +95,100,100,,1,1,[1],0.0,4,5,"(1.0, 0.01)" +96,100,100,,1,1,[1],0.0,4,6,"(1.0, 0.0)" +97,100,100,,1,1,[1],0.0,4,7,"(1.0, 0.01)" +98,100,100,,1,1,[1],0.0,4,8,"(1.0, 0.0)" +99,100,100,,1,1,[1],0.0,4,9,"(1.0, 0.0)" +100,100,100,,1,1,[1],0.1,-5,0,"(1.0, 1.0)" +101,100,100,,1,1,[1],0.1,-5,1,"(1.0, 1.0)" +102,100,100,,1,1,[1],0.1,-5,2,"(1.0, 1.0)" +103,100,100,,1,1,[1],0.1,-5,3,"(1.0, 0.99)" +104,100,100,,1,1,[1],0.1,-5,4,"(1.0, 1.0)" +105,100,100,,1,1,[1],0.1,-5,5,"(1.0, 1.0)" +106,100,100,,1,1,[1],0.1,-5,6,"(1.0, 1.0)" +107,100,100,,1,1,[1],0.1,-5,7,"(1.0, 1.0)" +108,100,100,,1,1,[1],0.1,-5,8,"(1.0, 1.0)" +109,100,100,,1,1,[1],0.1,-5,9,"(1.0, 1.0)" +110,100,100,,1,1,[1],0.1,-4,0,"(1.0, 1.0)" +111,100,100,,1,1,[1],0.1,-4,1,"(1.0, 1.0)" +112,100,100,,1,1,[1],0.1,-4,2,"(1.0, 1.0)" +113,100,100,,1,1,[1],0.1,-4,3,"(1.0, 1.0)" +114,100,100,,1,1,[1],0.1,-4,4,"(1.0, 1.0)" +115,100,100,,1,1,[1],0.1,-4,5,"(1.0, 1.0)" +116,100,100,,1,1,[1],0.1,-4,6,"(1.0, 1.0)" +117,100,100,,1,1,[1],0.1,-4,7,"(0.99, 0.985)" +118,100,100,,1,1,[1],0.1,-4,8,"(1.0, 0.99)" +119,100,100,,1,1,[1],0.1,-4,9,"(1.0, 1.0)" +120,100,100,,1,1,[1],0.1,-3,0,"(1.0, 0.98)" +121,100,100,,1,1,[1],0.1,-3,1,"(1.0, 0.98)" +122,100,100,,1,1,[1],0.1,-3,2,"(1.0, 0.99)" +123,100,100,,1,1,[1],0.1,-3,3,"(1.0, 0.98)" +124,100,100,,1,1,[1],0.1,-3,4,"(0.99, 0.985)" +125,100,100,,1,1,[1],0.1,-3,5,"(0.98, 0.98)" +126,100,100,,1,1,[1],0.1,-3,6,"(1.0, 0.99)" +127,100,100,,1,1,[1],0.1,-3,7,"(1.0, 0.97)" +128,100,100,,1,1,[1],0.1,-3,8,"(1.0, 0.98)" +129,100,100,,1,1,[1],0.1,-3,9,"(1.0, 1.0)" +130,100,100,,1,1,[1],0.1,-2,0,"(0.98, 0.96)" +131,100,100,,1,1,[1],0.1,-2,1,"(0.99, 0.945)" +132,100,100,,1,1,[1],0.1,-2,2,"(0.98, 0.85)" +133,100,100,,1,1,[1],0.1,-2,3,"(0.99, 0.905)" +134,100,100,,1,1,[1],0.1,-2,4,"(0.97, 0.915)" +135,100,100,,1,1,[1],0.1,-2,5,"(1.0, 0.94)" +136,100,100,,1,1,[1],0.1,-2,6,"(0.98, 0.85)" +137,100,100,,1,1,[1],0.1,-2,7,"(1.0, 0.97)" +138,100,100,,1,1,[1],0.1,-2,8,"(1.0, 0.95)" +139,100,100,,1,1,[1],0.1,-2,9,"(0.99, 0.955)" +140,100,100,,1,1,[1],0.1,-1,0,"(0.99, 0.765)" +141,100,100,,1,1,[1],0.1,-1,1,"(0.95, 0.715)" +142,100,100,,1,1,[1],0.1,-1,2,"(0.98, 0.79)" +143,100,100,,1,1,[1],0.1,-1,3,"(0.97, 0.785)" +144,100,100,,1,1,[1],0.1,-1,4,"(1.0, 0.77)" +145,100,100,,1,1,[1],0.1,-1,5,"(0.95, 0.835)" +146,100,100,,1,1,[1],0.1,-1,6,"(0.96, 0.72)" +147,100,100,,1,1,[1],0.1,-1,7,"(0.96, 0.72)" +148,100,100,,1,1,[1],0.1,-1,8,"(0.97, 0.765)" +149,100,100,,1,1,[1],0.1,-1,9,"(0.98, 0.84)" +150,100,100,,1,1,[1],0.1,0,0,"(0.95, 0.555)" +151,100,100,,1,1,[1],0.1,0,1,"(0.97, 0.545)" +152,100,100,,1,1,[1],0.1,0,2,"(0.95, 0.485)" +153,100,100,,1,1,[1],0.1,0,3,"(0.96, 0.49)" +154,100,100,,1,1,[1],0.1,0,4,"(0.93, 0.555)" +155,100,100,,1,1,[1],0.1,0,5,"(0.94, 0.56)" +156,100,100,,1,1,[1],0.1,0,6,"(0.97, 0.485)" +157,100,100,,1,1,[1],0.1,0,7,"(0.94, 0.59)" +158,100,100,,1,1,[1],0.1,0,8,"(0.99, 0.535)" +159,100,100,,1,1,[1],0.1,0,9,"(0.95, 0.475)" +160,100,100,,1,1,[1],0.1,1,0,"(0.98, 0.28)" +161,100,100,,1,1,[1],0.1,1,1,"(0.97, 0.285)" +162,100,100,,1,1,[1],0.1,1,2,"(0.96, 0.23)" +163,100,100,,1,1,[1],0.1,1,3,"(0.98, 0.28)" +164,100,100,,1,1,[1],0.1,1,4,"(0.96, 0.18)" +165,100,100,,1,1,[1],0.1,1,5,"(0.99, 0.285)" +166,100,100,,1,1,[1],0.1,1,6,"(0.95, 0.375)" +167,100,100,,1,1,[1],0.1,1,7,"(1.0, 0.21)" +168,100,100,,1,1,[1],0.1,1,8,"(0.99, 0.295)" +169,100,100,,1,1,[1],0.1,1,9,"(0.97, 0.265)" +170,100,100,,1,1,[1],0.1,2,0,"(1.0, 0.1)" +171,100,100,,1,1,[1],0.1,2,1,"(0.98, 0.07)" +172,100,100,,1,1,[1],0.1,2,2,"(1.0, 0.08)" +173,100,100,,1,1,[1],0.1,2,3,"(1.0, 0.08)" +174,100,100,,1,1,[1],0.1,2,4,"(0.99, 0.125)" +175,100,100,,1,1,[1],0.1,2,5,"(1.0, 0.11)" +176,100,100,,1,1,[1],0.1,2,6,"(0.99, 0.115)" +177,100,100,,1,1,[1],0.1,2,7,"(0.99, 0.045)" +178,100,100,,1,1,[1],0.1,2,8,"(0.98, 0.11)" +179,100,100,,1,1,[1],0.1,2,9,"(1.0, 0.07)" +180,100,100,,1,1,[1],0.1,3,0,"(1.0, 0.02)" +181,100,100,,1,1,[1],0.1,3,1,"(1.0, 0.01)" +182,100,100,,1,1,[1],0.1,3,2,"(1.0, 0.02)" +183,100,100,,1,1,[1],0.1,3,3,"(0.98, 0.04)" +184,100,100,,1,1,[1],0.1,3,4,"(1.0, 0.01)" +185,100,100,,1,1,[1],0.1,3,5,"(0.99, 0.055)" +186,100,100,,1,1,[1],0.1,3,6,"(1.0, 0.03)" +187,100,100,,1,1,[1],0.1,3,7,"(0.99, 0.025)" +188,100,100,,1,1,[1],0.1,3,8,"(1.0, 0.02)" +189,100,100,,1,1,[1],0.1,3,9,"(1.0, 0.0)" +190,100,100,,1,1,[1],0.1,4,0,"(1.0, 0.0)" +191,100,100,,1,1,[1],0.1,4,1,"(1.0, 0.0)" +192,100,100,,1,1,[1],0.1,4,2,"(1.0, 0.0)" +193,100,100,,1,1,[1],0.1,4,3,"(1.0, 0.0)" +194,100,100,,1,1,[1],0.1,4,4,"(1.0, 0.0)" +195,100,100,,1,1,[1],0.1,4,5,"(0.99, 0.005)" +196,100,100,,1,1,[1],0.1,4,6,"(1.0, 0.0)" +197,100,100,,1,1,[1],0.1,4,7,"(1.0, 0.0)" +198,100,100,,1,1,[1],0.1,4,8,"(0.99, 0.005)" +199,100,100,,1,1,[1],0.1,4,9,"(1.0, 0.0)" +200,100,100,,1,1,[1],0.2,-5,0,"(1.0, 1.0)" +201,100,100,,1,1,[1],0.2,-5,1,"(1.0, 1.0)" +202,100,100,,1,1,[1],0.2,-5,2,"(1.0, 1.0)" +203,100,100,,1,1,[1],0.2,-5,3,"(1.0, 1.0)" +204,100,100,,1,1,[1],0.2,-5,4,"(1.0, 1.0)" +205,100,100,,1,1,[1],0.2,-5,5,"(1.0, 1.0)" +206,100,100,,1,1,[1],0.2,-5,6,"(1.0, 1.0)" +207,100,100,,1,1,[1],0.2,-5,7,"(1.0, 1.0)" +208,100,100,,1,1,[1],0.2,-5,8,"(1.0, 1.0)" +209,100,100,,1,1,[1],0.2,-5,9,"(1.0, 1.0)" +210,100,100,,1,1,[1],0.2,-4,0,"(0.99, 0.995)" +211,100,100,,1,1,[1],0.2,-4,1,"(1.0, 1.0)" +212,100,100,,1,1,[1],0.2,-4,2,"(1.0, 1.0)" +213,100,100,,1,1,[1],0.2,-4,3,"(1.0, 1.0)" +214,100,100,,1,1,[1],0.2,-4,4,"(1.0, 1.0)" +215,100,100,,1,1,[1],0.2,-4,5,"(1.0, 0.99)" +216,100,100,,1,1,[1],0.2,-4,6,"(1.0, 1.0)" +217,100,100,,1,1,[1],0.2,-4,7,"(1.0, 1.0)" +218,100,100,,1,1,[1],0.2,-4,8,"(1.0, 0.99)" +219,100,100,,1,1,[1],0.2,-4,9,"(1.0, 1.0)" +220,100,100,,1,1,[1],0.2,-3,0,"(0.99, 0.995)" +221,100,100,,1,1,[1],0.2,-3,1,"(0.98, 0.98)" +222,100,100,,1,1,[1],0.2,-3,2,"(0.99, 0.975)" +223,100,100,,1,1,[1],0.2,-3,3,"(1.0, 1.0)" +224,100,100,,1,1,[1],0.2,-3,4,"(0.98, 0.98)" +225,100,100,,1,1,[1],0.2,-3,5,"(1.0, 0.98)" +226,100,100,,1,1,[1],0.2,-3,6,"(0.99, 0.975)" +227,100,100,,1,1,[1],0.2,-3,7,"(0.99, 0.975)" +228,100,100,,1,1,[1],0.2,-3,8,"(1.0, 0.98)" +229,100,100,,1,1,[1],0.2,-3,9,"(1.0, 0.98)" +230,100,100,,1,1,[1],0.2,-2,0,"(0.97, 0.895)" +231,100,100,,1,1,[1],0.2,-2,1,"(0.95, 0.945)" +232,100,100,,1,1,[1],0.2,-2,2,"(0.98, 0.91)" +233,100,100,,1,1,[1],0.2,-2,3,"(0.98, 0.91)" +234,100,100,,1,1,[1],0.2,-2,4,"(0.97, 0.915)" +235,100,100,,1,1,[1],0.2,-2,5,"(0.99, 0.905)" +236,100,100,,1,1,[1],0.2,-2,6,"(0.97, 0.895)" +237,100,100,,1,1,[1],0.2,-2,7,"(0.98, 0.92)" +238,100,100,,1,1,[1],0.2,-2,8,"(0.99, 0.935)" +239,100,100,,1,1,[1],0.2,-2,9,"(0.97, 0.915)" +240,100,100,,1,1,[1],0.2,-1,0,"(0.92, 0.68)" +241,100,100,,1,1,[1],0.2,-1,1,"(0.96, 0.79)" +242,100,100,,1,1,[1],0.2,-1,2,"(0.95, 0.735)" +243,100,100,,1,1,[1],0.2,-1,3,"(0.98, 0.78)" +244,100,100,,1,1,[1],0.2,-1,4,"(0.98, 0.76)" +245,100,100,,1,1,[1],0.2,-1,5,"(0.95, 0.765)" +246,100,100,,1,1,[1],0.2,-1,6,"(0.95, 0.735)" +247,100,100,,1,1,[1],0.2,-1,7,"(0.95, 0.715)" +248,100,100,,1,1,[1],0.2,-1,8,"(0.97, 0.785)" +249,100,100,,1,1,[1],0.2,-1,9,"(0.97, 0.775)" +250,100,100,,1,1,[1],0.2,0,0,"(0.91, 0.485)" +251,100,100,,1,1,[1],0.2,0,1,"(0.94, 0.52)" +252,100,100,,1,1,[1],0.2,0,2,"(0.93, 0.535)" +253,100,100,,1,1,[1],0.2,0,3,"(0.93, 0.555)" +254,100,100,,1,1,[1],0.2,0,4,"(0.95, 0.505)" +255,100,100,,1,1,[1],0.2,0,5,"(0.98, 0.52)" +256,100,100,,1,1,[1],0.2,0,6,"(0.94, 0.47)" +257,100,100,,1,1,[1],0.2,0,7,"(0.92, 0.48)" +258,100,100,,1,1,[1],0.2,0,8,"(0.97, 0.545)" +259,100,100,,1,1,[1],0.2,0,9,"(0.93, 0.585)" +260,100,100,,1,1,[1],0.2,1,0,"(0.97, 0.265)" +261,100,100,,1,1,[1],0.2,1,1,"(0.96, 0.27)" +262,100,100,,1,1,[1],0.2,1,2,"(0.93, 0.315)" +263,100,100,,1,1,[1],0.2,1,3,"(0.95, 0.185)" +264,100,100,,1,1,[1],0.2,1,4,"(0.92, 0.24)" +265,100,100,,1,1,[1],0.2,1,5,"(0.97, 0.295)" +266,100,100,,1,1,[1],0.2,1,6,"(0.93, 0.215)" +267,100,100,,1,1,[1],0.2,1,7,"(0.92, 0.18)" +268,100,100,,1,1,[1],0.2,1,8,"(0.93, 0.255)" +269,100,100,,1,1,[1],0.2,1,9,"(0.95, 0.215)" +270,100,100,,1,1,[1],0.2,2,0,"(0.99, 0.075)" +271,100,100,,1,1,[1],0.2,2,1,"(0.98, 0.08)" +272,100,100,,1,1,[1],0.2,2,2,"(0.98, 0.06)" +273,100,100,,1,1,[1],0.2,2,3,"(0.97, 0.105)" +274,100,100,,1,1,[1],0.2,2,4,"(0.98, 0.08)" +275,100,100,,1,1,[1],0.2,2,5,"(0.93, 0.105)" +276,100,100,,1,1,[1],0.2,2,6,"(0.97, 0.085)" +277,100,100,,1,1,[1],0.2,2,7,"(1.0, 0.06)" +278,100,100,,1,1,[1],0.2,2,8,"(0.97, 0.075)" +279,100,100,,1,1,[1],0.2,2,9,"(0.98, 0.08)" +280,100,100,,1,1,[1],0.2,3,0,"(0.98, 0.02)" +281,100,100,,1,1,[1],0.2,3,1,"(0.99, 0.025)" +282,100,100,,1,1,[1],0.2,3,2,"(0.99, 0.005)" +283,100,100,,1,1,[1],0.2,3,3,"(1.0, 0.01)" +284,100,100,,1,1,[1],0.2,3,4,"(0.97, 0.015)" +285,100,100,,1,1,[1],0.2,3,5,"(0.99, 0.025)" +286,100,100,,1,1,[1],0.2,3,6,"(0.98, 0.04)" +287,100,100,,1,1,[1],0.2,3,7,"(0.99, 0.015)" +288,100,100,,1,1,[1],0.2,3,8,"(1.0, 0.0)" +289,100,100,,1,1,[1],0.2,3,9,"(0.99, 0.025)" +290,100,100,,1,1,[1],0.2,4,0,"(0.99, 0.005)" +291,100,100,,1,1,[1],0.2,4,1,"(1.0, 0.01)" +292,100,100,,1,1,[1],0.2,4,2,"(1.0, 0.02)" +293,100,100,,1,1,[1],0.2,4,3,"(1.0, 0.0)" +294,100,100,,1,1,[1],0.2,4,4,"(1.0, 0.0)" +295,100,100,,1,1,[1],0.2,4,5,"(1.0, 0.0)" +296,100,100,,1,1,[1],0.2,4,6,"(1.0, 0.0)" +297,100,100,,1,1,[1],0.2,4,7,"(0.99, 0.005)" +298,100,100,,1,1,[1],0.2,4,8,"(1.0, 0.0)" +299,100,100,,1,1,[1],0.2,4,9,"(1.0, 0.0)" +300,100,100,,1,1,[1],0.30000000000000004,-5,0,"(1.0, 1.0)" +301,100,100,,1,1,[1],0.30000000000000004,-5,1,"(1.0, 1.0)" +302,100,100,,1,1,[1],0.30000000000000004,-5,2,"(1.0, 1.0)" +303,100,100,,1,1,[1],0.30000000000000004,-5,3,"(1.0, 1.0)" +304,100,100,,1,1,[1],0.30000000000000004,-5,4,"(1.0, 1.0)" +305,100,100,,1,1,[1],0.30000000000000004,-5,5,"(1.0, 1.0)" +306,100,100,,1,1,[1],0.30000000000000004,-5,6,"(1.0, 1.0)" +307,100,100,,1,1,[1],0.30000000000000004,-5,7,"(1.0, 1.0)" +308,100,100,,1,1,[1],0.30000000000000004,-5,8,"(1.0, 1.0)" +309,100,100,,1,1,[1],0.30000000000000004,-5,9,"(1.0, 1.0)" +310,100,100,,1,1,[1],0.30000000000000004,-4,0,"(1.0, 0.99)" +311,100,100,,1,1,[1],0.30000000000000004,-4,1,"(1.0, 1.0)" +312,100,100,,1,1,[1],0.30000000000000004,-4,2,"(1.0, 0.99)" +313,100,100,,1,1,[1],0.30000000000000004,-4,3,"(1.0, 1.0)" +314,100,100,,1,1,[1],0.30000000000000004,-4,4,"(1.0, 1.0)" +315,100,100,,1,1,[1],0.30000000000000004,-4,5,"(0.99, 0.995)" +316,100,100,,1,1,[1],0.30000000000000004,-4,6,"(1.0, 1.0)" +317,100,100,,1,1,[1],0.30000000000000004,-4,7,"(1.0, 1.0)" +318,100,100,,1,1,[1],0.30000000000000004,-4,8,"(1.0, 1.0)" +319,100,100,,1,1,[1],0.30000000000000004,-4,9,"(1.0, 0.99)" +320,100,100,,1,1,[1],0.30000000000000004,-3,0,"(1.0, 0.99)" +321,100,100,,1,1,[1],0.30000000000000004,-3,1,"(0.99, 0.985)" +322,100,100,,1,1,[1],0.30000000000000004,-3,2,"(0.99, 0.985)" +323,100,100,,1,1,[1],0.30000000000000004,-3,3,"(1.0, 0.99)" +324,100,100,,1,1,[1],0.30000000000000004,-3,4,"(0.99, 0.995)" +325,100,100,,1,1,[1],0.30000000000000004,-3,5,"(0.98, 0.99)" +326,100,100,,1,1,[1],0.30000000000000004,-3,6,"(0.99, 0.995)" +327,100,100,,1,1,[1],0.30000000000000004,-3,7,"(0.99, 0.975)" +328,100,100,,1,1,[1],0.30000000000000004,-3,8,"(0.98, 0.97)" +329,100,100,,1,1,[1],0.30000000000000004,-3,9,"(0.96, 0.98)" +330,100,100,,1,1,[1],0.30000000000000004,-2,0,"(0.96, 0.93)" +331,100,100,,1,1,[1],0.30000000000000004,-2,1,"(0.97, 0.865)" +332,100,100,,1,1,[1],0.30000000000000004,-2,2,"(0.94, 0.92)" +333,100,100,,1,1,[1],0.30000000000000004,-2,3,"(0.94, 0.9)" +334,100,100,,1,1,[1],0.30000000000000004,-2,4,"(0.97, 0.945)" +335,100,100,,1,1,[1],0.30000000000000004,-2,5,"(0.96, 0.91)" +336,100,100,,1,1,[1],0.30000000000000004,-2,6,"(0.97, 0.925)" +337,100,100,,1,1,[1],0.30000000000000004,-2,7,"(0.97, 0.955)" +338,100,100,,1,1,[1],0.30000000000000004,-2,8,"(0.94, 0.88)" +339,100,100,,1,1,[1],0.30000000000000004,-2,9,"(0.91, 0.955)" +340,100,100,,1,1,[1],0.30000000000000004,-1,0,"(0.91, 0.765)" +341,100,100,,1,1,[1],0.30000000000000004,-1,1,"(0.92, 0.78)" +342,100,100,,1,1,[1],0.30000000000000004,-1,2,"(0.92, 0.72)" +343,100,100,,1,1,[1],0.30000000000000004,-1,3,"(0.96, 0.81)" +344,100,100,,1,1,[1],0.30000000000000004,-1,4,"(0.96, 0.69)" +345,100,100,,1,1,[1],0.30000000000000004,-1,5,"(0.93, 0.725)" +346,100,100,,1,1,[1],0.30000000000000004,-1,6,"(0.91, 0.695)" +347,100,100,,1,1,[1],0.30000000000000004,-1,7,"(0.9, 0.71)" +348,100,100,,1,1,[1],0.30000000000000004,-1,8,"(0.85, 0.715)" +349,100,100,,1,1,[1],0.30000000000000004,-1,9,"(0.91, 0.755)" +350,100,100,,1,1,[1],0.30000000000000004,0,0,"(0.85, 0.585)" +351,100,100,,1,1,[1],0.30000000000000004,0,1,"(0.88, 0.59)" +352,100,100,,1,1,[1],0.30000000000000004,0,2,"(0.88, 0.56)" +353,100,100,,1,1,[1],0.30000000000000004,0,3,"(0.94, 0.58)" +354,100,100,,1,1,[1],0.30000000000000004,0,4,"(0.92, 0.56)" +355,100,100,,1,1,[1],0.30000000000000004,0,5,"(0.93, 0.475)" +356,100,100,,1,1,[1],0.30000000000000004,0,6,"(0.91, 0.505)" +357,100,100,,1,1,[1],0.30000000000000004,0,7,"(0.9, 0.46)" +358,100,100,,1,1,[1],0.30000000000000004,0,8,"(0.88, 0.58)" +359,100,100,,1,1,[1],0.30000000000000004,0,9,"(0.96, 0.55)" +360,100,100,,1,1,[1],0.30000000000000004,1,0,"(0.9, 0.34)" +361,100,100,,1,1,[1],0.30000000000000004,1,1,"(0.94, 0.2)" +362,100,100,,1,1,[1],0.30000000000000004,1,2,"(0.88, 0.25)" +363,100,100,,1,1,[1],0.30000000000000004,1,3,"(0.95, 0.255)" +364,100,100,,1,1,[1],0.30000000000000004,1,4,"(0.87, 0.365)" +365,100,100,,1,1,[1],0.30000000000000004,1,5,"(0.95, 0.215)" +366,100,100,,1,1,[1],0.30000000000000004,1,6,"(0.95, 0.275)" +367,100,100,,1,1,[1],0.30000000000000004,1,7,"(0.93, 0.295)" +368,100,100,,1,1,[1],0.30000000000000004,1,8,"(0.96, 0.21)" +369,100,100,,1,1,[1],0.30000000000000004,1,9,"(0.93, 0.255)" +370,100,100,,1,1,[1],0.30000000000000004,2,0,"(0.94, 0.08)" +371,100,100,,1,1,[1],0.30000000000000004,2,1,"(0.96, 0.08)" +372,100,100,,1,1,[1],0.30000000000000004,2,2,"(0.95, 0.075)" +373,100,100,,1,1,[1],0.30000000000000004,2,3,"(1.0, 0.06)" +374,100,100,,1,1,[1],0.30000000000000004,2,4,"(0.99, 0.055)" +375,100,100,,1,1,[1],0.30000000000000004,2,5,"(0.96, 0.06)" +376,100,100,,1,1,[1],0.30000000000000004,2,6,"(0.99, 0.085)" +377,100,100,,1,1,[1],0.30000000000000004,2,7,"(0.98, 0.09)" +378,100,100,,1,1,[1],0.30000000000000004,2,8,"(0.94, 0.11)" +379,100,100,,1,1,[1],0.30000000000000004,2,9,"(0.97, 0.085)" +380,100,100,,1,1,[1],0.30000000000000004,3,0,"(1.0, 0.01)" +381,100,100,,1,1,[1],0.30000000000000004,3,1,"(0.99, 0.025)" +382,100,100,,1,1,[1],0.30000000000000004,3,2,"(1.0, 0.0)" +383,100,100,,1,1,[1],0.30000000000000004,3,3,"(0.99, 0.005)" +384,100,100,,1,1,[1],0.30000000000000004,3,4,"(0.99, 0.025)" +385,100,100,,1,1,[1],0.30000000000000004,3,5,"(1.0, 0.02)" +386,100,100,,1,1,[1],0.30000000000000004,3,6,"(1.0, 0.0)" +387,100,100,,1,1,[1],0.30000000000000004,3,7,"(1.0, 0.03)" +388,100,100,,1,1,[1],0.30000000000000004,3,8,"(0.99, 0.025)" +389,100,100,,1,1,[1],0.30000000000000004,3,9,"(0.98, 0.01)" +390,100,100,,1,1,[1],0.30000000000000004,4,0,"(0.99, 0.005)" +391,100,100,,1,1,[1],0.30000000000000004,4,1,"(1.0, 0.0)" +392,100,100,,1,1,[1],0.30000000000000004,4,2,"(1.0, 0.0)" +393,100,100,,1,1,[1],0.30000000000000004,4,3,"(1.0, 0.0)" +394,100,100,,1,1,[1],0.30000000000000004,4,4,"(0.99, 0.005)" +395,100,100,,1,1,[1],0.30000000000000004,4,5,"(1.0, 0.0)" +396,100,100,,1,1,[1],0.30000000000000004,4,6,"(1.0, 0.0)" +397,100,100,,1,1,[1],0.30000000000000004,4,7,"(0.99, 0.005)" +398,100,100,,1,1,[1],0.30000000000000004,4,8,"(1.0, 0.0)" +399,100,100,,1,1,[1],0.30000000000000004,4,9,"(0.99, 0.005)" +400,100,100,,1,1,[1],0.4,-5,0,"(1.0, 1.0)" +401,100,100,,1,1,[1],0.4,-5,1,"(1.0, 1.0)" +402,100,100,,1,1,[1],0.4,-5,2,"(1.0, 1.0)" +403,100,100,,1,1,[1],0.4,-5,3,"(1.0, 1.0)" +404,100,100,,1,1,[1],0.4,-5,4,"(1.0, 1.0)" +405,100,100,,1,1,[1],0.4,-5,5,"(1.0, 1.0)" +406,100,100,,1,1,[1],0.4,-5,6,"(1.0, 1.0)" +407,100,100,,1,1,[1],0.4,-5,7,"(1.0, 1.0)" +408,100,100,,1,1,[1],0.4,-5,8,"(1.0, 1.0)" +409,100,100,,1,1,[1],0.4,-5,9,"(1.0, 1.0)" +410,100,100,,1,1,[1],0.4,-4,0,"(0.99, 0.995)" +411,100,100,,1,1,[1],0.4,-4,1,"(0.98, 0.99)" +412,100,100,,1,1,[1],0.4,-4,2,"(1.0, 0.99)" +413,100,100,,1,1,[1],0.4,-4,3,"(1.0, 1.0)" +414,100,100,,1,1,[1],0.4,-4,4,"(1.0, 1.0)" +415,100,100,,1,1,[1],0.4,-4,5,"(1.0, 1.0)" +416,100,100,,1,1,[1],0.4,-4,6,"(1.0, 1.0)" +417,100,100,,1,1,[1],0.4,-4,7,"(1.0, 0.99)" +418,100,100,,1,1,[1],0.4,-4,8,"(1.0, 0.99)" +419,100,100,,1,1,[1],0.4,-4,9,"(0.99, 0.995)" +420,100,100,,1,1,[1],0.4,-3,0,"(1.0, 0.98)" +421,100,100,,1,1,[1],0.4,-3,1,"(0.98, 0.96)" +422,100,100,,1,1,[1],0.4,-3,2,"(0.99, 0.975)" +423,100,100,,1,1,[1],0.4,-3,3,"(1.0, 0.99)" +424,100,100,,1,1,[1],0.4,-3,4,"(0.99, 0.975)" +425,100,100,,1,1,[1],0.4,-3,5,"(0.96, 0.95)" +426,100,100,,1,1,[1],0.4,-3,6,"(0.98, 0.96)" +427,100,100,,1,1,[1],0.4,-3,7,"(0.99, 0.975)" +428,100,100,,1,1,[1],0.4,-3,8,"(0.97, 0.985)" +429,100,100,,1,1,[1],0.4,-3,9,"(0.97, 0.965)" +430,100,100,,1,1,[1],0.4,-2,0,"(0.97, 0.955)" +431,100,100,,1,1,[1],0.4,-2,1,"(0.98, 0.91)" +432,100,100,,1,1,[1],0.4,-2,2,"(0.94, 0.94)" +433,100,100,,1,1,[1],0.4,-2,3,"(0.97, 0.935)" +434,100,100,,1,1,[1],0.4,-2,4,"(0.91, 0.875)" +435,100,100,,1,1,[1],0.4,-2,5,"(0.96, 0.95)" +436,100,100,,1,1,[1],0.4,-2,6,"(0.95, 0.885)" +437,100,100,,1,1,[1],0.4,-2,7,"(0.94, 0.93)" +438,100,100,,1,1,[1],0.4,-2,8,"(0.99, 0.915)" +439,100,100,,1,1,[1],0.4,-2,9,"(0.93, 0.915)" +440,100,100,,1,1,[1],0.4,-1,0,"(0.93, 0.785)" +441,100,100,,1,1,[1],0.4,-1,1,"(0.89, 0.725)" +442,100,100,,1,1,[1],0.4,-1,2,"(0.87, 0.775)" +443,100,100,,1,1,[1],0.4,-1,3,"(0.88, 0.76)" +444,100,100,,1,1,[1],0.4,-1,4,"(0.9, 0.71)" +445,100,100,,1,1,[1],0.4,-1,5,"(0.89, 0.755)" +446,100,100,,1,1,[1],0.4,-1,6,"(0.87, 0.645)" +447,100,100,,1,1,[1],0.4,-1,7,"(0.83, 0.725)" +448,100,100,,1,1,[1],0.4,-1,8,"(0.95, 0.725)" +449,100,100,,1,1,[1],0.4,-1,9,"(0.84, 0.74)" +450,100,100,,1,1,[1],0.4,0,0,"(0.85, 0.505)" +451,100,100,,1,1,[1],0.4,0,1,"(0.86, 0.45)" +452,100,100,,1,1,[1],0.4,0,2,"(0.9, 0.56)" +453,100,100,,1,1,[1],0.4,0,3,"(0.91, 0.515)" +454,100,100,,1,1,[1],0.4,0,4,"(0.84, 0.42)" +455,100,100,,1,1,[1],0.4,0,5,"(0.88, 0.48)" +456,100,100,,1,1,[1],0.4,0,6,"(0.87, 0.525)" +457,100,100,,1,1,[1],0.4,0,7,"(0.86, 0.46)" +458,100,100,,1,1,[1],0.4,0,8,"(0.88, 0.42)" +459,100,100,,1,1,[1],0.4,0,9,"(0.87, 0.555)" +460,100,100,,1,1,[1],0.4,1,0,"(0.93, 0.245)" +461,100,100,,1,1,[1],0.4,1,1,"(0.93, 0.275)" +462,100,100,,1,1,[1],0.4,1,2,"(0.92, 0.24)" +463,100,100,,1,1,[1],0.4,1,3,"(0.88, 0.24)" +464,100,100,,1,1,[1],0.4,1,4,"(0.9, 0.29)" +465,100,100,,1,1,[1],0.4,1,5,"(0.93, 0.185)" +466,100,100,,1,1,[1],0.4,1,6,"(0.88, 0.35)" +467,100,100,,1,1,[1],0.4,1,7,"(0.88, 0.28)" +468,100,100,,1,1,[1],0.4,1,8,"(0.9, 0.25)" +469,100,100,,1,1,[1],0.4,1,9,"(0.88, 0.27)" +470,100,100,,1,1,[1],0.4,2,0,"(0.99, 0.055)" +471,100,100,,1,1,[1],0.4,2,1,"(0.92, 0.12)" +472,100,100,,1,1,[1],0.4,2,2,"(0.96, 0.09)" +473,100,100,,1,1,[1],0.4,2,3,"(0.92, 0.12)" +474,100,100,,1,1,[1],0.4,2,4,"(0.94, 0.12)" +475,100,100,,1,1,[1],0.4,2,5,"(0.94, 0.09)" +476,100,100,,1,1,[1],0.4,2,6,"(0.96, 0.1)" +477,100,100,,1,1,[1],0.4,2,7,"(0.94, 0.12)" +478,100,100,,1,1,[1],0.4,2,8,"(0.98, 0.07)" +479,100,100,,1,1,[1],0.4,2,9,"(0.93, 0.085)" +480,100,100,,1,1,[1],0.4,3,0,"(0.98, 0.01)" +481,100,100,,1,1,[1],0.4,3,1,"(0.98, 0.03)" +482,100,100,,1,1,[1],0.4,3,2,"(0.99, 0.005)" +483,100,100,,1,1,[1],0.4,3,3,"(0.97, 0.015)" +484,100,100,,1,1,[1],0.4,3,4,"(0.94, 0.05)" +485,100,100,,1,1,[1],0.4,3,5,"(0.97, 0.035)" +486,100,100,,1,1,[1],0.4,3,6,"(1.0, 0.02)" +487,100,100,,1,1,[1],0.4,3,7,"(0.94, 0.04)" +488,100,100,,1,1,[1],0.4,3,8,"(0.98, 0.02)" +489,100,100,,1,1,[1],0.4,3,9,"(1.0, 0.01)" +490,100,100,,1,1,[1],0.4,4,0,"(1.0, 0.0)" +491,100,100,,1,1,[1],0.4,4,1,"(1.0, 0.0)" +492,100,100,,1,1,[1],0.4,4,2,"(1.0, 0.0)" +493,100,100,,1,1,[1],0.4,4,3,"(1.0, 0.0)" +494,100,100,,1,1,[1],0.4,4,4,"(0.98, 0.01)" +495,100,100,,1,1,[1],0.4,4,5,"(1.0, 0.0)" +496,100,100,,1,1,[1],0.4,4,6,"(0.99, 0.005)" +497,100,100,,1,1,[1],0.4,4,7,"(0.99, 0.005)" +498,100,100,,1,1,[1],0.4,4,8,"(1.0, 0.0)" +499,100,100,,1,1,[1],0.4,4,9,"(0.98, 0.01)" +500,100,100,,1,1,[1],0.5,-5,0,"(1.0, 1.0)" +501,100,100,,1,1,[1],0.5,-5,1,"(1.0, 1.0)" +502,100,100,,1,1,[1],0.5,-5,2,"(1.0, 1.0)" +503,100,100,,1,1,[1],0.5,-5,3,"(1.0, 1.0)" +504,100,100,,1,1,[1],0.5,-5,4,"(1.0, 1.0)" +505,100,100,,1,1,[1],0.5,-5,5,"(1.0, 1.0)" +506,100,100,,1,1,[1],0.5,-5,6,"(1.0, 1.0)" +507,100,100,,1,1,[1],0.5,-5,7,"(1.0, 1.0)" +508,100,100,,1,1,[1],0.5,-5,8,"(1.0, 1.0)" +509,100,100,,1,1,[1],0.5,-5,9,"(1.0, 1.0)" +510,100,100,,1,1,[1],0.5,-4,0,"(1.0, 1.0)" +511,100,100,,1,1,[1],0.5,-4,1,"(1.0, 1.0)" +512,100,100,,1,1,[1],0.5,-4,2,"(1.0, 1.0)" +513,100,100,,1,1,[1],0.5,-4,3,"(0.99, 0.985)" +514,100,100,,1,1,[1],0.5,-4,4,"(0.99, 0.995)" +515,100,100,,1,1,[1],0.5,-4,5,"(0.98, 0.99)" +516,100,100,,1,1,[1],0.5,-4,6,"(0.99, 0.995)" +517,100,100,,1,1,[1],0.5,-4,7,"(1.0, 0.98)" +518,100,100,,1,1,[1],0.5,-4,8,"(1.0, 0.99)" +519,100,100,,1,1,[1],0.5,-4,9,"(0.99, 0.995)" +520,100,100,,1,1,[1],0.5,-3,0,"(0.97, 0.965)" +521,100,100,,1,1,[1],0.5,-3,1,"(0.97, 0.965)" +522,100,100,,1,1,[1],0.5,-3,2,"(0.98, 0.98)" +523,100,100,,1,1,[1],0.5,-3,3,"(0.98, 0.99)" +524,100,100,,1,1,[1],0.5,-3,4,"(0.98, 0.98)" +525,100,100,,1,1,[1],0.5,-3,5,"(0.99, 0.985)" +526,100,100,,1,1,[1],0.5,-3,6,"(0.98, 0.97)" +527,100,100,,1,1,[1],0.5,-3,7,"(0.97, 0.965)" +528,100,100,,1,1,[1],0.5,-3,8,"(0.97, 0.975)" +529,100,100,,1,1,[1],0.5,-3,9,"(0.99, 0.985)" +530,100,100,,1,1,[1],0.5,-2,0,"(0.99, 0.935)" +531,100,100,,1,1,[1],0.5,-2,1,"(0.94, 0.89)" +532,100,100,,1,1,[1],0.5,-2,2,"(0.91, 0.875)" +533,100,100,,1,1,[1],0.5,-2,3,"(0.96, 0.89)" +534,100,100,,1,1,[1],0.5,-2,4,"(0.94, 0.9)" +535,100,100,,1,1,[1],0.5,-2,5,"(0.95, 0.905)" +536,100,100,,1,1,[1],0.5,-2,6,"(0.96, 0.95)" +537,100,100,,1,1,[1],0.5,-2,7,"(0.94, 0.88)" +538,100,100,,1,1,[1],0.5,-2,8,"(0.92, 0.92)" +539,100,100,,1,1,[1],0.5,-2,9,"(0.93, 0.905)" +540,100,100,,1,1,[1],0.5,-1,0,"(0.89, 0.705)" +541,100,100,,1,1,[1],0.5,-1,1,"(0.93, 0.765)" +542,100,100,,1,1,[1],0.5,-1,2,"(0.84, 0.75)" +543,100,100,,1,1,[1],0.5,-1,3,"(0.9, 0.76)" +544,100,100,,1,1,[1],0.5,-1,4,"(0.9, 0.7)" +545,100,100,,1,1,[1],0.5,-1,5,"(0.87, 0.795)" +546,100,100,,1,1,[1],0.5,-1,6,"(0.86, 0.75)" +547,100,100,,1,1,[1],0.5,-1,7,"(0.86, 0.73)" +548,100,100,,1,1,[1],0.5,-1,8,"(0.86, 0.71)" +549,100,100,,1,1,[1],0.5,-1,9,"(0.85, 0.735)" +550,100,100,,1,1,[1],0.5,0,0,"(0.8, 0.49)" +551,100,100,,1,1,[1],0.5,0,1,"(0.82, 0.43)" +552,100,100,,1,1,[1],0.5,0,2,"(0.87, 0.505)" +553,100,100,,1,1,[1],0.5,0,3,"(0.8, 0.52)" +554,100,100,,1,1,[1],0.5,0,4,"(0.82, 0.49)" +555,100,100,,1,1,[1],0.5,0,5,"(0.83, 0.485)" +556,100,100,,1,1,[1],0.5,0,6,"(0.96, 0.56)" +557,100,100,,1,1,[1],0.5,0,7,"(0.82, 0.54)" +558,100,100,,1,1,[1],0.5,0,8,"(0.88, 0.55)" +559,100,100,,1,1,[1],0.5,0,9,"(0.88, 0.42)" +560,100,100,,1,1,[1],0.5,1,0,"(0.85, 0.275)" +561,100,100,,1,1,[1],0.5,1,1,"(0.92, 0.23)" +562,100,100,,1,1,[1],0.5,1,2,"(0.91, 0.275)" +563,100,100,,1,1,[1],0.5,1,3,"(0.9, 0.21)" +564,100,100,,1,1,[1],0.5,1,4,"(0.87, 0.195)" +565,100,100,,1,1,[1],0.5,1,5,"(0.86, 0.22)" +566,100,100,,1,1,[1],0.5,1,6,"(0.8, 0.23)" +567,100,100,,1,1,[1],0.5,1,7,"(0.87, 0.275)" +568,100,100,,1,1,[1],0.5,1,8,"(0.87, 0.235)" +569,100,100,,1,1,[1],0.5,1,9,"(0.87, 0.275)" +570,100,100,,1,1,[1],0.5,2,0,"(0.92, 0.1)" +571,100,100,,1,1,[1],0.5,2,1,"(0.97, 0.085)" +572,100,100,,1,1,[1],0.5,2,2,"(0.95, 0.055)" +573,100,100,,1,1,[1],0.5,2,3,"(0.95, 0.055)" +574,100,100,,1,1,[1],0.5,2,4,"(0.95, 0.055)" +575,100,100,,1,1,[1],0.5,2,5,"(0.97, 0.105)" +576,100,100,,1,1,[1],0.5,2,6,"(0.98, 0.1)" +577,100,100,,1,1,[1],0.5,2,7,"(0.95, 0.045)" +578,100,100,,1,1,[1],0.5,2,8,"(0.97, 0.105)" +579,100,100,,1,1,[1],0.5,2,9,"(0.96, 0.09)" +580,100,100,,1,1,[1],0.5,3,0,"(1.0, 0.01)" +581,100,100,,1,1,[1],0.5,3,1,"(0.96, 0.05)" +582,100,100,,1,1,[1],0.5,3,2,"(0.99, 0.015)" +583,100,100,,1,1,[1],0.5,3,3,"(0.99, 0.015)" +584,100,100,,1,1,[1],0.5,3,4,"(0.96, 0.02)" +585,100,100,,1,1,[1],0.5,3,5,"(1.0, 0.01)" +586,100,100,,1,1,[1],0.5,3,6,"(0.96, 0.03)" +587,100,100,,1,1,[1],0.5,3,7,"(1.0, 0.02)" +588,100,100,,1,1,[1],0.5,3,8,"(1.0, 0.01)" +589,100,100,,1,1,[1],0.5,3,9,"(1.0, 0.02)" +590,100,100,,1,1,[1],0.5,4,0,"(1.0, 0.0)" +591,100,100,,1,1,[1],0.5,4,1,"(1.0, 0.0)" +592,100,100,,1,1,[1],0.5,4,2,"(0.99, 0.005)" +593,100,100,,1,1,[1],0.5,4,3,"(0.99, 0.005)" +594,100,100,,1,1,[1],0.5,4,4,"(0.99, 0.005)" +595,100,100,,1,1,[1],0.5,4,5,"(1.0, 0.0)" +596,100,100,,1,1,[1],0.5,4,6,"(0.99, 0.015)" +597,100,100,,1,1,[1],0.5,4,7,"(0.99, 0.005)" +598,100,100,,1,1,[1],0.5,4,8,"(1.0, 0.01)" +599,100,100,,1,1,[1],0.5,4,9,"(1.0, 0.0)" +600,100,100,,1,1,[1],0.6000000000000001,-5,0,"(1.0, 1.0)" +601,100,100,,1,1,[1],0.6000000000000001,-5,1,"(1.0, 1.0)" +602,100,100,,1,1,[1],0.6000000000000001,-5,2,"(1.0, 1.0)" +603,100,100,,1,1,[1],0.6000000000000001,-5,3,"(1.0, 1.0)" +604,100,100,,1,1,[1],0.6000000000000001,-5,4,"(0.99, 0.995)" +605,100,100,,1,1,[1],0.6000000000000001,-5,5,"(1.0, 1.0)" +606,100,100,,1,1,[1],0.6000000000000001,-5,6,"(1.0, 1.0)" +607,100,100,,1,1,[1],0.6000000000000001,-5,7,"(1.0, 1.0)" +608,100,100,,1,1,[1],0.6000000000000001,-5,8,"(1.0, 1.0)" +609,100,100,,1,1,[1],0.6000000000000001,-5,9,"(1.0, 1.0)" +610,100,100,,1,1,[1],0.6000000000000001,-4,0,"(1.0, 0.99)" +611,100,100,,1,1,[1],0.6000000000000001,-4,1,"(1.0, 1.0)" +612,100,100,,1,1,[1],0.6000000000000001,-4,2,"(1.0, 1.0)" +613,100,100,,1,1,[1],0.6000000000000001,-4,3,"(1.0, 1.0)" +614,100,100,,1,1,[1],0.6000000000000001,-4,4,"(0.99, 0.995)" +615,100,100,,1,1,[1],0.6000000000000001,-4,5,"(0.99, 0.995)" +616,100,100,,1,1,[1],0.6000000000000001,-4,6,"(1.0, 1.0)" +617,100,100,,1,1,[1],0.6000000000000001,-4,7,"(0.99, 0.995)" +618,100,100,,1,1,[1],0.6000000000000001,-4,8,"(0.99, 0.995)" +619,100,100,,1,1,[1],0.6000000000000001,-4,9,"(1.0, 1.0)" +620,100,100,,1,1,[1],0.6000000000000001,-3,0,"(0.97, 0.975)" +621,100,100,,1,1,[1],0.6000000000000001,-3,1,"(0.96, 0.96)" +622,100,100,,1,1,[1],0.6000000000000001,-3,2,"(0.96, 0.97)" +623,100,100,,1,1,[1],0.6000000000000001,-3,3,"(0.98, 0.98)" +624,100,100,,1,1,[1],0.6000000000000001,-3,4,"(0.99, 0.995)" +625,100,100,,1,1,[1],0.6000000000000001,-3,5,"(0.98, 0.97)" +626,100,100,,1,1,[1],0.6000000000000001,-3,6,"(0.99, 0.985)" +627,100,100,,1,1,[1],0.6000000000000001,-3,7,"(0.97, 0.965)" +628,100,100,,1,1,[1],0.6000000000000001,-3,8,"(0.98, 0.97)" +629,100,100,,1,1,[1],0.6000000000000001,-3,9,"(0.99, 0.985)" +630,100,100,,1,1,[1],0.6000000000000001,-2,0,"(0.88, 0.87)" +631,100,100,,1,1,[1],0.6000000000000001,-2,1,"(0.95, 0.905)" +632,100,100,,1,1,[1],0.6000000000000001,-2,2,"(0.9, 0.89)" +633,100,100,,1,1,[1],0.6000000000000001,-2,3,"(0.9, 0.91)" +634,100,100,,1,1,[1],0.6000000000000001,-2,4,"(0.88, 0.87)" +635,100,100,,1,1,[1],0.6000000000000001,-2,5,"(0.96, 0.94)" +636,100,100,,1,1,[1],0.6000000000000001,-2,6,"(0.94, 0.89)" +637,100,100,,1,1,[1],0.6000000000000001,-2,7,"(0.89, 0.905)" +638,100,100,,1,1,[1],0.6000000000000001,-2,8,"(0.94, 0.91)" +639,100,100,,1,1,[1],0.6000000000000001,-2,9,"(0.88, 0.91)" +640,100,100,,1,1,[1],0.6000000000000001,-1,0,"(0.83, 0.755)" +641,100,100,,1,1,[1],0.6000000000000001,-1,1,"(0.88, 0.8)" +642,100,100,,1,1,[1],0.6000000000000001,-1,2,"(0.78, 0.66)" +643,100,100,,1,1,[1],0.6000000000000001,-1,3,"(0.86, 0.75)" +644,100,100,,1,1,[1],0.6000000000000001,-1,4,"(0.84, 0.76)" +645,100,100,,1,1,[1],0.6000000000000001,-1,5,"(0.85, 0.795)" +646,100,100,,1,1,[1],0.6000000000000001,-1,6,"(0.81, 0.765)" +647,100,100,,1,1,[1],0.6000000000000001,-1,7,"(0.86, 0.75)" +648,100,100,,1,1,[1],0.6000000000000001,-1,8,"(0.86, 0.72)" +649,100,100,,1,1,[1],0.6000000000000001,-1,9,"(0.87, 0.765)" +650,100,100,,1,1,[1],0.6000000000000001,0,0,"(0.82, 0.52)" +651,100,100,,1,1,[1],0.6000000000000001,0,1,"(0.79, 0.415)" +652,100,100,,1,1,[1],0.6000000000000001,0,2,"(0.82, 0.46)" +653,100,100,,1,1,[1],0.6000000000000001,0,3,"(0.84, 0.53)" +654,100,100,,1,1,[1],0.6000000000000001,0,4,"(0.72, 0.45)" +655,100,100,,1,1,[1],0.6000000000000001,0,5,"(0.81, 0.555)" +656,100,100,,1,1,[1],0.6000000000000001,0,6,"(0.85, 0.485)" +657,100,100,,1,1,[1],0.6000000000000001,0,7,"(0.83, 0.545)" +658,100,100,,1,1,[1],0.6000000000000001,0,8,"(0.82, 0.42)" +659,100,100,,1,1,[1],0.6000000000000001,0,9,"(0.81, 0.485)" +660,100,100,,1,1,[1],0.6000000000000001,1,0,"(0.86, 0.25)" +661,100,100,,1,1,[1],0.6000000000000001,1,1,"(0.87, 0.245)" +662,100,100,,1,1,[1],0.6000000000000001,1,2,"(0.84, 0.27)" +663,100,100,,1,1,[1],0.6000000000000001,1,3,"(0.9, 0.37)" +664,100,100,,1,1,[1],0.6000000000000001,1,4,"(0.86, 0.35)" +665,100,100,,1,1,[1],0.6000000000000001,1,5,"(0.94, 0.23)" +666,100,100,,1,1,[1],0.6000000000000001,1,6,"(0.89, 0.235)" +667,100,100,,1,1,[1],0.6000000000000001,1,7,"(0.85, 0.225)" +668,100,100,,1,1,[1],0.6000000000000001,1,8,"(0.87, 0.205)" +669,100,100,,1,1,[1],0.6000000000000001,1,9,"(0.83, 0.285)" +670,100,100,,1,1,[1],0.6000000000000001,2,0,"(0.94, 0.13)" +671,100,100,,1,1,[1],0.6000000000000001,2,1,"(0.96, 0.09)" +672,100,100,,1,1,[1],0.6000000000000001,2,2,"(0.89, 0.105)" +673,100,100,,1,1,[1],0.6000000000000001,2,3,"(0.87, 0.115)" +674,100,100,,1,1,[1],0.6000000000000001,2,4,"(0.93, 0.115)" +675,100,100,,1,1,[1],0.6000000000000001,2,5,"(0.95, 0.075)" +676,100,100,,1,1,[1],0.6000000000000001,2,6,"(0.9, 0.14)" +677,100,100,,1,1,[1],0.6000000000000001,2,7,"(0.91, 0.065)" +678,100,100,,1,1,[1],0.6000000000000001,2,8,"(0.92, 0.09)" +679,100,100,,1,1,[1],0.6000000000000001,2,9,"(0.96, 0.1)" +680,100,100,,1,1,[1],0.6000000000000001,3,0,"(0.98, 0.03)" +681,100,100,,1,1,[1],0.6000000000000001,3,1,"(0.97, 0.035)" +682,100,100,,1,1,[1],0.6000000000000001,3,2,"(0.99, 0.015)" +683,100,100,,1,1,[1],0.6000000000000001,3,3,"(0.98, 0.02)" +684,100,100,,1,1,[1],0.6000000000000001,3,4,"(0.97, 0.015)" +685,100,100,,1,1,[1],0.6000000000000001,3,5,"(0.96, 0.04)" +686,100,100,,1,1,[1],0.6000000000000001,3,6,"(0.99, 0.045)" +687,100,100,,1,1,[1],0.6000000000000001,3,7,"(0.99, 0.025)" +688,100,100,,1,1,[1],0.6000000000000001,3,8,"(0.99, 0.005)" +689,100,100,,1,1,[1],0.6000000000000001,3,9,"(0.93, 0.045)" +690,100,100,,1,1,[1],0.6000000000000001,4,0,"(1.0, 0.0)" +691,100,100,,1,1,[1],0.6000000000000001,4,1,"(1.0, 0.0)" +692,100,100,,1,1,[1],0.6000000000000001,4,2,"(0.98, 0.01)" +693,100,100,,1,1,[1],0.6000000000000001,4,3,"(1.0, 0.01)" +694,100,100,,1,1,[1],0.6000000000000001,4,4,"(1.0, 0.0)" +695,100,100,,1,1,[1],0.6000000000000001,4,5,"(0.99, 0.005)" +696,100,100,,1,1,[1],0.6000000000000001,4,6,"(1.0, 0.0)" +697,100,100,,1,1,[1],0.6000000000000001,4,7,"(1.0, 0.0)" +698,100,100,,1,1,[1],0.6000000000000001,4,8,"(0.99, 0.005)" +699,100,100,,1,1,[1],0.6000000000000001,4,9,"(1.0, 0.0)" +700,100,100,,1,1,[1],0.7000000000000001,-5,0,"(1.0, 1.0)" +701,100,100,,1,1,[1],0.7000000000000001,-5,1,"(1.0, 1.0)" +702,100,100,,1,1,[1],0.7000000000000001,-5,2,"(1.0, 1.0)" +703,100,100,,1,1,[1],0.7000000000000001,-5,3,"(1.0, 1.0)" +704,100,100,,1,1,[1],0.7000000000000001,-5,4,"(1.0, 1.0)" +705,100,100,,1,1,[1],0.7000000000000001,-5,5,"(1.0, 1.0)" +706,100,100,,1,1,[1],0.7000000000000001,-5,6,"(1.0, 1.0)" +707,100,100,,1,1,[1],0.7000000000000001,-5,7,"(1.0, 1.0)" +708,100,100,,1,1,[1],0.7000000000000001,-5,8,"(0.98, 0.99)" +709,100,100,,1,1,[1],0.7000000000000001,-5,9,"(0.99, 0.995)" +710,100,100,,1,1,[1],0.7000000000000001,-4,0,"(1.0, 1.0)" +711,100,100,,1,1,[1],0.7000000000000001,-4,1,"(0.99, 0.995)" +712,100,100,,1,1,[1],0.7000000000000001,-4,2,"(0.99, 0.995)" +713,100,100,,1,1,[1],0.7000000000000001,-4,3,"(1.0, 1.0)" +714,100,100,,1,1,[1],0.7000000000000001,-4,4,"(1.0, 0.99)" +715,100,100,,1,1,[1],0.7000000000000001,-4,5,"(0.98, 0.98)" +716,100,100,,1,1,[1],0.7000000000000001,-4,6,"(1.0, 1.0)" +717,100,100,,1,1,[1],0.7000000000000001,-4,7,"(1.0, 1.0)" +718,100,100,,1,1,[1],0.7000000000000001,-4,8,"(0.99, 0.995)" +719,100,100,,1,1,[1],0.7000000000000001,-4,9,"(0.99, 0.995)" +720,100,100,,1,1,[1],0.7000000000000001,-3,0,"(0.99, 0.975)" +721,100,100,,1,1,[1],0.7000000000000001,-3,1,"(0.97, 0.965)" +722,100,100,,1,1,[1],0.7000000000000001,-3,2,"(0.97, 0.975)" +723,100,100,,1,1,[1],0.7000000000000001,-3,3,"(0.94, 0.94)" +724,100,100,,1,1,[1],0.7000000000000001,-3,4,"(0.98, 0.96)" +725,100,100,,1,1,[1],0.7000000000000001,-3,5,"(0.98, 0.96)" +726,100,100,,1,1,[1],0.7000000000000001,-3,6,"(0.98, 0.99)" +727,100,100,,1,1,[1],0.7000000000000001,-3,7,"(0.99, 0.995)" +728,100,100,,1,1,[1],0.7000000000000001,-3,8,"(0.97, 0.975)" +729,100,100,,1,1,[1],0.7000000000000001,-3,9,"(0.98, 0.97)" +730,100,100,,1,1,[1],0.7000000000000001,-2,0,"(0.89, 0.905)" +731,100,100,,1,1,[1],0.7000000000000001,-2,1,"(0.86, 0.86)" +732,100,100,,1,1,[1],0.7000000000000001,-2,2,"(0.92, 0.88)" +733,100,100,,1,1,[1],0.7000000000000001,-2,3,"(0.91, 0.925)" +734,100,100,,1,1,[1],0.7000000000000001,-2,4,"(0.92, 0.92)" +735,100,100,,1,1,[1],0.7000000000000001,-2,5,"(0.96, 0.94)" +736,100,100,,1,1,[1],0.7000000000000001,-2,6,"(0.92, 0.9)" +737,100,100,,1,1,[1],0.7000000000000001,-2,7,"(0.93, 0.905)" +738,100,100,,1,1,[1],0.7000000000000001,-2,8,"(0.94, 0.92)" +739,100,100,,1,1,[1],0.7000000000000001,-2,9,"(0.9, 0.87)" +740,100,100,,1,1,[1],0.7000000000000001,-1,0,"(0.8, 0.66)" +741,100,100,,1,1,[1],0.7000000000000001,-1,1,"(0.86, 0.75)" +742,100,100,,1,1,[1],0.7000000000000001,-1,2,"(0.87, 0.745)" +743,100,100,,1,1,[1],0.7000000000000001,-1,3,"(0.86, 0.75)" +744,100,100,,1,1,[1],0.7000000000000001,-1,4,"(0.85, 0.805)" +745,100,100,,1,1,[1],0.7000000000000001,-1,5,"(0.84, 0.76)" +746,100,100,,1,1,[1],0.7000000000000001,-1,6,"(0.78, 0.74)" +747,100,100,,1,1,[1],0.7000000000000001,-1,7,"(0.83, 0.735)" +748,100,100,,1,1,[1],0.7000000000000001,-1,8,"(0.83, 0.815)" +749,100,100,,1,1,[1],0.7000000000000001,-1,9,"(0.82, 0.68)" +750,100,100,,1,1,[1],0.7000000000000001,0,0,"(0.79, 0.485)" +751,100,100,,1,1,[1],0.7000000000000001,0,1,"(0.8, 0.44)" +752,100,100,,1,1,[1],0.7000000000000001,0,2,"(0.77, 0.435)" +753,100,100,,1,1,[1],0.7000000000000001,0,3,"(0.79, 0.515)" +754,100,100,,1,1,[1],0.7000000000000001,0,4,"(0.73, 0.515)" +755,100,100,,1,1,[1],0.7000000000000001,0,5,"(0.71, 0.465)" +756,100,100,,1,1,[1],0.7000000000000001,0,6,"(0.75, 0.505)" +757,100,100,,1,1,[1],0.7000000000000001,0,7,"(0.85, 0.505)" +758,100,100,,1,1,[1],0.7000000000000001,0,8,"(0.79, 0.515)" +759,100,100,,1,1,[1],0.7000000000000001,0,9,"(0.81, 0.595)" +760,100,100,,1,1,[1],0.7000000000000001,1,0,"(0.9, 0.32)" +761,100,100,,1,1,[1],0.7000000000000001,1,1,"(0.86, 0.27)" +762,100,100,,1,1,[1],0.7000000000000001,1,2,"(0.85, 0.265)" +763,100,100,,1,1,[1],0.7000000000000001,1,3,"(0.79, 0.255)" +764,100,100,,1,1,[1],0.7000000000000001,1,4,"(0.8, 0.23)" +765,100,100,,1,1,[1],0.7000000000000001,1,5,"(0.82, 0.29)" +766,100,100,,1,1,[1],0.7000000000000001,1,6,"(0.78, 0.31)" +767,100,100,,1,1,[1],0.7000000000000001,1,7,"(0.78, 0.31)" +768,100,100,,1,1,[1],0.7000000000000001,1,8,"(0.85, 0.255)" +769,100,100,,1,1,[1],0.7000000000000001,1,9,"(0.84, 0.22)" +770,100,100,,1,1,[1],0.7000000000000001,2,0,"(0.96, 0.06)" +771,100,100,,1,1,[1],0.7000000000000001,2,1,"(0.9, 0.08)" +772,100,100,,1,1,[1],0.7000000000000001,2,2,"(0.98, 0.08)" +773,100,100,,1,1,[1],0.7000000000000001,2,3,"(0.94, 0.1)" +774,100,100,,1,1,[1],0.7000000000000001,2,4,"(0.97, 0.045)" +775,100,100,,1,1,[1],0.7000000000000001,2,5,"(0.89, 0.095)" +776,100,100,,1,1,[1],0.7000000000000001,2,6,"(0.85, 0.095)" +777,100,100,,1,1,[1],0.7000000000000001,2,7,"(0.92, 0.11)" +778,100,100,,1,1,[1],0.7000000000000001,2,8,"(0.89, 0.125)" +779,100,100,,1,1,[1],0.7000000000000001,2,9,"(0.91, 0.115)" +780,100,100,,1,1,[1],0.7000000000000001,3,0,"(0.99, 0.005)" +781,100,100,,1,1,[1],0.7000000000000001,3,1,"(0.97, 0.025)" +782,100,100,,1,1,[1],0.7000000000000001,3,2,"(0.96, 0.04)" +783,100,100,,1,1,[1],0.7000000000000001,3,3,"(0.96, 0.02)" +784,100,100,,1,1,[1],0.7000000000000001,3,4,"(0.99, 0.025)" +785,100,100,,1,1,[1],0.7000000000000001,3,5,"(0.97, 0.035)" +786,100,100,,1,1,[1],0.7000000000000001,3,6,"(0.96, 0.03)" +787,100,100,,1,1,[1],0.7000000000000001,3,7,"(0.98, 0.01)" +788,100,100,,1,1,[1],0.7000000000000001,3,8,"(0.98, 0.03)" +789,100,100,,1,1,[1],0.7000000000000001,3,9,"(0.98, 0.01)" +790,100,100,,1,1,[1],0.7000000000000001,4,0,"(0.99, 0.005)" +791,100,100,,1,1,[1],0.7000000000000001,4,1,"(1.0, 0.01)" +792,100,100,,1,1,[1],0.7000000000000001,4,2,"(1.0, 0.0)" +793,100,100,,1,1,[1],0.7000000000000001,4,3,"(1.0, 0.0)" +794,100,100,,1,1,[1],0.7000000000000001,4,4,"(0.99, 0.005)" +795,100,100,,1,1,[1],0.7000000000000001,4,5,"(0.99, 0.005)" +796,100,100,,1,1,[1],0.7000000000000001,4,6,"(1.0, 0.0)" +797,100,100,,1,1,[1],0.7000000000000001,4,7,"(0.99, 0.015)" +798,100,100,,1,1,[1],0.7000000000000001,4,8,"(0.99, 0.005)" +799,100,100,,1,1,[1],0.7000000000000001,4,9,"(1.0, 0.0)" +800,100,100,,1,1,[1],0.8,-5,0,"(1.0, 1.0)" +801,100,100,,1,1,[1],0.8,-5,1,"(0.99, 0.995)" +802,100,100,,1,1,[1],0.8,-5,2,"(0.99, 0.995)" +803,100,100,,1,1,[1],0.8,-5,3,"(1.0, 1.0)" +804,100,100,,1,1,[1],0.8,-5,4,"(0.99, 0.995)" +805,100,100,,1,1,[1],0.8,-5,5,"(1.0, 1.0)" +806,100,100,,1,1,[1],0.8,-5,6,"(1.0, 1.0)" +807,100,100,,1,1,[1],0.8,-5,7,"(1.0, 1.0)" +808,100,100,,1,1,[1],0.8,-5,8,"(1.0, 1.0)" +809,100,100,,1,1,[1],0.8,-5,9,"(1.0, 1.0)" +810,100,100,,1,1,[1],0.8,-4,0,"(1.0, 1.0)" +811,100,100,,1,1,[1],0.8,-4,1,"(0.98, 0.99)" +812,100,100,,1,1,[1],0.8,-4,2,"(1.0, 1.0)" +813,100,100,,1,1,[1],0.8,-4,3,"(0.99, 0.995)" +814,100,100,,1,1,[1],0.8,-4,4,"(1.0, 1.0)" +815,100,100,,1,1,[1],0.8,-4,5,"(0.99, 0.995)" +816,100,100,,1,1,[1],0.8,-4,6,"(0.99, 0.995)" +817,100,100,,1,1,[1],0.8,-4,7,"(0.99, 0.995)" +818,100,100,,1,1,[1],0.8,-4,8,"(0.99, 0.995)" +819,100,100,,1,1,[1],0.8,-4,9,"(1.0, 1.0)" +820,100,100,,1,1,[1],0.8,-3,0,"(0.93, 0.965)" +821,100,100,,1,1,[1],0.8,-3,1,"(0.98, 0.97)" +822,100,100,,1,1,[1],0.8,-3,2,"(0.95, 0.965)" +823,100,100,,1,1,[1],0.8,-3,3,"(0.96, 0.94)" +824,100,100,,1,1,[1],0.8,-3,4,"(0.98, 0.99)" +825,100,100,,1,1,[1],0.8,-3,5,"(0.98, 0.98)" +826,100,100,,1,1,[1],0.8,-3,6,"(0.99, 0.995)" +827,100,100,,1,1,[1],0.8,-3,7,"(0.94, 0.95)" +828,100,100,,1,1,[1],0.8,-3,8,"(0.95, 0.955)" +829,100,100,,1,1,[1],0.8,-3,9,"(0.95, 0.965)" +830,100,100,,1,1,[1],0.8,-2,0,"(0.91, 0.905)" +831,100,100,,1,1,[1],0.8,-2,1,"(0.96, 0.92)" +832,100,100,,1,1,[1],0.8,-2,2,"(0.9, 0.88)" +833,100,100,,1,1,[1],0.8,-2,3,"(0.9, 0.85)" +834,100,100,,1,1,[1],0.8,-2,4,"(0.94, 0.9)" +835,100,100,,1,1,[1],0.8,-2,5,"(0.9, 0.91)" +836,100,100,,1,1,[1],0.8,-2,6,"(0.88, 0.86)" +837,100,100,,1,1,[1],0.8,-2,7,"(0.92, 0.91)" +838,100,100,,1,1,[1],0.8,-2,8,"(0.9, 0.89)" +839,100,100,,1,1,[1],0.8,-2,9,"(0.84, 0.88)" +840,100,100,,1,1,[1],0.8,-1,0,"(0.85, 0.765)" +841,100,100,,1,1,[1],0.8,-1,1,"(0.85, 0.745)" +842,100,100,,1,1,[1],0.8,-1,2,"(0.84, 0.76)" +843,100,100,,1,1,[1],0.8,-1,3,"(0.81, 0.755)" +844,100,100,,1,1,[1],0.8,-1,4,"(0.78, 0.74)" +845,100,100,,1,1,[1],0.8,-1,5,"(0.85, 0.725)" +846,100,100,,1,1,[1],0.8,-1,6,"(0.8, 0.68)" +847,100,100,,1,1,[1],0.8,-1,7,"(0.85, 0.775)" +848,100,100,,1,1,[1],0.8,-1,8,"(0.77, 0.735)" +849,100,100,,1,1,[1],0.8,-1,9,"(0.84, 0.73)" +850,100,100,,1,1,[1],0.8,0,0,"(0.8, 0.49)" +851,100,100,,1,1,[1],0.8,0,1,"(0.73, 0.475)" +852,100,100,,1,1,[1],0.8,0,2,"(0.72, 0.44)" +853,100,100,,1,1,[1],0.8,0,3,"(0.81, 0.475)" +854,100,100,,1,1,[1],0.8,0,4,"(0.75, 0.525)" +855,100,100,,1,1,[1],0.8,0,5,"(0.78, 0.5)" +856,100,100,,1,1,[1],0.8,0,6,"(0.78, 0.57)" +857,100,100,,1,1,[1],0.8,0,7,"(0.83, 0.505)" +858,100,100,,1,1,[1],0.8,0,8,"(0.81, 0.475)" +859,100,100,,1,1,[1],0.8,0,9,"(0.83, 0.435)" +860,100,100,,1,1,[1],0.8,1,0,"(0.79, 0.325)" +861,100,100,,1,1,[1],0.8,1,1,"(0.8, 0.41)" +862,100,100,,1,1,[1],0.8,1,2,"(0.83, 0.245)" +863,100,100,,1,1,[1],0.8,1,3,"(0.87, 0.265)" +864,100,100,,1,1,[1],0.8,1,4,"(0.73, 0.275)" +865,100,100,,1,1,[1],0.8,1,5,"(0.76, 0.3)" +866,100,100,,1,1,[1],0.8,1,6,"(0.83, 0.255)" +867,100,100,,1,1,[1],0.8,1,7,"(0.82, 0.25)" +868,100,100,,1,1,[1],0.8,1,8,"(0.81, 0.255)" +869,100,100,,1,1,[1],0.8,1,9,"(0.84, 0.26)" +870,100,100,,1,1,[1],0.8,2,0,"(0.86, 0.1)" +871,100,100,,1,1,[1],0.8,2,1,"(0.96, 0.07)" +872,100,100,,1,1,[1],0.8,2,2,"(0.88, 0.1)" +873,100,100,,1,1,[1],0.8,2,3,"(0.91, 0.095)" +874,100,100,,1,1,[1],0.8,2,4,"(0.91, 0.105)" +875,100,100,,1,1,[1],0.8,2,5,"(0.86, 0.12)" +876,100,100,,1,1,[1],0.8,2,6,"(0.89, 0.085)" +877,100,100,,1,1,[1],0.8,2,7,"(0.89, 0.085)" +878,100,100,,1,1,[1],0.8,2,8,"(0.96, 0.06)" +879,100,100,,1,1,[1],0.8,2,9,"(0.87, 0.115)" +880,100,100,,1,1,[1],0.8,3,0,"(0.96, 0.02)" +881,100,100,,1,1,[1],0.8,3,1,"(0.99, 0.025)" +882,100,100,,1,1,[1],0.8,3,2,"(0.96, 0.02)" +883,100,100,,1,1,[1],0.8,3,3,"(0.96, 0.02)" +884,100,100,,1,1,[1],0.8,3,4,"(0.95, 0.055)" +885,100,100,,1,1,[1],0.8,3,5,"(0.98, 0.04)" +886,100,100,,1,1,[1],0.8,3,6,"(0.98, 0.03)" +887,100,100,,1,1,[1],0.8,3,7,"(0.89, 0.055)" +888,100,100,,1,1,[1],0.8,3,8,"(0.98, 0.02)" +889,100,100,,1,1,[1],0.8,3,9,"(0.97, 0.055)" +890,100,100,,1,1,[1],0.8,4,0,"(0.99, 0.005)" +891,100,100,,1,1,[1],0.8,4,1,"(0.98, 0.01)" +892,100,100,,1,1,[1],0.8,4,2,"(0.99, 0.005)" +893,100,100,,1,1,[1],0.8,4,3,"(0.99, 0.005)" +894,100,100,,1,1,[1],0.8,4,4,"(1.0, 0.0)" +895,100,100,,1,1,[1],0.8,4,5,"(0.99, 0.005)" +896,100,100,,1,1,[1],0.8,4,6,"(0.98, 0.01)" +897,100,100,,1,1,[1],0.8,4,7,"(0.99, 0.015)" +898,100,100,,1,1,[1],0.8,4,8,"(1.0, 0.0)" +899,100,100,,1,1,[1],0.8,4,9,"(0.99, 0.005)" +900,100,100,,1,1,[1],0.9,-5,0,"(1.0, 1.0)" +901,100,100,,1,1,[1],0.9,-5,1,"(1.0, 1.0)" +902,100,100,,1,1,[1],0.9,-5,2,"(1.0, 1.0)" +903,100,100,,1,1,[1],0.9,-5,3,"(0.99, 0.995)" +904,100,100,,1,1,[1],0.9,-5,4,"(1.0, 1.0)" +905,100,100,,1,1,[1],0.9,-5,5,"(1.0, 1.0)" +906,100,100,,1,1,[1],0.9,-5,6,"(1.0, 1.0)" +907,100,100,,1,1,[1],0.9,-5,7,"(1.0, 1.0)" +908,100,100,,1,1,[1],0.9,-5,8,"(0.99, 0.995)" +909,100,100,,1,1,[1],0.9,-5,9,"(1.0, 1.0)" +910,100,100,,1,1,[1],0.9,-4,0,"(0.97, 0.985)" +911,100,100,,1,1,[1],0.9,-4,1,"(0.99, 0.995)" +912,100,100,,1,1,[1],0.9,-4,2,"(1.0, 1.0)" +913,100,100,,1,1,[1],0.9,-4,3,"(1.0, 1.0)" +914,100,100,,1,1,[1],0.9,-4,4,"(0.99, 0.995)" +915,100,100,,1,1,[1],0.9,-4,5,"(0.99, 0.995)" +916,100,100,,1,1,[1],0.9,-4,6,"(0.99, 0.995)" +917,100,100,,1,1,[1],0.9,-4,7,"(1.0, 1.0)" +918,100,100,,1,1,[1],0.9,-4,8,"(0.99, 0.995)" +919,100,100,,1,1,[1],0.9,-4,9,"(1.0, 1.0)" +920,100,100,,1,1,[1],0.9,-3,0,"(0.98, 0.97)" +921,100,100,,1,1,[1],0.9,-3,1,"(0.95, 0.965)" +922,100,100,,1,1,[1],0.9,-3,2,"(0.95, 0.965)" +923,100,100,,1,1,[1],0.9,-3,3,"(0.99, 0.985)" +924,100,100,,1,1,[1],0.9,-3,4,"(0.97, 0.975)" +925,100,100,,1,1,[1],0.9,-3,5,"(0.95, 0.975)" +926,100,100,,1,1,[1],0.9,-3,6,"(0.97, 0.975)" +927,100,100,,1,1,[1],0.9,-3,7,"(0.97, 0.975)" +928,100,100,,1,1,[1],0.9,-3,8,"(0.93, 0.955)" +929,100,100,,1,1,[1],0.9,-3,9,"(0.98, 0.99)" +930,100,100,,1,1,[1],0.9,-2,0,"(0.88, 0.91)" +931,100,100,,1,1,[1],0.9,-2,1,"(0.88, 0.85)" +932,100,100,,1,1,[1],0.9,-2,2,"(0.87, 0.885)" +933,100,100,,1,1,[1],0.9,-2,3,"(0.9, 0.92)" +934,100,100,,1,1,[1],0.9,-2,4,"(0.88, 0.91)" +935,100,100,,1,1,[1],0.9,-2,5,"(0.91, 0.915)" +936,100,100,,1,1,[1],0.9,-2,6,"(0.86, 0.85)" +937,100,100,,1,1,[1],0.9,-2,7,"(0.89, 0.925)" +938,100,100,,1,1,[1],0.9,-2,8,"(0.89, 0.875)" +939,100,100,,1,1,[1],0.9,-2,9,"(0.88, 0.81)" +940,100,100,,1,1,[1],0.9,-1,0,"(0.82, 0.71)" +941,100,100,,1,1,[1],0.9,-1,1,"(0.78, 0.71)" +942,100,100,,1,1,[1],0.9,-1,2,"(0.72, 0.64)" +943,100,100,,1,1,[1],0.9,-1,3,"(0.74, 0.66)" +944,100,100,,1,1,[1],0.9,-1,4,"(0.8, 0.7)" +945,100,100,,1,1,[1],0.9,-1,5,"(0.75, 0.735)" +946,100,100,,1,1,[1],0.9,-1,6,"(0.84, 0.78)" +947,100,100,,1,1,[1],0.9,-1,7,"(0.75, 0.665)" +948,100,100,,1,1,[1],0.9,-1,8,"(0.84, 0.7)" +949,100,100,,1,1,[1],0.9,-1,9,"(0.8, 0.77)" +950,100,100,,1,1,[1],0.9,0,0,"(0.81, 0.545)" +951,100,100,,1,1,[1],0.9,0,1,"(0.76, 0.49)" +952,100,100,,1,1,[1],0.9,0,2,"(0.8, 0.57)" +953,100,100,,1,1,[1],0.9,0,3,"(0.73, 0.515)" +954,100,100,,1,1,[1],0.9,0,4,"(0.79, 0.475)" +955,100,100,,1,1,[1],0.9,0,5,"(0.75, 0.495)" +956,100,100,,1,1,[1],0.9,0,6,"(0.81, 0.515)" +957,100,100,,1,1,[1],0.9,0,7,"(0.71, 0.545)" +958,100,100,,1,1,[1],0.9,0,8,"(0.78, 0.47)" +959,100,100,,1,1,[1],0.9,0,9,"(0.78, 0.46)" +960,100,100,,1,1,[1],0.9,1,0,"(0.76, 0.28)" +961,100,100,,1,1,[1],0.9,1,1,"(0.76, 0.24)" +962,100,100,,1,1,[1],0.9,1,2,"(0.81, 0.245)" +963,100,100,,1,1,[1],0.9,1,3,"(0.78, 0.21)" +964,100,100,,1,1,[1],0.9,1,4,"(0.84, 0.27)" +965,100,100,,1,1,[1],0.9,1,5,"(0.81, 0.215)" +966,100,100,,1,1,[1],0.9,1,6,"(0.76, 0.29)" +967,100,100,,1,1,[1],0.9,1,7,"(0.83, 0.255)" +968,100,100,,1,1,[1],0.9,1,8,"(0.78, 0.29)" +969,100,100,,1,1,[1],0.9,1,9,"(0.77, 0.245)" +970,100,100,,1,1,[1],0.9,2,0,"(0.92, 0.1)" +971,100,100,,1,1,[1],0.9,2,1,"(0.91, 0.145)" +972,100,100,,1,1,[1],0.9,2,2,"(0.89, 0.095)" +973,100,100,,1,1,[1],0.9,2,3,"(0.94, 0.07)" +974,100,100,,1,1,[1],0.9,2,4,"(0.9, 0.13)" +975,100,100,,1,1,[1],0.9,2,5,"(0.92, 0.09)" +976,100,100,,1,1,[1],0.9,2,6,"(0.86, 0.11)" +977,100,100,,1,1,[1],0.9,2,7,"(0.86, 0.12)" +978,100,100,,1,1,[1],0.9,2,8,"(0.88, 0.13)" +979,100,100,,1,1,[1],0.9,2,9,"(0.83, 0.135)" +980,100,100,,1,1,[1],0.9,3,0,"(0.98, 0.03)" +981,100,100,,1,1,[1],0.9,3,1,"(0.95, 0.035)" +982,100,100,,1,1,[1],0.9,3,2,"(0.97, 0.035)" +983,100,100,,1,1,[1],0.9,3,3,"(0.95, 0.045)" +984,100,100,,1,1,[1],0.9,3,4,"(0.95, 0.065)" +985,100,100,,1,1,[1],0.9,3,5,"(0.94, 0.04)" +986,100,100,,1,1,[1],0.9,3,6,"(0.97, 0.015)" +987,100,100,,1,1,[1],0.9,3,7,"(0.97, 0.045)" +988,100,100,,1,1,[1],0.9,3,8,"(0.91, 0.055)" +989,100,100,,1,1,[1],0.9,3,9,"(0.94, 0.04)" +990,100,100,,1,1,[1],0.9,4,0,"(1.0, 0.01)" +991,100,100,,1,1,[1],0.9,4,1,"(1.0, 0.01)" +992,100,100,,1,1,[1],0.9,4,2,"(0.99, 0.005)" +993,100,100,,1,1,[1],0.9,4,3,"(0.99, 0.005)" +994,100,100,,1,1,[1],0.9,4,4,"(0.99, 0.005)" +995,100,100,,1,1,[1],0.9,4,5,"(0.99, 0.005)" +996,100,100,,1,1,[1],0.9,4,6,"(1.0, 0.0)" +997,100,100,,1,1,[1],0.9,4,7,"(0.99, 0.015)" +998,100,100,,1,1,[1],0.9,4,8,"(0.97, 0.015)" +999,100,100,,1,1,[1],0.9,4,9,"(0.98, 0.02)" +1000,100,100,,1,1,[1],1.0,-5,0,"(1.0, 1.0)" +1001,100,100,,1,1,[1],1.0,-5,1,"(1.0, 1.0)" +1002,100,100,,1,1,[1],1.0,-5,2,"(1.0, 1.0)" +1003,100,100,,1,1,[1],1.0,-5,3,"(1.0, 1.0)" +1004,100,100,,1,1,[1],1.0,-5,4,"(1.0, 1.0)" +1005,100,100,,1,1,[1],1.0,-5,5,"(0.99, 0.995)" +1006,100,100,,1,1,[1],1.0,-5,6,"(0.99, 0.995)" +1007,100,100,,1,1,[1],1.0,-5,7,"(1.0, 1.0)" +1008,100,100,,1,1,[1],1.0,-5,8,"(1.0, 1.0)" +1009,100,100,,1,1,[1],1.0,-5,9,"(1.0, 1.0)" +1010,100,100,,1,1,[1],1.0,-4,0,"(0.98, 0.99)" +1011,100,100,,1,1,[1],1.0,-4,1,"(0.98, 0.98)" +1012,100,100,,1,1,[1],1.0,-4,2,"(1.0, 1.0)" +1013,100,100,,1,1,[1],1.0,-4,3,"(1.0, 1.0)" +1014,100,100,,1,1,[1],1.0,-4,4,"(0.99, 0.995)" +1015,100,100,,1,1,[1],1.0,-4,5,"(1.0, 0.99)" +1016,100,100,,1,1,[1],1.0,-4,6,"(0.97, 0.975)" +1017,100,100,,1,1,[1],1.0,-4,7,"(0.98, 0.99)" +1018,100,100,,1,1,[1],1.0,-4,8,"(1.0, 1.0)" +1019,100,100,,1,1,[1],1.0,-4,9,"(0.99, 0.995)" +1020,100,100,,1,1,[1],1.0,-3,0,"(0.94, 0.94)" +1021,100,100,,1,1,[1],1.0,-3,1,"(0.97, 0.985)" +1022,100,100,,1,1,[1],1.0,-3,2,"(0.94, 0.97)" +1023,100,100,,1,1,[1],1.0,-3,3,"(0.97, 0.975)" +1024,100,100,,1,1,[1],1.0,-3,4,"(0.96, 0.97)" +1025,100,100,,1,1,[1],1.0,-3,5,"(0.94, 0.96)" +1026,100,100,,1,1,[1],1.0,-3,6,"(0.92, 0.94)" +1027,100,100,,1,1,[1],1.0,-3,7,"(0.93, 0.915)" +1028,100,100,,1,1,[1],1.0,-3,8,"(0.97, 0.965)" +1029,100,100,,1,1,[1],1.0,-3,9,"(0.96, 0.96)" +1030,100,100,,1,1,[1],1.0,-2,0,"(0.92, 0.91)" +1031,100,100,,1,1,[1],1.0,-2,1,"(0.86, 0.9)" +1032,100,100,,1,1,[1],1.0,-2,2,"(0.87, 0.865)" +1033,100,100,,1,1,[1],1.0,-2,3,"(0.87, 0.885)" +1034,100,100,,1,1,[1],1.0,-2,4,"(0.9, 0.85)" +1035,100,100,,1,1,[1],1.0,-2,5,"(0.89, 0.905)" +1036,100,100,,1,1,[1],1.0,-2,6,"(0.88, 0.91)" +1037,100,100,,1,1,[1],1.0,-2,7,"(0.85, 0.835)" +1038,100,100,,1,1,[1],1.0,-2,8,"(0.81, 0.815)" +1039,100,100,,1,1,[1],1.0,-2,9,"(0.89, 0.875)" +1040,100,100,,1,1,[1],1.0,-1,0,"(0.76, 0.69)" +1041,100,100,,1,1,[1],1.0,-1,1,"(0.81, 0.775)" +1042,100,100,,1,1,[1],1.0,-1,2,"(0.72, 0.64)" +1043,100,100,,1,1,[1],1.0,-1,3,"(0.75, 0.705)" +1044,100,100,,1,1,[1],1.0,-1,4,"(0.8, 0.71)" +1045,100,100,,1,1,[1],1.0,-1,5,"(0.76, 0.68)" +1046,100,100,,1,1,[1],1.0,-1,6,"(0.74, 0.71)" +1047,100,100,,1,1,[1],1.0,-1,7,"(0.81, 0.725)" +1048,100,100,,1,1,[1],1.0,-1,8,"(0.77, 0.695)" +1049,100,100,,1,1,[1],1.0,-1,9,"(0.78, 0.71)" +1050,100,100,,1,1,[1],1.0,0,0,"(0.77, 0.465)" +1051,100,100,,1,1,[1],1.0,0,1,"(0.67, 0.485)" +1052,100,100,,1,1,[1],1.0,0,2,"(0.73, 0.485)" +1053,100,100,,1,1,[1],1.0,0,3,"(0.77, 0.525)" +1054,100,100,,1,1,[1],1.0,0,4,"(0.65, 0.505)" +1055,100,100,,1,1,[1],1.0,0,5,"(0.8, 0.56)" +1056,100,100,,1,1,[1],1.0,0,6,"(0.75, 0.455)" +1057,100,100,,1,1,[1],1.0,0,7,"(0.73, 0.505)" +1058,100,100,,1,1,[1],1.0,0,8,"(0.77, 0.455)" +1059,100,100,,1,1,[1],1.0,0,9,"(0.78, 0.47)" +1060,100,100,,1,1,[1],1.0,1,0,"(0.86, 0.23)" +1061,100,100,,1,1,[1],1.0,1,1,"(0.72, 0.24)" +1062,100,100,,1,1,[1],1.0,1,2,"(0.68, 0.29)" +1063,100,100,,1,1,[1],1.0,1,3,"(0.78, 0.26)" +1064,100,100,,1,1,[1],1.0,1,4,"(0.74, 0.27)" +1065,100,100,,1,1,[1],1.0,1,5,"(0.78, 0.22)" +1066,100,100,,1,1,[1],1.0,1,6,"(0.77, 0.265)" +1067,100,100,,1,1,[1],1.0,1,7,"(0.76, 0.25)" +1068,100,100,,1,1,[1],1.0,1,8,"(0.77, 0.295)" +1069,100,100,,1,1,[1],1.0,1,9,"(0.76, 0.25)" +1070,100,100,,1,1,[1],1.0,2,0,"(0.86, 0.12)" +1071,100,100,,1,1,[1],1.0,2,1,"(0.9, 0.12)" +1072,100,100,,1,1,[1],1.0,2,2,"(0.92, 0.12)" +1073,100,100,,1,1,[1],1.0,2,3,"(0.84, 0.13)" +1074,100,100,,1,1,[1],1.0,2,4,"(0.85, 0.125)" +1075,100,100,,1,1,[1],1.0,2,5,"(0.89, 0.095)" +1076,100,100,,1,1,[1],1.0,2,6,"(0.85, 0.145)" +1077,100,100,,1,1,[1],1.0,2,7,"(0.79, 0.145)" +1078,100,100,,1,1,[1],1.0,2,8,"(0.85, 0.115)" +1079,100,100,,1,1,[1],1.0,2,9,"(0.83, 0.165)" +1080,100,100,,1,1,[1],1.0,3,0,"(0.95, 0.035)" +1081,100,100,,1,1,[1],1.0,3,1,"(0.97, 0.035)" +1082,100,100,,1,1,[1],1.0,3,2,"(0.95, 0.045)" +1083,100,100,,1,1,[1],1.0,3,3,"(0.94, 0.04)" +1084,100,100,,1,1,[1],1.0,3,4,"(0.94, 0.05)" +1085,100,100,,1,1,[1],1.0,3,5,"(0.94, 0.03)" +1086,100,100,,1,1,[1],1.0,3,6,"(0.96, 0.03)" +1087,100,100,,1,1,[1],1.0,3,7,"(0.96, 0.04)" +1088,100,100,,1,1,[1],1.0,3,8,"(0.94, 0.05)" +1089,100,100,,1,1,[1],1.0,3,9,"(0.94, 0.07)" +1090,100,100,,1,1,[1],1.0,4,0,"(0.98, 0.02)" +1091,100,100,,1,1,[1],1.0,4,1,"(0.98, 0.01)" +1092,100,100,,1,1,[1],1.0,4,2,"(0.99, 0.005)" +1093,100,100,,1,1,[1],1.0,4,3,"(0.99, 0.005)" +1094,100,100,,1,1,[1],1.0,4,4,"(0.98, 0.01)" +1095,100,100,,1,1,[1],1.0,4,5,"(0.97, 0.025)" +1096,100,100,,1,1,[1],1.0,4,6,"(0.98, 0.01)" +1097,100,100,,1,1,[1],1.0,4,7,"(1.0, 0.0)" +1098,100,100,,1,1,[1],1.0,4,8,"(0.99, 0.005)" +1099,100,100,,1,1,[1],1.0,4,9,"(0.99, 0.005)" +1100,100,100,,1,1,[1],1.1,-5,0,"(1.0, 1.0)" +1101,100,100,,1,1,[1],1.1,-5,1,"(1.0, 1.0)" +1102,100,100,,1,1,[1],1.1,-5,2,"(0.99, 0.995)" +1103,100,100,,1,1,[1],1.1,-5,3,"(0.99, 0.995)" +1104,100,100,,1,1,[1],1.1,-5,4,"(0.99, 0.995)" +1105,100,100,,1,1,[1],1.1,-5,5,"(1.0, 1.0)" +1106,100,100,,1,1,[1],1.1,-5,6,"(1.0, 1.0)" +1107,100,100,,1,1,[1],1.1,-5,7,"(0.99, 0.995)" +1108,100,100,,1,1,[1],1.1,-5,8,"(1.0, 1.0)" +1109,100,100,,1,1,[1],1.1,-5,9,"(0.99, 0.995)" +1110,100,100,,1,1,[1],1.1,-4,0,"(0.97, 0.985)" +1111,100,100,,1,1,[1],1.1,-4,1,"(0.93, 0.955)" +1112,100,100,,1,1,[1],1.1,-4,2,"(0.97, 0.985)" +1113,100,100,,1,1,[1],1.1,-4,3,"(0.96, 0.98)" +1114,100,100,,1,1,[1],1.1,-4,4,"(0.98, 0.99)" +1115,100,100,,1,1,[1],1.1,-4,5,"(0.99, 0.985)" +1116,100,100,,1,1,[1],1.1,-4,6,"(0.99, 0.995)" +1117,100,100,,1,1,[1],1.1,-4,7,"(0.99, 0.995)" +1118,100,100,,1,1,[1],1.1,-4,8,"(0.97, 0.985)" +1119,100,100,,1,1,[1],1.1,-4,9,"(1.0, 1.0)" +1120,100,100,,1,1,[1],1.1,-3,0,"(0.93, 0.915)" +1121,100,100,,1,1,[1],1.1,-3,1,"(0.89, 0.935)" +1122,100,100,,1,1,[1],1.1,-3,2,"(0.92, 0.95)" +1123,100,100,,1,1,[1],1.1,-3,3,"(0.94, 0.94)" +1124,100,100,,1,1,[1],1.1,-3,4,"(0.92, 0.95)" +1125,100,100,,1,1,[1],1.1,-3,5,"(0.96, 0.98)" +1126,100,100,,1,1,[1],1.1,-3,6,"(0.91, 0.955)" +1127,100,100,,1,1,[1],1.1,-3,7,"(0.96, 0.95)" +1128,100,100,,1,1,[1],1.1,-3,8,"(0.91, 0.955)" +1129,100,100,,1,1,[1],1.1,-3,9,"(0.94, 0.94)" +1130,100,100,,1,1,[1],1.1,-2,0,"(0.82, 0.85)" +1131,100,100,,1,1,[1],1.1,-2,1,"(0.88, 0.89)" +1132,100,100,,1,1,[1],1.1,-2,2,"(0.88, 0.82)" +1133,100,100,,1,1,[1],1.1,-2,3,"(0.8, 0.86)" +1134,100,100,,1,1,[1],1.1,-2,4,"(0.84, 0.85)" +1135,100,100,,1,1,[1],1.1,-2,5,"(0.8, 0.84)" +1136,100,100,,1,1,[1],1.1,-2,6,"(0.91, 0.925)" +1137,100,100,,1,1,[1],1.1,-2,7,"(0.86, 0.86)" +1138,100,100,,1,1,[1],1.1,-2,8,"(0.86, 0.86)" +1139,100,100,,1,1,[1],1.1,-2,9,"(0.84, 0.86)" +1140,100,100,,1,1,[1],1.1,-1,0,"(0.77, 0.755)" +1141,100,100,,1,1,[1],1.1,-1,1,"(0.75, 0.725)" +1142,100,100,,1,1,[1],1.1,-1,2,"(0.76, 0.72)" +1143,100,100,,1,1,[1],1.1,-1,3,"(0.77, 0.775)" +1144,100,100,,1,1,[1],1.1,-1,4,"(0.77, 0.675)" +1145,100,100,,1,1,[1],1.1,-1,5,"(0.76, 0.75)" +1146,100,100,,1,1,[1],1.1,-1,6,"(0.72, 0.64)" +1147,100,100,,1,1,[1],1.1,-1,7,"(0.78, 0.64)" +1148,100,100,,1,1,[1],1.1,-1,8,"(0.69, 0.705)" +1149,100,100,,1,1,[1],1.1,-1,9,"(0.73, 0.775)" +1150,100,100,,1,1,[1],1.1,0,0,"(0.67, 0.485)" +1151,100,100,,1,1,[1],1.1,0,1,"(0.68, 0.48)" +1152,100,100,,1,1,[1],1.1,0,2,"(0.8, 0.57)" +1153,100,100,,1,1,[1],1.1,0,3,"(0.72, 0.5)" +1154,100,100,,1,1,[1],1.1,0,4,"(0.69, 0.495)" +1155,100,100,,1,1,[1],1.1,0,5,"(0.72, 0.49)" +1156,100,100,,1,1,[1],1.1,0,6,"(0.71, 0.485)" +1157,100,100,,1,1,[1],1.1,0,7,"(0.69, 0.485)" +1158,100,100,,1,1,[1],1.1,0,8,"(0.69, 0.535)" +1159,100,100,,1,1,[1],1.1,0,9,"(0.75, 0.495)" +1160,100,100,,1,1,[1],1.1,1,0,"(0.8, 0.23)" +1161,100,100,,1,1,[1],1.1,1,1,"(0.8, 0.31)" +1162,100,100,,1,1,[1],1.1,1,2,"(0.72, 0.27)" +1163,100,100,,1,1,[1],1.1,1,3,"(0.8, 0.25)" +1164,100,100,,1,1,[1],1.1,1,4,"(0.72, 0.25)" +1165,100,100,,1,1,[1],1.1,1,5,"(0.8, 0.21)" +1166,100,100,,1,1,[1],1.1,1,6,"(0.78, 0.22)" +1167,100,100,,1,1,[1],1.1,1,7,"(0.78, 0.24)" +1168,100,100,,1,1,[1],1.1,1,8,"(0.7, 0.32)" +1169,100,100,,1,1,[1],1.1,1,9,"(0.68, 0.33)" +1170,100,100,,1,1,[1],1.1,2,0,"(0.9, 0.09)" +1171,100,100,,1,1,[1],1.1,2,1,"(0.85, 0.145)" +1172,100,100,,1,1,[1],1.1,2,2,"(0.83, 0.125)" +1173,100,100,,1,1,[1],1.1,2,3,"(0.83, 0.145)" +1174,100,100,,1,1,[1],1.1,2,4,"(0.92, 0.06)" +1175,100,100,,1,1,[1],1.1,2,5,"(0.84, 0.12)" +1176,100,100,,1,1,[1],1.1,2,6,"(0.85, 0.125)" +1177,100,100,,1,1,[1],1.1,2,7,"(0.85, 0.125)" +1178,100,100,,1,1,[1],1.1,2,8,"(0.88, 0.12)" +1179,100,100,,1,1,[1],1.1,2,9,"(0.88, 0.13)" +1180,100,100,,1,1,[1],1.1,3,0,"(0.95, 0.035)" +1181,100,100,,1,1,[1],1.1,3,1,"(0.89, 0.055)" +1182,100,100,,1,1,[1],1.1,3,2,"(0.9, 0.06)" +1183,100,100,,1,1,[1],1.1,3,3,"(0.97, 0.035)" +1184,100,100,,1,1,[1],1.1,3,4,"(0.95, 0.035)" +1185,100,100,,1,1,[1],1.1,3,5,"(0.96, 0.03)" +1186,100,100,,1,1,[1],1.1,3,6,"(0.94, 0.04)" +1187,100,100,,1,1,[1],1.1,3,7,"(0.91, 0.045)" +1188,100,100,,1,1,[1],1.1,3,8,"(0.98, 0.02)" +1189,100,100,,1,1,[1],1.1,3,9,"(0.96, 0.04)" +1190,100,100,,1,1,[1],1.1,4,0,"(1.0, 0.0)" +1191,100,100,,1,1,[1],1.1,4,1,"(0.99, 0.015)" +1192,100,100,,1,1,[1],1.1,4,2,"(0.98, 0.01)" +1193,100,100,,1,1,[1],1.1,4,3,"(0.98, 0.01)" +1194,100,100,,1,1,[1],1.1,4,4,"(0.98, 0.02)" +1195,100,100,,1,1,[1],1.1,4,5,"(0.96, 0.02)" +1196,100,100,,1,1,[1],1.1,4,6,"(0.95, 0.025)" +1197,100,100,,1,1,[1],1.1,4,7,"(0.96, 0.03)" +1198,100,100,,1,1,[1],1.1,4,8,"(0.95, 0.035)" +1199,100,100,,1,1,[1],1.1,4,9,"(0.98, 0.01)" +1200,100,100,,1,1,[1],1.2000000000000002,-5,0,"(0.99, 0.995)" +1201,100,100,,1,1,[1],1.2000000000000002,-5,1,"(1.0, 1.0)" +1202,100,100,,1,1,[1],1.2000000000000002,-5,2,"(1.0, 1.0)" +1203,100,100,,1,1,[1],1.2000000000000002,-5,3,"(1.0, 1.0)" +1204,100,100,,1,1,[1],1.2000000000000002,-5,4,"(1.0, 1.0)" +1205,100,100,,1,1,[1],1.2000000000000002,-5,5,"(1.0, 1.0)" +1206,100,100,,1,1,[1],1.2000000000000002,-5,6,"(0.98, 0.99)" +1207,100,100,,1,1,[1],1.2000000000000002,-5,7,"(0.98, 0.99)" +1208,100,100,,1,1,[1],1.2000000000000002,-5,8,"(0.99, 0.995)" +1209,100,100,,1,1,[1],1.2000000000000002,-5,9,"(1.0, 1.0)" +1210,100,100,,1,1,[1],1.2000000000000002,-4,0,"(0.98, 0.99)" +1211,100,100,,1,1,[1],1.2000000000000002,-4,1,"(0.97, 0.985)" +1212,100,100,,1,1,[1],1.2000000000000002,-4,2,"(0.97, 0.985)" +1213,100,100,,1,1,[1],1.2000000000000002,-4,3,"(0.97, 0.985)" +1214,100,100,,1,1,[1],1.2000000000000002,-4,4,"(0.99, 0.995)" +1215,100,100,,1,1,[1],1.2000000000000002,-4,5,"(0.97, 0.985)" +1216,100,100,,1,1,[1],1.2000000000000002,-4,6,"(0.98, 0.98)" +1217,100,100,,1,1,[1],1.2000000000000002,-4,7,"(0.99, 0.995)" +1218,100,100,,1,1,[1],1.2000000000000002,-4,8,"(0.97, 0.985)" +1219,100,100,,1,1,[1],1.2000000000000002,-4,9,"(0.93, 0.955)" +1220,100,100,,1,1,[1],1.2000000000000002,-3,0,"(0.89, 0.935)" +1221,100,100,,1,1,[1],1.2000000000000002,-3,1,"(0.89, 0.925)" +1222,100,100,,1,1,[1],1.2000000000000002,-3,2,"(0.96, 0.97)" +1223,100,100,,1,1,[1],1.2000000000000002,-3,3,"(0.95, 0.955)" +1224,100,100,,1,1,[1],1.2000000000000002,-3,4,"(0.95, 0.945)" +1225,100,100,,1,1,[1],1.2000000000000002,-3,5,"(0.92, 0.96)" +1226,100,100,,1,1,[1],1.2000000000000002,-3,6,"(0.89, 0.925)" +1227,100,100,,1,1,[1],1.2000000000000002,-3,7,"(0.98, 0.98)" +1228,100,100,,1,1,[1],1.2000000000000002,-3,8,"(0.93, 0.935)" +1229,100,100,,1,1,[1],1.2000000000000002,-3,9,"(0.94, 0.97)" +1230,100,100,,1,1,[1],1.2000000000000002,-2,0,"(0.83, 0.845)" +1231,100,100,,1,1,[1],1.2000000000000002,-2,1,"(0.76, 0.81)" +1232,100,100,,1,1,[1],1.2000000000000002,-2,2,"(0.85, 0.875)" +1233,100,100,,1,1,[1],1.2000000000000002,-2,3,"(0.86, 0.87)" +1234,100,100,,1,1,[1],1.2000000000000002,-2,4,"(0.85, 0.885)" +1235,100,100,,1,1,[1],1.2000000000000002,-2,5,"(0.88, 0.86)" +1236,100,100,,1,1,[1],1.2000000000000002,-2,6,"(0.85, 0.835)" +1237,100,100,,1,1,[1],1.2000000000000002,-2,7,"(0.81, 0.865)" +1238,100,100,,1,1,[1],1.2000000000000002,-2,8,"(0.82, 0.85)" +1239,100,100,,1,1,[1],1.2000000000000002,-2,9,"(0.8, 0.83)" +1240,100,100,,1,1,[1],1.2000000000000002,-1,0,"(0.68, 0.67)" +1241,100,100,,1,1,[1],1.2000000000000002,-1,1,"(0.79, 0.615)" +1242,100,100,,1,1,[1],1.2000000000000002,-1,2,"(0.72, 0.76)" +1243,100,100,,1,1,[1],1.2000000000000002,-1,3,"(0.67, 0.695)" +1244,100,100,,1,1,[1],1.2000000000000002,-1,4,"(0.68, 0.66)" +1245,100,100,,1,1,[1],1.2000000000000002,-1,5,"(0.68, 0.72)" +1246,100,100,,1,1,[1],1.2000000000000002,-1,6,"(0.66, 0.75)" +1247,100,100,,1,1,[1],1.2000000000000002,-1,7,"(0.74, 0.7)" +1248,100,100,,1,1,[1],1.2000000000000002,-1,8,"(0.71, 0.675)" +1249,100,100,,1,1,[1],1.2000000000000002,-1,9,"(0.77, 0.685)" +1250,100,100,,1,1,[1],1.2000000000000002,0,0,"(0.69, 0.545)" +1251,100,100,,1,1,[1],1.2000000000000002,0,1,"(0.74, 0.46)" +1252,100,100,,1,1,[1],1.2000000000000002,0,2,"(0.84, 0.52)" +1253,100,100,,1,1,[1],1.2000000000000002,0,3,"(0.65, 0.475)" +1254,100,100,,1,1,[1],1.2000000000000002,0,4,"(0.79, 0.465)" +1255,100,100,,1,1,[1],1.2000000000000002,0,5,"(0.72, 0.51)" +1256,100,100,,1,1,[1],1.2000000000000002,0,6,"(0.65, 0.505)" +1257,100,100,,1,1,[1],1.2000000000000002,0,7,"(0.59, 0.525)" +1258,100,100,,1,1,[1],1.2000000000000002,0,8,"(0.67, 0.465)" +1259,100,100,,1,1,[1],1.2000000000000002,0,9,"(0.74, 0.57)" +1260,100,100,,1,1,[1],1.2000000000000002,1,0,"(0.77, 0.225)" +1261,100,100,,1,1,[1],1.2000000000000002,1,1,"(0.78, 0.28)" +1262,100,100,,1,1,[1],1.2000000000000002,1,2,"(0.8, 0.34)" +1263,100,100,,1,1,[1],1.2000000000000002,1,3,"(0.74, 0.27)" +1264,100,100,,1,1,[1],1.2000000000000002,1,4,"(0.74, 0.31)" +1265,100,100,,1,1,[1],1.2000000000000002,1,5,"(0.74, 0.27)" +1266,100,100,,1,1,[1],1.2000000000000002,1,6,"(0.76, 0.26)" +1267,100,100,,1,1,[1],1.2000000000000002,1,7,"(0.7, 0.33)" +1268,100,100,,1,1,[1],1.2000000000000002,1,8,"(0.72, 0.31)" +1269,100,100,,1,1,[1],1.2000000000000002,1,9,"(0.84, 0.22)" +1270,100,100,,1,1,[1],1.2000000000000002,2,0,"(0.85, 0.105)" +1271,100,100,,1,1,[1],1.2000000000000002,2,1,"(0.84, 0.14)" +1272,100,100,,1,1,[1],1.2000000000000002,2,2,"(0.86, 0.13)" +1273,100,100,,1,1,[1],1.2000000000000002,2,3,"(0.82, 0.13)" +1274,100,100,,1,1,[1],1.2000000000000002,2,4,"(0.82, 0.15)" +1275,100,100,,1,1,[1],1.2000000000000002,2,5,"(0.78, 0.13)" +1276,100,100,,1,1,[1],1.2000000000000002,2,6,"(0.85, 0.165)" +1277,100,100,,1,1,[1],1.2000000000000002,2,7,"(0.83, 0.105)" +1278,100,100,,1,1,[1],1.2000000000000002,2,8,"(0.81, 0.135)" +1279,100,100,,1,1,[1],1.2000000000000002,2,9,"(0.88, 0.12)" +1280,100,100,,1,1,[1],1.2000000000000002,3,0,"(0.93, 0.075)" +1281,100,100,,1,1,[1],1.2000000000000002,3,1,"(0.91, 0.055)" +1282,100,100,,1,1,[1],1.2000000000000002,3,2,"(0.97, 0.015)" +1283,100,100,,1,1,[1],1.2000000000000002,3,3,"(0.95, 0.025)" +1284,100,100,,1,1,[1],1.2000000000000002,3,4,"(0.89, 0.055)" +1285,100,100,,1,1,[1],1.2000000000000002,3,5,"(0.89, 0.095)" +1286,100,100,,1,1,[1],1.2000000000000002,3,6,"(0.91, 0.065)" +1287,100,100,,1,1,[1],1.2000000000000002,3,7,"(0.93, 0.045)" +1288,100,100,,1,1,[1],1.2000000000000002,3,8,"(0.93, 0.075)" +1289,100,100,,1,1,[1],1.2000000000000002,3,9,"(0.9, 0.05)" +1290,100,100,,1,1,[1],1.2000000000000002,4,0,"(1.0, 0.01)" +1291,100,100,,1,1,[1],1.2000000000000002,4,1,"(0.99, 0.005)" +1292,100,100,,1,1,[1],1.2000000000000002,4,2,"(0.97, 0.045)" +1293,100,100,,1,1,[1],1.2000000000000002,4,3,"(0.99, 0.015)" +1294,100,100,,1,1,[1],1.2000000000000002,4,4,"(1.0, 0.0)" +1295,100,100,,1,1,[1],1.2000000000000002,4,5,"(0.97, 0.025)" +1296,100,100,,1,1,[1],1.2000000000000002,4,6,"(0.98, 0.01)" +1297,100,100,,1,1,[1],1.2000000000000002,4,7,"(0.98, 0.01)" +1298,100,100,,1,1,[1],1.2000000000000002,4,8,"(0.99, 0.005)" +1299,100,100,,1,1,[1],1.2000000000000002,4,9,"(0.99, 0.005)" +1300,100,100,,1,1,[1],1.3,-5,0,"(1.0, 1.0)" +1301,100,100,,1,1,[1],1.3,-5,1,"(1.0, 1.0)" +1302,100,100,,1,1,[1],1.3,-5,2,"(0.99, 0.995)" +1303,100,100,,1,1,[1],1.3,-5,3,"(0.99, 0.995)" +1304,100,100,,1,1,[1],1.3,-5,4,"(0.99, 0.995)" +1305,100,100,,1,1,[1],1.3,-5,5,"(0.99, 0.995)" +1306,100,100,,1,1,[1],1.3,-5,6,"(0.98, 0.99)" +1307,100,100,,1,1,[1],1.3,-5,7,"(0.99, 0.995)" +1308,100,100,,1,1,[1],1.3,-5,8,"(0.99, 0.995)" +1309,100,100,,1,1,[1],1.3,-5,9,"(0.98, 0.99)" +1310,100,100,,1,1,[1],1.3,-4,0,"(0.94, 0.97)" +1311,100,100,,1,1,[1],1.3,-4,1,"(0.98, 0.99)" +1312,100,100,,1,1,[1],1.3,-4,2,"(0.98, 0.99)" +1313,100,100,,1,1,[1],1.3,-4,3,"(0.94, 0.95)" +1314,100,100,,1,1,[1],1.3,-4,4,"(1.0, 1.0)" +1315,100,100,,1,1,[1],1.3,-4,5,"(0.97, 0.975)" +1316,100,100,,1,1,[1],1.3,-4,6,"(0.98, 0.98)" +1317,100,100,,1,1,[1],1.3,-4,7,"(0.95, 0.975)" +1318,100,100,,1,1,[1],1.3,-4,8,"(0.98, 0.99)" +1319,100,100,,1,1,[1],1.3,-4,9,"(0.99, 0.995)" +1320,100,100,,1,1,[1],1.3,-3,0,"(0.88, 0.94)" +1321,100,100,,1,1,[1],1.3,-3,1,"(0.98, 0.98)" +1322,100,100,,1,1,[1],1.3,-3,2,"(0.93, 0.945)" +1323,100,100,,1,1,[1],1.3,-3,3,"(0.88, 0.93)" +1324,100,100,,1,1,[1],1.3,-3,4,"(0.92, 0.96)" +1325,100,100,,1,1,[1],1.3,-3,5,"(0.91, 0.935)" +1326,100,100,,1,1,[1],1.3,-3,6,"(0.9, 0.93)" +1327,100,100,,1,1,[1],1.3,-3,7,"(0.93, 0.955)" +1328,100,100,,1,1,[1],1.3,-3,8,"(0.89, 0.925)" +1329,100,100,,1,1,[1],1.3,-3,9,"(0.91, 0.935)" +1330,100,100,,1,1,[1],1.3,-2,0,"(0.86, 0.87)" +1331,100,100,,1,1,[1],1.3,-2,1,"(0.8, 0.83)" +1332,100,100,,1,1,[1],1.3,-2,2,"(0.81, 0.865)" +1333,100,100,,1,1,[1],1.3,-2,3,"(0.9, 0.87)" +1334,100,100,,1,1,[1],1.3,-2,4,"(0.74, 0.82)" +1335,100,100,,1,1,[1],1.3,-2,5,"(0.84, 0.87)" +1336,100,100,,1,1,[1],1.3,-2,6,"(0.88, 0.9)" +1337,100,100,,1,1,[1],1.3,-2,7,"(0.85, 0.845)" +1338,100,100,,1,1,[1],1.3,-2,8,"(0.81, 0.895)" +1339,100,100,,1,1,[1],1.3,-2,9,"(0.85, 0.815)" +1340,100,100,,1,1,[1],1.3,-1,0,"(0.69, 0.715)" +1341,100,100,,1,1,[1],1.3,-1,1,"(0.64, 0.71)" +1342,100,100,,1,1,[1],1.3,-1,2,"(0.73, 0.635)" +1343,100,100,,1,1,[1],1.3,-1,3,"(0.75, 0.665)" +1344,100,100,,1,1,[1],1.3,-1,4,"(0.7, 0.68)" +1345,100,100,,1,1,[1],1.3,-1,5,"(0.75, 0.735)" +1346,100,100,,1,1,[1],1.3,-1,6,"(0.8, 0.69)" +1347,100,100,,1,1,[1],1.3,-1,7,"(0.76, 0.69)" +1348,100,100,,1,1,[1],1.3,-1,8,"(0.7, 0.68)" +1349,100,100,,1,1,[1],1.3,-1,9,"(0.73, 0.695)" +1350,100,100,,1,1,[1],1.3,0,0,"(0.58, 0.5)" +1351,100,100,,1,1,[1],1.3,0,1,"(0.74, 0.54)" +1352,100,100,,1,1,[1],1.3,0,2,"(0.71, 0.465)" +1353,100,100,,1,1,[1],1.3,0,3,"(0.72, 0.52)" +1354,100,100,,1,1,[1],1.3,0,4,"(0.69, 0.485)" +1355,100,100,,1,1,[1],1.3,0,5,"(0.66, 0.46)" +1356,100,100,,1,1,[1],1.3,0,6,"(0.65, 0.525)" +1357,100,100,,1,1,[1],1.3,0,7,"(0.63, 0.475)" +1358,100,100,,1,1,[1],1.3,0,8,"(0.74, 0.55)" +1359,100,100,,1,1,[1],1.3,0,9,"(0.76, 0.52)" +1360,100,100,,1,1,[1],1.3,1,0,"(0.83, 0.255)" +1361,100,100,,1,1,[1],1.3,1,1,"(0.73, 0.235)" +1362,100,100,,1,1,[1],1.3,1,2,"(0.61, 0.285)" +1363,100,100,,1,1,[1],1.3,1,3,"(0.73, 0.275)" +1364,100,100,,1,1,[1],1.3,1,4,"(0.73, 0.255)" +1365,100,100,,1,1,[1],1.3,1,5,"(0.66, 0.27)" +1366,100,100,,1,1,[1],1.3,1,6,"(0.72, 0.25)" +1367,100,100,,1,1,[1],1.3,1,7,"(0.78, 0.31)" +1368,100,100,,1,1,[1],1.3,1,8,"(0.74, 0.34)" +1369,100,100,,1,1,[1],1.3,1,9,"(0.71, 0.305)" +1370,100,100,,1,1,[1],1.3,2,0,"(0.85, 0.125)" +1371,100,100,,1,1,[1],1.3,2,1,"(0.76, 0.18)" +1372,100,100,,1,1,[1],1.3,2,2,"(0.82, 0.15)" +1373,100,100,,1,1,[1],1.3,2,3,"(0.72, 0.23)" +1374,100,100,,1,1,[1],1.3,2,4,"(0.75, 0.165)" +1375,100,100,,1,1,[1],1.3,2,5,"(0.85, 0.125)" +1376,100,100,,1,1,[1],1.3,2,6,"(0.82, 0.19)" +1377,100,100,,1,1,[1],1.3,2,7,"(0.86, 0.12)" +1378,100,100,,1,1,[1],1.3,2,8,"(0.82, 0.15)" +1379,100,100,,1,1,[1],1.3,2,9,"(0.84, 0.13)" +1380,100,100,,1,1,[1],1.3,3,0,"(0.92, 0.05)" +1381,100,100,,1,1,[1],1.3,3,1,"(0.91, 0.045)" +1382,100,100,,1,1,[1],1.3,3,2,"(0.92, 0.04)" +1383,100,100,,1,1,[1],1.3,3,3,"(0.9, 0.05)" +1384,100,100,,1,1,[1],1.3,3,4,"(0.88, 0.06)" +1385,100,100,,1,1,[1],1.3,3,5,"(0.94, 0.05)" +1386,100,100,,1,1,[1],1.3,3,6,"(0.86, 0.09)" +1387,100,100,,1,1,[1],1.3,3,7,"(0.92, 0.06)" +1388,100,100,,1,1,[1],1.3,3,8,"(0.93, 0.045)" +1389,100,100,,1,1,[1],1.3,3,9,"(0.84, 0.08)" +1390,100,100,,1,1,[1],1.3,4,0,"(0.99, 0.015)" +1391,100,100,,1,1,[1],1.3,4,1,"(0.99, 0.005)" +1392,100,100,,1,1,[1],1.3,4,2,"(0.98, 0.01)" +1393,100,100,,1,1,[1],1.3,4,3,"(0.97, 0.015)" +1394,100,100,,1,1,[1],1.3,4,4,"(0.91, 0.045)" +1395,100,100,,1,1,[1],1.3,4,5,"(0.98, 0.01)" +1396,100,100,,1,1,[1],1.3,4,6,"(0.98, 0.01)" +1397,100,100,,1,1,[1],1.3,4,7,"(0.96, 0.02)" +1398,100,100,,1,1,[1],1.3,4,8,"(0.94, 0.04)" +1399,100,100,,1,1,[1],1.3,4,9,"(0.97, 0.025)" +1400,100,100,,1,1,[1],1.4000000000000001,-5,0,"(0.99, 0.995)" +1401,100,100,,1,1,[1],1.4000000000000001,-5,1,"(0.99, 0.995)" +1402,100,100,,1,1,[1],1.4000000000000001,-5,2,"(0.98, 0.99)" +1403,100,100,,1,1,[1],1.4000000000000001,-5,3,"(0.98, 0.99)" +1404,100,100,,1,1,[1],1.4000000000000001,-5,4,"(0.99, 0.995)" +1405,100,100,,1,1,[1],1.4000000000000001,-5,5,"(0.99, 0.995)" +1406,100,100,,1,1,[1],1.4000000000000001,-5,6,"(0.99, 0.995)" +1407,100,100,,1,1,[1],1.4000000000000001,-5,7,"(1.0, 1.0)" +1408,100,100,,1,1,[1],1.4000000000000001,-5,8,"(1.0, 1.0)" +1409,100,100,,1,1,[1],1.4000000000000001,-5,9,"(0.99, 0.995)" +1410,100,100,,1,1,[1],1.4000000000000001,-4,0,"(0.98, 0.98)" +1411,100,100,,1,1,[1],1.4000000000000001,-4,1,"(0.95, 0.975)" +1412,100,100,,1,1,[1],1.4000000000000001,-4,2,"(0.93, 0.955)" +1413,100,100,,1,1,[1],1.4000000000000001,-4,3,"(0.95, 0.955)" +1414,100,100,,1,1,[1],1.4000000000000001,-4,4,"(0.99, 0.985)" +1415,100,100,,1,1,[1],1.4000000000000001,-4,5,"(0.93, 0.955)" +1416,100,100,,1,1,[1],1.4000000000000001,-4,6,"(0.96, 0.98)" +1417,100,100,,1,1,[1],1.4000000000000001,-4,7,"(0.93, 0.965)" +1418,100,100,,1,1,[1],1.4000000000000001,-4,8,"(0.97, 0.985)" +1419,100,100,,1,1,[1],1.4000000000000001,-4,9,"(0.96, 0.98)" +1420,100,100,,1,1,[1],1.4000000000000001,-3,0,"(0.9, 0.92)" +1421,100,100,,1,1,[1],1.4000000000000001,-3,1,"(0.94, 0.96)" +1422,100,100,,1,1,[1],1.4000000000000001,-3,2,"(0.86, 0.92)" +1423,100,100,,1,1,[1],1.4000000000000001,-3,3,"(0.86, 0.92)" +1424,100,100,,1,1,[1],1.4000000000000001,-3,4,"(0.9, 0.95)" +1425,100,100,,1,1,[1],1.4000000000000001,-3,5,"(0.95, 0.955)" +1426,100,100,,1,1,[1],1.4000000000000001,-3,6,"(0.92, 0.94)" +1427,100,100,,1,1,[1],1.4000000000000001,-3,7,"(0.92, 0.95)" +1428,100,100,,1,1,[1],1.4000000000000001,-3,8,"(0.9, 0.92)" +1429,100,100,,1,1,[1],1.4000000000000001,-3,9,"(0.87, 0.925)" +1430,100,100,,1,1,[1],1.4000000000000001,-2,0,"(0.8, 0.87)" +1431,100,100,,1,1,[1],1.4000000000000001,-2,1,"(0.73, 0.795)" +1432,100,100,,1,1,[1],1.4000000000000001,-2,2,"(0.77, 0.825)" +1433,100,100,,1,1,[1],1.4000000000000001,-2,3,"(0.81, 0.885)" +1434,100,100,,1,1,[1],1.4000000000000001,-2,4,"(0.88, 0.85)" +1435,100,100,,1,1,[1],1.4000000000000001,-2,5,"(0.85, 0.845)" +1436,100,100,,1,1,[1],1.4000000000000001,-2,6,"(0.84, 0.83)" +1437,100,100,,1,1,[1],1.4000000000000001,-2,7,"(0.77, 0.845)" +1438,100,100,,1,1,[1],1.4000000000000001,-2,8,"(0.78, 0.79)" +1439,100,100,,1,1,[1],1.4000000000000001,-2,9,"(0.8, 0.87)" +1440,100,100,,1,1,[1],1.4000000000000001,-1,0,"(0.71, 0.715)" +1441,100,100,,1,1,[1],1.4000000000000001,-1,1,"(0.7, 0.76)" +1442,100,100,,1,1,[1],1.4000000000000001,-1,2,"(0.69, 0.655)" +1443,100,100,,1,1,[1],1.4000000000000001,-1,3,"(0.69, 0.675)" +1444,100,100,,1,1,[1],1.4000000000000001,-1,4,"(0.59, 0.665)" +1445,100,100,,1,1,[1],1.4000000000000001,-1,5,"(0.64, 0.68)" +1446,100,100,,1,1,[1],1.4000000000000001,-1,6,"(0.7, 0.61)" +1447,100,100,,1,1,[1],1.4000000000000001,-1,7,"(0.71, 0.655)" +1448,100,100,,1,1,[1],1.4000000000000001,-1,8,"(0.76, 0.73)" +1449,100,100,,1,1,[1],1.4000000000000001,-1,9,"(0.76, 0.74)" +1450,100,100,,1,1,[1],1.4000000000000001,0,0,"(0.8, 0.48)" +1451,100,100,,1,1,[1],1.4000000000000001,0,1,"(0.63, 0.505)" +1452,100,100,,1,1,[1],1.4000000000000001,0,2,"(0.7, 0.47)" +1453,100,100,,1,1,[1],1.4000000000000001,0,3,"(0.66, 0.54)" +1454,100,100,,1,1,[1],1.4000000000000001,0,4,"(0.7, 0.56)" +1455,100,100,,1,1,[1],1.4000000000000001,0,5,"(0.65, 0.485)" +1456,100,100,,1,1,[1],1.4000000000000001,0,6,"(0.61, 0.555)" +1457,100,100,,1,1,[1],1.4000000000000001,0,7,"(0.67, 0.455)" +1458,100,100,,1,1,[1],1.4000000000000001,0,8,"(0.7, 0.49)" +1459,100,100,,1,1,[1],1.4000000000000001,0,9,"(0.64, 0.52)" +1460,100,100,,1,1,[1],1.4000000000000001,1,0,"(0.68, 0.36)" +1461,100,100,,1,1,[1],1.4000000000000001,1,1,"(0.76, 0.27)" +1462,100,100,,1,1,[1],1.4000000000000001,1,2,"(0.65, 0.295)" +1463,100,100,,1,1,[1],1.4000000000000001,1,3,"(0.68, 0.26)" +1464,100,100,,1,1,[1],1.4000000000000001,1,4,"(0.7, 0.29)" +1465,100,100,,1,1,[1],1.4000000000000001,1,5,"(0.67, 0.325)" +1466,100,100,,1,1,[1],1.4000000000000001,1,6,"(0.72, 0.33)" +1467,100,100,,1,1,[1],1.4000000000000001,1,7,"(0.71, 0.365)" +1468,100,100,,1,1,[1],1.4000000000000001,1,8,"(0.7, 0.35)" +1469,100,100,,1,1,[1],1.4000000000000001,1,9,"(0.69, 0.255)" +1470,100,100,,1,1,[1],1.4000000000000001,2,0,"(0.85, 0.095)" +1471,100,100,,1,1,[1],1.4000000000000001,2,1,"(0.84, 0.12)" +1472,100,100,,1,1,[1],1.4000000000000001,2,2,"(0.81, 0.145)" +1473,100,100,,1,1,[1],1.4000000000000001,2,3,"(0.81, 0.135)" +1474,100,100,,1,1,[1],1.4000000000000001,2,4,"(0.91, 0.115)" +1475,100,100,,1,1,[1],1.4000000000000001,2,5,"(0.83, 0.155)" +1476,100,100,,1,1,[1],1.4000000000000001,2,6,"(0.77, 0.155)" +1477,100,100,,1,1,[1],1.4000000000000001,2,7,"(0.83, 0.125)" +1478,100,100,,1,1,[1],1.4000000000000001,2,8,"(0.81, 0.195)" +1479,100,100,,1,1,[1],1.4000000000000001,2,9,"(0.84, 0.12)" +1480,100,100,,1,1,[1],1.4000000000000001,3,0,"(0.94, 0.05)" +1481,100,100,,1,1,[1],1.4000000000000001,3,1,"(0.85, 0.075)" +1482,100,100,,1,1,[1],1.4000000000000001,3,2,"(0.9, 0.07)" +1483,100,100,,1,1,[1],1.4000000000000001,3,3,"(0.89, 0.085)" +1484,100,100,,1,1,[1],1.4000000000000001,3,4,"(0.88, 0.09)" +1485,100,100,,1,1,[1],1.4000000000000001,3,5,"(0.91, 0.065)" +1486,100,100,,1,1,[1],1.4000000000000001,3,6,"(0.92, 0.05)" +1487,100,100,,1,1,[1],1.4000000000000001,3,7,"(0.92, 0.05)" +1488,100,100,,1,1,[1],1.4000000000000001,3,8,"(0.91, 0.045)" +1489,100,100,,1,1,[1],1.4000000000000001,3,9,"(0.95, 0.035)" +1490,100,100,,1,1,[1],1.4000000000000001,4,0,"(0.98, 0.01)" +1491,100,100,,1,1,[1],1.4000000000000001,4,1,"(0.98, 0.01)" +1492,100,100,,1,1,[1],1.4000000000000001,4,2,"(0.94, 0.03)" +1493,100,100,,1,1,[1],1.4000000000000001,4,3,"(0.98, 0.02)" +1494,100,100,,1,1,[1],1.4000000000000001,4,4,"(0.97, 0.015)" +1495,100,100,,1,1,[1],1.4000000000000001,4,5,"(0.98, 0.01)" +1496,100,100,,1,1,[1],1.4000000000000001,4,6,"(0.94, 0.03)" +1497,100,100,,1,1,[1],1.4000000000000001,4,7,"(0.98, 0.01)" +1498,100,100,,1,1,[1],1.4000000000000001,4,8,"(0.99, 0.015)" +1499,100,100,,1,1,[1],1.4000000000000001,4,9,"(0.97, 0.015)" +1500,100,100,,1,1,[1],1.5,-5,0,"(0.99, 0.995)" +1501,100,100,,1,1,[1],1.5,-5,1,"(0.97, 0.985)" +1502,100,100,,1,1,[1],1.5,-5,2,"(0.98, 0.99)" +1503,100,100,,1,1,[1],1.5,-5,3,"(0.99, 0.995)" +1504,100,100,,1,1,[1],1.5,-5,4,"(1.0, 1.0)" +1505,100,100,,1,1,[1],1.5,-5,5,"(0.99, 0.995)" +1506,100,100,,1,1,[1],1.5,-5,6,"(0.97, 0.985)" +1507,100,100,,1,1,[1],1.5,-5,7,"(0.97, 0.985)" +1508,100,100,,1,1,[1],1.5,-5,8,"(0.99, 0.995)" +1509,100,100,,1,1,[1],1.5,-5,9,"(0.99, 0.995)" +1510,100,100,,1,1,[1],1.5,-4,0,"(0.96, 0.98)" +1511,100,100,,1,1,[1],1.5,-4,1,"(0.98, 0.99)" +1512,100,100,,1,1,[1],1.5,-4,2,"(0.96, 0.98)" +1513,100,100,,1,1,[1],1.5,-4,3,"(0.92, 0.96)" +1514,100,100,,1,1,[1],1.5,-4,4,"(0.96, 0.98)" +1515,100,100,,1,1,[1],1.5,-4,5,"(0.96, 0.98)" +1516,100,100,,1,1,[1],1.5,-4,6,"(0.97, 0.985)" +1517,100,100,,1,1,[1],1.5,-4,7,"(0.95, 0.975)" +1518,100,100,,1,1,[1],1.5,-4,8,"(0.94, 0.97)" +1519,100,100,,1,1,[1],1.5,-4,9,"(0.95, 0.975)" +1520,100,100,,1,1,[1],1.5,-3,0,"(0.84, 0.92)" +1521,100,100,,1,1,[1],1.5,-3,1,"(0.93, 0.945)" +1522,100,100,,1,1,[1],1.5,-3,2,"(0.88, 0.94)" +1523,100,100,,1,1,[1],1.5,-3,3,"(0.87, 0.925)" +1524,100,100,,1,1,[1],1.5,-3,4,"(0.91, 0.925)" +1525,100,100,,1,1,[1],1.5,-3,5,"(0.92, 0.95)" +1526,100,100,,1,1,[1],1.5,-3,6,"(0.9, 0.94)" +1527,100,100,,1,1,[1],1.5,-3,7,"(0.9, 0.88)" +1528,100,100,,1,1,[1],1.5,-3,8,"(0.9, 0.9)" +1529,100,100,,1,1,[1],1.5,-3,9,"(0.82, 0.88)" +1530,100,100,,1,1,[1],1.5,-2,0,"(0.81, 0.855)" +1531,100,100,,1,1,[1],1.5,-2,1,"(0.72, 0.81)" +1532,100,100,,1,1,[1],1.5,-2,2,"(0.84, 0.86)" +1533,100,100,,1,1,[1],1.5,-2,3,"(0.84, 0.76)" +1534,100,100,,1,1,[1],1.5,-2,4,"(0.78, 0.82)" +1535,100,100,,1,1,[1],1.5,-2,5,"(0.85, 0.895)" +1536,100,100,,1,1,[1],1.5,-2,6,"(0.75, 0.785)" +1537,100,100,,1,1,[1],1.5,-2,7,"(0.82, 0.89)" +1538,100,100,,1,1,[1],1.5,-2,8,"(0.79, 0.835)" +1539,100,100,,1,1,[1],1.5,-2,9,"(0.82, 0.84)" +1540,100,100,,1,1,[1],1.5,-1,0,"(0.76, 0.73)" +1541,100,100,,1,1,[1],1.5,-1,1,"(0.67, 0.625)" +1542,100,100,,1,1,[1],1.5,-1,2,"(0.64, 0.69)" +1543,100,100,,1,1,[1],1.5,-1,3,"(0.72, 0.72)" +1544,100,100,,1,1,[1],1.5,-1,4,"(0.68, 0.6)" +1545,100,100,,1,1,[1],1.5,-1,5,"(0.71, 0.685)" +1546,100,100,,1,1,[1],1.5,-1,6,"(0.74, 0.66)" +1547,100,100,,1,1,[1],1.5,-1,7,"(0.7, 0.62)" +1548,100,100,,1,1,[1],1.5,-1,8,"(0.6, 0.73)" +1549,100,100,,1,1,[1],1.5,-1,9,"(0.65, 0.735)" +1550,100,100,,1,1,[1],1.5,0,0,"(0.58, 0.56)" +1551,100,100,,1,1,[1],1.5,0,1,"(0.54, 0.53)" +1552,100,100,,1,1,[1],1.5,0,2,"(0.71, 0.505)" +1553,100,100,,1,1,[1],1.5,0,3,"(0.66, 0.52)" +1554,100,100,,1,1,[1],1.5,0,4,"(0.64, 0.5)" +1555,100,100,,1,1,[1],1.5,0,5,"(0.64, 0.49)" +1556,100,100,,1,1,[1],1.5,0,6,"(0.66, 0.53)" +1557,100,100,,1,1,[1],1.5,0,7,"(0.64, 0.45)" +1558,100,100,,1,1,[1],1.5,0,8,"(0.67, 0.535)" +1559,100,100,,1,1,[1],1.5,0,9,"(0.64, 0.49)" +1560,100,100,,1,1,[1],1.5,1,0,"(0.72, 0.3)" +1561,100,100,,1,1,[1],1.5,1,1,"(0.65, 0.295)" +1562,100,100,,1,1,[1],1.5,1,2,"(0.71, 0.345)" +1563,100,100,,1,1,[1],1.5,1,3,"(0.72, 0.32)" +1564,100,100,,1,1,[1],1.5,1,4,"(0.77, 0.315)" +1565,100,100,,1,1,[1],1.5,1,5,"(0.6, 0.31)" +1566,100,100,,1,1,[1],1.5,1,6,"(0.65, 0.305)" +1567,100,100,,1,1,[1],1.5,1,7,"(0.71, 0.365)" +1568,100,100,,1,1,[1],1.5,1,8,"(0.71, 0.305)" +1569,100,100,,1,1,[1],1.5,1,9,"(0.69, 0.345)" +1570,100,100,,1,1,[1],1.5,2,0,"(0.83, 0.165)" +1571,100,100,,1,1,[1],1.5,2,1,"(0.75, 0.225)" +1572,100,100,,1,1,[1],1.5,2,2,"(0.85, 0.155)" +1573,100,100,,1,1,[1],1.5,2,3,"(0.75, 0.175)" +1574,100,100,,1,1,[1],1.5,2,4,"(0.8, 0.13)" +1575,100,100,,1,1,[1],1.5,2,5,"(0.75, 0.185)" +1576,100,100,,1,1,[1],1.5,2,6,"(0.81, 0.165)" +1577,100,100,,1,1,[1],1.5,2,7,"(0.85, 0.145)" +1578,100,100,,1,1,[1],1.5,2,8,"(0.8, 0.18)" +1579,100,100,,1,1,[1],1.5,2,9,"(0.81, 0.135)" +1580,100,100,,1,1,[1],1.5,3,0,"(0.93, 0.065)" +1581,100,100,,1,1,[1],1.5,3,1,"(0.9, 0.05)" +1582,100,100,,1,1,[1],1.5,3,2,"(0.88, 0.08)" +1583,100,100,,1,1,[1],1.5,3,3,"(0.86, 0.1)" +1584,100,100,,1,1,[1],1.5,3,4,"(0.87, 0.105)" +1585,100,100,,1,1,[1],1.5,3,5,"(0.86, 0.09)" +1586,100,100,,1,1,[1],1.5,3,6,"(0.88, 0.06)" +1587,100,100,,1,1,[1],1.5,3,7,"(0.86, 0.09)" +1588,100,100,,1,1,[1],1.5,3,8,"(0.9, 0.06)" +1589,100,100,,1,1,[1],1.5,3,9,"(0.9, 0.07)" +1590,100,100,,1,1,[1],1.5,4,0,"(0.96, 0.03)" +1591,100,100,,1,1,[1],1.5,4,1,"(0.96, 0.02)" +1592,100,100,,1,1,[1],1.5,4,2,"(0.91, 0.055)" +1593,100,100,,1,1,[1],1.5,4,3,"(0.98, 0.01)" +1594,100,100,,1,1,[1],1.5,4,4,"(0.93, 0.045)" +1595,100,100,,1,1,[1],1.5,4,5,"(0.94, 0.03)" +1596,100,100,,1,1,[1],1.5,4,6,"(0.96, 0.02)" +1597,100,100,,1,1,[1],1.5,4,7,"(0.97, 0.015)" +1598,100,100,,1,1,[1],1.5,4,8,"(0.95, 0.035)" +1599,100,100,,1,1,[1],1.5,4,9,"(0.95, 0.025)" +1600,100,100,,1,1,[1],1.6,-5,0,"(0.98, 0.99)" +1601,100,100,,1,1,[1],1.6,-5,1,"(0.98, 0.97)" +1602,100,100,,1,1,[1],1.6,-5,2,"(0.98, 0.99)" +1603,100,100,,1,1,[1],1.6,-5,3,"(0.96, 0.98)" +1604,100,100,,1,1,[1],1.6,-5,4,"(0.99, 0.995)" +1605,100,100,,1,1,[1],1.6,-5,5,"(1.0, 1.0)" +1606,100,100,,1,1,[1],1.6,-5,6,"(0.95, 0.975)" +1607,100,100,,1,1,[1],1.6,-5,7,"(0.99, 0.995)" +1608,100,100,,1,1,[1],1.6,-5,8,"(0.98, 0.99)" +1609,100,100,,1,1,[1],1.6,-5,9,"(1.0, 1.0)" +1610,100,100,,1,1,[1],1.6,-4,0,"(0.93, 0.965)" +1611,100,100,,1,1,[1],1.6,-4,1,"(0.97, 0.975)" +1612,100,100,,1,1,[1],1.6,-4,2,"(0.94, 0.97)" +1613,100,100,,1,1,[1],1.6,-4,3,"(0.97, 0.985)" +1614,100,100,,1,1,[1],1.6,-4,4,"(0.96, 0.98)" +1615,100,100,,1,1,[1],1.6,-4,5,"(0.98, 0.99)" +1616,100,100,,1,1,[1],1.6,-4,6,"(0.97, 0.985)" +1617,100,100,,1,1,[1],1.6,-4,7,"(0.89, 0.935)" +1618,100,100,,1,1,[1],1.6,-4,8,"(0.88, 0.94)" +1619,100,100,,1,1,[1],1.6,-4,9,"(0.96, 0.98)" +1620,100,100,,1,1,[1],1.6,-3,0,"(0.97, 0.955)" +1621,100,100,,1,1,[1],1.6,-3,1,"(0.89, 0.935)" +1622,100,100,,1,1,[1],1.6,-3,2,"(0.93, 0.945)" +1623,100,100,,1,1,[1],1.6,-3,3,"(0.85, 0.905)" +1624,100,100,,1,1,[1],1.6,-3,4,"(0.86, 0.93)" +1625,100,100,,1,1,[1],1.6,-3,5,"(0.86, 0.91)" +1626,100,100,,1,1,[1],1.6,-3,6,"(0.85, 0.885)" +1627,100,100,,1,1,[1],1.6,-3,7,"(0.94, 0.92)" +1628,100,100,,1,1,[1],1.6,-3,8,"(0.85, 0.925)" +1629,100,100,,1,1,[1],1.6,-3,9,"(0.93, 0.945)" +1630,100,100,,1,1,[1],1.6,-2,0,"(0.8, 0.83)" +1631,100,100,,1,1,[1],1.6,-2,1,"(0.78, 0.81)" +1632,100,100,,1,1,[1],1.6,-2,2,"(0.73, 0.825)" +1633,100,100,,1,1,[1],1.6,-2,3,"(0.76, 0.77)" +1634,100,100,,1,1,[1],1.6,-2,4,"(0.78, 0.88)" +1635,100,100,,1,1,[1],1.6,-2,5,"(0.76, 0.78)" +1636,100,100,,1,1,[1],1.6,-2,6,"(0.84, 0.85)" +1637,100,100,,1,1,[1],1.6,-2,7,"(0.74, 0.8)" +1638,100,100,,1,1,[1],1.6,-2,8,"(0.77, 0.815)" +1639,100,100,,1,1,[1],1.6,-2,9,"(0.79, 0.815)" +1640,100,100,,1,1,[1],1.6,-1,0,"(0.71, 0.645)" +1641,100,100,,1,1,[1],1.6,-1,1,"(0.69, 0.685)" +1642,100,100,,1,1,[1],1.6,-1,2,"(0.76, 0.69)" +1643,100,100,,1,1,[1],1.6,-1,3,"(0.63, 0.615)" +1644,100,100,,1,1,[1],1.6,-1,4,"(0.66, 0.69)" +1645,100,100,,1,1,[1],1.6,-1,5,"(0.66, 0.63)" +1646,100,100,,1,1,[1],1.6,-1,6,"(0.73, 0.685)" +1647,100,100,,1,1,[1],1.6,-1,7,"(0.75, 0.645)" +1648,100,100,,1,1,[1],1.6,-1,8,"(0.69, 0.705)" +1649,100,100,,1,1,[1],1.6,-1,9,"(0.75, 0.645)" +1650,100,100,,1,1,[1],1.6,0,0,"(0.56, 0.52)" +1651,100,100,,1,1,[1],1.6,0,1,"(0.69, 0.555)" +1652,100,100,,1,1,[1],1.6,0,2,"(0.59, 0.545)" +1653,100,100,,1,1,[1],1.6,0,3,"(0.72, 0.52)" +1654,100,100,,1,1,[1],1.6,0,4,"(0.65, 0.455)" +1655,100,100,,1,1,[1],1.6,0,5,"(0.62, 0.51)" +1656,100,100,,1,1,[1],1.6,0,6,"(0.64, 0.54)" +1657,100,100,,1,1,[1],1.6,0,7,"(0.54, 0.5)" +1658,100,100,,1,1,[1],1.6,0,8,"(0.57, 0.485)" +1659,100,100,,1,1,[1],1.6,0,9,"(0.63, 0.495)" +1660,100,100,,1,1,[1],1.6,1,0,"(0.69, 0.245)" +1661,100,100,,1,1,[1],1.6,1,1,"(0.67, 0.295)" +1662,100,100,,1,1,[1],1.6,1,2,"(0.71, 0.315)" +1663,100,100,,1,1,[1],1.6,1,3,"(0.65, 0.355)" +1664,100,100,,1,1,[1],1.6,1,4,"(0.66, 0.33)" +1665,100,100,,1,1,[1],1.6,1,5,"(0.69, 0.335)" +1666,100,100,,1,1,[1],1.6,1,6,"(0.7, 0.31)" +1667,100,100,,1,1,[1],1.6,1,7,"(0.74, 0.3)" +1668,100,100,,1,1,[1],1.6,1,8,"(0.72, 0.37)" +1669,100,100,,1,1,[1],1.6,1,9,"(0.68, 0.35)" +1670,100,100,,1,1,[1],1.6,2,0,"(0.78, 0.18)" +1671,100,100,,1,1,[1],1.6,2,1,"(0.83, 0.155)" +1672,100,100,,1,1,[1],1.6,2,2,"(0.8, 0.21)" +1673,100,100,,1,1,[1],1.6,2,3,"(0.83, 0.135)" +1674,100,100,,1,1,[1],1.6,2,4,"(0.74, 0.19)" +1675,100,100,,1,1,[1],1.6,2,5,"(0.82, 0.19)" +1676,100,100,,1,1,[1],1.6,2,6,"(0.81, 0.135)" +1677,100,100,,1,1,[1],1.6,2,7,"(0.79, 0.165)" +1678,100,100,,1,1,[1],1.6,2,8,"(0.8, 0.16)" +1679,100,100,,1,1,[1],1.6,2,9,"(0.76, 0.13)" +1680,100,100,,1,1,[1],1.6,3,0,"(0.9, 0.07)" +1681,100,100,,1,1,[1],1.6,3,1,"(0.91, 0.085)" +1682,100,100,,1,1,[1],1.6,3,2,"(0.89, 0.075)" +1683,100,100,,1,1,[1],1.6,3,3,"(0.86, 0.08)" +1684,100,100,,1,1,[1],1.6,3,4,"(0.91, 0.045)" +1685,100,100,,1,1,[1],1.6,3,5,"(0.83, 0.105)" +1686,100,100,,1,1,[1],1.6,3,6,"(0.85, 0.075)" +1687,100,100,,1,1,[1],1.6,3,7,"(0.89, 0.095)" +1688,100,100,,1,1,[1],1.6,3,8,"(0.87, 0.075)" +1689,100,100,,1,1,[1],1.6,3,9,"(0.84, 0.09)" +1690,100,100,,1,1,[1],1.6,4,0,"(0.96, 0.04)" +1691,100,100,,1,1,[1],1.6,4,1,"(0.92, 0.04)" +1692,100,100,,1,1,[1],1.6,4,2,"(0.94, 0.04)" +1693,100,100,,1,1,[1],1.6,4,3,"(0.95, 0.025)" +1694,100,100,,1,1,[1],1.6,4,4,"(0.97, 0.025)" +1695,100,100,,1,1,[1],1.6,4,5,"(0.93, 0.035)" +1696,100,100,,1,1,[1],1.6,4,6,"(0.95, 0.035)" +1697,100,100,,1,1,[1],1.6,4,7,"(0.97, 0.025)" +1698,100,100,,1,1,[1],1.6,4,8,"(0.94, 0.03)" +1699,100,100,,1,1,[1],1.6,4,9,"(0.91, 0.045)" +1700,100,100,,1,1,[1],1.7000000000000002,-5,0,"(0.98, 0.99)" +1701,100,100,,1,1,[1],1.7000000000000002,-5,1,"(0.96, 0.98)" +1702,100,100,,1,1,[1],1.7000000000000002,-5,2,"(1.0, 1.0)" +1703,100,100,,1,1,[1],1.7000000000000002,-5,3,"(0.97, 0.985)" +1704,100,100,,1,1,[1],1.7000000000000002,-5,4,"(0.98, 0.99)" +1705,100,100,,1,1,[1],1.7000000000000002,-5,5,"(0.98, 0.99)" +1706,100,100,,1,1,[1],1.7000000000000002,-5,6,"(0.98, 0.98)" +1707,100,100,,1,1,[1],1.7000000000000002,-5,7,"(0.96, 0.98)" +1708,100,100,,1,1,[1],1.7000000000000002,-5,8,"(1.0, 1.0)" +1709,100,100,,1,1,[1],1.7000000000000002,-5,9,"(1.0, 1.0)" +1710,100,100,,1,1,[1],1.7000000000000002,-4,0,"(0.94, 0.96)" +1711,100,100,,1,1,[1],1.7000000000000002,-4,1,"(0.96, 0.97)" +1712,100,100,,1,1,[1],1.7000000000000002,-4,2,"(0.95, 0.975)" +1713,100,100,,1,1,[1],1.7000000000000002,-4,3,"(0.92, 0.95)" +1714,100,100,,1,1,[1],1.7000000000000002,-4,4,"(0.96, 0.98)" +1715,100,100,,1,1,[1],1.7000000000000002,-4,5,"(0.91, 0.915)" +1716,100,100,,1,1,[1],1.7000000000000002,-4,6,"(0.97, 0.985)" +1717,100,100,,1,1,[1],1.7000000000000002,-4,7,"(0.92, 0.94)" +1718,100,100,,1,1,[1],1.7000000000000002,-4,8,"(0.95, 0.975)" +1719,100,100,,1,1,[1],1.7000000000000002,-4,9,"(0.93, 0.945)" +1720,100,100,,1,1,[1],1.7000000000000002,-3,0,"(0.84, 0.89)" +1721,100,100,,1,1,[1],1.7000000000000002,-3,1,"(0.87, 0.915)" +1722,100,100,,1,1,[1],1.7000000000000002,-3,2,"(0.9, 0.95)" +1723,100,100,,1,1,[1],1.7000000000000002,-3,3,"(0.88, 0.9)" +1724,100,100,,1,1,[1],1.7000000000000002,-3,4,"(0.88, 0.91)" +1725,100,100,,1,1,[1],1.7000000000000002,-3,5,"(0.88, 0.92)" +1726,100,100,,1,1,[1],1.7000000000000002,-3,6,"(0.85, 0.875)" +1727,100,100,,1,1,[1],1.7000000000000002,-3,7,"(0.88, 0.92)" +1728,100,100,,1,1,[1],1.7000000000000002,-3,8,"(0.87, 0.905)" +1729,100,100,,1,1,[1],1.7000000000000002,-3,9,"(0.88, 0.92)" +1730,100,100,,1,1,[1],1.7000000000000002,-2,0,"(0.7, 0.74)" +1731,100,100,,1,1,[1],1.7000000000000002,-2,1,"(0.74, 0.84)" +1732,100,100,,1,1,[1],1.7000000000000002,-2,2,"(0.76, 0.82)" +1733,100,100,,1,1,[1],1.7000000000000002,-2,3,"(0.76, 0.81)" +1734,100,100,,1,1,[1],1.7000000000000002,-2,4,"(0.8, 0.86)" +1735,100,100,,1,1,[1],1.7000000000000002,-2,5,"(0.82, 0.84)" +1736,100,100,,1,1,[1],1.7000000000000002,-2,6,"(0.73, 0.785)" +1737,100,100,,1,1,[1],1.7000000000000002,-2,7,"(0.7, 0.76)" +1738,100,100,,1,1,[1],1.7000000000000002,-2,8,"(0.81, 0.835)" +1739,100,100,,1,1,[1],1.7000000000000002,-2,9,"(0.82, 0.86)" +1740,100,100,,1,1,[1],1.7000000000000002,-1,0,"(0.74, 0.69)" +1741,100,100,,1,1,[1],1.7000000000000002,-1,1,"(0.59, 0.635)" +1742,100,100,,1,1,[1],1.7000000000000002,-1,2,"(0.64, 0.62)" +1743,100,100,,1,1,[1],1.7000000000000002,-1,3,"(0.6, 0.63)" +1744,100,100,,1,1,[1],1.7000000000000002,-1,4,"(0.64, 0.64)" +1745,100,100,,1,1,[1],1.7000000000000002,-1,5,"(0.7, 0.71)" +1746,100,100,,1,1,[1],1.7000000000000002,-1,6,"(0.69, 0.705)" +1747,100,100,,1,1,[1],1.7000000000000002,-1,7,"(0.74, 0.75)" +1748,100,100,,1,1,[1],1.7000000000000002,-1,8,"(0.73, 0.765)" +1749,100,100,,1,1,[1],1.7000000000000002,-1,9,"(0.66, 0.65)" +1750,100,100,,1,1,[1],1.7000000000000002,0,0,"(0.5, 0.48)" +1751,100,100,,1,1,[1],1.7000000000000002,0,1,"(0.67, 0.495)" +1752,100,100,,1,1,[1],1.7000000000000002,0,2,"(0.57, 0.565)" +1753,100,100,,1,1,[1],1.7000000000000002,0,3,"(0.58, 0.46)" +1754,100,100,,1,1,[1],1.7000000000000002,0,4,"(0.63, 0.505)" +1755,100,100,,1,1,[1],1.7000000000000002,0,5,"(0.63, 0.525)" +1756,100,100,,1,1,[1],1.7000000000000002,0,6,"(0.55, 0.435)" +1757,100,100,,1,1,[1],1.7000000000000002,0,7,"(0.64, 0.41)" +1758,100,100,,1,1,[1],1.7000000000000002,0,8,"(0.62, 0.49)" +1759,100,100,,1,1,[1],1.7000000000000002,0,9,"(0.63, 0.505)" +1760,100,100,,1,1,[1],1.7000000000000002,1,0,"(0.7, 0.4)" +1761,100,100,,1,1,[1],1.7000000000000002,1,1,"(0.68, 0.38)" +1762,100,100,,1,1,[1],1.7000000000000002,1,2,"(0.65, 0.375)" +1763,100,100,,1,1,[1],1.7000000000000002,1,3,"(0.6, 0.36)" +1764,100,100,,1,1,[1],1.7000000000000002,1,4,"(0.61, 0.335)" +1765,100,100,,1,1,[1],1.7000000000000002,1,5,"(0.61, 0.305)" +1766,100,100,,1,1,[1],1.7000000000000002,1,6,"(0.64, 0.32)" +1767,100,100,,1,1,[1],1.7000000000000002,1,7,"(0.76, 0.31)" +1768,100,100,,1,1,[1],1.7000000000000002,1,8,"(0.68, 0.24)" +1769,100,100,,1,1,[1],1.7000000000000002,1,9,"(0.71, 0.335)" +1770,100,100,,1,1,[1],1.7000000000000002,2,0,"(0.86, 0.13)" +1771,100,100,,1,1,[1],1.7000000000000002,2,1,"(0.76, 0.19)" +1772,100,100,,1,1,[1],1.7000000000000002,2,2,"(0.79, 0.145)" +1773,100,100,,1,1,[1],1.7000000000000002,2,3,"(0.78, 0.17)" +1774,100,100,,1,1,[1],1.7000000000000002,2,4,"(0.77, 0.175)" +1775,100,100,,1,1,[1],1.7000000000000002,2,5,"(0.84, 0.16)" +1776,100,100,,1,1,[1],1.7000000000000002,2,6,"(0.71, 0.185)" +1777,100,100,,1,1,[1],1.7000000000000002,2,7,"(0.86, 0.1)" +1778,100,100,,1,1,[1],1.7000000000000002,2,8,"(0.77, 0.215)" +1779,100,100,,1,1,[1],1.7000000000000002,2,9,"(0.83, 0.155)" +1780,100,100,,1,1,[1],1.7000000000000002,3,0,"(0.9, 0.08)" +1781,100,100,,1,1,[1],1.7000000000000002,3,1,"(0.91, 0.055)" +1782,100,100,,1,1,[1],1.7000000000000002,3,2,"(0.87, 0.075)" +1783,100,100,,1,1,[1],1.7000000000000002,3,3,"(0.9, 0.08)" +1784,100,100,,1,1,[1],1.7000000000000002,3,4,"(0.82, 0.13)" +1785,100,100,,1,1,[1],1.7000000000000002,3,5,"(0.89, 0.075)" +1786,100,100,,1,1,[1],1.7000000000000002,3,6,"(0.94, 0.08)" +1787,100,100,,1,1,[1],1.7000000000000002,3,7,"(0.76, 0.16)" +1788,100,100,,1,1,[1],1.7000000000000002,3,8,"(0.92, 0.07)" +1789,100,100,,1,1,[1],1.7000000000000002,3,9,"(0.9, 0.06)" +1790,100,100,,1,1,[1],1.7000000000000002,4,0,"(0.95, 0.025)" +1791,100,100,,1,1,[1],1.7000000000000002,4,1,"(0.96, 0.03)" +1792,100,100,,1,1,[1],1.7000000000000002,4,2,"(0.9, 0.05)" +1793,100,100,,1,1,[1],1.7000000000000002,4,3,"(0.95, 0.035)" +1794,100,100,,1,1,[1],1.7000000000000002,4,4,"(0.92, 0.04)" +1795,100,100,,1,1,[1],1.7000000000000002,4,5,"(0.96, 0.03)" +1796,100,100,,1,1,[1],1.7000000000000002,4,6,"(0.94, 0.04)" +1797,100,100,,1,1,[1],1.7000000000000002,4,7,"(0.95, 0.045)" +1798,100,100,,1,1,[1],1.7000000000000002,4,8,"(0.95, 0.035)" +1799,100,100,,1,1,[1],1.7000000000000002,4,9,"(0.94, 0.04)" +1800,100,100,,1,1,[1],1.8,-5,0,"(0.98, 0.99)" +1801,100,100,,1,1,[1],1.8,-5,1,"(0.97, 0.985)" +1802,100,100,,1,1,[1],1.8,-5,2,"(0.98, 0.99)" +1803,100,100,,1,1,[1],1.8,-5,3,"(0.97, 0.985)" +1804,100,100,,1,1,[1],1.8,-5,4,"(0.98, 0.99)" +1805,100,100,,1,1,[1],1.8,-5,5,"(0.98, 0.99)" +1806,100,100,,1,1,[1],1.8,-5,6,"(0.95, 0.975)" +1807,100,100,,1,1,[1],1.8,-5,7,"(0.98, 0.99)" +1808,100,100,,1,1,[1],1.8,-5,8,"(0.97, 0.985)" +1809,100,100,,1,1,[1],1.8,-5,9,"(0.99, 0.995)" +1810,100,100,,1,1,[1],1.8,-4,0,"(0.97, 0.985)" +1811,100,100,,1,1,[1],1.8,-4,1,"(0.91, 0.955)" +1812,100,100,,1,1,[1],1.8,-4,2,"(0.89, 0.945)" +1813,100,100,,1,1,[1],1.8,-4,3,"(0.92, 0.96)" +1814,100,100,,1,1,[1],1.8,-4,4,"(0.93, 0.955)" +1815,100,100,,1,1,[1],1.8,-4,5,"(0.96, 0.95)" +1816,100,100,,1,1,[1],1.8,-4,6,"(0.95, 0.975)" +1817,100,100,,1,1,[1],1.8,-4,7,"(0.95, 0.965)" +1818,100,100,,1,1,[1],1.8,-4,8,"(0.94, 0.96)" +1819,100,100,,1,1,[1],1.8,-4,9,"(0.92, 0.96)" +1820,100,100,,1,1,[1],1.8,-3,0,"(0.88, 0.93)" +1821,100,100,,1,1,[1],1.8,-3,1,"(0.87, 0.895)" +1822,100,100,,1,1,[1],1.8,-3,2,"(0.89, 0.895)" +1823,100,100,,1,1,[1],1.8,-3,3,"(0.85, 0.895)" +1824,100,100,,1,1,[1],1.8,-3,4,"(0.86, 0.92)" +1825,100,100,,1,1,[1],1.8,-3,5,"(0.87, 0.925)" +1826,100,100,,1,1,[1],1.8,-3,6,"(0.88, 0.93)" +1827,100,100,,1,1,[1],1.8,-3,7,"(0.91, 0.925)" +1828,100,100,,1,1,[1],1.8,-3,8,"(0.81, 0.895)" +1829,100,100,,1,1,[1],1.8,-3,9,"(0.8, 0.88)" +1830,100,100,,1,1,[1],1.8,-2,0,"(0.86, 0.85)" +1831,100,100,,1,1,[1],1.8,-2,1,"(0.66, 0.78)" +1832,100,100,,1,1,[1],1.8,-2,2,"(0.73, 0.785)" +1833,100,100,,1,1,[1],1.8,-2,3,"(0.71, 0.765)" +1834,100,100,,1,1,[1],1.8,-2,4,"(0.79, 0.805)" +1835,100,100,,1,1,[1],1.8,-2,5,"(0.82, 0.78)" +1836,100,100,,1,1,[1],1.8,-2,6,"(0.72, 0.82)" +1837,100,100,,1,1,[1],1.8,-2,7,"(0.75, 0.815)" +1838,100,100,,1,1,[1],1.8,-2,8,"(0.78, 0.87)" +1839,100,100,,1,1,[1],1.8,-2,9,"(0.77, 0.815)" +1840,100,100,,1,1,[1],1.8,-1,0,"(0.63, 0.675)" +1841,100,100,,1,1,[1],1.8,-1,1,"(0.7, 0.69)" +1842,100,100,,1,1,[1],1.8,-1,2,"(0.69, 0.615)" +1843,100,100,,1,1,[1],1.8,-1,3,"(0.7, 0.68)" +1844,100,100,,1,1,[1],1.8,-1,4,"(0.65, 0.705)" +1845,100,100,,1,1,[1],1.8,-1,5,"(0.7, 0.72)" +1846,100,100,,1,1,[1],1.8,-1,6,"(0.64, 0.62)" +1847,100,100,,1,1,[1],1.8,-1,7,"(0.66, 0.68)" +1848,100,100,,1,1,[1],1.8,-1,8,"(0.6, 0.68)" +1849,100,100,,1,1,[1],1.8,-1,9,"(0.64, 0.65)" +1850,100,100,,1,1,[1],1.8,0,0,"(0.65, 0.595)" +1851,100,100,,1,1,[1],1.8,0,1,"(0.63, 0.585)" +1852,100,100,,1,1,[1],1.8,0,2,"(0.65, 0.515)" +1853,100,100,,1,1,[1],1.8,0,3,"(0.66, 0.5)" +1854,100,100,,1,1,[1],1.8,0,4,"(0.72, 0.53)" +1855,100,100,,1,1,[1],1.8,0,5,"(0.65, 0.505)" +1856,100,100,,1,1,[1],1.8,0,6,"(0.7, 0.52)" +1857,100,100,,1,1,[1],1.8,0,7,"(0.64, 0.53)" +1858,100,100,,1,1,[1],1.8,0,8,"(0.59, 0.465)" +1859,100,100,,1,1,[1],1.8,0,9,"(0.62, 0.47)" +1860,100,100,,1,1,[1],1.8,1,0,"(0.72, 0.33)" +1861,100,100,,1,1,[1],1.8,1,1,"(0.75, 0.335)" +1862,100,100,,1,1,[1],1.8,1,2,"(0.67, 0.355)" +1863,100,100,,1,1,[1],1.8,1,3,"(0.63, 0.355)" +1864,100,100,,1,1,[1],1.8,1,4,"(0.61, 0.375)" +1865,100,100,,1,1,[1],1.8,1,5,"(0.64, 0.36)" +1866,100,100,,1,1,[1],1.8,1,6,"(0.63, 0.295)" +1867,100,100,,1,1,[1],1.8,1,7,"(0.64, 0.33)" +1868,100,100,,1,1,[1],1.8,1,8,"(0.7, 0.37)" +1869,100,100,,1,1,[1],1.8,1,9,"(0.64, 0.39)" +1870,100,100,,1,1,[1],1.8,2,0,"(0.73, 0.225)" +1871,100,100,,1,1,[1],1.8,2,1,"(0.77, 0.185)" +1872,100,100,,1,1,[1],1.8,2,2,"(0.75, 0.245)" +1873,100,100,,1,1,[1],1.8,2,3,"(0.75, 0.165)" +1874,100,100,,1,1,[1],1.8,2,4,"(0.71, 0.215)" +1875,100,100,,1,1,[1],1.8,2,5,"(0.78, 0.24)" +1876,100,100,,1,1,[1],1.8,2,6,"(0.73, 0.235)" +1877,100,100,,1,1,[1],1.8,2,7,"(0.72, 0.22)" +1878,100,100,,1,1,[1],1.8,2,8,"(0.74, 0.19)" +1879,100,100,,1,1,[1],1.8,2,9,"(0.75, 0.135)" +1880,100,100,,1,1,[1],1.8,3,0,"(0.86, 0.09)" +1881,100,100,,1,1,[1],1.8,3,1,"(0.8, 0.13)" +1882,100,100,,1,1,[1],1.8,3,2,"(0.82, 0.13)" +1883,100,100,,1,1,[1],1.8,3,3,"(0.89, 0.095)" +1884,100,100,,1,1,[1],1.8,3,4,"(0.86, 0.09)" +1885,100,100,,1,1,[1],1.8,3,5,"(0.79, 0.135)" +1886,100,100,,1,1,[1],1.8,3,6,"(0.89, 0.075)" +1887,100,100,,1,1,[1],1.8,3,7,"(0.87, 0.065)" +1888,100,100,,1,1,[1],1.8,3,8,"(0.82, 0.12)" +1889,100,100,,1,1,[1],1.8,3,9,"(0.84, 0.1)" +1890,100,100,,1,1,[1],1.8,4,0,"(0.92, 0.04)" +1891,100,100,,1,1,[1],1.8,4,1,"(0.89, 0.055)" +1892,100,100,,1,1,[1],1.8,4,2,"(0.91, 0.055)" +1893,100,100,,1,1,[1],1.8,4,3,"(0.93, 0.035)" +1894,100,100,,1,1,[1],1.8,4,4,"(0.95, 0.025)" +1895,100,100,,1,1,[1],1.8,4,5,"(0.95, 0.035)" +1896,100,100,,1,1,[1],1.8,4,6,"(0.92, 0.06)" +1897,100,100,,1,1,[1],1.8,4,7,"(0.91, 0.045)" +1898,100,100,,1,1,[1],1.8,4,8,"(0.9, 0.05)" +1899,100,100,,1,1,[1],1.8,4,9,"(0.94, 0.03)" +1900,100,100,,1,1,[1],1.9000000000000001,-5,0,"(0.96, 0.98)" +1901,100,100,,1,1,[1],1.9000000000000001,-5,1,"(0.98, 0.99)" +1902,100,100,,1,1,[1],1.9000000000000001,-5,2,"(0.98, 0.99)" +1903,100,100,,1,1,[1],1.9000000000000001,-5,3,"(0.98, 0.98)" +1904,100,100,,1,1,[1],1.9000000000000001,-5,4,"(0.94, 0.97)" +1905,100,100,,1,1,[1],1.9000000000000001,-5,5,"(0.96, 0.98)" +1906,100,100,,1,1,[1],1.9000000000000001,-5,6,"(0.98, 0.99)" +1907,100,100,,1,1,[1],1.9000000000000001,-5,7,"(0.96, 0.98)" +1908,100,100,,1,1,[1],1.9000000000000001,-5,8,"(0.98, 0.99)" +1909,100,100,,1,1,[1],1.9000000000000001,-5,9,"(0.96, 0.98)" +1910,100,100,,1,1,[1],1.9000000000000001,-4,0,"(0.92, 0.96)" +1911,100,100,,1,1,[1],1.9000000000000001,-4,1,"(0.95, 0.955)" +1912,100,100,,1,1,[1],1.9000000000000001,-4,2,"(0.91, 0.955)" +1913,100,100,,1,1,[1],1.9000000000000001,-4,3,"(0.92, 0.94)" +1914,100,100,,1,1,[1],1.9000000000000001,-4,4,"(0.9, 0.95)" +1915,100,100,,1,1,[1],1.9000000000000001,-4,5,"(0.93, 0.955)" +1916,100,100,,1,1,[1],1.9000000000000001,-4,6,"(0.95, 0.955)" +1917,100,100,,1,1,[1],1.9000000000000001,-4,7,"(0.92, 0.95)" +1918,100,100,,1,1,[1],1.9000000000000001,-4,8,"(0.95, 0.945)" +1919,100,100,,1,1,[1],1.9000000000000001,-4,9,"(0.95, 0.965)" +1920,100,100,,1,1,[1],1.9000000000000001,-3,0,"(0.91, 0.945)" +1921,100,100,,1,1,[1],1.9000000000000001,-3,1,"(0.83, 0.895)" +1922,100,100,,1,1,[1],1.9000000000000001,-3,2,"(0.84, 0.86)" +1923,100,100,,1,1,[1],1.9000000000000001,-3,3,"(0.85, 0.925)" +1924,100,100,,1,1,[1],1.9000000000000001,-3,4,"(0.85, 0.895)" +1925,100,100,,1,1,[1],1.9000000000000001,-3,5,"(0.81, 0.865)" +1926,100,100,,1,1,[1],1.9000000000000001,-3,6,"(0.82, 0.88)" +1927,100,100,,1,1,[1],1.9000000000000001,-3,7,"(0.83, 0.895)" +1928,100,100,,1,1,[1],1.9000000000000001,-3,8,"(0.83, 0.885)" +1929,100,100,,1,1,[1],1.9000000000000001,-3,9,"(0.8, 0.89)" +1930,100,100,,1,1,[1],1.9000000000000001,-2,0,"(0.77, 0.845)" +1931,100,100,,1,1,[1],1.9000000000000001,-2,1,"(0.78, 0.85)" +1932,100,100,,1,1,[1],1.9000000000000001,-2,2,"(0.73, 0.775)" +1933,100,100,,1,1,[1],1.9000000000000001,-2,3,"(0.79, 0.835)" +1934,100,100,,1,1,[1],1.9000000000000001,-2,4,"(0.75, 0.845)" +1935,100,100,,1,1,[1],1.9000000000000001,-2,5,"(0.71, 0.795)" +1936,100,100,,1,1,[1],1.9000000000000001,-2,6,"(0.71, 0.805)" +1937,100,100,,1,1,[1],1.9000000000000001,-2,7,"(0.8, 0.77)" +1938,100,100,,1,1,[1],1.9000000000000001,-2,8,"(0.81, 0.805)" +1939,100,100,,1,1,[1],1.9000000000000001,-2,9,"(0.76, 0.82)" +1940,100,100,,1,1,[1],1.9000000000000001,-1,0,"(0.59, 0.645)" +1941,100,100,,1,1,[1],1.9000000000000001,-1,1,"(0.62, 0.67)" +1942,100,100,,1,1,[1],1.9000000000000001,-1,2,"(0.6, 0.66)" +1943,100,100,,1,1,[1],1.9000000000000001,-1,3,"(0.63, 0.675)" +1944,100,100,,1,1,[1],1.9000000000000001,-1,4,"(0.66, 0.66)" +1945,100,100,,1,1,[1],1.9000000000000001,-1,5,"(0.7, 0.64)" +1946,100,100,,1,1,[1],1.9000000000000001,-1,6,"(0.68, 0.66)" +1947,100,100,,1,1,[1],1.9000000000000001,-1,7,"(0.68, 0.71)" +1948,100,100,,1,1,[1],1.9000000000000001,-1,8,"(0.7, 0.64)" +1949,100,100,,1,1,[1],1.9000000000000001,-1,9,"(0.65, 0.715)" +1950,100,100,,1,1,[1],1.9000000000000001,0,0,"(0.64, 0.51)" +1951,100,100,,1,1,[1],1.9000000000000001,0,1,"(0.57, 0.515)" +1952,100,100,,1,1,[1],1.9000000000000001,0,2,"(0.56, 0.55)" +1953,100,100,,1,1,[1],1.9000000000000001,0,3,"(0.55, 0.495)" +1954,100,100,,1,1,[1],1.9000000000000001,0,4,"(0.62, 0.45)" +1955,100,100,,1,1,[1],1.9000000000000001,0,5,"(0.63, 0.445)" +1956,100,100,,1,1,[1],1.9000000000000001,0,6,"(0.64, 0.47)" +1957,100,100,,1,1,[1],1.9000000000000001,0,7,"(0.51, 0.455)" +1958,100,100,,1,1,[1],1.9000000000000001,0,8,"(0.62, 0.54)" +1959,100,100,,1,1,[1],1.9000000000000001,0,9,"(0.66, 0.57)" +1960,100,100,,1,1,[1],1.9000000000000001,1,0,"(0.64, 0.28)" +1961,100,100,,1,1,[1],1.9000000000000001,1,1,"(0.67, 0.335)" +1962,100,100,,1,1,[1],1.9000000000000001,1,2,"(0.63, 0.325)" +1963,100,100,,1,1,[1],1.9000000000000001,1,3,"(0.61, 0.395)" +1964,100,100,,1,1,[1],1.9000000000000001,1,4,"(0.58, 0.35)" +1965,100,100,,1,1,[1],1.9000000000000001,1,5,"(0.74, 0.35)" +1966,100,100,,1,1,[1],1.9000000000000001,1,6,"(0.65, 0.355)" +1967,100,100,,1,1,[1],1.9000000000000001,1,7,"(0.67, 0.325)" +1968,100,100,,1,1,[1],1.9000000000000001,1,8,"(0.73, 0.365)" +1969,100,100,,1,1,[1],1.9000000000000001,1,9,"(0.65, 0.355)" +1970,100,100,,1,1,[1],1.9000000000000001,2,0,"(0.76, 0.16)" +1971,100,100,,1,1,[1],1.9000000000000001,2,1,"(0.7, 0.21)" +1972,100,100,,1,1,[1],1.9000000000000001,2,2,"(0.83, 0.135)" +1973,100,100,,1,1,[1],1.9000000000000001,2,3,"(0.68, 0.2)" +1974,100,100,,1,1,[1],1.9000000000000001,2,4,"(0.71, 0.215)" +1975,100,100,,1,1,[1],1.9000000000000001,2,5,"(0.74, 0.19)" +1976,100,100,,1,1,[1],1.9000000000000001,2,6,"(0.8, 0.22)" +1977,100,100,,1,1,[1],1.9000000000000001,2,7,"(0.75, 0.215)" +1978,100,100,,1,1,[1],1.9000000000000001,2,8,"(0.71, 0.215)" +1979,100,100,,1,1,[1],1.9000000000000001,2,9,"(0.79, 0.205)" +1980,100,100,,1,1,[1],1.9000000000000001,3,0,"(0.82, 0.1)" +1981,100,100,,1,1,[1],1.9000000000000001,3,1,"(0.75, 0.145)" +1982,100,100,,1,1,[1],1.9000000000000001,3,2,"(0.9, 0.08)" +1983,100,100,,1,1,[1],1.9000000000000001,3,3,"(0.83, 0.125)" +1984,100,100,,1,1,[1],1.9000000000000001,3,4,"(0.88, 0.1)" +1985,100,100,,1,1,[1],1.9000000000000001,3,5,"(0.84, 0.09)" +1986,100,100,,1,1,[1],1.9000000000000001,3,6,"(0.92, 0.09)" +1987,100,100,,1,1,[1],1.9000000000000001,3,7,"(0.83, 0.115)" +1988,100,100,,1,1,[1],1.9000000000000001,3,8,"(0.88, 0.1)" +1989,100,100,,1,1,[1],1.9000000000000001,3,9,"(0.81, 0.145)" +1990,100,100,,1,1,[1],1.9000000000000001,4,0,"(0.9, 0.05)" +1991,100,100,,1,1,[1],1.9000000000000001,4,1,"(0.92, 0.04)" +1992,100,100,,1,1,[1],1.9000000000000001,4,2,"(0.86, 0.07)" +1993,100,100,,1,1,[1],1.9000000000000001,4,3,"(0.93, 0.035)" +1994,100,100,,1,1,[1],1.9000000000000001,4,4,"(0.94, 0.05)" +1995,100,100,,1,1,[1],1.9000000000000001,4,5,"(0.91, 0.055)" +1996,100,100,,1,1,[1],1.9000000000000001,4,6,"(0.96, 0.03)" +1997,100,100,,1,1,[1],1.9000000000000001,4,7,"(0.89, 0.055)" +1998,100,100,,1,1,[1],1.9000000000000001,4,8,"(0.96, 0.03)" +1999,100,100,,1,1,[1],1.9000000000000001,4,9,"(0.97, 0.015)" +2000,100,100,,1,1,[1],2.0,-5,0,"(0.99, 0.995)" +2001,100,100,,1,1,[1],2.0,-5,1,"(0.97, 0.985)" +2002,100,100,,1,1,[1],2.0,-5,2,"(1.0, 1.0)" +2003,100,100,,1,1,[1],2.0,-5,3,"(0.95, 0.975)" +2004,100,100,,1,1,[1],2.0,-5,4,"(0.97, 0.985)" +2005,100,100,,1,1,[1],2.0,-5,5,"(0.95, 0.975)" +2006,100,100,,1,1,[1],2.0,-5,6,"(0.92, 0.96)" +2007,100,100,,1,1,[1],2.0,-5,7,"(0.97, 0.985)" +2008,100,100,,1,1,[1],2.0,-5,8,"(0.96, 0.98)" +2009,100,100,,1,1,[1],2.0,-5,9,"(0.95, 0.975)" +2010,100,100,,1,1,[1],2.0,-4,0,"(0.82, 0.91)" +2011,100,100,,1,1,[1],2.0,-4,1,"(0.92, 0.96)" +2012,100,100,,1,1,[1],2.0,-4,2,"(0.9, 0.93)" +2013,100,100,,1,1,[1],2.0,-4,3,"(0.91, 0.955)" +2014,100,100,,1,1,[1],2.0,-4,4,"(0.88, 0.91)" +2015,100,100,,1,1,[1],2.0,-4,5,"(0.94, 0.95)" +2016,100,100,,1,1,[1],2.0,-4,6,"(0.91, 0.935)" +2017,100,100,,1,1,[1],2.0,-4,7,"(0.95, 0.975)" +2018,100,100,,1,1,[1],2.0,-4,8,"(0.91, 0.955)" +2019,100,100,,1,1,[1],2.0,-4,9,"(0.94, 0.97)" +2020,100,100,,1,1,[1],2.0,-3,0,"(0.84, 0.89)" +2021,100,100,,1,1,[1],2.0,-3,1,"(0.86, 0.91)" +2022,100,100,,1,1,[1],2.0,-3,2,"(0.91, 0.935)" +2023,100,100,,1,1,[1],2.0,-3,3,"(0.84, 0.89)" +2024,100,100,,1,1,[1],2.0,-3,4,"(0.87, 0.925)" +2025,100,100,,1,1,[1],2.0,-3,5,"(0.87, 0.915)" +2026,100,100,,1,1,[1],2.0,-3,6,"(0.86, 0.88)" +2027,100,100,,1,1,[1],2.0,-3,7,"(0.78, 0.88)" +2028,100,100,,1,1,[1],2.0,-3,8,"(0.7, 0.84)" +2029,100,100,,1,1,[1],2.0,-3,9,"(0.84, 0.88)" +2030,100,100,,1,1,[1],2.0,-2,0,"(0.81, 0.825)" +2031,100,100,,1,1,[1],2.0,-2,1,"(0.75, 0.815)" +2032,100,100,,1,1,[1],2.0,-2,2,"(0.75, 0.825)" +2033,100,100,,1,1,[1],2.0,-2,3,"(0.74, 0.8)" +2034,100,100,,1,1,[1],2.0,-2,4,"(0.72, 0.77)" +2035,100,100,,1,1,[1],2.0,-2,5,"(0.68, 0.78)" +2036,100,100,,1,1,[1],2.0,-2,6,"(0.69, 0.795)" +2037,100,100,,1,1,[1],2.0,-2,7,"(0.71, 0.785)" +2038,100,100,,1,1,[1],2.0,-2,8,"(0.75, 0.785)" +2039,100,100,,1,1,[1],2.0,-2,9,"(0.66, 0.78)" +2040,100,100,,1,1,[1],2.0,-1,0,"(0.72, 0.64)" +2041,100,100,,1,1,[1],2.0,-1,1,"(0.62, 0.65)" +2042,100,100,,1,1,[1],2.0,-1,2,"(0.63, 0.665)" +2043,100,100,,1,1,[1],2.0,-1,3,"(0.67, 0.685)" +2044,100,100,,1,1,[1],2.0,-1,4,"(0.56, 0.67)" +2045,100,100,,1,1,[1],2.0,-1,5,"(0.65, 0.625)" +2046,100,100,,1,1,[1],2.0,-1,6,"(0.67, 0.665)" +2047,100,100,,1,1,[1],2.0,-1,7,"(0.7, 0.66)" +2048,100,100,,1,1,[1],2.0,-1,8,"(0.65, 0.665)" +2049,100,100,,1,1,[1],2.0,-1,9,"(0.63, 0.665)" +2050,100,100,,1,1,[1],2.0,0,0,"(0.66, 0.47)" +2051,100,100,,1,1,[1],2.0,0,1,"(0.73, 0.555)" +2052,100,100,,1,1,[1],2.0,0,2,"(0.52, 0.5)" +2053,100,100,,1,1,[1],2.0,0,3,"(0.61, 0.525)" +2054,100,100,,1,1,[1],2.0,0,4,"(0.62, 0.48)" +2055,100,100,,1,1,[1],2.0,0,5,"(0.67, 0.475)" +2056,100,100,,1,1,[1],2.0,0,6,"(0.72, 0.48)" +2057,100,100,,1,1,[1],2.0,0,7,"(0.62, 0.52)" +2058,100,100,,1,1,[1],2.0,0,8,"(0.59, 0.475)" +2059,100,100,,1,1,[1],2.0,0,9,"(0.59, 0.495)" +2060,100,100,,1,1,[1],2.0,1,0,"(0.68, 0.36)" +2061,100,100,,1,1,[1],2.0,1,1,"(0.7, 0.34)" +2062,100,100,,1,1,[1],2.0,1,2,"(0.63, 0.335)" +2063,100,100,,1,1,[1],2.0,1,3,"(0.62, 0.35)" +2064,100,100,,1,1,[1],2.0,1,4,"(0.59, 0.345)" +2065,100,100,,1,1,[1],2.0,1,5,"(0.67, 0.425)" +2066,100,100,,1,1,[1],2.0,1,6,"(0.6, 0.35)" +2067,100,100,,1,1,[1],2.0,1,7,"(0.66, 0.36)" +2068,100,100,,1,1,[1],2.0,1,8,"(0.63, 0.365)" +2069,100,100,,1,1,[1],2.0,1,9,"(0.63, 0.305)" +2070,100,100,,1,1,[1],2.0,2,0,"(0.67, 0.235)" +2071,100,100,,1,1,[1],2.0,2,1,"(0.76, 0.28)" +2072,100,100,,1,1,[1],2.0,2,2,"(0.78, 0.16)" +2073,100,100,,1,1,[1],2.0,2,3,"(0.76, 0.19)" +2074,100,100,,1,1,[1],2.0,2,4,"(0.78, 0.18)" +2075,100,100,,1,1,[1],2.0,2,5,"(0.73, 0.295)" +2076,100,100,,1,1,[1],2.0,2,6,"(0.75, 0.185)" +2077,100,100,,1,1,[1],2.0,2,7,"(0.74, 0.22)" +2078,100,100,,1,1,[1],2.0,2,8,"(0.71, 0.195)" +2079,100,100,,1,1,[1],2.0,2,9,"(0.75, 0.215)" +2080,100,100,,1,1,[1],2.0,3,0,"(0.86, 0.12)" +2081,100,100,,1,1,[1],2.0,3,1,"(0.87, 0.105)" +2082,100,100,,1,1,[1],2.0,3,2,"(0.8, 0.15)" +2083,100,100,,1,1,[1],2.0,3,3,"(0.83, 0.085)" +2084,100,100,,1,1,[1],2.0,3,4,"(0.82, 0.13)" +2085,100,100,,1,1,[1],2.0,3,5,"(0.87, 0.075)" +2086,100,100,,1,1,[1],2.0,3,6,"(0.88, 0.12)" +2087,100,100,,1,1,[1],2.0,3,7,"(0.82, 0.16)" +2088,100,100,,1,1,[1],2.0,3,8,"(0.82, 0.13)" +2089,100,100,,1,1,[1],2.0,3,9,"(0.86, 0.1)" +2090,100,100,,1,1,[1],2.0,4,0,"(0.89, 0.065)" +2091,100,100,,1,1,[1],2.0,4,1,"(0.92, 0.06)" +2092,100,100,,1,1,[1],2.0,4,2,"(0.89, 0.055)" +2093,100,100,,1,1,[1],2.0,4,3,"(0.94, 0.03)" +2094,100,100,,1,1,[1],2.0,4,4,"(0.94, 0.04)" +2095,100,100,,1,1,[1],2.0,4,5,"(0.96, 0.02)" +2096,100,100,,1,1,[1],2.0,4,6,"(0.88, 0.07)" +2097,100,100,,1,1,[1],2.0,4,7,"(0.96, 0.04)" +2098,100,100,,1,1,[1],2.0,4,8,"(0.95, 0.025)" +2099,100,100,,1,1,[1],2.0,4,9,"(0.91, 0.055)" +2100,100,100,,1,1,[1],2.1,-5,0,"(0.94, 0.97)" +2101,100,100,,1,1,[1],2.1,-5,1,"(0.94, 0.96)" +2102,100,100,,1,1,[1],2.1,-5,2,"(0.93, 0.965)" +2103,100,100,,1,1,[1],2.1,-5,3,"(0.96, 0.98)" +2104,100,100,,1,1,[1],2.1,-5,4,"(0.96, 0.98)" +2105,100,100,,1,1,[1],2.1,-5,5,"(0.98, 0.99)" +2106,100,100,,1,1,[1],2.1,-5,6,"(0.96, 0.98)" +2107,100,100,,1,1,[1],2.1,-5,7,"(0.94, 0.97)" +2108,100,100,,1,1,[1],2.1,-5,8,"(0.99, 0.995)" +2109,100,100,,1,1,[1],2.1,-5,9,"(0.96, 0.98)" +2110,100,100,,1,1,[1],2.1,-4,0,"(0.9, 0.94)" +2111,100,100,,1,1,[1],2.1,-4,1,"(0.9, 0.94)" +2112,100,100,,1,1,[1],2.1,-4,2,"(0.95, 0.975)" +2113,100,100,,1,1,[1],2.1,-4,3,"(0.91, 0.945)" +2114,100,100,,1,1,[1],2.1,-4,4,"(0.9, 0.94)" +2115,100,100,,1,1,[1],2.1,-4,5,"(0.92, 0.94)" +2116,100,100,,1,1,[1],2.1,-4,6,"(0.92, 0.96)" +2117,100,100,,1,1,[1],2.1,-4,7,"(0.83, 0.915)" +2118,100,100,,1,1,[1],2.1,-4,8,"(0.92, 0.96)" +2119,100,100,,1,1,[1],2.1,-4,9,"(0.92, 0.95)" +2120,100,100,,1,1,[1],2.1,-3,0,"(0.78, 0.88)" +2121,100,100,,1,1,[1],2.1,-3,1,"(0.73, 0.835)" +2122,100,100,,1,1,[1],2.1,-3,2,"(0.88, 0.91)" +2123,100,100,,1,1,[1],2.1,-3,3,"(0.8, 0.87)" +2124,100,100,,1,1,[1],2.1,-3,4,"(0.79, 0.845)" +2125,100,100,,1,1,[1],2.1,-3,5,"(0.86, 0.93)" +2126,100,100,,1,1,[1],2.1,-3,6,"(0.78, 0.88)" +2127,100,100,,1,1,[1],2.1,-3,7,"(0.82, 0.88)" +2128,100,100,,1,1,[1],2.1,-3,8,"(0.82, 0.89)" +2129,100,100,,1,1,[1],2.1,-3,9,"(0.77, 0.865)" +2130,100,100,,1,1,[1],2.1,-2,0,"(0.72, 0.8)" +2131,100,100,,1,1,[1],2.1,-2,1,"(0.73, 0.765)" +2132,100,100,,1,1,[1],2.1,-2,2,"(0.72, 0.81)" +2133,100,100,,1,1,[1],2.1,-2,3,"(0.74, 0.75)" +2134,100,100,,1,1,[1],2.1,-2,4,"(0.77, 0.785)" +2135,100,100,,1,1,[1],2.1,-2,5,"(0.76, 0.83)" +2136,100,100,,1,1,[1],2.1,-2,6,"(0.75, 0.805)" +2137,100,100,,1,1,[1],2.1,-2,7,"(0.72, 0.81)" +2138,100,100,,1,1,[1],2.1,-2,8,"(0.76, 0.76)" +2139,100,100,,1,1,[1],2.1,-2,9,"(0.73, 0.825)" +2140,100,100,,1,1,[1],2.1,-1,0,"(0.57, 0.685)" +2141,100,100,,1,1,[1],2.1,-1,1,"(0.61, 0.695)" +2142,100,100,,1,1,[1],2.1,-1,2,"(0.57, 0.695)" +2143,100,100,,1,1,[1],2.1,-1,3,"(0.52, 0.65)" +2144,100,100,,1,1,[1],2.1,-1,4,"(0.69, 0.645)" +2145,100,100,,1,1,[1],2.1,-1,5,"(0.54, 0.68)" +2146,100,100,,1,1,[1],2.1,-1,6,"(0.72, 0.7)" +2147,100,100,,1,1,[1],2.1,-1,7,"(0.7, 0.64)" +2148,100,100,,1,1,[1],2.1,-1,8,"(0.64, 0.71)" +2149,100,100,,1,1,[1],2.1,-1,9,"(0.71, 0.675)" +2150,100,100,,1,1,[1],2.1,0,0,"(0.54, 0.53)" +2151,100,100,,1,1,[1],2.1,0,1,"(0.65, 0.515)" +2152,100,100,,1,1,[1],2.1,0,2,"(0.6, 0.55)" +2153,100,100,,1,1,[1],2.1,0,3,"(0.63, 0.475)" +2154,100,100,,1,1,[1],2.1,0,4,"(0.61, 0.455)" +2155,100,100,,1,1,[1],2.1,0,5,"(0.59, 0.535)" +2156,100,100,,1,1,[1],2.1,0,6,"(0.55, 0.435)" +2157,100,100,,1,1,[1],2.1,0,7,"(0.61, 0.485)" +2158,100,100,,1,1,[1],2.1,0,8,"(0.6, 0.5)" +2159,100,100,,1,1,[1],2.1,0,9,"(0.57, 0.485)" +2160,100,100,,1,1,[1],2.1,1,0,"(0.71, 0.355)" +2161,100,100,,1,1,[1],2.1,1,1,"(0.72, 0.33)" +2162,100,100,,1,1,[1],2.1,1,2,"(0.66, 0.33)" +2163,100,100,,1,1,[1],2.1,1,3,"(0.61, 0.355)" +2164,100,100,,1,1,[1],2.1,1,4,"(0.65, 0.365)" +2165,100,100,,1,1,[1],2.1,1,5,"(0.64, 0.32)" +2166,100,100,,1,1,[1],2.1,1,6,"(0.66, 0.34)" +2167,100,100,,1,1,[1],2.1,1,7,"(0.65, 0.355)" +2168,100,100,,1,1,[1],2.1,1,8,"(0.58, 0.42)" +2169,100,100,,1,1,[1],2.1,1,9,"(0.62, 0.32)" +2170,100,100,,1,1,[1],2.1,2,0,"(0.71, 0.225)" +2171,100,100,,1,1,[1],2.1,2,1,"(0.78, 0.19)" +2172,100,100,,1,1,[1],2.1,2,2,"(0.69, 0.215)" +2173,100,100,,1,1,[1],2.1,2,3,"(0.68, 0.25)" +2174,100,100,,1,1,[1],2.1,2,4,"(0.75, 0.145)" +2175,100,100,,1,1,[1],2.1,2,5,"(0.76, 0.17)" +2176,100,100,,1,1,[1],2.1,2,6,"(0.7, 0.21)" +2177,100,100,,1,1,[1],2.1,2,7,"(0.75, 0.235)" +2178,100,100,,1,1,[1],2.1,2,8,"(0.76, 0.22)" +2179,100,100,,1,1,[1],2.1,2,9,"(0.65, 0.205)" +2180,100,100,,1,1,[1],2.1,3,0,"(0.84, 0.14)" +2181,100,100,,1,1,[1],2.1,3,1,"(0.89, 0.095)" +2182,100,100,,1,1,[1],2.1,3,2,"(0.81, 0.115)" +2183,100,100,,1,1,[1],2.1,3,3,"(0.81, 0.125)" +2184,100,100,,1,1,[1],2.1,3,4,"(0.81, 0.105)" +2185,100,100,,1,1,[1],2.1,3,5,"(0.82, 0.14)" +2186,100,100,,1,1,[1],2.1,3,6,"(0.83, 0.095)" +2187,100,100,,1,1,[1],2.1,3,7,"(0.84, 0.1)" +2188,100,100,,1,1,[1],2.1,3,8,"(0.89, 0.075)" +2189,100,100,,1,1,[1],2.1,3,9,"(0.82, 0.19)" +2190,100,100,,1,1,[1],2.1,4,0,"(0.92, 0.05)" +2191,100,100,,1,1,[1],2.1,4,1,"(0.93, 0.035)" +2192,100,100,,1,1,[1],2.1,4,2,"(0.89, 0.065)" +2193,100,100,,1,1,[1],2.1,4,3,"(0.87, 0.085)" +2194,100,100,,1,1,[1],2.1,4,4,"(0.91, 0.045)" +2195,100,100,,1,1,[1],2.1,4,5,"(0.93, 0.065)" +2196,100,100,,1,1,[1],2.1,4,6,"(0.92, 0.05)" +2197,100,100,,1,1,[1],2.1,4,7,"(0.94, 0.05)" +2198,100,100,,1,1,[1],2.1,4,8,"(0.9, 0.05)" +2199,100,100,,1,1,[1],2.1,4,9,"(0.9, 0.07)" +2200,100,100,,1,1,[1],2.2,-5,0,"(0.93, 0.965)" +2201,100,100,,1,1,[1],2.2,-5,1,"(0.92, 0.96)" +2202,100,100,,1,1,[1],2.2,-5,2,"(0.9, 0.94)" +2203,100,100,,1,1,[1],2.2,-5,3,"(0.99, 0.995)" +2204,100,100,,1,1,[1],2.2,-5,4,"(0.97, 0.985)" +2205,100,100,,1,1,[1],2.2,-5,5,"(0.93, 0.965)" +2206,100,100,,1,1,[1],2.2,-5,6,"(0.92, 0.96)" +2207,100,100,,1,1,[1],2.2,-5,7,"(0.96, 0.98)" +2208,100,100,,1,1,[1],2.2,-5,8,"(0.96, 0.98)" +2209,100,100,,1,1,[1],2.2,-5,9,"(0.93, 0.965)" +2210,100,100,,1,1,[1],2.2,-4,0,"(0.88, 0.94)" +2211,100,100,,1,1,[1],2.2,-4,1,"(0.88, 0.93)" +2212,100,100,,1,1,[1],2.2,-4,2,"(0.91, 0.945)" +2213,100,100,,1,1,[1],2.2,-4,3,"(0.92, 0.94)" +2214,100,100,,1,1,[1],2.2,-4,4,"(0.88, 0.93)" +2215,100,100,,1,1,[1],2.2,-4,5,"(0.87, 0.925)" +2216,100,100,,1,1,[1],2.2,-4,6,"(0.91, 0.935)" +2217,100,100,,1,1,[1],2.2,-4,7,"(0.91, 0.935)" +2218,100,100,,1,1,[1],2.2,-4,8,"(0.9, 0.94)" +2219,100,100,,1,1,[1],2.2,-4,9,"(0.89, 0.925)" +2220,100,100,,1,1,[1],2.2,-3,0,"(0.82, 0.88)" +2221,100,100,,1,1,[1],2.2,-3,1,"(0.85, 0.915)" +2222,100,100,,1,1,[1],2.2,-3,2,"(0.82, 0.91)" +2223,100,100,,1,1,[1],2.2,-3,3,"(0.81, 0.875)" +2224,100,100,,1,1,[1],2.2,-3,4,"(0.82, 0.9)" +2225,100,100,,1,1,[1],2.2,-3,5,"(0.79, 0.875)" +2226,100,100,,1,1,[1],2.2,-3,6,"(0.81, 0.865)" +2227,100,100,,1,1,[1],2.2,-3,7,"(0.75, 0.835)" +2228,100,100,,1,1,[1],2.2,-3,8,"(0.8, 0.84)" +2229,100,100,,1,1,[1],2.2,-3,9,"(0.86, 0.9)" +2230,100,100,,1,1,[1],2.2,-2,0,"(0.73, 0.795)" +2231,100,100,,1,1,[1],2.2,-2,1,"(0.6, 0.69)" +2232,100,100,,1,1,[1],2.2,-2,2,"(0.68, 0.78)" +2233,100,100,,1,1,[1],2.2,-2,3,"(0.67, 0.725)" +2234,100,100,,1,1,[1],2.2,-2,4,"(0.75, 0.775)" +2235,100,100,,1,1,[1],2.2,-2,5,"(0.76, 0.8)" +2236,100,100,,1,1,[1],2.2,-2,6,"(0.68, 0.79)" +2237,100,100,,1,1,[1],2.2,-2,7,"(0.69, 0.795)" +2238,100,100,,1,1,[1],2.2,-2,8,"(0.68, 0.73)" +2239,100,100,,1,1,[1],2.2,-2,9,"(0.63, 0.715)" +2240,100,100,,1,1,[1],2.2,-1,0,"(0.62, 0.66)" +2241,100,100,,1,1,[1],2.2,-1,1,"(0.67, 0.655)" +2242,100,100,,1,1,[1],2.2,-1,2,"(0.62, 0.64)" +2243,100,100,,1,1,[1],2.2,-1,3,"(0.59, 0.675)" +2244,100,100,,1,1,[1],2.2,-1,4,"(0.63, 0.695)" +2245,100,100,,1,1,[1],2.2,-1,5,"(0.68, 0.63)" +2246,100,100,,1,1,[1],2.2,-1,6,"(0.61, 0.635)" +2247,100,100,,1,1,[1],2.2,-1,7,"(0.66, 0.72)" +2248,100,100,,1,1,[1],2.2,-1,8,"(0.62, 0.61)" +2249,100,100,,1,1,[1],2.2,-1,9,"(0.71, 0.675)" +2250,100,100,,1,1,[1],2.2,0,0,"(0.58, 0.6)" +2251,100,100,,1,1,[1],2.2,0,1,"(0.52, 0.56)" +2252,100,100,,1,1,[1],2.2,0,2,"(0.56, 0.49)" +2253,100,100,,1,1,[1],2.2,0,3,"(0.59, 0.475)" +2254,100,100,,1,1,[1],2.2,0,4,"(0.64, 0.46)" +2255,100,100,,1,1,[1],2.2,0,5,"(0.49, 0.515)" +2256,100,100,,1,1,[1],2.2,0,6,"(0.65, 0.475)" +2257,100,100,,1,1,[1],2.2,0,7,"(0.6, 0.46)" +2258,100,100,,1,1,[1],2.2,0,8,"(0.61, 0.535)" +2259,100,100,,1,1,[1],2.2,0,9,"(0.69, 0.475)" +2260,100,100,,1,1,[1],2.2,1,0,"(0.63, 0.335)" +2261,100,100,,1,1,[1],2.2,1,1,"(0.64, 0.32)" +2262,100,100,,1,1,[1],2.2,1,2,"(0.64, 0.37)" +2263,100,100,,1,1,[1],2.2,1,3,"(0.67, 0.385)" +2264,100,100,,1,1,[1],2.2,1,4,"(0.64, 0.35)" +2265,100,100,,1,1,[1],2.2,1,5,"(0.68, 0.28)" +2266,100,100,,1,1,[1],2.2,1,6,"(0.55, 0.425)" +2267,100,100,,1,1,[1],2.2,1,7,"(0.62, 0.38)" +2268,100,100,,1,1,[1],2.2,1,8,"(0.61, 0.385)" +2269,100,100,,1,1,[1],2.2,1,9,"(0.7, 0.31)" +2270,100,100,,1,1,[1],2.2,2,0,"(0.64, 0.25)" +2271,100,100,,1,1,[1],2.2,2,1,"(0.74, 0.18)" +2272,100,100,,1,1,[1],2.2,2,2,"(0.8, 0.22)" +2273,100,100,,1,1,[1],2.2,2,3,"(0.72, 0.21)" +2274,100,100,,1,1,[1],2.2,2,4,"(0.71, 0.245)" +2275,100,100,,1,1,[1],2.2,2,5,"(0.74, 0.2)" +2276,100,100,,1,1,[1],2.2,2,6,"(0.71, 0.215)" +2277,100,100,,1,1,[1],2.2,2,7,"(0.66, 0.23)" +2278,100,100,,1,1,[1],2.2,2,8,"(0.71, 0.215)" +2279,100,100,,1,1,[1],2.2,2,9,"(0.72, 0.24)" +2280,100,100,,1,1,[1],2.2,3,0,"(0.83, 0.155)" +2281,100,100,,1,1,[1],2.2,3,1,"(0.84, 0.09)" +2282,100,100,,1,1,[1],2.2,3,2,"(0.81, 0.155)" +2283,100,100,,1,1,[1],2.2,3,3,"(0.82, 0.11)" +2284,100,100,,1,1,[1],2.2,3,4,"(0.8, 0.15)" +2285,100,100,,1,1,[1],2.2,3,5,"(0.77, 0.155)" +2286,100,100,,1,1,[1],2.2,3,6,"(0.83, 0.115)" +2287,100,100,,1,1,[1],2.2,3,7,"(0.85, 0.095)" +2288,100,100,,1,1,[1],2.2,3,8,"(0.89, 0.095)" +2289,100,100,,1,1,[1],2.2,3,9,"(0.84, 0.09)" +2290,100,100,,1,1,[1],2.2,4,0,"(0.89, 0.075)" +2291,100,100,,1,1,[1],2.2,4,1,"(0.9, 0.08)" +2292,100,100,,1,1,[1],2.2,4,2,"(0.9, 0.07)" +2293,100,100,,1,1,[1],2.2,4,3,"(0.87, 0.075)" +2294,100,100,,1,1,[1],2.2,4,4,"(0.89, 0.085)" +2295,100,100,,1,1,[1],2.2,4,5,"(0.93, 0.045)" +2296,100,100,,1,1,[1],2.2,4,6,"(0.96, 0.02)" +2297,100,100,,1,1,[1],2.2,4,7,"(0.89, 0.065)" +2298,100,100,,1,1,[1],2.2,4,8,"(0.92, 0.04)" +2299,100,100,,1,1,[1],2.2,4,9,"(0.88, 0.06)" +2300,100,100,,1,1,[1],2.3000000000000003,-5,0,"(0.92, 0.95)" +2301,100,100,,1,1,[1],2.3000000000000003,-5,1,"(0.93, 0.955)" +2302,100,100,,1,1,[1],2.3000000000000003,-5,2,"(0.94, 0.97)" +2303,100,100,,1,1,[1],2.3000000000000003,-5,3,"(0.95, 0.965)" +2304,100,100,,1,1,[1],2.3000000000000003,-5,4,"(0.98, 0.99)" +2305,100,100,,1,1,[1],2.3000000000000003,-5,5,"(0.97, 0.985)" +2306,100,100,,1,1,[1],2.3000000000000003,-5,6,"(0.94, 0.96)" +2307,100,100,,1,1,[1],2.3000000000000003,-5,7,"(0.94, 0.96)" +2308,100,100,,1,1,[1],2.3000000000000003,-5,8,"(0.93, 0.955)" +2309,100,100,,1,1,[1],2.3000000000000003,-5,9,"(0.94, 0.97)" +2310,100,100,,1,1,[1],2.3000000000000003,-4,0,"(0.88, 0.93)" +2311,100,100,,1,1,[1],2.3000000000000003,-4,1,"(0.85, 0.925)" +2312,100,100,,1,1,[1],2.3000000000000003,-4,2,"(0.88, 0.92)" +2313,100,100,,1,1,[1],2.3000000000000003,-4,3,"(0.88, 0.92)" +2314,100,100,,1,1,[1],2.3000000000000003,-4,4,"(0.89, 0.935)" +2315,100,100,,1,1,[1],2.3000000000000003,-4,5,"(0.91, 0.955)" +2316,100,100,,1,1,[1],2.3000000000000003,-4,6,"(0.86, 0.9)" +2317,100,100,,1,1,[1],2.3000000000000003,-4,7,"(0.86, 0.91)" +2318,100,100,,1,1,[1],2.3000000000000003,-4,8,"(0.88, 0.89)" +2319,100,100,,1,1,[1],2.3000000000000003,-4,9,"(0.83, 0.915)" +2320,100,100,,1,1,[1],2.3000000000000003,-3,0,"(0.76, 0.84)" +2321,100,100,,1,1,[1],2.3000000000000003,-3,1,"(0.73, 0.845)" +2322,100,100,,1,1,[1],2.3000000000000003,-3,2,"(0.77, 0.875)" +2323,100,100,,1,1,[1],2.3000000000000003,-3,3,"(0.9, 0.88)" +2324,100,100,,1,1,[1],2.3000000000000003,-3,4,"(0.84, 0.89)" +2325,100,100,,1,1,[1],2.3000000000000003,-3,5,"(0.79, 0.845)" +2326,100,100,,1,1,[1],2.3000000000000003,-3,6,"(0.8, 0.85)" +2327,100,100,,1,1,[1],2.3000000000000003,-3,7,"(0.73, 0.845)" +2328,100,100,,1,1,[1],2.3000000000000003,-3,8,"(0.79, 0.855)" +2329,100,100,,1,1,[1],2.3000000000000003,-3,9,"(0.87, 0.895)" +2330,100,100,,1,1,[1],2.3000000000000003,-2,0,"(0.69, 0.785)" +2331,100,100,,1,1,[1],2.3000000000000003,-2,1,"(0.74, 0.8)" +2332,100,100,,1,1,[1],2.3000000000000003,-2,2,"(0.65, 0.735)" +2333,100,100,,1,1,[1],2.3000000000000003,-2,3,"(0.7, 0.73)" +2334,100,100,,1,1,[1],2.3000000000000003,-2,4,"(0.71, 0.725)" +2335,100,100,,1,1,[1],2.3000000000000003,-2,5,"(0.74, 0.78)" +2336,100,100,,1,1,[1],2.3000000000000003,-2,6,"(0.72, 0.8)" +2337,100,100,,1,1,[1],2.3000000000000003,-2,7,"(0.71, 0.725)" +2338,100,100,,1,1,[1],2.3000000000000003,-2,8,"(0.77, 0.835)" +2339,100,100,,1,1,[1],2.3000000000000003,-2,9,"(0.61, 0.765)" +2340,100,100,,1,1,[1],2.3000000000000003,-1,0,"(0.61, 0.675)" +2341,100,100,,1,1,[1],2.3000000000000003,-1,1,"(0.68, 0.66)" +2342,100,100,,1,1,[1],2.3000000000000003,-1,2,"(0.68, 0.68)" +2343,100,100,,1,1,[1],2.3000000000000003,-1,3,"(0.68, 0.61)" +2344,100,100,,1,1,[1],2.3000000000000003,-1,4,"(0.68, 0.67)" +2345,100,100,,1,1,[1],2.3000000000000003,-1,5,"(0.67, 0.725)" +2346,100,100,,1,1,[1],2.3000000000000003,-1,6,"(0.61, 0.605)" +2347,100,100,,1,1,[1],2.3000000000000003,-1,7,"(0.57, 0.605)" +2348,100,100,,1,1,[1],2.3000000000000003,-1,8,"(0.58, 0.59)" +2349,100,100,,1,1,[1],2.3000000000000003,-1,9,"(0.57, 0.605)" +2350,100,100,,1,1,[1],2.3000000000000003,0,0,"(0.65, 0.535)" +2351,100,100,,1,1,[1],2.3000000000000003,0,1,"(0.59, 0.485)" +2352,100,100,,1,1,[1],2.3000000000000003,0,2,"(0.59, 0.515)" +2353,100,100,,1,1,[1],2.3000000000000003,0,3,"(0.51, 0.505)" +2354,100,100,,1,1,[1],2.3000000000000003,0,4,"(0.58, 0.4)" +2355,100,100,,1,1,[1],2.3000000000000003,0,5,"(0.63, 0.495)" +2356,100,100,,1,1,[1],2.3000000000000003,0,6,"(0.5, 0.49)" +2357,100,100,,1,1,[1],2.3000000000000003,0,7,"(0.57, 0.465)" +2358,100,100,,1,1,[1],2.3000000000000003,0,8,"(0.61, 0.505)" +2359,100,100,,1,1,[1],2.3000000000000003,0,9,"(0.6, 0.43)" +2360,100,100,,1,1,[1],2.3000000000000003,1,0,"(0.64, 0.3)" +2361,100,100,,1,1,[1],2.3000000000000003,1,1,"(0.65, 0.365)" +2362,100,100,,1,1,[1],2.3000000000000003,1,2,"(0.66, 0.36)" +2363,100,100,,1,1,[1],2.3000000000000003,1,3,"(0.72, 0.38)" +2364,100,100,,1,1,[1],2.3000000000000003,1,4,"(0.62, 0.31)" +2365,100,100,,1,1,[1],2.3000000000000003,1,5,"(0.56, 0.37)" +2366,100,100,,1,1,[1],2.3000000000000003,1,6,"(0.58, 0.39)" +2367,100,100,,1,1,[1],2.3000000000000003,1,7,"(0.61, 0.345)" +2368,100,100,,1,1,[1],2.3000000000000003,1,8,"(0.6, 0.29)" +2369,100,100,,1,1,[1],2.3000000000000003,1,9,"(0.68, 0.31)" +2370,100,100,,1,1,[1],2.3000000000000003,2,0,"(0.69, 0.235)" +2371,100,100,,1,1,[1],2.3000000000000003,2,1,"(0.71, 0.235)" +2372,100,100,,1,1,[1],2.3000000000000003,2,2,"(0.77, 0.275)" +2373,100,100,,1,1,[1],2.3000000000000003,2,3,"(0.75, 0.205)" +2374,100,100,,1,1,[1],2.3000000000000003,2,4,"(0.74, 0.24)" +2375,100,100,,1,1,[1],2.3000000000000003,2,5,"(0.62, 0.24)" +2376,100,100,,1,1,[1],2.3000000000000003,2,6,"(0.69, 0.215)" +2377,100,100,,1,1,[1],2.3000000000000003,2,7,"(0.75, 0.225)" +2378,100,100,,1,1,[1],2.3000000000000003,2,8,"(0.67, 0.215)" +2379,100,100,,1,1,[1],2.3000000000000003,2,9,"(0.72, 0.23)" +2380,100,100,,1,1,[1],2.3000000000000003,3,0,"(0.81, 0.105)" +2381,100,100,,1,1,[1],2.3000000000000003,3,1,"(0.84, 0.08)" +2382,100,100,,1,1,[1],2.3000000000000003,3,2,"(0.82, 0.12)" +2383,100,100,,1,1,[1],2.3000000000000003,3,3,"(0.79, 0.145)" +2384,100,100,,1,1,[1],2.3000000000000003,3,4,"(0.79, 0.125)" +2385,100,100,,1,1,[1],2.3000000000000003,3,5,"(0.76, 0.15)" +2386,100,100,,1,1,[1],2.3000000000000003,3,6,"(0.77, 0.135)" +2387,100,100,,1,1,[1],2.3000000000000003,3,7,"(0.71, 0.155)" +2388,100,100,,1,1,[1],2.3000000000000003,3,8,"(0.74, 0.19)" +2389,100,100,,1,1,[1],2.3000000000000003,3,9,"(0.83, 0.125)" +2390,100,100,,1,1,[1],2.3000000000000003,4,0,"(0.87, 0.075)" +2391,100,100,,1,1,[1],2.3000000000000003,4,1,"(0.87, 0.085)" +2392,100,100,,1,1,[1],2.3000000000000003,4,2,"(0.85, 0.105)" +2393,100,100,,1,1,[1],2.3000000000000003,4,3,"(0.86, 0.08)" +2394,100,100,,1,1,[1],2.3000000000000003,4,4,"(0.89, 0.055)" +2395,100,100,,1,1,[1],2.3000000000000003,4,5,"(0.9, 0.05)" +2396,100,100,,1,1,[1],2.3000000000000003,4,6,"(0.86, 0.09)" +2397,100,100,,1,1,[1],2.3000000000000003,4,7,"(0.85, 0.095)" +2398,100,100,,1,1,[1],2.3000000000000003,4,8,"(0.89, 0.055)" +2399,100,100,,1,1,[1],2.3000000000000003,4,9,"(0.88, 0.09)" +2400,100,100,,1,1,[1],2.4000000000000004,-5,0,"(0.94, 0.97)" +2401,100,100,,1,1,[1],2.4000000000000004,-5,1,"(0.93, 0.955)" +2402,100,100,,1,1,[1],2.4000000000000004,-5,2,"(0.96, 0.98)" +2403,100,100,,1,1,[1],2.4000000000000004,-5,3,"(0.95, 0.975)" +2404,100,100,,1,1,[1],2.4000000000000004,-5,4,"(0.93, 0.965)" +2405,100,100,,1,1,[1],2.4000000000000004,-5,5,"(0.93, 0.965)" +2406,100,100,,1,1,[1],2.4000000000000004,-5,6,"(0.92, 0.96)" +2407,100,100,,1,1,[1],2.4000000000000004,-5,7,"(0.93, 0.965)" +2408,100,100,,1,1,[1],2.4000000000000004,-5,8,"(0.89, 0.935)" +2409,100,100,,1,1,[1],2.4000000000000004,-5,9,"(0.95, 0.965)" +2410,100,100,,1,1,[1],2.4000000000000004,-4,0,"(0.94, 0.95)" +2411,100,100,,1,1,[1],2.4000000000000004,-4,1,"(0.91, 0.935)" +2412,100,100,,1,1,[1],2.4000000000000004,-4,2,"(0.85, 0.925)" +2413,100,100,,1,1,[1],2.4000000000000004,-4,3,"(0.84, 0.92)" +2414,100,100,,1,1,[1],2.4000000000000004,-4,4,"(0.86, 0.92)" +2415,100,100,,1,1,[1],2.4000000000000004,-4,5,"(0.93, 0.965)" +2416,100,100,,1,1,[1],2.4000000000000004,-4,6,"(0.85, 0.925)" +2417,100,100,,1,1,[1],2.4000000000000004,-4,7,"(0.91, 0.935)" +2418,100,100,,1,1,[1],2.4000000000000004,-4,8,"(0.88, 0.92)" +2419,100,100,,1,1,[1],2.4000000000000004,-4,9,"(0.82, 0.89)" +2420,100,100,,1,1,[1],2.4000000000000004,-3,0,"(0.8, 0.87)" +2421,100,100,,1,1,[1],2.4000000000000004,-3,1,"(0.8, 0.86)" +2422,100,100,,1,1,[1],2.4000000000000004,-3,2,"(0.85, 0.875)" +2423,100,100,,1,1,[1],2.4000000000000004,-3,3,"(0.72, 0.84)" +2424,100,100,,1,1,[1],2.4000000000000004,-3,4,"(0.8, 0.86)" +2425,100,100,,1,1,[1],2.4000000000000004,-3,5,"(0.74, 0.81)" +2426,100,100,,1,1,[1],2.4000000000000004,-3,6,"(0.82, 0.89)" +2427,100,100,,1,1,[1],2.4000000000000004,-3,7,"(0.74, 0.85)" +2428,100,100,,1,1,[1],2.4000000000000004,-3,8,"(0.8, 0.89)" +2429,100,100,,1,1,[1],2.4000000000000004,-3,9,"(0.84, 0.85)" +2430,100,100,,1,1,[1],2.4000000000000004,-2,0,"(0.68, 0.7)" +2431,100,100,,1,1,[1],2.4000000000000004,-2,1,"(0.67, 0.775)" +2432,100,100,,1,1,[1],2.4000000000000004,-2,2,"(0.76, 0.82)" +2433,100,100,,1,1,[1],2.4000000000000004,-2,3,"(0.73, 0.805)" +2434,100,100,,1,1,[1],2.4000000000000004,-2,4,"(0.75, 0.785)" +2435,100,100,,1,1,[1],2.4000000000000004,-2,5,"(0.68, 0.77)" +2436,100,100,,1,1,[1],2.4000000000000004,-2,6,"(0.67, 0.725)" +2437,100,100,,1,1,[1],2.4000000000000004,-2,7,"(0.7, 0.75)" +2438,100,100,,1,1,[1],2.4000000000000004,-2,8,"(0.74, 0.81)" +2439,100,100,,1,1,[1],2.4000000000000004,-2,9,"(0.73, 0.775)" +2440,100,100,,1,1,[1],2.4000000000000004,-1,0,"(0.58, 0.67)" +2441,100,100,,1,1,[1],2.4000000000000004,-1,1,"(0.55, 0.605)" +2442,100,100,,1,1,[1],2.4000000000000004,-1,2,"(0.48, 0.6)" +2443,100,100,,1,1,[1],2.4000000000000004,-1,3,"(0.56, 0.61)" +2444,100,100,,1,1,[1],2.4000000000000004,-1,4,"(0.6, 0.6)" +2445,100,100,,1,1,[1],2.4000000000000004,-1,5,"(0.63, 0.635)" +2446,100,100,,1,1,[1],2.4000000000000004,-1,6,"(0.63, 0.675)" +2447,100,100,,1,1,[1],2.4000000000000004,-1,7,"(0.62, 0.65)" +2448,100,100,,1,1,[1],2.4000000000000004,-1,8,"(0.59, 0.595)" +2449,100,100,,1,1,[1],2.4000000000000004,-1,9,"(0.65, 0.605)" +2450,100,100,,1,1,[1],2.4000000000000004,0,0,"(0.65, 0.515)" +2451,100,100,,1,1,[1],2.4000000000000004,0,1,"(0.7, 0.46)" +2452,100,100,,1,1,[1],2.4000000000000004,0,2,"(0.54, 0.59)" +2453,100,100,,1,1,[1],2.4000000000000004,0,3,"(0.58, 0.54)" +2454,100,100,,1,1,[1],2.4000000000000004,0,4,"(0.41, 0.485)" +2455,100,100,,1,1,[1],2.4000000000000004,0,5,"(0.57, 0.475)" +2456,100,100,,1,1,[1],2.4000000000000004,0,6,"(0.6, 0.48)" +2457,100,100,,1,1,[1],2.4000000000000004,0,7,"(0.57, 0.565)" +2458,100,100,,1,1,[1],2.4000000000000004,0,8,"(0.55, 0.535)" +2459,100,100,,1,1,[1],2.4000000000000004,0,9,"(0.58, 0.49)" +2460,100,100,,1,1,[1],2.4000000000000004,1,0,"(0.6, 0.39)" +2461,100,100,,1,1,[1],2.4000000000000004,1,1,"(0.62, 0.33)" +2462,100,100,,1,1,[1],2.4000000000000004,1,2,"(0.64, 0.4)" +2463,100,100,,1,1,[1],2.4000000000000004,1,3,"(0.63, 0.315)" +2464,100,100,,1,1,[1],2.4000000000000004,1,4,"(0.55, 0.405)" +2465,100,100,,1,1,[1],2.4000000000000004,1,5,"(0.51, 0.355)" +2466,100,100,,1,1,[1],2.4000000000000004,1,6,"(0.64, 0.29)" +2467,100,100,,1,1,[1],2.4000000000000004,1,7,"(0.65, 0.345)" +2468,100,100,,1,1,[1],2.4000000000000004,1,8,"(0.55, 0.355)" +2469,100,100,,1,1,[1],2.4000000000000004,1,9,"(0.59, 0.365)" +2470,100,100,,1,1,[1],2.4000000000000004,2,0,"(0.68, 0.2)" +2471,100,100,,1,1,[1],2.4000000000000004,2,1,"(0.82, 0.21)" +2472,100,100,,1,1,[1],2.4000000000000004,2,2,"(0.77, 0.215)" +2473,100,100,,1,1,[1],2.4000000000000004,2,3,"(0.6, 0.25)" +2474,100,100,,1,1,[1],2.4000000000000004,2,4,"(0.7, 0.23)" +2475,100,100,,1,1,[1],2.4000000000000004,2,5,"(0.78, 0.22)" +2476,100,100,,1,1,[1],2.4000000000000004,2,6,"(0.71, 0.205)" +2477,100,100,,1,1,[1],2.4000000000000004,2,7,"(0.77, 0.235)" +2478,100,100,,1,1,[1],2.4000000000000004,2,8,"(0.66, 0.2)" +2479,100,100,,1,1,[1],2.4000000000000004,2,9,"(0.74, 0.19)" +2480,100,100,,1,1,[1],2.4000000000000004,3,0,"(0.84, 0.11)" +2481,100,100,,1,1,[1],2.4000000000000004,3,1,"(0.81, 0.155)" +2482,100,100,,1,1,[1],2.4000000000000004,3,2,"(0.8, 0.11)" +2483,100,100,,1,1,[1],2.4000000000000004,3,3,"(0.8, 0.13)" +2484,100,100,,1,1,[1],2.4000000000000004,3,4,"(0.76, 0.14)" +2485,100,100,,1,1,[1],2.4000000000000004,3,5,"(0.84, 0.14)" +2486,100,100,,1,1,[1],2.4000000000000004,3,6,"(0.72, 0.18)" +2487,100,100,,1,1,[1],2.4000000000000004,3,7,"(0.79, 0.115)" +2488,100,100,,1,1,[1],2.4000000000000004,3,8,"(0.84, 0.12)" +2489,100,100,,1,1,[1],2.4000000000000004,3,9,"(0.75, 0.155)" +2490,100,100,,1,1,[1],2.4000000000000004,4,0,"(0.86, 0.11)" +2491,100,100,,1,1,[1],2.4000000000000004,4,1,"(0.95, 0.025)" +2492,100,100,,1,1,[1],2.4000000000000004,4,2,"(0.9, 0.07)" +2493,100,100,,1,1,[1],2.4000000000000004,4,3,"(0.86, 0.08)" +2494,100,100,,1,1,[1],2.4000000000000004,4,4,"(0.89, 0.075)" +2495,100,100,,1,1,[1],2.4000000000000004,4,5,"(0.92, 0.07)" +2496,100,100,,1,1,[1],2.4000000000000004,4,6,"(0.87, 0.075)" +2497,100,100,,1,1,[1],2.4000000000000004,4,7,"(0.92, 0.06)" +2498,100,100,,1,1,[1],2.4000000000000004,4,8,"(0.85, 0.105)" +2499,100,100,,1,1,[1],2.4000000000000004,4,9,"(0.86, 0.09)" +2500,100,100,,1,1,[1],2.5,-5,0,"(0.97, 0.985)" +2501,100,100,,1,1,[1],2.5,-5,1,"(0.91, 0.955)" +2502,100,100,,1,1,[1],2.5,-5,2,"(0.91, 0.955)" +2503,100,100,,1,1,[1],2.5,-5,3,"(0.94, 0.96)" +2504,100,100,,1,1,[1],2.5,-5,4,"(0.95, 0.975)" +2505,100,100,,1,1,[1],2.5,-5,5,"(0.92, 0.95)" +2506,100,100,,1,1,[1],2.5,-5,6,"(0.86, 0.93)" +2507,100,100,,1,1,[1],2.5,-5,7,"(0.95, 0.975)" +2508,100,100,,1,1,[1],2.5,-5,8,"(0.89, 0.945)" +2509,100,100,,1,1,[1],2.5,-5,9,"(0.94, 0.97)" +2510,100,100,,1,1,[1],2.5,-4,0,"(0.79, 0.885)" +2511,100,100,,1,1,[1],2.5,-4,1,"(0.9, 0.94)" +2512,100,100,,1,1,[1],2.5,-4,2,"(0.89, 0.925)" +2513,100,100,,1,1,[1],2.5,-4,3,"(0.92, 0.96)" +2514,100,100,,1,1,[1],2.5,-4,4,"(0.84, 0.9)" +2515,100,100,,1,1,[1],2.5,-4,5,"(0.77, 0.875)" +2516,100,100,,1,1,[1],2.5,-4,6,"(0.84, 0.91)" +2517,100,100,,1,1,[1],2.5,-4,7,"(0.82, 0.91)" +2518,100,100,,1,1,[1],2.5,-4,8,"(0.87, 0.905)" +2519,100,100,,1,1,[1],2.5,-4,9,"(0.84, 0.9)" +2520,100,100,,1,1,[1],2.5,-3,0,"(0.82, 0.88)" +2521,100,100,,1,1,[1],2.5,-3,1,"(0.8, 0.87)" +2522,100,100,,1,1,[1],2.5,-3,2,"(0.75, 0.835)" +2523,100,100,,1,1,[1],2.5,-3,3,"(0.81, 0.865)" +2524,100,100,,1,1,[1],2.5,-3,4,"(0.76, 0.85)" +2525,100,100,,1,1,[1],2.5,-3,5,"(0.79, 0.845)" +2526,100,100,,1,1,[1],2.5,-3,6,"(0.8, 0.86)" +2527,100,100,,1,1,[1],2.5,-3,7,"(0.76, 0.81)" +2528,100,100,,1,1,[1],2.5,-3,8,"(0.8, 0.87)" +2529,100,100,,1,1,[1],2.5,-3,9,"(0.87, 0.925)" +2530,100,100,,1,1,[1],2.5,-2,0,"(0.64, 0.69)" +2531,100,100,,1,1,[1],2.5,-2,1,"(0.67, 0.745)" +2532,100,100,,1,1,[1],2.5,-2,2,"(0.74, 0.8)" +2533,100,100,,1,1,[1],2.5,-2,3,"(0.79, 0.795)" +2534,100,100,,1,1,[1],2.5,-2,4,"(0.76, 0.76)" +2535,100,100,,1,1,[1],2.5,-2,5,"(0.68, 0.78)" +2536,100,100,,1,1,[1],2.5,-2,6,"(0.76, 0.82)" +2537,100,100,,1,1,[1],2.5,-2,7,"(0.65, 0.745)" +2538,100,100,,1,1,[1],2.5,-2,8,"(0.56, 0.73)" +2539,100,100,,1,1,[1],2.5,-2,9,"(0.7, 0.79)" +2540,100,100,,1,1,[1],2.5,-1,0,"(0.64, 0.7)" +2541,100,100,,1,1,[1],2.5,-1,1,"(0.68, 0.67)" +2542,100,100,,1,1,[1],2.5,-1,2,"(0.64, 0.66)" +2543,100,100,,1,1,[1],2.5,-1,3,"(0.5, 0.61)" +2544,100,100,,1,1,[1],2.5,-1,4,"(0.54, 0.66)" +2545,100,100,,1,1,[1],2.5,-1,5,"(0.54, 0.57)" +2546,100,100,,1,1,[1],2.5,-1,6,"(0.71, 0.615)" +2547,100,100,,1,1,[1],2.5,-1,7,"(0.63, 0.615)" +2548,100,100,,1,1,[1],2.5,-1,8,"(0.56, 0.65)" +2549,100,100,,1,1,[1],2.5,-1,9,"(0.59, 0.645)" +2550,100,100,,1,1,[1],2.5,0,0,"(0.67, 0.535)" +2551,100,100,,1,1,[1],2.5,0,1,"(0.53, 0.455)" +2552,100,100,,1,1,[1],2.5,0,2,"(0.61, 0.515)" +2553,100,100,,1,1,[1],2.5,0,3,"(0.56, 0.53)" +2554,100,100,,1,1,[1],2.5,0,4,"(0.52, 0.5)" +2555,100,100,,1,1,[1],2.5,0,5,"(0.6, 0.56)" +2556,100,100,,1,1,[1],2.5,0,6,"(0.53, 0.545)" +2557,100,100,,1,1,[1],2.5,0,7,"(0.59, 0.505)" +2558,100,100,,1,1,[1],2.5,0,8,"(0.53, 0.465)" +2559,100,100,,1,1,[1],2.5,0,9,"(0.59, 0.475)" +2560,100,100,,1,1,[1],2.5,1,0,"(0.58, 0.31)" +2561,100,100,,1,1,[1],2.5,1,1,"(0.65, 0.335)" +2562,100,100,,1,1,[1],2.5,1,2,"(0.55, 0.395)" +2563,100,100,,1,1,[1],2.5,1,3,"(0.55, 0.405)" +2564,100,100,,1,1,[1],2.5,1,4,"(0.58, 0.33)" +2565,100,100,,1,1,[1],2.5,1,5,"(0.65, 0.425)" +2566,100,100,,1,1,[1],2.5,1,6,"(0.68, 0.36)" +2567,100,100,,1,1,[1],2.5,1,7,"(0.62, 0.36)" +2568,100,100,,1,1,[1],2.5,1,8,"(0.62, 0.36)" +2569,100,100,,1,1,[1],2.5,1,9,"(0.54, 0.41)" +2570,100,100,,1,1,[1],2.5,2,0,"(0.62, 0.27)" +2571,100,100,,1,1,[1],2.5,2,1,"(0.67, 0.255)" +2572,100,100,,1,1,[1],2.5,2,2,"(0.65, 0.265)" +2573,100,100,,1,1,[1],2.5,2,3,"(0.73, 0.245)" +2574,100,100,,1,1,[1],2.5,2,4,"(0.68, 0.24)" +2575,100,100,,1,1,[1],2.5,2,5,"(0.77, 0.185)" +2576,100,100,,1,1,[1],2.5,2,6,"(0.7, 0.25)" +2577,100,100,,1,1,[1],2.5,2,7,"(0.74, 0.26)" +2578,100,100,,1,1,[1],2.5,2,8,"(0.69, 0.215)" +2579,100,100,,1,1,[1],2.5,2,9,"(0.82, 0.2)" +2580,100,100,,1,1,[1],2.5,3,0,"(0.79, 0.155)" +2581,100,100,,1,1,[1],2.5,3,1,"(0.74, 0.17)" +2582,100,100,,1,1,[1],2.5,3,2,"(0.72, 0.19)" +2583,100,100,,1,1,[1],2.5,3,3,"(0.84, 0.14)" +2584,100,100,,1,1,[1],2.5,3,4,"(0.76, 0.14)" +2585,100,100,,1,1,[1],2.5,3,5,"(0.82, 0.14)" +2586,100,100,,1,1,[1],2.5,3,6,"(0.68, 0.17)" +2587,100,100,,1,1,[1],2.5,3,7,"(0.74, 0.15)" +2588,100,100,,1,1,[1],2.5,3,8,"(0.75, 0.175)" +2589,100,100,,1,1,[1],2.5,3,9,"(0.72, 0.16)" +2590,100,100,,1,1,[1],2.5,4,0,"(0.86, 0.08)" +2591,100,100,,1,1,[1],2.5,4,1,"(0.91, 0.055)" +2592,100,100,,1,1,[1],2.5,4,2,"(0.87, 0.075)" +2593,100,100,,1,1,[1],2.5,4,3,"(0.85, 0.095)" +2594,100,100,,1,1,[1],2.5,4,4,"(0.88, 0.07)" +2595,100,100,,1,1,[1],2.5,4,5,"(0.88, 0.1)" +2596,100,100,,1,1,[1],2.5,4,6,"(0.93, 0.035)" +2597,100,100,,1,1,[1],2.5,4,7,"(0.87, 0.075)" +2598,100,100,,1,1,[1],2.5,4,8,"(0.85, 0.085)" +2599,100,100,,1,1,[1],2.5,4,9,"(0.91, 0.055)" +2600,100,100,,1,1,[1],2.6,-5,0,"(0.9, 0.94)" +2601,100,100,,1,1,[1],2.6,-5,1,"(0.93, 0.965)" +2602,100,100,,1,1,[1],2.6,-5,2,"(0.91, 0.945)" +2603,100,100,,1,1,[1],2.6,-5,3,"(0.96, 0.98)" +2604,100,100,,1,1,[1],2.6,-5,4,"(0.88, 0.94)" +2605,100,100,,1,1,[1],2.6,-5,5,"(0.92, 0.95)" +2606,100,100,,1,1,[1],2.6,-5,6,"(0.95, 0.965)" +2607,100,100,,1,1,[1],2.6,-5,7,"(0.95, 0.975)" +2608,100,100,,1,1,[1],2.6,-5,8,"(0.96, 0.98)" +2609,100,100,,1,1,[1],2.6,-5,9,"(0.94, 0.96)" +2610,100,100,,1,1,[1],2.6,-4,0,"(0.85, 0.925)" +2611,100,100,,1,1,[1],2.6,-4,1,"(0.89, 0.945)" +2612,100,100,,1,1,[1],2.6,-4,2,"(0.82, 0.9)" +2613,100,100,,1,1,[1],2.6,-4,3,"(0.79, 0.875)" +2614,100,100,,1,1,[1],2.6,-4,4,"(0.78, 0.85)" +2615,100,100,,1,1,[1],2.6,-4,5,"(0.81, 0.895)" +2616,100,100,,1,1,[1],2.6,-4,6,"(0.88, 0.93)" +2617,100,100,,1,1,[1],2.6,-4,7,"(0.89, 0.925)" +2618,100,100,,1,1,[1],2.6,-4,8,"(0.85, 0.915)" +2619,100,100,,1,1,[1],2.6,-4,9,"(0.84, 0.89)" +2620,100,100,,1,1,[1],2.6,-3,0,"(0.7, 0.84)" +2621,100,100,,1,1,[1],2.6,-3,1,"(0.75, 0.815)" +2622,100,100,,1,1,[1],2.6,-3,2,"(0.78, 0.86)" +2623,100,100,,1,1,[1],2.6,-3,3,"(0.69, 0.815)" +2624,100,100,,1,1,[1],2.6,-3,4,"(0.81, 0.855)" +2625,100,100,,1,1,[1],2.6,-3,5,"(0.8, 0.89)" +2626,100,100,,1,1,[1],2.6,-3,6,"(0.82, 0.89)" +2627,100,100,,1,1,[1],2.6,-3,7,"(0.78, 0.86)" +2628,100,100,,1,1,[1],2.6,-3,8,"(0.76, 0.85)" +2629,100,100,,1,1,[1],2.6,-3,9,"(0.73, 0.835)" +2630,100,100,,1,1,[1],2.6,-2,0,"(0.8, 0.79)" +2631,100,100,,1,1,[1],2.6,-2,1,"(0.68, 0.74)" +2632,100,100,,1,1,[1],2.6,-2,2,"(0.67, 0.795)" +2633,100,100,,1,1,[1],2.6,-2,3,"(0.59, 0.715)" +2634,100,100,,1,1,[1],2.6,-2,4,"(0.66, 0.72)" +2635,100,100,,1,1,[1],2.6,-2,5,"(0.71, 0.765)" +2636,100,100,,1,1,[1],2.6,-2,6,"(0.64, 0.74)" +2637,100,100,,1,1,[1],2.6,-2,7,"(0.64, 0.77)" +2638,100,100,,1,1,[1],2.6,-2,8,"(0.7, 0.72)" +2639,100,100,,1,1,[1],2.6,-2,9,"(0.64, 0.75)" +2640,100,100,,1,1,[1],2.6,-1,0,"(0.63, 0.625)" +2641,100,100,,1,1,[1],2.6,-1,1,"(0.63, 0.665)" +2642,100,100,,1,1,[1],2.6,-1,2,"(0.54, 0.58)" +2643,100,100,,1,1,[1],2.6,-1,3,"(0.59, 0.625)" +2644,100,100,,1,1,[1],2.6,-1,4,"(0.54, 0.6)" +2645,100,100,,1,1,[1],2.6,-1,5,"(0.64, 0.61)" +2646,100,100,,1,1,[1],2.6,-1,6,"(0.54, 0.61)" +2647,100,100,,1,1,[1],2.6,-1,7,"(0.64, 0.67)" +2648,100,100,,1,1,[1],2.6,-1,8,"(0.63, 0.615)" +2649,100,100,,1,1,[1],2.6,-1,9,"(0.59, 0.655)" +2650,100,100,,1,1,[1],2.6,0,0,"(0.49, 0.535)" +2651,100,100,,1,1,[1],2.6,0,1,"(0.65, 0.465)" +2652,100,100,,1,1,[1],2.6,0,2,"(0.54, 0.55)" +2653,100,100,,1,1,[1],2.6,0,3,"(0.56, 0.5)" +2654,100,100,,1,1,[1],2.6,0,4,"(0.57, 0.535)" +2655,100,100,,1,1,[1],2.6,0,5,"(0.49, 0.515)" +2656,100,100,,1,1,[1],2.6,0,6,"(0.59, 0.525)" +2657,100,100,,1,1,[1],2.6,0,7,"(0.54, 0.45)" +2658,100,100,,1,1,[1],2.6,0,8,"(0.62, 0.54)" +2659,100,100,,1,1,[1],2.6,0,9,"(0.54, 0.56)" +2660,100,100,,1,1,[1],2.6,1,0,"(0.59, 0.345)" +2661,100,100,,1,1,[1],2.6,1,1,"(0.65, 0.355)" +2662,100,100,,1,1,[1],2.6,1,2,"(0.57, 0.395)" +2663,100,100,,1,1,[1],2.6,1,3,"(0.57, 0.385)" +2664,100,100,,1,1,[1],2.6,1,4,"(0.64, 0.35)" +2665,100,100,,1,1,[1],2.6,1,5,"(0.57, 0.385)" +2666,100,100,,1,1,[1],2.6,1,6,"(0.61, 0.355)" +2667,100,100,,1,1,[1],2.6,1,7,"(0.6, 0.41)" +2668,100,100,,1,1,[1],2.6,1,8,"(0.61, 0.325)" +2669,100,100,,1,1,[1],2.6,1,9,"(0.62, 0.32)" +2670,100,100,,1,1,[1],2.6,2,0,"(0.67, 0.195)" +2671,100,100,,1,1,[1],2.6,2,1,"(0.69, 0.245)" +2672,100,100,,1,1,[1],2.6,2,2,"(0.59, 0.245)" +2673,100,100,,1,1,[1],2.6,2,3,"(0.72, 0.18)" +2674,100,100,,1,1,[1],2.6,2,4,"(0.69, 0.285)" +2675,100,100,,1,1,[1],2.6,2,5,"(0.64, 0.33)" +2676,100,100,,1,1,[1],2.6,2,6,"(0.74, 0.2)" +2677,100,100,,1,1,[1],2.6,2,7,"(0.72, 0.26)" +2678,100,100,,1,1,[1],2.6,2,8,"(0.67, 0.275)" +2679,100,100,,1,1,[1],2.6,2,9,"(0.61, 0.265)" +2680,100,100,,1,1,[1],2.6,3,0,"(0.77, 0.135)" +2681,100,100,,1,1,[1],2.6,3,1,"(0.72, 0.19)" +2682,100,100,,1,1,[1],2.6,3,2,"(0.73, 0.185)" +2683,100,100,,1,1,[1],2.6,3,3,"(0.81, 0.145)" +2684,100,100,,1,1,[1],2.6,3,4,"(0.86, 0.13)" +2685,100,100,,1,1,[1],2.6,3,5,"(0.79, 0.135)" +2686,100,100,,1,1,[1],2.6,3,6,"(0.75, 0.165)" +2687,100,100,,1,1,[1],2.6,3,7,"(0.7, 0.2)" +2688,100,100,,1,1,[1],2.6,3,8,"(0.74, 0.14)" +2689,100,100,,1,1,[1],2.6,3,9,"(0.8, 0.16)" +2690,100,100,,1,1,[1],2.6,4,0,"(0.9, 0.05)" +2691,100,100,,1,1,[1],2.6,4,1,"(0.89, 0.055)" +2692,100,100,,1,1,[1],2.6,4,2,"(0.82, 0.09)" +2693,100,100,,1,1,[1],2.6,4,3,"(0.81, 0.115)" +2694,100,100,,1,1,[1],2.6,4,4,"(0.9, 0.05)" +2695,100,100,,1,1,[1],2.6,4,5,"(0.84, 0.08)" +2696,100,100,,1,1,[1],2.6,4,6,"(0.81, 0.105)" +2697,100,100,,1,1,[1],2.6,4,7,"(0.89, 0.065)" +2698,100,100,,1,1,[1],2.6,4,8,"(0.89, 0.055)" +2699,100,100,,1,1,[1],2.6,4,9,"(0.88, 0.09)" +2700,100,100,,1,1,[1],2.7,-5,0,"(0.94, 0.97)" +2701,100,100,,1,1,[1],2.7,-5,1,"(0.88, 0.94)" +2702,100,100,,1,1,[1],2.7,-5,2,"(0.93, 0.965)" +2703,100,100,,1,1,[1],2.7,-5,3,"(0.91, 0.955)" +2704,100,100,,1,1,[1],2.7,-5,4,"(0.88, 0.93)" +2705,100,100,,1,1,[1],2.7,-5,5,"(0.93, 0.955)" +2706,100,100,,1,1,[1],2.7,-5,6,"(0.89, 0.945)" +2707,100,100,,1,1,[1],2.7,-5,7,"(0.91, 0.955)" +2708,100,100,,1,1,[1],2.7,-5,8,"(0.96, 0.98)" +2709,100,100,,1,1,[1],2.7,-5,9,"(0.87, 0.935)" +2710,100,100,,1,1,[1],2.7,-4,0,"(0.8, 0.88)" +2711,100,100,,1,1,[1],2.7,-4,1,"(0.83, 0.895)" +2712,100,100,,1,1,[1],2.7,-4,2,"(0.86, 0.9)" +2713,100,100,,1,1,[1],2.7,-4,3,"(0.83, 0.905)" +2714,100,100,,1,1,[1],2.7,-4,4,"(0.78, 0.88)" +2715,100,100,,1,1,[1],2.7,-4,5,"(0.84, 0.91)" +2716,100,100,,1,1,[1],2.7,-4,6,"(0.87, 0.905)" +2717,100,100,,1,1,[1],2.7,-4,7,"(0.77, 0.855)" +2718,100,100,,1,1,[1],2.7,-4,8,"(0.82, 0.89)" +2719,100,100,,1,1,[1],2.7,-4,9,"(0.85, 0.905)" +2720,100,100,,1,1,[1],2.7,-3,0,"(0.87, 0.875)" +2721,100,100,,1,1,[1],2.7,-3,1,"(0.74, 0.79)" +2722,100,100,,1,1,[1],2.7,-3,2,"(0.76, 0.83)" +2723,100,100,,1,1,[1],2.7,-3,3,"(0.78, 0.86)" +2724,100,100,,1,1,[1],2.7,-3,4,"(0.77, 0.855)" +2725,100,100,,1,1,[1],2.7,-3,5,"(0.77, 0.835)" +2726,100,100,,1,1,[1],2.7,-3,6,"(0.76, 0.82)" +2727,100,100,,1,1,[1],2.7,-3,7,"(0.82, 0.85)" +2728,100,100,,1,1,[1],2.7,-3,8,"(0.76, 0.87)" +2729,100,100,,1,1,[1],2.7,-3,9,"(0.74, 0.8)" +2730,100,100,,1,1,[1],2.7,-2,0,"(0.63, 0.695)" +2731,100,100,,1,1,[1],2.7,-2,1,"(0.69, 0.735)" +2732,100,100,,1,1,[1],2.7,-2,2,"(0.59, 0.725)" +2733,100,100,,1,1,[1],2.7,-2,3,"(0.71, 0.675)" +2734,100,100,,1,1,[1],2.7,-2,4,"(0.67, 0.725)" +2735,100,100,,1,1,[1],2.7,-2,5,"(0.71, 0.765)" +2736,100,100,,1,1,[1],2.7,-2,6,"(0.54, 0.7)" +2737,100,100,,1,1,[1],2.7,-2,7,"(0.71, 0.765)" +2738,100,100,,1,1,[1],2.7,-2,8,"(0.66, 0.72)" +2739,100,100,,1,1,[1],2.7,-2,9,"(0.65, 0.785)" +2740,100,100,,1,1,[1],2.7,-1,0,"(0.64, 0.69)" +2741,100,100,,1,1,[1],2.7,-1,1,"(0.59, 0.615)" +2742,100,100,,1,1,[1],2.7,-1,2,"(0.5, 0.61)" +2743,100,100,,1,1,[1],2.7,-1,3,"(0.56, 0.59)" +2744,100,100,,1,1,[1],2.7,-1,4,"(0.6, 0.66)" +2745,100,100,,1,1,[1],2.7,-1,5,"(0.69, 0.625)" +2746,100,100,,1,1,[1],2.7,-1,6,"(0.56, 0.62)" +2747,100,100,,1,1,[1],2.7,-1,7,"(0.62, 0.66)" +2748,100,100,,1,1,[1],2.7,-1,8,"(0.57, 0.715)" +2749,100,100,,1,1,[1],2.7,-1,9,"(0.63, 0.625)" +2750,100,100,,1,1,[1],2.7,0,0,"(0.51, 0.485)" +2751,100,100,,1,1,[1],2.7,0,1,"(0.54, 0.44)" +2752,100,100,,1,1,[1],2.7,0,2,"(0.57, 0.495)" +2753,100,100,,1,1,[1],2.7,0,3,"(0.63, 0.525)" +2754,100,100,,1,1,[1],2.7,0,4,"(0.5, 0.49)" +2755,100,100,,1,1,[1],2.7,0,5,"(0.57, 0.545)" +2756,100,100,,1,1,[1],2.7,0,6,"(0.57, 0.465)" +2757,100,100,,1,1,[1],2.7,0,7,"(0.56, 0.51)" +2758,100,100,,1,1,[1],2.7,0,8,"(0.58, 0.47)" +2759,100,100,,1,1,[1],2.7,0,9,"(0.58, 0.53)" +2760,100,100,,1,1,[1],2.7,1,0,"(0.6, 0.35)" +2761,100,100,,1,1,[1],2.7,1,1,"(0.57, 0.425)" +2762,100,100,,1,1,[1],2.7,1,2,"(0.6, 0.37)" +2763,100,100,,1,1,[1],2.7,1,3,"(0.51, 0.395)" +2764,100,100,,1,1,[1],2.7,1,4,"(0.52, 0.37)" +2765,100,100,,1,1,[1],2.7,1,5,"(0.57, 0.405)" +2766,100,100,,1,1,[1],2.7,1,6,"(0.64, 0.36)" +2767,100,100,,1,1,[1],2.7,1,7,"(0.55, 0.365)" +2768,100,100,,1,1,[1],2.7,1,8,"(0.65, 0.405)" +2769,100,100,,1,1,[1],2.7,1,9,"(0.66, 0.31)" +2770,100,100,,1,1,[1],2.7,2,0,"(0.7, 0.31)" +2771,100,100,,1,1,[1],2.7,2,1,"(0.67, 0.275)" +2772,100,100,,1,1,[1],2.7,2,2,"(0.61, 0.305)" +2773,100,100,,1,1,[1],2.7,2,3,"(0.64, 0.26)" +2774,100,100,,1,1,[1],2.7,2,4,"(0.59, 0.235)" +2775,100,100,,1,1,[1],2.7,2,5,"(0.66, 0.3)" +2776,100,100,,1,1,[1],2.7,2,6,"(0.63, 0.275)" +2777,100,100,,1,1,[1],2.7,2,7,"(0.63, 0.255)" +2778,100,100,,1,1,[1],2.7,2,8,"(0.75, 0.295)" +2779,100,100,,1,1,[1],2.7,2,9,"(0.67, 0.245)" +2780,100,100,,1,1,[1],2.7,3,0,"(0.72, 0.21)" +2781,100,100,,1,1,[1],2.7,3,1,"(0.75, 0.135)" +2782,100,100,,1,1,[1],2.7,3,2,"(0.75, 0.135)" +2783,100,100,,1,1,[1],2.7,3,3,"(0.71, 0.185)" +2784,100,100,,1,1,[1],2.7,3,4,"(0.73, 0.185)" +2785,100,100,,1,1,[1],2.7,3,5,"(0.69, 0.205)" +2786,100,100,,1,1,[1],2.7,3,6,"(0.74, 0.15)" +2787,100,100,,1,1,[1],2.7,3,7,"(0.72, 0.22)" +2788,100,100,,1,1,[1],2.7,3,8,"(0.76, 0.14)" +2789,100,100,,1,1,[1],2.7,3,9,"(0.75, 0.205)" +2790,100,100,,1,1,[1],2.7,4,0,"(0.87, 0.095)" +2791,100,100,,1,1,[1],2.7,4,1,"(0.79, 0.125)" +2792,100,100,,1,1,[1],2.7,4,2,"(0.85, 0.085)" +2793,100,100,,1,1,[1],2.7,4,3,"(0.87, 0.075)" +2794,100,100,,1,1,[1],2.7,4,4,"(0.84, 0.08)" +2795,100,100,,1,1,[1],2.7,4,5,"(0.86, 0.07)" +2796,100,100,,1,1,[1],2.7,4,6,"(0.8, 0.11)" +2797,100,100,,1,1,[1],2.7,4,7,"(0.87, 0.075)" +2798,100,100,,1,1,[1],2.7,4,8,"(0.85, 0.075)" +2799,100,100,,1,1,[1],2.7,4,9,"(0.86, 0.08)" +2800,100,100,,1,1,[1],2.8000000000000003,-5,0,"(0.88, 0.94)" +2801,100,100,,1,1,[1],2.8000000000000003,-5,1,"(0.88, 0.93)" +2802,100,100,,1,1,[1],2.8000000000000003,-5,2,"(0.91, 0.945)" +2803,100,100,,1,1,[1],2.8000000000000003,-5,3,"(0.93, 0.955)" +2804,100,100,,1,1,[1],2.8000000000000003,-5,4,"(0.91, 0.945)" +2805,100,100,,1,1,[1],2.8000000000000003,-5,5,"(0.9, 0.93)" +2806,100,100,,1,1,[1],2.8000000000000003,-5,6,"(0.95, 0.965)" +2807,100,100,,1,1,[1],2.8000000000000003,-5,7,"(0.93, 0.965)" +2808,100,100,,1,1,[1],2.8000000000000003,-5,8,"(0.91, 0.935)" +2809,100,100,,1,1,[1],2.8000000000000003,-5,9,"(0.93, 0.955)" +2810,100,100,,1,1,[1],2.8000000000000003,-4,0,"(0.82, 0.89)" +2811,100,100,,1,1,[1],2.8000000000000003,-4,1,"(0.81, 0.905)" +2812,100,100,,1,1,[1],2.8000000000000003,-4,2,"(0.84, 0.9)" +2813,100,100,,1,1,[1],2.8000000000000003,-4,3,"(0.85, 0.895)" +2814,100,100,,1,1,[1],2.8000000000000003,-4,4,"(0.91, 0.925)" +2815,100,100,,1,1,[1],2.8000000000000003,-4,5,"(0.84, 0.9)" +2816,100,100,,1,1,[1],2.8000000000000003,-4,6,"(0.82, 0.88)" +2817,100,100,,1,1,[1],2.8000000000000003,-4,7,"(0.79, 0.895)" +2818,100,100,,1,1,[1],2.8000000000000003,-4,8,"(0.86, 0.91)" +2819,100,100,,1,1,[1],2.8000000000000003,-4,9,"(0.85, 0.905)" +2820,100,100,,1,1,[1],2.8000000000000003,-3,0,"(0.77, 0.835)" +2821,100,100,,1,1,[1],2.8000000000000003,-3,1,"(0.73, 0.845)" +2822,100,100,,1,1,[1],2.8000000000000003,-3,2,"(0.77, 0.845)" +2823,100,100,,1,1,[1],2.8000000000000003,-3,3,"(0.78, 0.84)" +2824,100,100,,1,1,[1],2.8000000000000003,-3,4,"(0.77, 0.855)" +2825,100,100,,1,1,[1],2.8000000000000003,-3,5,"(0.77, 0.855)" +2826,100,100,,1,1,[1],2.8000000000000003,-3,6,"(0.75, 0.865)" +2827,100,100,,1,1,[1],2.8000000000000003,-3,7,"(0.69, 0.835)" +2828,100,100,,1,1,[1],2.8000000000000003,-3,8,"(0.74, 0.83)" +2829,100,100,,1,1,[1],2.8000000000000003,-3,9,"(0.82, 0.85)" +2830,100,100,,1,1,[1],2.8000000000000003,-2,0,"(0.68, 0.74)" +2831,100,100,,1,1,[1],2.8000000000000003,-2,1,"(0.61, 0.775)" +2832,100,100,,1,1,[1],2.8000000000000003,-2,2,"(0.7, 0.8)" +2833,100,100,,1,1,[1],2.8000000000000003,-2,3,"(0.67, 0.735)" +2834,100,100,,1,1,[1],2.8000000000000003,-2,4,"(0.66, 0.75)" +2835,100,100,,1,1,[1],2.8000000000000003,-2,5,"(0.52, 0.68)" +2836,100,100,,1,1,[1],2.8000000000000003,-2,6,"(0.75, 0.795)" +2837,100,100,,1,1,[1],2.8000000000000003,-2,7,"(0.72, 0.74)" +2838,100,100,,1,1,[1],2.8000000000000003,-2,8,"(0.7, 0.75)" +2839,100,100,,1,1,[1],2.8000000000000003,-2,9,"(0.69, 0.775)" +2840,100,100,,1,1,[1],2.8000000000000003,-1,0,"(0.63, 0.615)" +2841,100,100,,1,1,[1],2.8000000000000003,-1,1,"(0.55, 0.565)" +2842,100,100,,1,1,[1],2.8000000000000003,-1,2,"(0.6, 0.69)" +2843,100,100,,1,1,[1],2.8000000000000003,-1,3,"(0.54, 0.59)" +2844,100,100,,1,1,[1],2.8000000000000003,-1,4,"(0.46, 0.64)" +2845,100,100,,1,1,[1],2.8000000000000003,-1,5,"(0.62, 0.6)" +2846,100,100,,1,1,[1],2.8000000000000003,-1,6,"(0.55, 0.605)" +2847,100,100,,1,1,[1],2.8000000000000003,-1,7,"(0.55, 0.605)" +2848,100,100,,1,1,[1],2.8000000000000003,-1,8,"(0.53, 0.645)" +2849,100,100,,1,1,[1],2.8000000000000003,-1,9,"(0.63, 0.625)" +2850,100,100,,1,1,[1],2.8000000000000003,0,0,"(0.62, 0.54)" +2851,100,100,,1,1,[1],2.8000000000000003,0,1,"(0.52, 0.54)" +2852,100,100,,1,1,[1],2.8000000000000003,0,2,"(0.64, 0.58)" +2853,100,100,,1,1,[1],2.8000000000000003,0,3,"(0.65, 0.525)" +2854,100,100,,1,1,[1],2.8000000000000003,0,4,"(0.61, 0.495)" +2855,100,100,,1,1,[1],2.8000000000000003,0,5,"(0.6, 0.52)" +2856,100,100,,1,1,[1],2.8000000000000003,0,6,"(0.62, 0.59)" +2857,100,100,,1,1,[1],2.8000000000000003,0,7,"(0.53, 0.515)" +2858,100,100,,1,1,[1],2.8000000000000003,0,8,"(0.61, 0.535)" +2859,100,100,,1,1,[1],2.8000000000000003,0,9,"(0.56, 0.45)" +2860,100,100,,1,1,[1],2.8000000000000003,1,0,"(0.64, 0.33)" +2861,100,100,,1,1,[1],2.8000000000000003,1,1,"(0.64, 0.41)" +2862,100,100,,1,1,[1],2.8000000000000003,1,2,"(0.62, 0.34)" +2863,100,100,,1,1,[1],2.8000000000000003,1,3,"(0.5, 0.39)" +2864,100,100,,1,1,[1],2.8000000000000003,1,4,"(0.52, 0.37)" +2865,100,100,,1,1,[1],2.8000000000000003,1,5,"(0.61, 0.365)" +2866,100,100,,1,1,[1],2.8000000000000003,1,6,"(0.63, 0.335)" +2867,100,100,,1,1,[1],2.8000000000000003,1,7,"(0.55, 0.385)" +2868,100,100,,1,1,[1],2.8000000000000003,1,8,"(0.56, 0.39)" +2869,100,100,,1,1,[1],2.8000000000000003,1,9,"(0.71, 0.345)" +2870,100,100,,1,1,[1],2.8000000000000003,2,0,"(0.65, 0.265)" +2871,100,100,,1,1,[1],2.8000000000000003,2,1,"(0.62, 0.24)" +2872,100,100,,1,1,[1],2.8000000000000003,2,2,"(0.78, 0.2)" +2873,100,100,,1,1,[1],2.8000000000000003,2,3,"(0.71, 0.225)" +2874,100,100,,1,1,[1],2.8000000000000003,2,4,"(0.65, 0.245)" +2875,100,100,,1,1,[1],2.8000000000000003,2,5,"(0.64, 0.29)" +2876,100,100,,1,1,[1],2.8000000000000003,2,6,"(0.64, 0.29)" +2877,100,100,,1,1,[1],2.8000000000000003,2,7,"(0.71, 0.315)" +2878,100,100,,1,1,[1],2.8000000000000003,2,8,"(0.61, 0.255)" +2879,100,100,,1,1,[1],2.8000000000000003,2,9,"(0.7, 0.27)" +2880,100,100,,1,1,[1],2.8000000000000003,3,0,"(0.73, 0.155)" +2881,100,100,,1,1,[1],2.8000000000000003,3,1,"(0.79, 0.115)" +2882,100,100,,1,1,[1],2.8000000000000003,3,2,"(0.74, 0.16)" +2883,100,100,,1,1,[1],2.8000000000000003,3,3,"(0.75, 0.185)" +2884,100,100,,1,1,[1],2.8000000000000003,3,4,"(0.8, 0.16)" +2885,100,100,,1,1,[1],2.8000000000000003,3,5,"(0.77, 0.155)" +2886,100,100,,1,1,[1],2.8000000000000003,3,6,"(0.78, 0.15)" +2887,100,100,,1,1,[1],2.8000000000000003,3,7,"(0.75, 0.135)" +2888,100,100,,1,1,[1],2.8000000000000003,3,8,"(0.73, 0.175)" +2889,100,100,,1,1,[1],2.8000000000000003,3,9,"(0.7, 0.17)" +2890,100,100,,1,1,[1],2.8000000000000003,4,0,"(0.8, 0.16)" +2891,100,100,,1,1,[1],2.8000000000000003,4,1,"(0.86, 0.09)" +2892,100,100,,1,1,[1],2.8000000000000003,4,2,"(0.87, 0.075)" +2893,100,100,,1,1,[1],2.8000000000000003,4,3,"(0.83, 0.085)" +2894,100,100,,1,1,[1],2.8000000000000003,4,4,"(0.8, 0.11)" +2895,100,100,,1,1,[1],2.8000000000000003,4,5,"(0.83, 0.095)" +2896,100,100,,1,1,[1],2.8000000000000003,4,6,"(0.9, 0.05)" +2897,100,100,,1,1,[1],2.8000000000000003,4,7,"(0.82, 0.09)" +2898,100,100,,1,1,[1],2.8000000000000003,4,8,"(0.87, 0.065)" +2899,100,100,,1,1,[1],2.8000000000000003,4,9,"(0.81, 0.105)" +2900,100,100,,1,1,[1],2.9000000000000004,-5,0,"(0.85, 0.915)" +2901,100,100,,1,1,[1],2.9000000000000004,-5,1,"(0.86, 0.93)" +2902,100,100,,1,1,[1],2.9000000000000004,-5,2,"(0.85, 0.905)" +2903,100,100,,1,1,[1],2.9000000000000004,-5,3,"(0.9, 0.95)" +2904,100,100,,1,1,[1],2.9000000000000004,-5,4,"(0.88, 0.93)" +2905,100,100,,1,1,[1],2.9000000000000004,-5,5,"(0.92, 0.93)" +2906,100,100,,1,1,[1],2.9000000000000004,-5,6,"(0.9, 0.93)" +2907,100,100,,1,1,[1],2.9000000000000004,-5,7,"(0.77, 0.875)" +2908,100,100,,1,1,[1],2.9000000000000004,-5,8,"(0.84, 0.92)" +2909,100,100,,1,1,[1],2.9000000000000004,-5,9,"(0.88, 0.93)" +2910,100,100,,1,1,[1],2.9000000000000004,-4,0,"(0.88, 0.91)" +2911,100,100,,1,1,[1],2.9000000000000004,-4,1,"(0.79, 0.865)" +2912,100,100,,1,1,[1],2.9000000000000004,-4,2,"(0.82, 0.89)" +2913,100,100,,1,1,[1],2.9000000000000004,-4,3,"(0.89, 0.945)" +2914,100,100,,1,1,[1],2.9000000000000004,-4,4,"(0.83, 0.885)" +2915,100,100,,1,1,[1],2.9000000000000004,-4,5,"(0.8, 0.87)" +2916,100,100,,1,1,[1],2.9000000000000004,-4,6,"(0.8, 0.88)" +2917,100,100,,1,1,[1],2.9000000000000004,-4,7,"(0.89, 0.915)" +2918,100,100,,1,1,[1],2.9000000000000004,-4,8,"(0.84, 0.91)" +2919,100,100,,1,1,[1],2.9000000000000004,-4,9,"(0.84, 0.89)" +2920,100,100,,1,1,[1],2.9000000000000004,-3,0,"(0.75, 0.815)" +2921,100,100,,1,1,[1],2.9000000000000004,-3,1,"(0.73, 0.805)" +2922,100,100,,1,1,[1],2.9000000000000004,-3,2,"(0.76, 0.82)" +2923,100,100,,1,1,[1],2.9000000000000004,-3,3,"(0.6, 0.77)" +2924,100,100,,1,1,[1],2.9000000000000004,-3,4,"(0.78, 0.86)" +2925,100,100,,1,1,[1],2.9000000000000004,-3,5,"(0.65, 0.775)" +2926,100,100,,1,1,[1],2.9000000000000004,-3,6,"(0.75, 0.855)" +2927,100,100,,1,1,[1],2.9000000000000004,-3,7,"(0.78, 0.84)" +2928,100,100,,1,1,[1],2.9000000000000004,-3,8,"(0.73, 0.805)" +2929,100,100,,1,1,[1],2.9000000000000004,-3,9,"(0.75, 0.835)" +2930,100,100,,1,1,[1],2.9000000000000004,-2,0,"(0.66, 0.73)" +2931,100,100,,1,1,[1],2.9000000000000004,-2,1,"(0.58, 0.73)" +2932,100,100,,1,1,[1],2.9000000000000004,-2,2,"(0.68, 0.75)" +2933,100,100,,1,1,[1],2.9000000000000004,-2,3,"(0.69, 0.755)" +2934,100,100,,1,1,[1],2.9000000000000004,-2,4,"(0.63, 0.735)" +2935,100,100,,1,1,[1],2.9000000000000004,-2,5,"(0.67, 0.735)" +2936,100,100,,1,1,[1],2.9000000000000004,-2,6,"(0.63, 0.695)" +2937,100,100,,1,1,[1],2.9000000000000004,-2,7,"(0.64, 0.75)" +2938,100,100,,1,1,[1],2.9000000000000004,-2,8,"(0.69, 0.745)" +2939,100,100,,1,1,[1],2.9000000000000004,-2,9,"(0.71, 0.785)" +2940,100,100,,1,1,[1],2.9000000000000004,-1,0,"(0.6, 0.64)" +2941,100,100,,1,1,[1],2.9000000000000004,-1,1,"(0.55, 0.635)" +2942,100,100,,1,1,[1],2.9000000000000004,-1,2,"(0.58, 0.64)" +2943,100,100,,1,1,[1],2.9000000000000004,-1,3,"(0.55, 0.655)" +2944,100,100,,1,1,[1],2.9000000000000004,-1,4,"(0.64, 0.66)" +2945,100,100,,1,1,[1],2.9000000000000004,-1,5,"(0.59, 0.605)" +2946,100,100,,1,1,[1],2.9000000000000004,-1,6,"(0.6, 0.59)" +2947,100,100,,1,1,[1],2.9000000000000004,-1,7,"(0.6, 0.67)" +2948,100,100,,1,1,[1],2.9000000000000004,-1,8,"(0.53, 0.595)" +2949,100,100,,1,1,[1],2.9000000000000004,-1,9,"(0.53, 0.595)" +2950,100,100,,1,1,[1],2.9000000000000004,0,0,"(0.58, 0.44)" +2951,100,100,,1,1,[1],2.9000000000000004,0,1,"(0.66, 0.5)" +2952,100,100,,1,1,[1],2.9000000000000004,0,2,"(0.61, 0.475)" +2953,100,100,,1,1,[1],2.9000000000000004,0,3,"(0.62, 0.5)" +2954,100,100,,1,1,[1],2.9000000000000004,0,4,"(0.58, 0.48)" +2955,100,100,,1,1,[1],2.9000000000000004,0,5,"(0.6, 0.49)" +2956,100,100,,1,1,[1],2.9000000000000004,0,6,"(0.5, 0.49)" +2957,100,100,,1,1,[1],2.9000000000000004,0,7,"(0.51, 0.485)" +2958,100,100,,1,1,[1],2.9000000000000004,0,8,"(0.52, 0.48)" +2959,100,100,,1,1,[1],2.9000000000000004,0,9,"(0.62, 0.56)" +2960,100,100,,1,1,[1],2.9000000000000004,1,0,"(0.62, 0.35)" +2961,100,100,,1,1,[1],2.9000000000000004,1,1,"(0.61, 0.395)" +2962,100,100,,1,1,[1],2.9000000000000004,1,2,"(0.63, 0.425)" +2963,100,100,,1,1,[1],2.9000000000000004,1,3,"(0.63, 0.415)" +2964,100,100,,1,1,[1],2.9000000000000004,1,4,"(0.64, 0.36)" +2965,100,100,,1,1,[1],2.9000000000000004,1,5,"(0.53, 0.335)" +2966,100,100,,1,1,[1],2.9000000000000004,1,6,"(0.69, 0.285)" +2967,100,100,,1,1,[1],2.9000000000000004,1,7,"(0.6, 0.43)" +2968,100,100,,1,1,[1],2.9000000000000004,1,8,"(0.67, 0.335)" +2969,100,100,,1,1,[1],2.9000000000000004,1,9,"(0.49, 0.395)" +2970,100,100,,1,1,[1],2.9000000000000004,2,0,"(0.65, 0.255)" +2971,100,100,,1,1,[1],2.9000000000000004,2,1,"(0.67, 0.235)" +2972,100,100,,1,1,[1],2.9000000000000004,2,2,"(0.65, 0.275)" +2973,100,100,,1,1,[1],2.9000000000000004,2,3,"(0.71, 0.265)" +2974,100,100,,1,1,[1],2.9000000000000004,2,4,"(0.64, 0.28)" +2975,100,100,,1,1,[1],2.9000000000000004,2,5,"(0.71, 0.265)" +2976,100,100,,1,1,[1],2.9000000000000004,2,6,"(0.66, 0.22)" +2977,100,100,,1,1,[1],2.9000000000000004,2,7,"(0.68, 0.23)" +2978,100,100,,1,1,[1],2.9000000000000004,2,8,"(0.64, 0.26)" +2979,100,100,,1,1,[1],2.9000000000000004,2,9,"(0.71, 0.255)" +2980,100,100,,1,1,[1],2.9000000000000004,3,0,"(0.78, 0.13)" +2981,100,100,,1,1,[1],2.9000000000000004,3,1,"(0.7, 0.21)" +2982,100,100,,1,1,[1],2.9000000000000004,3,2,"(0.8, 0.15)" +2983,100,100,,1,1,[1],2.9000000000000004,3,3,"(0.74, 0.21)" +2984,100,100,,1,1,[1],2.9000000000000004,3,4,"(0.7, 0.17)" +2985,100,100,,1,1,[1],2.9000000000000004,3,5,"(0.78, 0.13)" +2986,100,100,,1,1,[1],2.9000000000000004,3,6,"(0.78, 0.16)" +2987,100,100,,1,1,[1],2.9000000000000004,3,7,"(0.72, 0.19)" +2988,100,100,,1,1,[1],2.9000000000000004,3,8,"(0.71, 0.225)" +2989,100,100,,1,1,[1],2.9000000000000004,3,9,"(0.72, 0.16)" +2990,100,100,,1,1,[1],2.9000000000000004,4,0,"(0.8, 0.11)" +2991,100,100,,1,1,[1],2.9000000000000004,4,1,"(0.88, 0.1)" +2992,100,100,,1,1,[1],2.9000000000000004,4,2,"(0.84, 0.09)" +2993,100,100,,1,1,[1],2.9000000000000004,4,3,"(0.91, 0.075)" +2994,100,100,,1,1,[1],2.9000000000000004,4,4,"(0.8, 0.14)" +2995,100,100,,1,1,[1],2.9000000000000004,4,5,"(0.9, 0.08)" +2996,100,100,,1,1,[1],2.9000000000000004,4,6,"(0.84, 0.08)" +2997,100,100,,1,1,[1],2.9000000000000004,4,7,"(0.86, 0.08)" +2998,100,100,,1,1,[1],2.9000000000000004,4,8,"(0.83, 0.125)" +2999,100,100,,1,1,[1],2.9000000000000004,4,9,"(0.81, 0.125)" +3000,100,100,,1,1,[1],3.0,-5,0,"(0.91, 0.945)" +3001,100,100,,1,1,[1],3.0,-5,1,"(0.9, 0.93)" +3002,100,100,,1,1,[1],3.0,-5,2,"(0.9, 0.95)" +3003,100,100,,1,1,[1],3.0,-5,3,"(0.89, 0.935)" +3004,100,100,,1,1,[1],3.0,-5,4,"(0.9, 0.93)" +3005,100,100,,1,1,[1],3.0,-5,5,"(0.91, 0.935)" +3006,100,100,,1,1,[1],3.0,-5,6,"(0.91, 0.955)" +3007,100,100,,1,1,[1],3.0,-5,7,"(0.88, 0.94)" +3008,100,100,,1,1,[1],3.0,-5,8,"(0.87, 0.925)" +3009,100,100,,1,1,[1],3.0,-5,9,"(0.85, 0.915)" +3010,100,100,,1,1,[1],3.0,-4,0,"(0.83, 0.905)" +3011,100,100,,1,1,[1],3.0,-4,1,"(0.85, 0.915)" +3012,100,100,,1,1,[1],3.0,-4,2,"(0.8, 0.86)" +3013,100,100,,1,1,[1],3.0,-4,3,"(0.83, 0.905)" +3014,100,100,,1,1,[1],3.0,-4,4,"(0.83, 0.885)" +3015,100,100,,1,1,[1],3.0,-4,5,"(0.85, 0.905)" +3016,100,100,,1,1,[1],3.0,-4,6,"(0.75, 0.835)" +3017,100,100,,1,1,[1],3.0,-4,7,"(0.79, 0.895)" +3018,100,100,,1,1,[1],3.0,-4,8,"(0.79, 0.895)" +3019,100,100,,1,1,[1],3.0,-4,9,"(0.83, 0.885)" +3020,100,100,,1,1,[1],3.0,-3,0,"(0.7, 0.82)" +3021,100,100,,1,1,[1],3.0,-3,1,"(0.74, 0.78)" +3022,100,100,,1,1,[1],3.0,-3,2,"(0.72, 0.77)" +3023,100,100,,1,1,[1],3.0,-3,3,"(0.83, 0.855)" +3024,100,100,,1,1,[1],3.0,-3,4,"(0.71, 0.785)" +3025,100,100,,1,1,[1],3.0,-3,5,"(0.71, 0.805)" +3026,100,100,,1,1,[1],3.0,-3,6,"(0.65, 0.815)" +3027,100,100,,1,1,[1],3.0,-3,7,"(0.74, 0.83)" +3028,100,100,,1,1,[1],3.0,-3,8,"(0.73, 0.825)" +3029,100,100,,1,1,[1],3.0,-3,9,"(0.73, 0.815)" +3030,100,100,,1,1,[1],3.0,-2,0,"(0.57, 0.685)" +3031,100,100,,1,1,[1],3.0,-2,1,"(0.64, 0.73)" +3032,100,100,,1,1,[1],3.0,-2,2,"(0.73, 0.715)" +3033,100,100,,1,1,[1],3.0,-2,3,"(0.66, 0.72)" +3034,100,100,,1,1,[1],3.0,-2,4,"(0.74, 0.8)" +3035,100,100,,1,1,[1],3.0,-2,5,"(0.63, 0.675)" +3036,100,100,,1,1,[1],3.0,-2,6,"(0.77, 0.765)" +3037,100,100,,1,1,[1],3.0,-2,7,"(0.65, 0.695)" +3038,100,100,,1,1,[1],3.0,-2,8,"(0.66, 0.75)" +3039,100,100,,1,1,[1],3.0,-2,9,"(0.55, 0.725)" +3040,100,100,,1,1,[1],3.0,-1,0,"(0.6, 0.58)" +3041,100,100,,1,1,[1],3.0,-1,1,"(0.56, 0.58)" +3042,100,100,,1,1,[1],3.0,-1,2,"(0.53, 0.535)" +3043,100,100,,1,1,[1],3.0,-1,3,"(0.52, 0.6)" +3044,100,100,,1,1,[1],3.0,-1,4,"(0.6, 0.69)" +3045,100,100,,1,1,[1],3.0,-1,5,"(0.6, 0.6)" +3046,100,100,,1,1,[1],3.0,-1,6,"(0.5, 0.62)" +3047,100,100,,1,1,[1],3.0,-1,7,"(0.51, 0.655)" +3048,100,100,,1,1,[1],3.0,-1,8,"(0.63, 0.635)" +3049,100,100,,1,1,[1],3.0,-1,9,"(0.58, 0.57)" +3050,100,100,,1,1,[1],3.0,0,0,"(0.46, 0.54)" +3051,100,100,,1,1,[1],3.0,0,1,"(0.54, 0.52)" +3052,100,100,,1,1,[1],3.0,0,2,"(0.56, 0.54)" +3053,100,100,,1,1,[1],3.0,0,3,"(0.53, 0.535)" +3054,100,100,,1,1,[1],3.0,0,4,"(0.51, 0.525)" +3055,100,100,,1,1,[1],3.0,0,5,"(0.59, 0.485)" +3056,100,100,,1,1,[1],3.0,0,6,"(0.5, 0.59)" +3057,100,100,,1,1,[1],3.0,0,7,"(0.51, 0.465)" +3058,100,100,,1,1,[1],3.0,0,8,"(0.55, 0.495)" +3059,100,100,,1,1,[1],3.0,0,9,"(0.59, 0.455)" +3060,100,100,,1,1,[1],3.0,1,0,"(0.6, 0.36)" +3061,100,100,,1,1,[1],3.0,1,1,"(0.58, 0.46)" +3062,100,100,,1,1,[1],3.0,1,2,"(0.6, 0.39)" +3063,100,100,,1,1,[1],3.0,1,3,"(0.59, 0.465)" +3064,100,100,,1,1,[1],3.0,1,4,"(0.56, 0.39)" +3065,100,100,,1,1,[1],3.0,1,5,"(0.51, 0.365)" +3066,100,100,,1,1,[1],3.0,1,6,"(0.57, 0.355)" +3067,100,100,,1,1,[1],3.0,1,7,"(0.59, 0.365)" +3068,100,100,,1,1,[1],3.0,1,8,"(0.59, 0.395)" +3069,100,100,,1,1,[1],3.0,1,9,"(0.58, 0.3)" +3070,100,100,,1,1,[1],3.0,2,0,"(0.62, 0.31)" +3071,100,100,,1,1,[1],3.0,2,1,"(0.78, 0.27)" +3072,100,100,,1,1,[1],3.0,2,2,"(0.66, 0.31)" +3073,100,100,,1,1,[1],3.0,2,3,"(0.68, 0.22)" +3074,100,100,,1,1,[1],3.0,2,4,"(0.69, 0.315)" +3075,100,100,,1,1,[1],3.0,2,5,"(0.72, 0.27)" +3076,100,100,,1,1,[1],3.0,2,6,"(0.64, 0.28)" +3077,100,100,,1,1,[1],3.0,2,7,"(0.69, 0.255)" +3078,100,100,,1,1,[1],3.0,2,8,"(0.6, 0.28)" +3079,100,100,,1,1,[1],3.0,2,9,"(0.63, 0.245)" +3080,100,100,,1,1,[1],3.0,3,0,"(0.75, 0.225)" +3081,100,100,,1,1,[1],3.0,3,1,"(0.76, 0.19)" +3082,100,100,,1,1,[1],3.0,3,2,"(0.69, 0.155)" +3083,100,100,,1,1,[1],3.0,3,3,"(0.69, 0.205)" +3084,100,100,,1,1,[1],3.0,3,4,"(0.67, 0.215)" +3085,100,100,,1,1,[1],3.0,3,5,"(0.73, 0.165)" +3086,100,100,,1,1,[1],3.0,3,6,"(0.67, 0.195)" +3087,100,100,,1,1,[1],3.0,3,7,"(0.67, 0.205)" +3088,100,100,,1,1,[1],3.0,3,8,"(0.75, 0.225)" +3089,100,100,,1,1,[1],3.0,3,9,"(0.72, 0.2)" +3090,100,100,,1,1,[1],3.0,4,0,"(0.86, 0.09)" +3091,100,100,,1,1,[1],3.0,4,1,"(0.73, 0.145)" +3092,100,100,,1,1,[1],3.0,4,2,"(0.73, 0.135)" +3093,100,100,,1,1,[1],3.0,4,3,"(0.84, 0.13)" +3094,100,100,,1,1,[1],3.0,4,4,"(0.79, 0.145)" +3095,100,100,,1,1,[1],3.0,4,5,"(0.86, 0.1)" +3096,100,100,,1,1,[1],3.0,4,6,"(0.85, 0.085)" +3097,100,100,,1,1,[1],3.0,4,7,"(0.87, 0.075)" +3098,100,100,,1,1,[1],3.0,4,8,"(0.85, 0.095)" +3099,100,100,,1,1,[1],3.0,4,9,"(0.74, 0.14)" +3100,100,100,,1,1,[1],3.1,-5,0,"(0.8, 0.9)" +3101,100,100,,1,1,[1],3.1,-5,1,"(0.93, 0.955)" +3102,100,100,,1,1,[1],3.1,-5,2,"(0.91, 0.955)" +3103,100,100,,1,1,[1],3.1,-5,3,"(0.86, 0.9)" +3104,100,100,,1,1,[1],3.1,-5,4,"(0.88, 0.92)" +3105,100,100,,1,1,[1],3.1,-5,5,"(0.89, 0.935)" +3106,100,100,,1,1,[1],3.1,-5,6,"(0.91, 0.955)" +3107,100,100,,1,1,[1],3.1,-5,7,"(0.88, 0.93)" +3108,100,100,,1,1,[1],3.1,-5,8,"(0.81, 0.905)" +3109,100,100,,1,1,[1],3.1,-5,9,"(0.9, 0.95)" +3110,100,100,,1,1,[1],3.1,-4,0,"(0.81, 0.905)" +3111,100,100,,1,1,[1],3.1,-4,1,"(0.79, 0.845)" +3112,100,100,,1,1,[1],3.1,-4,2,"(0.89, 0.925)" +3113,100,100,,1,1,[1],3.1,-4,3,"(0.83, 0.885)" +3114,100,100,,1,1,[1],3.1,-4,4,"(0.83, 0.895)" +3115,100,100,,1,1,[1],3.1,-4,5,"(0.85, 0.855)" +3116,100,100,,1,1,[1],3.1,-4,6,"(0.79, 0.825)" +3117,100,100,,1,1,[1],3.1,-4,7,"(0.8, 0.89)" +3118,100,100,,1,1,[1],3.1,-4,8,"(0.82, 0.9)" +3119,100,100,,1,1,[1],3.1,-4,9,"(0.82, 0.86)" +3120,100,100,,1,1,[1],3.1,-3,0,"(0.76, 0.82)" +3121,100,100,,1,1,[1],3.1,-3,1,"(0.66, 0.8)" +3122,100,100,,1,1,[1],3.1,-3,2,"(0.63, 0.785)" +3123,100,100,,1,1,[1],3.1,-3,3,"(0.76, 0.81)" +3124,100,100,,1,1,[1],3.1,-3,4,"(0.7, 0.78)" +3125,100,100,,1,1,[1],3.1,-3,5,"(0.69, 0.825)" +3126,100,100,,1,1,[1],3.1,-3,6,"(0.72, 0.8)" +3127,100,100,,1,1,[1],3.1,-3,7,"(0.74, 0.84)" +3128,100,100,,1,1,[1],3.1,-3,8,"(0.71, 0.825)" +3129,100,100,,1,1,[1],3.1,-3,9,"(0.68, 0.81)" +3130,100,100,,1,1,[1],3.1,-2,0,"(0.66, 0.71)" +3131,100,100,,1,1,[1],3.1,-2,1,"(0.58, 0.7)" +3132,100,100,,1,1,[1],3.1,-2,2,"(0.68, 0.77)" +3133,100,100,,1,1,[1],3.1,-2,3,"(0.56, 0.72)" +3134,100,100,,1,1,[1],3.1,-2,4,"(0.51, 0.655)" +3135,100,100,,1,1,[1],3.1,-2,5,"(0.6, 0.73)" +3136,100,100,,1,1,[1],3.1,-2,6,"(0.61, 0.735)" +3137,100,100,,1,1,[1],3.1,-2,7,"(0.74, 0.76)" +3138,100,100,,1,1,[1],3.1,-2,8,"(0.66, 0.7)" +3139,100,100,,1,1,[1],3.1,-2,9,"(0.66, 0.73)" +3140,100,100,,1,1,[1],3.1,-1,0,"(0.6, 0.63)" +3141,100,100,,1,1,[1],3.1,-1,1,"(0.63, 0.605)" +3142,100,100,,1,1,[1],3.1,-1,2,"(0.64, 0.66)" +3143,100,100,,1,1,[1],3.1,-1,3,"(0.56, 0.63)" +3144,100,100,,1,1,[1],3.1,-1,4,"(0.53, 0.575)" +3145,100,100,,1,1,[1],3.1,-1,5,"(0.59, 0.635)" +3146,100,100,,1,1,[1],3.1,-1,6,"(0.48, 0.58)" +3147,100,100,,1,1,[1],3.1,-1,7,"(0.57, 0.595)" +3148,100,100,,1,1,[1],3.1,-1,8,"(0.58, 0.6)" +3149,100,100,,1,1,[1],3.1,-1,9,"(0.47, 0.605)" +3150,100,100,,1,1,[1],3.1,0,0,"(0.54, 0.49)" +3151,100,100,,1,1,[1],3.1,0,1,"(0.55, 0.445)" +3152,100,100,,1,1,[1],3.1,0,2,"(0.5, 0.5)" +3153,100,100,,1,1,[1],3.1,0,3,"(0.55, 0.455)" +3154,100,100,,1,1,[1],3.1,0,4,"(0.55, 0.535)" +3155,100,100,,1,1,[1],3.1,0,5,"(0.58, 0.52)" +3156,100,100,,1,1,[1],3.1,0,6,"(0.53, 0.485)" +3157,100,100,,1,1,[1],3.1,0,7,"(0.45, 0.505)" +3158,100,100,,1,1,[1],3.1,0,8,"(0.57, 0.495)" +3159,100,100,,1,1,[1],3.1,0,9,"(0.55, 0.475)" +3160,100,100,,1,1,[1],3.1,1,0,"(0.65, 0.355)" +3161,100,100,,1,1,[1],3.1,1,1,"(0.63, 0.395)" +3162,100,100,,1,1,[1],3.1,1,2,"(0.55, 0.395)" +3163,100,100,,1,1,[1],3.1,1,3,"(0.51, 0.405)" +3164,100,100,,1,1,[1],3.1,1,4,"(0.67, 0.425)" +3165,100,100,,1,1,[1],3.1,1,5,"(0.61, 0.325)" +3166,100,100,,1,1,[1],3.1,1,6,"(0.53, 0.385)" +3167,100,100,,1,1,[1],3.1,1,7,"(0.58, 0.33)" +3168,100,100,,1,1,[1],3.1,1,8,"(0.61, 0.405)" +3169,100,100,,1,1,[1],3.1,1,9,"(0.59, 0.335)" +3170,100,100,,1,1,[1],3.1,2,0,"(0.72, 0.2)" +3171,100,100,,1,1,[1],3.1,2,1,"(0.74, 0.22)" +3172,100,100,,1,1,[1],3.1,2,2,"(0.67, 0.245)" +3173,100,100,,1,1,[1],3.1,2,3,"(0.67, 0.295)" +3174,100,100,,1,1,[1],3.1,2,4,"(0.69, 0.315)" +3175,100,100,,1,1,[1],3.1,2,5,"(0.67, 0.245)" +3176,100,100,,1,1,[1],3.1,2,6,"(0.63, 0.325)" +3177,100,100,,1,1,[1],3.1,2,7,"(0.63, 0.315)" +3178,100,100,,1,1,[1],3.1,2,8,"(0.65, 0.245)" +3179,100,100,,1,1,[1],3.1,2,9,"(0.66, 0.27)" +3180,100,100,,1,1,[1],3.1,3,0,"(0.79, 0.185)" +3181,100,100,,1,1,[1],3.1,3,1,"(0.71, 0.195)" +3182,100,100,,1,1,[1],3.1,3,2,"(0.76, 0.16)" +3183,100,100,,1,1,[1],3.1,3,3,"(0.77, 0.195)" +3184,100,100,,1,1,[1],3.1,3,4,"(0.69, 0.235)" +3185,100,100,,1,1,[1],3.1,3,5,"(0.81, 0.135)" +3186,100,100,,1,1,[1],3.1,3,6,"(0.64, 0.24)" +3187,100,100,,1,1,[1],3.1,3,7,"(0.7, 0.23)" +3188,100,100,,1,1,[1],3.1,3,8,"(0.69, 0.215)" +3189,100,100,,1,1,[1],3.1,3,9,"(0.75, 0.185)" +3190,100,100,,1,1,[1],3.1,4,0,"(0.85, 0.085)" +3191,100,100,,1,1,[1],3.1,4,1,"(0.8, 0.14)" +3192,100,100,,1,1,[1],3.1,4,2,"(0.86, 0.1)" +3193,100,100,,1,1,[1],3.1,4,3,"(0.79, 0.125)" +3194,100,100,,1,1,[1],3.1,4,4,"(0.83, 0.115)" +3195,100,100,,1,1,[1],3.1,4,5,"(0.81, 0.105)" +3196,100,100,,1,1,[1],3.1,4,6,"(0.78, 0.12)" +3197,100,100,,1,1,[1],3.1,4,7,"(0.81, 0.095)" +3198,100,100,,1,1,[1],3.1,4,8,"(0.75, 0.145)" +3199,100,100,,1,1,[1],3.1,4,9,"(0.78, 0.12)" +3200,100,100,,1,1,[1],3.2,-5,0,"(0.81, 0.885)" +3201,100,100,,1,1,[1],3.2,-5,1,"(0.81, 0.875)" +3202,100,100,,1,1,[1],3.2,-5,2,"(0.78, 0.89)" +3203,100,100,,1,1,[1],3.2,-5,3,"(0.87, 0.915)" +3204,100,100,,1,1,[1],3.2,-5,4,"(0.85, 0.915)" +3205,100,100,,1,1,[1],3.2,-5,5,"(0.88, 0.92)" +3206,100,100,,1,1,[1],3.2,-5,6,"(0.84, 0.92)" +3207,100,100,,1,1,[1],3.2,-5,7,"(0.84, 0.91)" +3208,100,100,,1,1,[1],3.2,-5,8,"(0.94, 0.96)" +3209,100,100,,1,1,[1],3.2,-5,9,"(0.87, 0.935)" +3210,100,100,,1,1,[1],3.2,-4,0,"(0.82, 0.9)" +3211,100,100,,1,1,[1],3.2,-4,1,"(0.81, 0.895)" +3212,100,100,,1,1,[1],3.2,-4,2,"(0.77, 0.855)" +3213,100,100,,1,1,[1],3.2,-4,3,"(0.77, 0.855)" +3214,100,100,,1,1,[1],3.2,-4,4,"(0.81, 0.895)" +3215,100,100,,1,1,[1],3.2,-4,5,"(0.77, 0.865)" +3216,100,100,,1,1,[1],3.2,-4,6,"(0.7, 0.85)" +3217,100,100,,1,1,[1],3.2,-4,7,"(0.77, 0.855)" +3218,100,100,,1,1,[1],3.2,-4,8,"(0.78, 0.87)" +3219,100,100,,1,1,[1],3.2,-4,9,"(0.83, 0.895)" +3220,100,100,,1,1,[1],3.2,-3,0,"(0.7, 0.85)" +3221,100,100,,1,1,[1],3.2,-3,1,"(0.7, 0.83)" +3222,100,100,,1,1,[1],3.2,-3,2,"(0.64, 0.77)" +3223,100,100,,1,1,[1],3.2,-3,3,"(0.72, 0.76)" +3224,100,100,,1,1,[1],3.2,-3,4,"(0.77, 0.805)" +3225,100,100,,1,1,[1],3.2,-3,5,"(0.76, 0.83)" +3226,100,100,,1,1,[1],3.2,-3,6,"(0.72, 0.83)" +3227,100,100,,1,1,[1],3.2,-3,7,"(0.65, 0.785)" +3228,100,100,,1,1,[1],3.2,-3,8,"(0.67, 0.805)" +3229,100,100,,1,1,[1],3.2,-3,9,"(0.75, 0.805)" +3230,100,100,,1,1,[1],3.2,-2,0,"(0.65, 0.745)" +3231,100,100,,1,1,[1],3.2,-2,1,"(0.66, 0.72)" +3232,100,100,,1,1,[1],3.2,-2,2,"(0.58, 0.67)" +3233,100,100,,1,1,[1],3.2,-2,3,"(0.66, 0.77)" +3234,100,100,,1,1,[1],3.2,-2,4,"(0.75, 0.715)" +3235,100,100,,1,1,[1],3.2,-2,5,"(0.65, 0.735)" +3236,100,100,,1,1,[1],3.2,-2,6,"(0.65, 0.735)" +3237,100,100,,1,1,[1],3.2,-2,7,"(0.55, 0.575)" +3238,100,100,,1,1,[1],3.2,-2,8,"(0.67, 0.755)" +3239,100,100,,1,1,[1],3.2,-2,9,"(0.65, 0.675)" +3240,100,100,,1,1,[1],3.2,-1,0,"(0.66, 0.64)" +3241,100,100,,1,1,[1],3.2,-1,1,"(0.58, 0.63)" +3242,100,100,,1,1,[1],3.2,-1,2,"(0.58, 0.58)" +3243,100,100,,1,1,[1],3.2,-1,3,"(0.59, 0.625)" +3244,100,100,,1,1,[1],3.2,-1,4,"(0.6, 0.56)" +3245,100,100,,1,1,[1],3.2,-1,5,"(0.64, 0.65)" +3246,100,100,,1,1,[1],3.2,-1,6,"(0.56, 0.66)" +3247,100,100,,1,1,[1],3.2,-1,7,"(0.55, 0.595)" +3248,100,100,,1,1,[1],3.2,-1,8,"(0.57, 0.615)" +3249,100,100,,1,1,[1],3.2,-1,9,"(0.5, 0.58)" +3250,100,100,,1,1,[1],3.2,0,0,"(0.6, 0.47)" +3251,100,100,,1,1,[1],3.2,0,1,"(0.58, 0.53)" +3252,100,100,,1,1,[1],3.2,0,2,"(0.58, 0.53)" +3253,100,100,,1,1,[1],3.2,0,3,"(0.55, 0.545)" +3254,100,100,,1,1,[1],3.2,0,4,"(0.61, 0.455)" +3255,100,100,,1,1,[1],3.2,0,5,"(0.55, 0.515)" +3256,100,100,,1,1,[1],3.2,0,6,"(0.55, 0.505)" +3257,100,100,,1,1,[1],3.2,0,7,"(0.58, 0.5)" +3258,100,100,,1,1,[1],3.2,0,8,"(0.59, 0.535)" +3259,100,100,,1,1,[1],3.2,0,9,"(0.49, 0.515)" +3260,100,100,,1,1,[1],3.2,1,0,"(0.56, 0.38)" +3261,100,100,,1,1,[1],3.2,1,1,"(0.58, 0.4)" +3262,100,100,,1,1,[1],3.2,1,2,"(0.63, 0.395)" +3263,100,100,,1,1,[1],3.2,1,3,"(0.55, 0.375)" +3264,100,100,,1,1,[1],3.2,1,4,"(0.54, 0.44)" +3265,100,100,,1,1,[1],3.2,1,5,"(0.65, 0.365)" +3266,100,100,,1,1,[1],3.2,1,6,"(0.68, 0.37)" +3267,100,100,,1,1,[1],3.2,1,7,"(0.55, 0.415)" +3268,100,100,,1,1,[1],3.2,1,8,"(0.62, 0.43)" +3269,100,100,,1,1,[1],3.2,1,9,"(0.59, 0.325)" +3270,100,100,,1,1,[1],3.2,2,0,"(0.64, 0.28)" +3271,100,100,,1,1,[1],3.2,2,1,"(0.62, 0.28)" +3272,100,100,,1,1,[1],3.2,2,2,"(0.49, 0.345)" +3273,100,100,,1,1,[1],3.2,2,3,"(0.59, 0.285)" +3274,100,100,,1,1,[1],3.2,2,4,"(0.57, 0.285)" +3275,100,100,,1,1,[1],3.2,2,5,"(0.65, 0.335)" +3276,100,100,,1,1,[1],3.2,2,6,"(0.61, 0.285)" +3277,100,100,,1,1,[1],3.2,2,7,"(0.65, 0.235)" +3278,100,100,,1,1,[1],3.2,2,8,"(0.7, 0.28)" +3279,100,100,,1,1,[1],3.2,2,9,"(0.65, 0.255)" +3280,100,100,,1,1,[1],3.2,3,0,"(0.71, 0.165)" +3281,100,100,,1,1,[1],3.2,3,1,"(0.71, 0.185)" +3282,100,100,,1,1,[1],3.2,3,2,"(0.71, 0.195)" +3283,100,100,,1,1,[1],3.2,3,3,"(0.78, 0.16)" +3284,100,100,,1,1,[1],3.2,3,4,"(0.73, 0.205)" +3285,100,100,,1,1,[1],3.2,3,5,"(0.62, 0.22)" +3286,100,100,,1,1,[1],3.2,3,6,"(0.76, 0.19)" +3287,100,100,,1,1,[1],3.2,3,7,"(0.74, 0.17)" +3288,100,100,,1,1,[1],3.2,3,8,"(0.7, 0.16)" +3289,100,100,,1,1,[1],3.2,3,9,"(0.76, 0.18)" +3290,100,100,,1,1,[1],3.2,4,0,"(0.79, 0.115)" +3291,100,100,,1,1,[1],3.2,4,1,"(0.77, 0.155)" +3292,100,100,,1,1,[1],3.2,4,2,"(0.81, 0.105)" +3293,100,100,,1,1,[1],3.2,4,3,"(0.8, 0.1)" +3294,100,100,,1,1,[1],3.2,4,4,"(0.83, 0.145)" +3295,100,100,,1,1,[1],3.2,4,5,"(0.77, 0.145)" +3296,100,100,,1,1,[1],3.2,4,6,"(0.87, 0.095)" +3297,100,100,,1,1,[1],3.2,4,7,"(0.81, 0.105)" +3298,100,100,,1,1,[1],3.2,4,8,"(0.86, 0.08)" +3299,100,100,,1,1,[1],3.2,4,9,"(0.8, 0.14)" +3300,100,100,,1,1,[1],3.3000000000000003,-5,0,"(0.81, 0.865)" +3301,100,100,,1,1,[1],3.3000000000000003,-5,1,"(0.89, 0.915)" +3302,100,100,,1,1,[1],3.3000000000000003,-5,2,"(0.87, 0.935)" +3303,100,100,,1,1,[1],3.3000000000000003,-5,3,"(0.87, 0.915)" +3304,100,100,,1,1,[1],3.3000000000000003,-5,4,"(0.85, 0.915)" +3305,100,100,,1,1,[1],3.3000000000000003,-5,5,"(0.79, 0.885)" +3306,100,100,,1,1,[1],3.3000000000000003,-5,6,"(0.87, 0.935)" +3307,100,100,,1,1,[1],3.3000000000000003,-5,7,"(0.89, 0.935)" +3308,100,100,,1,1,[1],3.3000000000000003,-5,8,"(0.85, 0.925)" +3309,100,100,,1,1,[1],3.3000000000000003,-5,9,"(0.86, 0.93)" +3310,100,100,,1,1,[1],3.3000000000000003,-4,0,"(0.73, 0.855)" +3311,100,100,,1,1,[1],3.3000000000000003,-4,1,"(0.8, 0.88)" +3312,100,100,,1,1,[1],3.3000000000000003,-4,2,"(0.89, 0.915)" +3313,100,100,,1,1,[1],3.3000000000000003,-4,3,"(0.83, 0.855)" +3314,100,100,,1,1,[1],3.3000000000000003,-4,4,"(0.77, 0.865)" +3315,100,100,,1,1,[1],3.3000000000000003,-4,5,"(0.74, 0.85)" +3316,100,100,,1,1,[1],3.3000000000000003,-4,6,"(0.77, 0.875)" +3317,100,100,,1,1,[1],3.3000000000000003,-4,7,"(0.79, 0.865)" +3318,100,100,,1,1,[1],3.3000000000000003,-4,8,"(0.75, 0.865)" +3319,100,100,,1,1,[1],3.3000000000000003,-4,9,"(0.82, 0.89)" +3320,100,100,,1,1,[1],3.3000000000000003,-3,0,"(0.69, 0.815)" +3321,100,100,,1,1,[1],3.3000000000000003,-3,1,"(0.72, 0.72)" +3322,100,100,,1,1,[1],3.3000000000000003,-3,2,"(0.69, 0.795)" +3323,100,100,,1,1,[1],3.3000000000000003,-3,3,"(0.76, 0.83)" +3324,100,100,,1,1,[1],3.3000000000000003,-3,4,"(0.73, 0.815)" +3325,100,100,,1,1,[1],3.3000000000000003,-3,5,"(0.63, 0.765)" +3326,100,100,,1,1,[1],3.3000000000000003,-3,6,"(0.76, 0.84)" +3327,100,100,,1,1,[1],3.3000000000000003,-3,7,"(0.78, 0.79)" +3328,100,100,,1,1,[1],3.3000000000000003,-3,8,"(0.7, 0.8)" +3329,100,100,,1,1,[1],3.3000000000000003,-3,9,"(0.71, 0.805)" +3330,100,100,,1,1,[1],3.3000000000000003,-2,0,"(0.64, 0.72)" +3331,100,100,,1,1,[1],3.3000000000000003,-2,1,"(0.56, 0.68)" +3332,100,100,,1,1,[1],3.3000000000000003,-2,2,"(0.65, 0.705)" +3333,100,100,,1,1,[1],3.3000000000000003,-2,3,"(0.58, 0.69)" +3334,100,100,,1,1,[1],3.3000000000000003,-2,4,"(0.6, 0.68)" +3335,100,100,,1,1,[1],3.3000000000000003,-2,5,"(0.72, 0.76)" +3336,100,100,,1,1,[1],3.3000000000000003,-2,6,"(0.68, 0.7)" +3337,100,100,,1,1,[1],3.3000000000000003,-2,7,"(0.72, 0.78)" +3338,100,100,,1,1,[1],3.3000000000000003,-2,8,"(0.6, 0.65)" +3339,100,100,,1,1,[1],3.3000000000000003,-2,9,"(0.64, 0.71)" +3340,100,100,,1,1,[1],3.3000000000000003,-1,0,"(0.5, 0.59)" +3341,100,100,,1,1,[1],3.3000000000000003,-1,1,"(0.55, 0.545)" +3342,100,100,,1,1,[1],3.3000000000000003,-1,2,"(0.55, 0.645)" +3343,100,100,,1,1,[1],3.3000000000000003,-1,3,"(0.73, 0.665)" +3344,100,100,,1,1,[1],3.3000000000000003,-1,4,"(0.53, 0.565)" +3345,100,100,,1,1,[1],3.3000000000000003,-1,5,"(0.59, 0.645)" +3346,100,100,,1,1,[1],3.3000000000000003,-1,6,"(0.57, 0.635)" +3347,100,100,,1,1,[1],3.3000000000000003,-1,7,"(0.6, 0.62)" +3348,100,100,,1,1,[1],3.3000000000000003,-1,8,"(0.6, 0.65)" +3349,100,100,,1,1,[1],3.3000000000000003,-1,9,"(0.53, 0.645)" +3350,100,100,,1,1,[1],3.3000000000000003,0,0,"(0.52, 0.5)" +3351,100,100,,1,1,[1],3.3000000000000003,0,1,"(0.51, 0.475)" +3352,100,100,,1,1,[1],3.3000000000000003,0,2,"(0.53, 0.515)" +3353,100,100,,1,1,[1],3.3000000000000003,0,3,"(0.56, 0.54)" +3354,100,100,,1,1,[1],3.3000000000000003,0,4,"(0.48, 0.48)" +3355,100,100,,1,1,[1],3.3000000000000003,0,5,"(0.56, 0.5)" +3356,100,100,,1,1,[1],3.3000000000000003,0,6,"(0.4, 0.56)" +3357,100,100,,1,1,[1],3.3000000000000003,0,7,"(0.53, 0.495)" +3358,100,100,,1,1,[1],3.3000000000000003,0,8,"(0.5, 0.47)" +3359,100,100,,1,1,[1],3.3000000000000003,0,9,"(0.58, 0.52)" +3360,100,100,,1,1,[1],3.3000000000000003,1,0,"(0.56, 0.35)" +3361,100,100,,1,1,[1],3.3000000000000003,1,1,"(0.65, 0.325)" +3362,100,100,,1,1,[1],3.3000000000000003,1,2,"(0.67, 0.355)" +3363,100,100,,1,1,[1],3.3000000000000003,1,3,"(0.66, 0.41)" +3364,100,100,,1,1,[1],3.3000000000000003,1,4,"(0.54, 0.4)" +3365,100,100,,1,1,[1],3.3000000000000003,1,5,"(0.55, 0.415)" +3366,100,100,,1,1,[1],3.3000000000000003,1,6,"(0.56, 0.32)" +3367,100,100,,1,1,[1],3.3000000000000003,1,7,"(0.49, 0.405)" +3368,100,100,,1,1,[1],3.3000000000000003,1,8,"(0.66, 0.34)" +3369,100,100,,1,1,[1],3.3000000000000003,1,9,"(0.59, 0.435)" +3370,100,100,,1,1,[1],3.3000000000000003,2,0,"(0.66, 0.25)" +3371,100,100,,1,1,[1],3.3000000000000003,2,1,"(0.66, 0.27)" +3372,100,100,,1,1,[1],3.3000000000000003,2,2,"(0.63, 0.295)" +3373,100,100,,1,1,[1],3.3000000000000003,2,3,"(0.66, 0.28)" +3374,100,100,,1,1,[1],3.3000000000000003,2,4,"(0.65, 0.215)" +3375,100,100,,1,1,[1],3.3000000000000003,2,5,"(0.56, 0.35)" +3376,100,100,,1,1,[1],3.3000000000000003,2,6,"(0.62, 0.29)" +3377,100,100,,1,1,[1],3.3000000000000003,2,7,"(0.68, 0.27)" +3378,100,100,,1,1,[1],3.3000000000000003,2,8,"(0.61, 0.305)" +3379,100,100,,1,1,[1],3.3000000000000003,2,9,"(0.58, 0.27)" +3380,100,100,,1,1,[1],3.3000000000000003,3,0,"(0.7, 0.22)" +3381,100,100,,1,1,[1],3.3000000000000003,3,1,"(0.7, 0.21)" +3382,100,100,,1,1,[1],3.3000000000000003,3,2,"(0.75, 0.195)" +3383,100,100,,1,1,[1],3.3000000000000003,3,3,"(0.67, 0.205)" +3384,100,100,,1,1,[1],3.3000000000000003,3,4,"(0.68, 0.21)" +3385,100,100,,1,1,[1],3.3000000000000003,3,5,"(0.77, 0.145)" +3386,100,100,,1,1,[1],3.3000000000000003,3,6,"(0.68, 0.23)" +3387,100,100,,1,1,[1],3.3000000000000003,3,7,"(0.69, 0.245)" +3388,100,100,,1,1,[1],3.3000000000000003,3,8,"(0.75, 0.155)" +3389,100,100,,1,1,[1],3.3000000000000003,3,9,"(0.69, 0.265)" +3390,100,100,,1,1,[1],3.3000000000000003,4,0,"(0.79, 0.145)" +3391,100,100,,1,1,[1],3.3000000000000003,4,1,"(0.78, 0.15)" +3392,100,100,,1,1,[1],3.3000000000000003,4,2,"(0.77, 0.145)" +3393,100,100,,1,1,[1],3.3000000000000003,4,3,"(0.82, 0.13)" +3394,100,100,,1,1,[1],3.3000000000000003,4,4,"(0.81, 0.115)" +3395,100,100,,1,1,[1],3.3000000000000003,4,5,"(0.8, 0.11)" +3396,100,100,,1,1,[1],3.3000000000000003,4,6,"(0.77, 0.145)" +3397,100,100,,1,1,[1],3.3000000000000003,4,7,"(0.8, 0.11)" +3398,100,100,,1,1,[1],3.3000000000000003,4,8,"(0.78, 0.14)" +3399,100,100,,1,1,[1],3.3000000000000003,4,9,"(0.74, 0.15)" +3400,100,100,,1,1,[1],3.4000000000000004,-5,0,"(0.85, 0.895)" +3401,100,100,,1,1,[1],3.4000000000000004,-5,1,"(0.8, 0.89)" +3402,100,100,,1,1,[1],3.4000000000000004,-5,2,"(0.83, 0.915)" +3403,100,100,,1,1,[1],3.4000000000000004,-5,3,"(0.81, 0.905)" +3404,100,100,,1,1,[1],3.4000000000000004,-5,4,"(0.87, 0.925)" +3405,100,100,,1,1,[1],3.4000000000000004,-5,5,"(0.87, 0.915)" +3406,100,100,,1,1,[1],3.4000000000000004,-5,6,"(0.8, 0.89)" +3407,100,100,,1,1,[1],3.4000000000000004,-5,7,"(0.85, 0.905)" +3408,100,100,,1,1,[1],3.4000000000000004,-5,8,"(0.85, 0.905)" +3409,100,100,,1,1,[1],3.4000000000000004,-5,9,"(0.92, 0.91)" +3410,100,100,,1,1,[1],3.4000000000000004,-4,0,"(0.83, 0.875)" +3411,100,100,,1,1,[1],3.4000000000000004,-4,1,"(0.73, 0.845)" +3412,100,100,,1,1,[1],3.4000000000000004,-4,2,"(0.82, 0.89)" +3413,100,100,,1,1,[1],3.4000000000000004,-4,3,"(0.82, 0.88)" +3414,100,100,,1,1,[1],3.4000000000000004,-4,4,"(0.81, 0.875)" +3415,100,100,,1,1,[1],3.4000000000000004,-4,5,"(0.74, 0.85)" +3416,100,100,,1,1,[1],3.4000000000000004,-4,6,"(0.78, 0.89)" +3417,100,100,,1,1,[1],3.4000000000000004,-4,7,"(0.85, 0.855)" +3418,100,100,,1,1,[1],3.4000000000000004,-4,8,"(0.78, 0.86)" +3419,100,100,,1,1,[1],3.4000000000000004,-4,9,"(0.75, 0.845)" +3420,100,100,,1,1,[1],3.4000000000000004,-3,0,"(0.79, 0.825)" +3421,100,100,,1,1,[1],3.4000000000000004,-3,1,"(0.64, 0.74)" +3422,100,100,,1,1,[1],3.4000000000000004,-3,2,"(0.71, 0.805)" +3423,100,100,,1,1,[1],3.4000000000000004,-3,3,"(0.66, 0.79)" +3424,100,100,,1,1,[1],3.4000000000000004,-3,4,"(0.71, 0.775)" +3425,100,100,,1,1,[1],3.4000000000000004,-3,5,"(0.71, 0.805)" +3426,100,100,,1,1,[1],3.4000000000000004,-3,6,"(0.71, 0.775)" +3427,100,100,,1,1,[1],3.4000000000000004,-3,7,"(0.68, 0.75)" +3428,100,100,,1,1,[1],3.4000000000000004,-3,8,"(0.69, 0.805)" +3429,100,100,,1,1,[1],3.4000000000000004,-3,9,"(0.67, 0.765)" +3430,100,100,,1,1,[1],3.4000000000000004,-2,0,"(0.6, 0.68)" +3431,100,100,,1,1,[1],3.4000000000000004,-2,1,"(0.66, 0.71)" +3432,100,100,,1,1,[1],3.4000000000000004,-2,2,"(0.67, 0.715)" +3433,100,100,,1,1,[1],3.4000000000000004,-2,3,"(0.65, 0.735)" +3434,100,100,,1,1,[1],3.4000000000000004,-2,4,"(0.61, 0.675)" +3435,100,100,,1,1,[1],3.4000000000000004,-2,5,"(0.64, 0.72)" +3436,100,100,,1,1,[1],3.4000000000000004,-2,6,"(0.61, 0.685)" +3437,100,100,,1,1,[1],3.4000000000000004,-2,7,"(0.66, 0.72)" +3438,100,100,,1,1,[1],3.4000000000000004,-2,8,"(0.65, 0.675)" +3439,100,100,,1,1,[1],3.4000000000000004,-2,9,"(0.63, 0.685)" +3440,100,100,,1,1,[1],3.4000000000000004,-1,0,"(0.55, 0.605)" +3441,100,100,,1,1,[1],3.4000000000000004,-1,1,"(0.45, 0.595)" +3442,100,100,,1,1,[1],3.4000000000000004,-1,2,"(0.63, 0.635)" +3443,100,100,,1,1,[1],3.4000000000000004,-1,3,"(0.57, 0.525)" +3444,100,100,,1,1,[1],3.4000000000000004,-1,4,"(0.62, 0.59)" +3445,100,100,,1,1,[1],3.4000000000000004,-1,5,"(0.68, 0.64)" +3446,100,100,,1,1,[1],3.4000000000000004,-1,6,"(0.65, 0.685)" +3447,100,100,,1,1,[1],3.4000000000000004,-1,7,"(0.61, 0.585)" +3448,100,100,,1,1,[1],3.4000000000000004,-1,8,"(0.59, 0.655)" +3449,100,100,,1,1,[1],3.4000000000000004,-1,9,"(0.57, 0.625)" +3450,100,100,,1,1,[1],3.4000000000000004,0,0,"(0.6, 0.44)" +3451,100,100,,1,1,[1],3.4000000000000004,0,1,"(0.63, 0.475)" +3452,100,100,,1,1,[1],3.4000000000000004,0,2,"(0.54, 0.51)" +3453,100,100,,1,1,[1],3.4000000000000004,0,3,"(0.57, 0.515)" +3454,100,100,,1,1,[1],3.4000000000000004,0,4,"(0.54, 0.54)" +3455,100,100,,1,1,[1],3.4000000000000004,0,5,"(0.51, 0.505)" +3456,100,100,,1,1,[1],3.4000000000000004,0,6,"(0.51, 0.485)" +3457,100,100,,1,1,[1],3.4000000000000004,0,7,"(0.49, 0.515)" +3458,100,100,,1,1,[1],3.4000000000000004,0,8,"(0.53, 0.455)" +3459,100,100,,1,1,[1],3.4000000000000004,0,9,"(0.55, 0.465)" +3460,100,100,,1,1,[1],3.4000000000000004,1,0,"(0.58, 0.38)" +3461,100,100,,1,1,[1],3.4000000000000004,1,1,"(0.53, 0.395)" +3462,100,100,,1,1,[1],3.4000000000000004,1,2,"(0.55, 0.425)" +3463,100,100,,1,1,[1],3.4000000000000004,1,3,"(0.53, 0.405)" +3464,100,100,,1,1,[1],3.4000000000000004,1,4,"(0.53, 0.325)" +3465,100,100,,1,1,[1],3.4000000000000004,1,5,"(0.6, 0.37)" +3466,100,100,,1,1,[1],3.4000000000000004,1,6,"(0.53, 0.435)" +3467,100,100,,1,1,[1],3.4000000000000004,1,7,"(0.55, 0.415)" +3468,100,100,,1,1,[1],3.4000000000000004,1,8,"(0.55, 0.395)" +3469,100,100,,1,1,[1],3.4000000000000004,1,9,"(0.54, 0.46)" +3470,100,100,,1,1,[1],3.4000000000000004,2,0,"(0.55, 0.265)" +3471,100,100,,1,1,[1],3.4000000000000004,2,1,"(0.6, 0.27)" +3472,100,100,,1,1,[1],3.4000000000000004,2,2,"(0.6, 0.3)" +3473,100,100,,1,1,[1],3.4000000000000004,2,3,"(0.57, 0.305)" +3474,100,100,,1,1,[1],3.4000000000000004,2,4,"(0.64, 0.33)" +3475,100,100,,1,1,[1],3.4000000000000004,2,5,"(0.62, 0.27)" +3476,100,100,,1,1,[1],3.4000000000000004,2,6,"(0.6, 0.4)" +3477,100,100,,1,1,[1],3.4000000000000004,2,7,"(0.75, 0.225)" +3478,100,100,,1,1,[1],3.4000000000000004,2,8,"(0.63, 0.295)" +3479,100,100,,1,1,[1],3.4000000000000004,2,9,"(0.69, 0.325)" +3480,100,100,,1,1,[1],3.4000000000000004,3,0,"(0.67, 0.235)" +3481,100,100,,1,1,[1],3.4000000000000004,3,1,"(0.6, 0.29)" +3482,100,100,,1,1,[1],3.4000000000000004,3,2,"(0.71, 0.205)" +3483,100,100,,1,1,[1],3.4000000000000004,3,3,"(0.7, 0.21)" +3484,100,100,,1,1,[1],3.4000000000000004,3,4,"(0.68, 0.18)" +3485,100,100,,1,1,[1],3.4000000000000004,3,5,"(0.71, 0.265)" +3486,100,100,,1,1,[1],3.4000000000000004,3,6,"(0.73, 0.255)" +3487,100,100,,1,1,[1],3.4000000000000004,3,7,"(0.7, 0.19)" +3488,100,100,,1,1,[1],3.4000000000000004,3,8,"(0.77, 0.155)" +3489,100,100,,1,1,[1],3.4000000000000004,3,9,"(0.69, 0.215)" +3490,100,100,,1,1,[1],3.4000000000000004,4,0,"(0.83, 0.085)" +3491,100,100,,1,1,[1],3.4000000000000004,4,1,"(0.79, 0.125)" +3492,100,100,,1,1,[1],3.4000000000000004,4,2,"(0.76, 0.16)" +3493,100,100,,1,1,[1],3.4000000000000004,4,3,"(0.74, 0.15)" +3494,100,100,,1,1,[1],3.4000000000000004,4,4,"(0.82, 0.11)" +3495,100,100,,1,1,[1],3.4000000000000004,4,5,"(0.79, 0.145)" +3496,100,100,,1,1,[1],3.4000000000000004,4,6,"(0.73, 0.175)" +3497,100,100,,1,1,[1],3.4000000000000004,4,7,"(0.77, 0.165)" +3498,100,100,,1,1,[1],3.4000000000000004,4,8,"(0.69, 0.185)" +3499,100,100,,1,1,[1],3.4000000000000004,4,9,"(0.68, 0.19)" +3500,100,100,,1,1,[1],3.5,-5,0,"(0.85, 0.915)" +3501,100,100,,1,1,[1],3.5,-5,1,"(0.82, 0.91)" +3502,100,100,,1,1,[1],3.5,-5,2,"(0.87, 0.935)" +3503,100,100,,1,1,[1],3.5,-5,3,"(0.81, 0.875)" +3504,100,100,,1,1,[1],3.5,-5,4,"(0.91, 0.955)" +3505,100,100,,1,1,[1],3.5,-5,5,"(0.86, 0.93)" +3506,100,100,,1,1,[1],3.5,-5,6,"(0.87, 0.915)" +3507,100,100,,1,1,[1],3.5,-5,7,"(0.79, 0.895)" +3508,100,100,,1,1,[1],3.5,-5,8,"(0.87, 0.925)" +3509,100,100,,1,1,[1],3.5,-5,9,"(0.79, 0.895)" +3510,100,100,,1,1,[1],3.5,-4,0,"(0.79, 0.875)" +3511,100,100,,1,1,[1],3.5,-4,1,"(0.74, 0.83)" +3512,100,100,,1,1,[1],3.5,-4,2,"(0.82, 0.85)" +3513,100,100,,1,1,[1],3.5,-4,3,"(0.75, 0.845)" +3514,100,100,,1,1,[1],3.5,-4,4,"(0.8, 0.86)" +3515,100,100,,1,1,[1],3.5,-4,5,"(0.72, 0.85)" +3516,100,100,,1,1,[1],3.5,-4,6,"(0.75, 0.865)" +3517,100,100,,1,1,[1],3.5,-4,7,"(0.72, 0.85)" +3518,100,100,,1,1,[1],3.5,-4,8,"(0.74, 0.85)" +3519,100,100,,1,1,[1],3.5,-4,9,"(0.71, 0.815)" +3520,100,100,,1,1,[1],3.5,-3,0,"(0.74, 0.78)" +3521,100,100,,1,1,[1],3.5,-3,1,"(0.68, 0.78)" +3522,100,100,,1,1,[1],3.5,-3,2,"(0.67, 0.775)" +3523,100,100,,1,1,[1],3.5,-3,3,"(0.7, 0.79)" +3524,100,100,,1,1,[1],3.5,-3,4,"(0.76, 0.78)" +3525,100,100,,1,1,[1],3.5,-3,5,"(0.74, 0.82)" +3526,100,100,,1,1,[1],3.5,-3,6,"(0.68, 0.8)" +3527,100,100,,1,1,[1],3.5,-3,7,"(0.57, 0.735)" +3528,100,100,,1,1,[1],3.5,-3,8,"(0.61, 0.745)" +3529,100,100,,1,1,[1],3.5,-3,9,"(0.64, 0.73)" +3530,100,100,,1,1,[1],3.5,-2,0,"(0.55, 0.635)" +3531,100,100,,1,1,[1],3.5,-2,1,"(0.55, 0.725)" +3532,100,100,,1,1,[1],3.5,-2,2,"(0.59, 0.725)" +3533,100,100,,1,1,[1],3.5,-2,3,"(0.53, 0.715)" +3534,100,100,,1,1,[1],3.5,-2,4,"(0.52, 0.65)" +3535,100,100,,1,1,[1],3.5,-2,5,"(0.49, 0.675)" +3536,100,100,,1,1,[1],3.5,-2,6,"(0.6, 0.71)" +3537,100,100,,1,1,[1],3.5,-2,7,"(0.61, 0.685)" +3538,100,100,,1,1,[1],3.5,-2,8,"(0.66, 0.71)" +3539,100,100,,1,1,[1],3.5,-2,9,"(0.63, 0.755)" +3540,100,100,,1,1,[1],3.5,-1,0,"(0.61, 0.595)" +3541,100,100,,1,1,[1],3.5,-1,1,"(0.59, 0.595)" +3542,100,100,,1,1,[1],3.5,-1,2,"(0.62, 0.63)" +3543,100,100,,1,1,[1],3.5,-1,3,"(0.57, 0.565)" +3544,100,100,,1,1,[1],3.5,-1,4,"(0.6, 0.6)" +3545,100,100,,1,1,[1],3.5,-1,5,"(0.52, 0.62)" +3546,100,100,,1,1,[1],3.5,-1,6,"(0.59, 0.625)" +3547,100,100,,1,1,[1],3.5,-1,7,"(0.61, 0.635)" +3548,100,100,,1,1,[1],3.5,-1,8,"(0.55, 0.605)" +3549,100,100,,1,1,[1],3.5,-1,9,"(0.58, 0.62)" +3550,100,100,,1,1,[1],3.5,0,0,"(0.59, 0.515)" +3551,100,100,,1,1,[1],3.5,0,1,"(0.64, 0.44)" +3552,100,100,,1,1,[1],3.5,0,2,"(0.58, 0.47)" +3553,100,100,,1,1,[1],3.5,0,3,"(0.51, 0.545)" +3554,100,100,,1,1,[1],3.5,0,4,"(0.5, 0.46)" +3555,100,100,,1,1,[1],3.5,0,5,"(0.53, 0.485)" +3556,100,100,,1,1,[1],3.5,0,6,"(0.55, 0.535)" +3557,100,100,,1,1,[1],3.5,0,7,"(0.52, 0.49)" +3558,100,100,,1,1,[1],3.5,0,8,"(0.49, 0.455)" +3559,100,100,,1,1,[1],3.5,0,9,"(0.54, 0.5)" +3560,100,100,,1,1,[1],3.5,1,0,"(0.48, 0.44)" +3561,100,100,,1,1,[1],3.5,1,1,"(0.5, 0.43)" +3562,100,100,,1,1,[1],3.5,1,2,"(0.6, 0.31)" +3563,100,100,,1,1,[1],3.5,1,3,"(0.65, 0.375)" +3564,100,100,,1,1,[1],3.5,1,4,"(0.54, 0.4)" +3565,100,100,,1,1,[1],3.5,1,5,"(0.66, 0.35)" +3566,100,100,,1,1,[1],3.5,1,6,"(0.53, 0.385)" +3567,100,100,,1,1,[1],3.5,1,7,"(0.56, 0.36)" +3568,100,100,,1,1,[1],3.5,1,8,"(0.6, 0.38)" +3569,100,100,,1,1,[1],3.5,1,9,"(0.5, 0.38)" +3570,100,100,,1,1,[1],3.5,2,0,"(0.65, 0.265)" +3571,100,100,,1,1,[1],3.5,2,1,"(0.57, 0.275)" +3572,100,100,,1,1,[1],3.5,2,2,"(0.6, 0.28)" +3573,100,100,,1,1,[1],3.5,2,3,"(0.55, 0.335)" +3574,100,100,,1,1,[1],3.5,2,4,"(0.63, 0.275)" +3575,100,100,,1,1,[1],3.5,2,5,"(0.64, 0.28)" +3576,100,100,,1,1,[1],3.5,2,6,"(0.61, 0.305)" +3577,100,100,,1,1,[1],3.5,2,7,"(0.61, 0.335)" +3578,100,100,,1,1,[1],3.5,2,8,"(0.58, 0.32)" +3579,100,100,,1,1,[1],3.5,2,9,"(0.59, 0.305)" +3580,100,100,,1,1,[1],3.5,3,0,"(0.65, 0.225)" +3581,100,100,,1,1,[1],3.5,3,1,"(0.71, 0.215)" +3582,100,100,,1,1,[1],3.5,3,2,"(0.7, 0.23)" +3583,100,100,,1,1,[1],3.5,3,3,"(0.75, 0.195)" +3584,100,100,,1,1,[1],3.5,3,4,"(0.67, 0.235)" +3585,100,100,,1,1,[1],3.5,3,5,"(0.7, 0.2)" +3586,100,100,,1,1,[1],3.5,3,6,"(0.63, 0.235)" +3587,100,100,,1,1,[1],3.5,3,7,"(0.6, 0.26)" +3588,100,100,,1,1,[1],3.5,3,8,"(0.66, 0.21)" +3589,100,100,,1,1,[1],3.5,3,9,"(0.69, 0.205)" +3590,100,100,,1,1,[1],3.5,4,0,"(0.73, 0.145)" +3591,100,100,,1,1,[1],3.5,4,1,"(0.79, 0.145)" +3592,100,100,,1,1,[1],3.5,4,2,"(0.78, 0.15)" +3593,100,100,,1,1,[1],3.5,4,3,"(0.76, 0.13)" +3594,100,100,,1,1,[1],3.5,4,4,"(0.76, 0.15)" +3595,100,100,,1,1,[1],3.5,4,5,"(0.8, 0.12)" +3596,100,100,,1,1,[1],3.5,4,6,"(0.72, 0.19)" +3597,100,100,,1,1,[1],3.5,4,7,"(0.73, 0.145)" +3598,100,100,,1,1,[1],3.5,4,8,"(0.7, 0.17)" +3599,100,100,,1,1,[1],3.5,4,9,"(0.79, 0.135)" +3600,100,100,,1,1,[1],3.6,-5,0,"(0.79, 0.895)" +3601,100,100,,1,1,[1],3.6,-5,1,"(0.81, 0.905)" +3602,100,100,,1,1,[1],3.6,-5,2,"(0.83, 0.915)" +3603,100,100,,1,1,[1],3.6,-5,3,"(0.87, 0.915)" +3604,100,100,,1,1,[1],3.6,-5,4,"(0.83, 0.915)" +3605,100,100,,1,1,[1],3.6,-5,5,"(0.88, 0.92)" +3606,100,100,,1,1,[1],3.6,-5,6,"(0.81, 0.895)" +3607,100,100,,1,1,[1],3.6,-5,7,"(0.9, 0.94)" +3608,100,100,,1,1,[1],3.6,-5,8,"(0.77, 0.855)" +3609,100,100,,1,1,[1],3.6,-5,9,"(0.84, 0.9)" +3610,100,100,,1,1,[1],3.6,-4,0,"(0.68, 0.83)" +3611,100,100,,1,1,[1],3.6,-4,1,"(0.81, 0.875)" +3612,100,100,,1,1,[1],3.6,-4,2,"(0.72, 0.83)" +3613,100,100,,1,1,[1],3.6,-4,3,"(0.84, 0.91)" +3614,100,100,,1,1,[1],3.6,-4,4,"(0.78, 0.81)" +3615,100,100,,1,1,[1],3.6,-4,5,"(0.71, 0.815)" +3616,100,100,,1,1,[1],3.6,-4,6,"(0.83, 0.865)" +3617,100,100,,1,1,[1],3.6,-4,7,"(0.73, 0.845)" +3618,100,100,,1,1,[1],3.6,-4,8,"(0.82, 0.86)" +3619,100,100,,1,1,[1],3.6,-4,9,"(0.78, 0.85)" +3620,100,100,,1,1,[1],3.6,-3,0,"(0.65, 0.775)" +3621,100,100,,1,1,[1],3.6,-3,1,"(0.71, 0.795)" +3622,100,100,,1,1,[1],3.6,-3,2,"(0.72, 0.79)" +3623,100,100,,1,1,[1],3.6,-3,3,"(0.75, 0.805)" +3624,100,100,,1,1,[1],3.6,-3,4,"(0.67, 0.785)" +3625,100,100,,1,1,[1],3.6,-3,5,"(0.7, 0.77)" +3626,100,100,,1,1,[1],3.6,-3,6,"(0.7, 0.81)" +3627,100,100,,1,1,[1],3.6,-3,7,"(0.76, 0.82)" +3628,100,100,,1,1,[1],3.6,-3,8,"(0.62, 0.78)" +3629,100,100,,1,1,[1],3.6,-3,9,"(0.75, 0.805)" +3630,100,100,,1,1,[1],3.6,-2,0,"(0.51, 0.695)" +3631,100,100,,1,1,[1],3.6,-2,1,"(0.68, 0.7)" +3632,100,100,,1,1,[1],3.6,-2,2,"(0.6, 0.64)" +3633,100,100,,1,1,[1],3.6,-2,3,"(0.62, 0.69)" +3634,100,100,,1,1,[1],3.6,-2,4,"(0.64, 0.76)" +3635,100,100,,1,1,[1],3.6,-2,5,"(0.54, 0.68)" +3636,100,100,,1,1,[1],3.6,-2,6,"(0.6, 0.72)" +3637,100,100,,1,1,[1],3.6,-2,7,"(0.67, 0.735)" +3638,100,100,,1,1,[1],3.6,-2,8,"(0.62, 0.71)" +3639,100,100,,1,1,[1],3.6,-2,9,"(0.63, 0.725)" +3640,100,100,,1,1,[1],3.6,-1,0,"(0.57, 0.595)" +3641,100,100,,1,1,[1],3.6,-1,1,"(0.62, 0.58)" +3642,100,100,,1,1,[1],3.6,-1,2,"(0.59, 0.645)" +3643,100,100,,1,1,[1],3.6,-1,3,"(0.57, 0.595)" +3644,100,100,,1,1,[1],3.6,-1,4,"(0.58, 0.57)" +3645,100,100,,1,1,[1],3.6,-1,5,"(0.54, 0.66)" +3646,100,100,,1,1,[1],3.6,-1,6,"(0.5, 0.64)" +3647,100,100,,1,1,[1],3.6,-1,7,"(0.49, 0.595)" +3648,100,100,,1,1,[1],3.6,-1,8,"(0.5, 0.59)" +3649,100,100,,1,1,[1],3.6,-1,9,"(0.6, 0.59)" +3650,100,100,,1,1,[1],3.6,0,0,"(0.53, 0.545)" +3651,100,100,,1,1,[1],3.6,0,1,"(0.52, 0.54)" +3652,100,100,,1,1,[1],3.6,0,2,"(0.5, 0.5)" +3653,100,100,,1,1,[1],3.6,0,3,"(0.57, 0.485)" +3654,100,100,,1,1,[1],3.6,0,4,"(0.61, 0.505)" +3655,100,100,,1,1,[1],3.6,0,5,"(0.57, 0.445)" +3656,100,100,,1,1,[1],3.6,0,6,"(0.53, 0.435)" +3657,100,100,,1,1,[1],3.6,0,7,"(0.58, 0.52)" +3658,100,100,,1,1,[1],3.6,0,8,"(0.58, 0.45)" +3659,100,100,,1,1,[1],3.6,0,9,"(0.55, 0.515)" +3660,100,100,,1,1,[1],3.6,1,0,"(0.5, 0.44)" +3661,100,100,,1,1,[1],3.6,1,1,"(0.58, 0.35)" +3662,100,100,,1,1,[1],3.6,1,2,"(0.51, 0.405)" +3663,100,100,,1,1,[1],3.6,1,3,"(0.62, 0.39)" +3664,100,100,,1,1,[1],3.6,1,4,"(0.59, 0.345)" +3665,100,100,,1,1,[1],3.6,1,5,"(0.57, 0.355)" +3666,100,100,,1,1,[1],3.6,1,6,"(0.61, 0.395)" +3667,100,100,,1,1,[1],3.6,1,7,"(0.64, 0.29)" +3668,100,100,,1,1,[1],3.6,1,8,"(0.52, 0.42)" +3669,100,100,,1,1,[1],3.6,1,9,"(0.51, 0.385)" +3670,100,100,,1,1,[1],3.6,2,0,"(0.62, 0.31)" +3671,100,100,,1,1,[1],3.6,2,1,"(0.59, 0.315)" +3672,100,100,,1,1,[1],3.6,2,2,"(0.68, 0.27)" +3673,100,100,,1,1,[1],3.6,2,3,"(0.66, 0.24)" +3674,100,100,,1,1,[1],3.6,2,4,"(0.57, 0.345)" +3675,100,100,,1,1,[1],3.6,2,5,"(0.71, 0.285)" +3676,100,100,,1,1,[1],3.6,2,6,"(0.58, 0.34)" +3677,100,100,,1,1,[1],3.6,2,7,"(0.72, 0.31)" +3678,100,100,,1,1,[1],3.6,2,8,"(0.6, 0.36)" +3679,100,100,,1,1,[1],3.6,2,9,"(0.61, 0.345)" +3680,100,100,,1,1,[1],3.6,3,0,"(0.7, 0.21)" +3681,100,100,,1,1,[1],3.6,3,1,"(0.66, 0.22)" +3682,100,100,,1,1,[1],3.6,3,2,"(0.74, 0.17)" +3683,100,100,,1,1,[1],3.6,3,3,"(0.69, 0.185)" +3684,100,100,,1,1,[1],3.6,3,4,"(0.7, 0.21)" +3685,100,100,,1,1,[1],3.6,3,5,"(0.64, 0.25)" +3686,100,100,,1,1,[1],3.6,3,6,"(0.7, 0.18)" +3687,100,100,,1,1,[1],3.6,3,7,"(0.69, 0.235)" +3688,100,100,,1,1,[1],3.6,3,8,"(0.75, 0.225)" +3689,100,100,,1,1,[1],3.6,3,9,"(0.77, 0.175)" +3690,100,100,,1,1,[1],3.6,4,0,"(0.79, 0.115)" +3691,100,100,,1,1,[1],3.6,4,1,"(0.75, 0.155)" +3692,100,100,,1,1,[1],3.6,4,2,"(0.85, 0.115)" +3693,100,100,,1,1,[1],3.6,4,3,"(0.74, 0.18)" +3694,100,100,,1,1,[1],3.6,4,4,"(0.76, 0.17)" +3695,100,100,,1,1,[1],3.6,4,5,"(0.7, 0.18)" +3696,100,100,,1,1,[1],3.6,4,6,"(0.78, 0.14)" +3697,100,100,,1,1,[1],3.6,4,7,"(0.83, 0.135)" +3698,100,100,,1,1,[1],3.6,4,8,"(0.8, 0.12)" +3699,100,100,,1,1,[1],3.6,4,9,"(0.83, 0.105)" +3700,100,100,,1,1,[1],3.7,-5,0,"(0.85, 0.895)" +3701,100,100,,1,1,[1],3.7,-5,1,"(0.85, 0.915)" +3702,100,100,,1,1,[1],3.7,-5,2,"(0.84, 0.87)" +3703,100,100,,1,1,[1],3.7,-5,3,"(0.8, 0.88)" +3704,100,100,,1,1,[1],3.7,-5,4,"(0.79, 0.875)" +3705,100,100,,1,1,[1],3.7,-5,5,"(0.82, 0.89)" +3706,100,100,,1,1,[1],3.7,-5,6,"(0.78, 0.89)" +3707,100,100,,1,1,[1],3.7,-5,7,"(0.84, 0.89)" +3708,100,100,,1,1,[1],3.7,-5,8,"(0.89, 0.945)" +3709,100,100,,1,1,[1],3.7,-5,9,"(0.75, 0.865)" +3710,100,100,,1,1,[1],3.7,-4,0,"(0.69, 0.805)" +3711,100,100,,1,1,[1],3.7,-4,1,"(0.73, 0.855)" +3712,100,100,,1,1,[1],3.7,-4,2,"(0.69, 0.815)" +3713,100,100,,1,1,[1],3.7,-4,3,"(0.78, 0.84)" +3714,100,100,,1,1,[1],3.7,-4,4,"(0.8, 0.86)" +3715,100,100,,1,1,[1],3.7,-4,5,"(0.76, 0.84)" +3716,100,100,,1,1,[1],3.7,-4,6,"(0.8, 0.88)" +3717,100,100,,1,1,[1],3.7,-4,7,"(0.78, 0.87)" +3718,100,100,,1,1,[1],3.7,-4,8,"(0.79, 0.875)" +3719,100,100,,1,1,[1],3.7,-4,9,"(0.79, 0.845)" +3720,100,100,,1,1,[1],3.7,-3,0,"(0.65, 0.755)" +3721,100,100,,1,1,[1],3.7,-3,1,"(0.71, 0.785)" +3722,100,100,,1,1,[1],3.7,-3,2,"(0.74, 0.82)" +3723,100,100,,1,1,[1],3.7,-3,3,"(0.61, 0.735)" +3724,100,100,,1,1,[1],3.7,-3,4,"(0.71, 0.785)" +3725,100,100,,1,1,[1],3.7,-3,5,"(0.71, 0.815)" +3726,100,100,,1,1,[1],3.7,-3,6,"(0.66, 0.81)" +3727,100,100,,1,1,[1],3.7,-3,7,"(0.63, 0.735)" +3728,100,100,,1,1,[1],3.7,-3,8,"(0.65, 0.775)" +3729,100,100,,1,1,[1],3.7,-3,9,"(0.73, 0.745)" +3730,100,100,,1,1,[1],3.7,-2,0,"(0.61, 0.695)" +3731,100,100,,1,1,[1],3.7,-2,1,"(0.58, 0.63)" +3732,100,100,,1,1,[1],3.7,-2,2,"(0.53, 0.665)" +3733,100,100,,1,1,[1],3.7,-2,3,"(0.67, 0.715)" +3734,100,100,,1,1,[1],3.7,-2,4,"(0.49, 0.665)" +3735,100,100,,1,1,[1],3.7,-2,5,"(0.61, 0.685)" +3736,100,100,,1,1,[1],3.7,-2,6,"(0.51, 0.685)" +3737,100,100,,1,1,[1],3.7,-2,7,"(0.46, 0.66)" +3738,100,100,,1,1,[1],3.7,-2,8,"(0.67, 0.745)" +3739,100,100,,1,1,[1],3.7,-2,9,"(0.59, 0.705)" +3740,100,100,,1,1,[1],3.7,-1,0,"(0.58, 0.57)" +3741,100,100,,1,1,[1],3.7,-1,1,"(0.61, 0.675)" +3742,100,100,,1,1,[1],3.7,-1,2,"(0.44, 0.6)" +3743,100,100,,1,1,[1],3.7,-1,3,"(0.62, 0.6)" +3744,100,100,,1,1,[1],3.7,-1,4,"(0.49, 0.595)" +3745,100,100,,1,1,[1],3.7,-1,5,"(0.44, 0.59)" +3746,100,100,,1,1,[1],3.7,-1,6,"(0.55, 0.605)" +3747,100,100,,1,1,[1],3.7,-1,7,"(0.46, 0.59)" +3748,100,100,,1,1,[1],3.7,-1,8,"(0.6, 0.67)" +3749,100,100,,1,1,[1],3.7,-1,9,"(0.46, 0.55)" +3750,100,100,,1,1,[1],3.7,0,0,"(0.6, 0.45)" +3751,100,100,,1,1,[1],3.7,0,1,"(0.54, 0.51)" +3752,100,100,,1,1,[1],3.7,0,2,"(0.51, 0.415)" +3753,100,100,,1,1,[1],3.7,0,3,"(0.54, 0.52)" +3754,100,100,,1,1,[1],3.7,0,4,"(0.57, 0.525)" +3755,100,100,,1,1,[1],3.7,0,5,"(0.49, 0.565)" +3756,100,100,,1,1,[1],3.7,0,6,"(0.55, 0.455)" +3757,100,100,,1,1,[1],3.7,0,7,"(0.53, 0.485)" +3758,100,100,,1,1,[1],3.7,0,8,"(0.59, 0.395)" +3759,100,100,,1,1,[1],3.7,0,9,"(0.51, 0.465)" +3760,100,100,,1,1,[1],3.7,1,0,"(0.61, 0.375)" +3761,100,100,,1,1,[1],3.7,1,1,"(0.55, 0.415)" +3762,100,100,,1,1,[1],3.7,1,2,"(0.54, 0.39)" +3763,100,100,,1,1,[1],3.7,1,3,"(0.59, 0.455)" +3764,100,100,,1,1,[1],3.7,1,4,"(0.58, 0.42)" +3765,100,100,,1,1,[1],3.7,1,5,"(0.54, 0.39)" +3766,100,100,,1,1,[1],3.7,1,6,"(0.55, 0.415)" +3767,100,100,,1,1,[1],3.7,1,7,"(0.58, 0.44)" +3768,100,100,,1,1,[1],3.7,1,8,"(0.6, 0.41)" +3769,100,100,,1,1,[1],3.7,1,9,"(0.51, 0.405)" +3770,100,100,,1,1,[1],3.7,2,0,"(0.59, 0.285)" +3771,100,100,,1,1,[1],3.7,2,1,"(0.51, 0.315)" +3772,100,100,,1,1,[1],3.7,2,2,"(0.61, 0.315)" +3773,100,100,,1,1,[1],3.7,2,3,"(0.54, 0.29)" +3774,100,100,,1,1,[1],3.7,2,4,"(0.71, 0.245)" +3775,100,100,,1,1,[1],3.7,2,5,"(0.61, 0.245)" +3776,100,100,,1,1,[1],3.7,2,6,"(0.66, 0.35)" +3777,100,100,,1,1,[1],3.7,2,7,"(0.54, 0.34)" +3778,100,100,,1,1,[1],3.7,2,8,"(0.57, 0.315)" +3779,100,100,,1,1,[1],3.7,2,9,"(0.62, 0.32)" +3780,100,100,,1,1,[1],3.7,3,0,"(0.64, 0.28)" +3781,100,100,,1,1,[1],3.7,3,1,"(0.69, 0.255)" +3782,100,100,,1,1,[1],3.7,3,2,"(0.65, 0.255)" +3783,100,100,,1,1,[1],3.7,3,3,"(0.66, 0.26)" +3784,100,100,,1,1,[1],3.7,3,4,"(0.65, 0.225)" +3785,100,100,,1,1,[1],3.7,3,5,"(0.72, 0.19)" +3786,100,100,,1,1,[1],3.7,3,6,"(0.73, 0.215)" +3787,100,100,,1,1,[1],3.7,3,7,"(0.67, 0.215)" +3788,100,100,,1,1,[1],3.7,3,8,"(0.7, 0.21)" +3789,100,100,,1,1,[1],3.7,3,9,"(0.75, 0.235)" +3790,100,100,,1,1,[1],3.7,4,0,"(0.75, 0.145)" +3791,100,100,,1,1,[1],3.7,4,1,"(0.73, 0.185)" +3792,100,100,,1,1,[1],3.7,4,2,"(0.75, 0.145)" +3793,100,100,,1,1,[1],3.7,4,3,"(0.77, 0.145)" +3794,100,100,,1,1,[1],3.7,4,4,"(0.7, 0.18)" +3795,100,100,,1,1,[1],3.7,4,5,"(0.73, 0.145)" +3796,100,100,,1,1,[1],3.7,4,6,"(0.78, 0.16)" +3797,100,100,,1,1,[1],3.7,4,7,"(0.81, 0.115)" +3798,100,100,,1,1,[1],3.7,4,8,"(0.75, 0.155)" +3799,100,100,,1,1,[1],3.7,4,9,"(0.76, 0.14)" +3800,100,100,,1,1,[1],3.8000000000000003,-5,0,"(0.75, 0.865)" +3801,100,100,,1,1,[1],3.8000000000000003,-5,1,"(0.88, 0.93)" +3802,100,100,,1,1,[1],3.8000000000000003,-5,2,"(0.8, 0.9)" +3803,100,100,,1,1,[1],3.8000000000000003,-5,3,"(0.79, 0.885)" +3804,100,100,,1,1,[1],3.8000000000000003,-5,4,"(0.77, 0.865)" +3805,100,100,,1,1,[1],3.8000000000000003,-5,5,"(0.77, 0.875)" +3806,100,100,,1,1,[1],3.8000000000000003,-5,6,"(0.85, 0.895)" +3807,100,100,,1,1,[1],3.8000000000000003,-5,7,"(0.86, 0.92)" +3808,100,100,,1,1,[1],3.8000000000000003,-5,8,"(0.86, 0.91)" +3809,100,100,,1,1,[1],3.8000000000000003,-5,9,"(0.77, 0.875)" +3810,100,100,,1,1,[1],3.8000000000000003,-4,0,"(0.74, 0.85)" +3811,100,100,,1,1,[1],3.8000000000000003,-4,1,"(0.81, 0.885)" +3812,100,100,,1,1,[1],3.8000000000000003,-4,2,"(0.72, 0.82)" +3813,100,100,,1,1,[1],3.8000000000000003,-4,3,"(0.69, 0.795)" +3814,100,100,,1,1,[1],3.8000000000000003,-4,4,"(0.74, 0.82)" +3815,100,100,,1,1,[1],3.8000000000000003,-4,5,"(0.8, 0.86)" +3816,100,100,,1,1,[1],3.8000000000000003,-4,6,"(0.74, 0.86)" +3817,100,100,,1,1,[1],3.8000000000000003,-4,7,"(0.72, 0.84)" +3818,100,100,,1,1,[1],3.8000000000000003,-4,8,"(0.76, 0.84)" +3819,100,100,,1,1,[1],3.8000000000000003,-4,9,"(0.77, 0.835)" +3820,100,100,,1,1,[1],3.8000000000000003,-3,0,"(0.68, 0.81)" +3821,100,100,,1,1,[1],3.8000000000000003,-3,1,"(0.66, 0.79)" +3822,100,100,,1,1,[1],3.8000000000000003,-3,2,"(0.65, 0.725)" +3823,100,100,,1,1,[1],3.8000000000000003,-3,3,"(0.67, 0.765)" +3824,100,100,,1,1,[1],3.8000000000000003,-3,4,"(0.65, 0.795)" +3825,100,100,,1,1,[1],3.8000000000000003,-3,5,"(0.7, 0.8)" +3826,100,100,,1,1,[1],3.8000000000000003,-3,6,"(0.6, 0.72)" +3827,100,100,,1,1,[1],3.8000000000000003,-3,7,"(0.64, 0.75)" +3828,100,100,,1,1,[1],3.8000000000000003,-3,8,"(0.64, 0.76)" +3829,100,100,,1,1,[1],3.8000000000000003,-3,9,"(0.77, 0.805)" +3830,100,100,,1,1,[1],3.8000000000000003,-2,0,"(0.58, 0.67)" +3831,100,100,,1,1,[1],3.8000000000000003,-2,1,"(0.59, 0.665)" +3832,100,100,,1,1,[1],3.8000000000000003,-2,2,"(0.53, 0.625)" +3833,100,100,,1,1,[1],3.8000000000000003,-2,3,"(0.62, 0.66)" +3834,100,100,,1,1,[1],3.8000000000000003,-2,4,"(0.54, 0.61)" +3835,100,100,,1,1,[1],3.8000000000000003,-2,5,"(0.44, 0.63)" +3836,100,100,,1,1,[1],3.8000000000000003,-2,6,"(0.54, 0.65)" +3837,100,100,,1,1,[1],3.8000000000000003,-2,7,"(0.64, 0.74)" +3838,100,100,,1,1,[1],3.8000000000000003,-2,8,"(0.58, 0.69)" +3839,100,100,,1,1,[1],3.8000000000000003,-2,9,"(0.66, 0.7)" +3840,100,100,,1,1,[1],3.8000000000000003,-1,0,"(0.58, 0.62)" +3841,100,100,,1,1,[1],3.8000000000000003,-1,1,"(0.71, 0.595)" +3842,100,100,,1,1,[1],3.8000000000000003,-1,2,"(0.54, 0.6)" +3843,100,100,,1,1,[1],3.8000000000000003,-1,3,"(0.58, 0.62)" +3844,100,100,,1,1,[1],3.8000000000000003,-1,4,"(0.56, 0.57)" +3845,100,100,,1,1,[1],3.8000000000000003,-1,5,"(0.59, 0.575)" +3846,100,100,,1,1,[1],3.8000000000000003,-1,6,"(0.52, 0.58)" +3847,100,100,,1,1,[1],3.8000000000000003,-1,7,"(0.51, 0.615)" +3848,100,100,,1,1,[1],3.8000000000000003,-1,8,"(0.52, 0.6)" +3849,100,100,,1,1,[1],3.8000000000000003,-1,9,"(0.5, 0.59)" +3850,100,100,,1,1,[1],3.8000000000000003,0,0,"(0.54, 0.53)" +3851,100,100,,1,1,[1],3.8000000000000003,0,1,"(0.64, 0.51)" +3852,100,100,,1,1,[1],3.8000000000000003,0,2,"(0.56, 0.54)" +3853,100,100,,1,1,[1],3.8000000000000003,0,3,"(0.54, 0.52)" +3854,100,100,,1,1,[1],3.8000000000000003,0,4,"(0.51, 0.465)" +3855,100,100,,1,1,[1],3.8000000000000003,0,5,"(0.5, 0.46)" +3856,100,100,,1,1,[1],3.8000000000000003,0,6,"(0.53, 0.495)" +3857,100,100,,1,1,[1],3.8000000000000003,0,7,"(0.59, 0.445)" +3858,100,100,,1,1,[1],3.8000000000000003,0,8,"(0.56, 0.51)" +3859,100,100,,1,1,[1],3.8000000000000003,0,9,"(0.54, 0.58)" +3860,100,100,,1,1,[1],3.8000000000000003,1,0,"(0.58, 0.39)" +3861,100,100,,1,1,[1],3.8000000000000003,1,1,"(0.59, 0.435)" +3862,100,100,,1,1,[1],3.8000000000000003,1,2,"(0.51, 0.385)" +3863,100,100,,1,1,[1],3.8000000000000003,1,3,"(0.57, 0.325)" +3864,100,100,,1,1,[1],3.8000000000000003,1,4,"(0.6, 0.33)" +3865,100,100,,1,1,[1],3.8000000000000003,1,5,"(0.59, 0.445)" +3866,100,100,,1,1,[1],3.8000000000000003,1,6,"(0.52, 0.36)" +3867,100,100,,1,1,[1],3.8000000000000003,1,7,"(0.47, 0.375)" +3868,100,100,,1,1,[1],3.8000000000000003,1,8,"(0.5, 0.42)" +3869,100,100,,1,1,[1],3.8000000000000003,1,9,"(0.61, 0.355)" +3870,100,100,,1,1,[1],3.8000000000000003,2,0,"(0.61, 0.345)" +3871,100,100,,1,1,[1],3.8000000000000003,2,1,"(0.6, 0.31)" +3872,100,100,,1,1,[1],3.8000000000000003,2,2,"(0.59, 0.355)" +3873,100,100,,1,1,[1],3.8000000000000003,2,3,"(0.6, 0.34)" +3874,100,100,,1,1,[1],3.8000000000000003,2,4,"(0.64, 0.32)" +3875,100,100,,1,1,[1],3.8000000000000003,2,5,"(0.63, 0.295)" +3876,100,100,,1,1,[1],3.8000000000000003,2,6,"(0.65, 0.355)" +3877,100,100,,1,1,[1],3.8000000000000003,2,7,"(0.62, 0.36)" +3878,100,100,,1,1,[1],3.8000000000000003,2,8,"(0.65, 0.315)" +3879,100,100,,1,1,[1],3.8000000000000003,2,9,"(0.63, 0.295)" +3880,100,100,,1,1,[1],3.8000000000000003,3,0,"(0.72, 0.22)" +3881,100,100,,1,1,[1],3.8000000000000003,3,1,"(0.6, 0.23)" +3882,100,100,,1,1,[1],3.8000000000000003,3,2,"(0.61, 0.275)" +3883,100,100,,1,1,[1],3.8000000000000003,3,3,"(0.7, 0.2)" +3884,100,100,,1,1,[1],3.8000000000000003,3,4,"(0.7, 0.21)" +3885,100,100,,1,1,[1],3.8000000000000003,3,5,"(0.57, 0.265)" +3886,100,100,,1,1,[1],3.8000000000000003,3,6,"(0.67, 0.225)" +3887,100,100,,1,1,[1],3.8000000000000003,3,7,"(0.65, 0.225)" +3888,100,100,,1,1,[1],3.8000000000000003,3,8,"(0.69, 0.245)" +3889,100,100,,1,1,[1],3.8000000000000003,3,9,"(0.71, 0.225)" +3890,100,100,,1,1,[1],3.8000000000000003,4,0,"(0.74, 0.14)" +3891,100,100,,1,1,[1],3.8000000000000003,4,1,"(0.7, 0.2)" +3892,100,100,,1,1,[1],3.8000000000000003,4,2,"(0.69, 0.185)" +3893,100,100,,1,1,[1],3.8000000000000003,4,3,"(0.78, 0.12)" +3894,100,100,,1,1,[1],3.8000000000000003,4,4,"(0.71, 0.165)" +3895,100,100,,1,1,[1],3.8000000000000003,4,5,"(0.77, 0.185)" +3896,100,100,,1,1,[1],3.8000000000000003,4,6,"(0.78, 0.14)" +3897,100,100,,1,1,[1],3.8000000000000003,4,7,"(0.74, 0.19)" +3898,100,100,,1,1,[1],3.8000000000000003,4,8,"(0.73, 0.195)" +3899,100,100,,1,1,[1],3.8000000000000003,4,9,"(0.65, 0.215)" +3900,100,100,,1,1,[1],3.9000000000000004,-5,0,"(0.84, 0.9)" +3901,100,100,,1,1,[1],3.9000000000000004,-5,1,"(0.84, 0.9)" +3902,100,100,,1,1,[1],3.9000000000000004,-5,2,"(0.83, 0.905)" +3903,100,100,,1,1,[1],3.9000000000000004,-5,3,"(0.81, 0.905)" +3904,100,100,,1,1,[1],3.9000000000000004,-5,4,"(0.81, 0.885)" +3905,100,100,,1,1,[1],3.9000000000000004,-5,5,"(0.83, 0.915)" +3906,100,100,,1,1,[1],3.9000000000000004,-5,6,"(0.82, 0.88)" +3907,100,100,,1,1,[1],3.9000000000000004,-5,7,"(0.78, 0.88)" +3908,100,100,,1,1,[1],3.9000000000000004,-5,8,"(0.78, 0.87)" +3909,100,100,,1,1,[1],3.9000000000000004,-5,9,"(0.8, 0.89)" +3910,100,100,,1,1,[1],3.9000000000000004,-4,0,"(0.75, 0.845)" +3911,100,100,,1,1,[1],3.9000000000000004,-4,1,"(0.73, 0.825)" +3912,100,100,,1,1,[1],3.9000000000000004,-4,2,"(0.79, 0.835)" +3913,100,100,,1,1,[1],3.9000000000000004,-4,3,"(0.71, 0.815)" +3914,100,100,,1,1,[1],3.9000000000000004,-4,4,"(0.68, 0.81)" +3915,100,100,,1,1,[1],3.9000000000000004,-4,5,"(0.74, 0.8)" +3916,100,100,,1,1,[1],3.9000000000000004,-4,6,"(0.75, 0.815)" +3917,100,100,,1,1,[1],3.9000000000000004,-4,7,"(0.77, 0.845)" +3918,100,100,,1,1,[1],3.9000000000000004,-4,8,"(0.75, 0.855)" +3919,100,100,,1,1,[1],3.9000000000000004,-4,9,"(0.81, 0.875)" +3920,100,100,,1,1,[1],3.9000000000000004,-3,0,"(0.55, 0.715)" +3921,100,100,,1,1,[1],3.9000000000000004,-3,1,"(0.67, 0.805)" +3922,100,100,,1,1,[1],3.9000000000000004,-3,2,"(0.71, 0.825)" +3923,100,100,,1,1,[1],3.9000000000000004,-3,3,"(0.73, 0.815)" +3924,100,100,,1,1,[1],3.9000000000000004,-3,4,"(0.67, 0.765)" +3925,100,100,,1,1,[1],3.9000000000000004,-3,5,"(0.7, 0.76)" +3926,100,100,,1,1,[1],3.9000000000000004,-3,6,"(0.69, 0.745)" +3927,100,100,,1,1,[1],3.9000000000000004,-3,7,"(0.64, 0.79)" +3928,100,100,,1,1,[1],3.9000000000000004,-3,8,"(0.72, 0.76)" +3929,100,100,,1,1,[1],3.9000000000000004,-3,9,"(0.71, 0.785)" +3930,100,100,,1,1,[1],3.9000000000000004,-2,0,"(0.59, 0.725)" +3931,100,100,,1,1,[1],3.9000000000000004,-2,1,"(0.61, 0.645)" +3932,100,100,,1,1,[1],3.9000000000000004,-2,2,"(0.61, 0.655)" +3933,100,100,,1,1,[1],3.9000000000000004,-2,3,"(0.57, 0.715)" +3934,100,100,,1,1,[1],3.9000000000000004,-2,4,"(0.6, 0.73)" +3935,100,100,,1,1,[1],3.9000000000000004,-2,5,"(0.63, 0.685)" +3936,100,100,,1,1,[1],3.9000000000000004,-2,6,"(0.64, 0.72)" +3937,100,100,,1,1,[1],3.9000000000000004,-2,7,"(0.67, 0.745)" +3938,100,100,,1,1,[1],3.9000000000000004,-2,8,"(0.56, 0.68)" +3939,100,100,,1,1,[1],3.9000000000000004,-2,9,"(0.59, 0.715)" +3940,100,100,,1,1,[1],3.9000000000000004,-1,0,"(0.6, 0.56)" +3941,100,100,,1,1,[1],3.9000000000000004,-1,1,"(0.53, 0.615)" +3942,100,100,,1,1,[1],3.9000000000000004,-1,2,"(0.58, 0.62)" +3943,100,100,,1,1,[1],3.9000000000000004,-1,3,"(0.55, 0.605)" +3944,100,100,,1,1,[1],3.9000000000000004,-1,4,"(0.54, 0.59)" +3945,100,100,,1,1,[1],3.9000000000000004,-1,5,"(0.54, 0.61)" +3946,100,100,,1,1,[1],3.9000000000000004,-1,6,"(0.53, 0.585)" +3947,100,100,,1,1,[1],3.9000000000000004,-1,7,"(0.55, 0.635)" +3948,100,100,,1,1,[1],3.9000000000000004,-1,8,"(0.52, 0.58)" +3949,100,100,,1,1,[1],3.9000000000000004,-1,9,"(0.51, 0.575)" +3950,100,100,,1,1,[1],3.9000000000000004,0,0,"(0.58, 0.49)" +3951,100,100,,1,1,[1],3.9000000000000004,0,1,"(0.51, 0.565)" +3952,100,100,,1,1,[1],3.9000000000000004,0,2,"(0.56, 0.53)" +3953,100,100,,1,1,[1],3.9000000000000004,0,3,"(0.56, 0.44)" +3954,100,100,,1,1,[1],3.9000000000000004,0,4,"(0.54, 0.47)" +3955,100,100,,1,1,[1],3.9000000000000004,0,5,"(0.45, 0.495)" +3956,100,100,,1,1,[1],3.9000000000000004,0,6,"(0.51, 0.445)" +3957,100,100,,1,1,[1],3.9000000000000004,0,7,"(0.52, 0.49)" +3958,100,100,,1,1,[1],3.9000000000000004,0,8,"(0.5, 0.47)" +3959,100,100,,1,1,[1],3.9000000000000004,0,9,"(0.57, 0.485)" +3960,100,100,,1,1,[1],3.9000000000000004,1,0,"(0.55, 0.415)" +3961,100,100,,1,1,[1],3.9000000000000004,1,1,"(0.52, 0.38)" +3962,100,100,,1,1,[1],3.9000000000000004,1,2,"(0.56, 0.38)" +3963,100,100,,1,1,[1],3.9000000000000004,1,3,"(0.57, 0.435)" +3964,100,100,,1,1,[1],3.9000000000000004,1,4,"(0.52, 0.45)" +3965,100,100,,1,1,[1],3.9000000000000004,1,5,"(0.5, 0.4)" +3966,100,100,,1,1,[1],3.9000000000000004,1,6,"(0.58, 0.38)" +3967,100,100,,1,1,[1],3.9000000000000004,1,7,"(0.56, 0.36)" +3968,100,100,,1,1,[1],3.9000000000000004,1,8,"(0.53, 0.425)" +3969,100,100,,1,1,[1],3.9000000000000004,1,9,"(0.53, 0.515)" +3970,100,100,,1,1,[1],3.9000000000000004,2,0,"(0.61, 0.345)" +3971,100,100,,1,1,[1],3.9000000000000004,2,1,"(0.63, 0.255)" +3972,100,100,,1,1,[1],3.9000000000000004,2,2,"(0.64, 0.28)" +3973,100,100,,1,1,[1],3.9000000000000004,2,3,"(0.61, 0.295)" +3974,100,100,,1,1,[1],3.9000000000000004,2,4,"(0.62, 0.35)" +3975,100,100,,1,1,[1],3.9000000000000004,2,5,"(0.63, 0.305)" +3976,100,100,,1,1,[1],3.9000000000000004,2,6,"(0.63, 0.315)" +3977,100,100,,1,1,[1],3.9000000000000004,2,7,"(0.61, 0.385)" +3978,100,100,,1,1,[1],3.9000000000000004,2,8,"(0.6, 0.29)" +3979,100,100,,1,1,[1],3.9000000000000004,2,9,"(0.64, 0.27)" +3980,100,100,,1,1,[1],3.9000000000000004,3,0,"(0.61, 0.275)" +3981,100,100,,1,1,[1],3.9000000000000004,3,1,"(0.7, 0.23)" +3982,100,100,,1,1,[1],3.9000000000000004,3,2,"(0.67, 0.255)" +3983,100,100,,1,1,[1],3.9000000000000004,3,3,"(0.64, 0.2)" +3984,100,100,,1,1,[1],3.9000000000000004,3,4,"(0.68, 0.24)" +3985,100,100,,1,1,[1],3.9000000000000004,3,5,"(0.68, 0.24)" +3986,100,100,,1,1,[1],3.9000000000000004,3,6,"(0.7, 0.19)" +3987,100,100,,1,1,[1],3.9000000000000004,3,7,"(0.52, 0.28)" +3988,100,100,,1,1,[1],3.9000000000000004,3,8,"(0.62, 0.27)" +3989,100,100,,1,1,[1],3.9000000000000004,3,9,"(0.71, 0.175)" +3990,100,100,,1,1,[1],3.9000000000000004,4,0,"(0.73, 0.185)" +3991,100,100,,1,1,[1],3.9000000000000004,4,1,"(0.78, 0.15)" +3992,100,100,,1,1,[1],3.9000000000000004,4,2,"(0.72, 0.16)" +3993,100,100,,1,1,[1],3.9000000000000004,4,3,"(0.73, 0.175)" +3994,100,100,,1,1,[1],3.9000000000000004,4,4,"(0.76, 0.15)" +3995,100,100,,1,1,[1],3.9000000000000004,4,5,"(0.78, 0.15)" +3996,100,100,,1,1,[1],3.9000000000000004,4,6,"(0.75, 0.155)" +3997,100,100,,1,1,[1],3.9000000000000004,4,7,"(0.73, 0.155)" +3998,100,100,,1,1,[1],3.9000000000000004,4,8,"(0.68, 0.19)" +3999,100,100,,1,1,[1],3.9000000000000004,4,9,"(0.8, 0.13)" +4000,100,100,,1,1,[1],4.0,-5,0,"(0.8, 0.89)" +4001,100,100,,1,1,[1],4.0,-5,1,"(0.84, 0.89)" +4002,100,100,,1,1,[1],4.0,-5,2,"(0.79, 0.885)" +4003,100,100,,1,1,[1],4.0,-5,3,"(0.81, 0.895)" +4004,100,100,,1,1,[1],4.0,-5,4,"(0.8, 0.9)" +4005,100,100,,1,1,[1],4.0,-5,5,"(0.75, 0.855)" +4006,100,100,,1,1,[1],4.0,-5,6,"(0.86, 0.9)" +4007,100,100,,1,1,[1],4.0,-5,7,"(0.81, 0.885)" +4008,100,100,,1,1,[1],4.0,-5,8,"(0.73, 0.845)" +4009,100,100,,1,1,[1],4.0,-5,9,"(0.86, 0.91)" +4010,100,100,,1,1,[1],4.0,-4,0,"(0.79, 0.855)" +4011,100,100,,1,1,[1],4.0,-4,1,"(0.73, 0.815)" +4012,100,100,,1,1,[1],4.0,-4,2,"(0.67, 0.805)" +4013,100,100,,1,1,[1],4.0,-4,3,"(0.75, 0.855)" +4014,100,100,,1,1,[1],4.0,-4,4,"(0.68, 0.79)" +4015,100,100,,1,1,[1],4.0,-4,5,"(0.71, 0.835)" +4016,100,100,,1,1,[1],4.0,-4,6,"(0.65, 0.785)" +4017,100,100,,1,1,[1],4.0,-4,7,"(0.75, 0.815)" +4018,100,100,,1,1,[1],4.0,-4,8,"(0.77, 0.835)" +4019,100,100,,1,1,[1],4.0,-4,9,"(0.74, 0.82)" +4020,100,100,,1,1,[1],4.0,-3,0,"(0.64, 0.75)" +4021,100,100,,1,1,[1],4.0,-3,1,"(0.67, 0.735)" +4022,100,100,,1,1,[1],4.0,-3,2,"(0.68, 0.76)" +4023,100,100,,1,1,[1],4.0,-3,3,"(0.67, 0.805)" +4024,100,100,,1,1,[1],4.0,-3,4,"(0.64, 0.73)" +4025,100,100,,1,1,[1],4.0,-3,5,"(0.69, 0.735)" +4026,100,100,,1,1,[1],4.0,-3,6,"(0.57, 0.725)" +4027,100,100,,1,1,[1],4.0,-3,7,"(0.65, 0.665)" +4028,100,100,,1,1,[1],4.0,-3,8,"(0.74, 0.8)" +4029,100,100,,1,1,[1],4.0,-3,9,"(0.61, 0.755)" +4030,100,100,,1,1,[1],4.0,-2,0,"(0.48, 0.63)" +4031,100,100,,1,1,[1],4.0,-2,1,"(0.54, 0.63)" +4032,100,100,,1,1,[1],4.0,-2,2,"(0.55, 0.685)" +4033,100,100,,1,1,[1],4.0,-2,3,"(0.62, 0.66)" +4034,100,100,,1,1,[1],4.0,-2,4,"(0.58, 0.74)" +4035,100,100,,1,1,[1],4.0,-2,5,"(0.55, 0.645)" +4036,100,100,,1,1,[1],4.0,-2,6,"(0.62, 0.73)" +4037,100,100,,1,1,[1],4.0,-2,7,"(0.6, 0.65)" +4038,100,100,,1,1,[1],4.0,-2,8,"(0.6, 0.69)" +4039,100,100,,1,1,[1],4.0,-2,9,"(0.66, 0.7)" +4040,100,100,,1,1,[1],4.0,-1,0,"(0.64, 0.6)" +4041,100,100,,1,1,[1],4.0,-1,1,"(0.64, 0.67)" +4042,100,100,,1,1,[1],4.0,-1,2,"(0.57, 0.515)" +4043,100,100,,1,1,[1],4.0,-1,3,"(0.62, 0.61)" +4044,100,100,,1,1,[1],4.0,-1,4,"(0.48, 0.57)" +4045,100,100,,1,1,[1],4.0,-1,5,"(0.5, 0.57)" +4046,100,100,,1,1,[1],4.0,-1,6,"(0.55, 0.585)" +4047,100,100,,1,1,[1],4.0,-1,7,"(0.62, 0.66)" +4048,100,100,,1,1,[1],4.0,-1,8,"(0.48, 0.58)" +4049,100,100,,1,1,[1],4.0,-1,9,"(0.67, 0.595)" +4050,100,100,,1,1,[1],4.0,0,0,"(0.54, 0.54)" +4051,100,100,,1,1,[1],4.0,0,1,"(0.53, 0.535)" +4052,100,100,,1,1,[1],4.0,0,2,"(0.53, 0.555)" +4053,100,100,,1,1,[1],4.0,0,3,"(0.53, 0.545)" +4054,100,100,,1,1,[1],4.0,0,4,"(0.54, 0.48)" +4055,100,100,,1,1,[1],4.0,0,5,"(0.63, 0.575)" +4056,100,100,,1,1,[1],4.0,0,6,"(0.5, 0.47)" +4057,100,100,,1,1,[1],4.0,0,7,"(0.54, 0.52)" +4058,100,100,,1,1,[1],4.0,0,8,"(0.54, 0.53)" +4059,100,100,,1,1,[1],4.0,0,9,"(0.54, 0.42)" +4060,100,100,,1,1,[1],4.0,1,0,"(0.49, 0.445)" +4061,100,100,,1,1,[1],4.0,1,1,"(0.51, 0.425)" +4062,100,100,,1,1,[1],4.0,1,2,"(0.57, 0.395)" +4063,100,100,,1,1,[1],4.0,1,3,"(0.49, 0.405)" +4064,100,100,,1,1,[1],4.0,1,4,"(0.55, 0.405)" +4065,100,100,,1,1,[1],4.0,1,5,"(0.61, 0.375)" +4066,100,100,,1,1,[1],4.0,1,6,"(0.56, 0.38)" +4067,100,100,,1,1,[1],4.0,1,7,"(0.63, 0.375)" +4068,100,100,,1,1,[1],4.0,1,8,"(0.54, 0.35)" +4069,100,100,,1,1,[1],4.0,1,9,"(0.58, 0.36)" +4070,100,100,,1,1,[1],4.0,2,0,"(0.62, 0.32)" +4071,100,100,,1,1,[1],4.0,2,1,"(0.56, 0.34)" +4072,100,100,,1,1,[1],4.0,2,2,"(0.47, 0.345)" +4073,100,100,,1,1,[1],4.0,2,3,"(0.51, 0.325)" +4074,100,100,,1,1,[1],4.0,2,4,"(0.64, 0.32)" +4075,100,100,,1,1,[1],4.0,2,5,"(0.57, 0.295)" +4076,100,100,,1,1,[1],4.0,2,6,"(0.64, 0.3)" +4077,100,100,,1,1,[1],4.0,2,7,"(0.59, 0.295)" +4078,100,100,,1,1,[1],4.0,2,8,"(0.52, 0.39)" +4079,100,100,,1,1,[1],4.0,2,9,"(0.55, 0.365)" +4080,100,100,,1,1,[1],4.0,3,0,"(0.6, 0.27)" +4081,100,100,,1,1,[1],4.0,3,1,"(0.62, 0.23)" +4082,100,100,,1,1,[1],4.0,3,2,"(0.62, 0.24)" +4083,100,100,,1,1,[1],4.0,3,3,"(0.71, 0.235)" +4084,100,100,,1,1,[1],4.0,3,4,"(0.68, 0.23)" +4085,100,100,,1,1,[1],4.0,3,5,"(0.68, 0.23)" +4086,100,100,,1,1,[1],4.0,3,6,"(0.64, 0.23)" +4087,100,100,,1,1,[1],4.0,3,7,"(0.7, 0.24)" +4088,100,100,,1,1,[1],4.0,3,8,"(0.64, 0.23)" +4089,100,100,,1,1,[1],4.0,3,9,"(0.66, 0.24)" +4090,100,100,,1,1,[1],4.0,4,0,"(0.67, 0.205)" +4091,100,100,,1,1,[1],4.0,4,1,"(0.74, 0.17)" +4092,100,100,,1,1,[1],4.0,4,2,"(0.8, 0.14)" +4093,100,100,,1,1,[1],4.0,4,3,"(0.73, 0.165)" +4094,100,100,,1,1,[1],4.0,4,4,"(0.76, 0.13)" +4095,100,100,,1,1,[1],4.0,4,5,"(0.7, 0.21)" +4096,100,100,,1,1,[1],4.0,4,6,"(0.73, 0.145)" +4097,100,100,,1,1,[1],4.0,4,7,"(0.66, 0.22)" +4098,100,100,,1,1,[1],4.0,4,8,"(0.78, 0.16)" +4099,100,100,,1,1,[1],4.0,4,9,"(0.64, 0.19)" +4100,100,100,,1,1,[1],4.1000000000000005,-5,0,"(0.8, 0.88)" +4101,100,100,,1,1,[1],4.1000000000000005,-5,1,"(0.8, 0.9)" +4102,100,100,,1,1,[1],4.1000000000000005,-5,2,"(0.86, 0.9)" +4103,100,100,,1,1,[1],4.1000000000000005,-5,3,"(0.78, 0.86)" +4104,100,100,,1,1,[1],4.1000000000000005,-5,4,"(0.75, 0.845)" +4105,100,100,,1,1,[1],4.1000000000000005,-5,5,"(0.77, 0.855)" +4106,100,100,,1,1,[1],4.1000000000000005,-5,6,"(0.76, 0.87)" +4107,100,100,,1,1,[1],4.1000000000000005,-5,7,"(0.84, 0.88)" +4108,100,100,,1,1,[1],4.1000000000000005,-5,8,"(0.83, 0.915)" +4109,100,100,,1,1,[1],4.1000000000000005,-5,9,"(0.74, 0.86)" +4110,100,100,,1,1,[1],4.1000000000000005,-4,0,"(0.77, 0.825)" +4111,100,100,,1,1,[1],4.1000000000000005,-4,1,"(0.77, 0.875)" +4112,100,100,,1,1,[1],4.1000000000000005,-4,2,"(0.76, 0.85)" +4113,100,100,,1,1,[1],4.1000000000000005,-4,3,"(0.7, 0.82)" +4114,100,100,,1,1,[1],4.1000000000000005,-4,4,"(0.68, 0.77)" +4115,100,100,,1,1,[1],4.1000000000000005,-4,5,"(0.74, 0.84)" +4116,100,100,,1,1,[1],4.1000000000000005,-4,6,"(0.62, 0.79)" +4117,100,100,,1,1,[1],4.1000000000000005,-4,7,"(0.71, 0.845)" +4118,100,100,,1,1,[1],4.1000000000000005,-4,8,"(0.78, 0.85)" +4119,100,100,,1,1,[1],4.1000000000000005,-4,9,"(0.63, 0.795)" +4120,100,100,,1,1,[1],4.1000000000000005,-3,0,"(0.6, 0.74)" +4121,100,100,,1,1,[1],4.1000000000000005,-3,1,"(0.68, 0.79)" +4122,100,100,,1,1,[1],4.1000000000000005,-3,2,"(0.61, 0.745)" +4123,100,100,,1,1,[1],4.1000000000000005,-3,3,"(0.66, 0.74)" +4124,100,100,,1,1,[1],4.1000000000000005,-3,4,"(0.73, 0.765)" +4125,100,100,,1,1,[1],4.1000000000000005,-3,5,"(0.7, 0.79)" +4126,100,100,,1,1,[1],4.1000000000000005,-3,6,"(0.63, 0.735)" +4127,100,100,,1,1,[1],4.1000000000000005,-3,7,"(0.66, 0.8)" +4128,100,100,,1,1,[1],4.1000000000000005,-3,8,"(0.68, 0.78)" +4129,100,100,,1,1,[1],4.1000000000000005,-3,9,"(0.61, 0.745)" +4130,100,100,,1,1,[1],4.1000000000000005,-2,0,"(0.69, 0.705)" +4131,100,100,,1,1,[1],4.1000000000000005,-2,1,"(0.57, 0.665)" +4132,100,100,,1,1,[1],4.1000000000000005,-2,2,"(0.62, 0.71)" +4133,100,100,,1,1,[1],4.1000000000000005,-2,3,"(0.46, 0.62)" +4134,100,100,,1,1,[1],4.1000000000000005,-2,4,"(0.58, 0.69)" +4135,100,100,,1,1,[1],4.1000000000000005,-2,5,"(0.64, 0.71)" +4136,100,100,,1,1,[1],4.1000000000000005,-2,6,"(0.48, 0.67)" +4137,100,100,,1,1,[1],4.1000000000000005,-2,7,"(0.57, 0.625)" +4138,100,100,,1,1,[1],4.1000000000000005,-2,8,"(0.52, 0.63)" +4139,100,100,,1,1,[1],4.1000000000000005,-2,9,"(0.58, 0.69)" +4140,100,100,,1,1,[1],4.1000000000000005,-1,0,"(0.61, 0.635)" +4141,100,100,,1,1,[1],4.1000000000000005,-1,1,"(0.6, 0.62)" +4142,100,100,,1,1,[1],4.1000000000000005,-1,2,"(0.53, 0.635)" +4143,100,100,,1,1,[1],4.1000000000000005,-1,3,"(0.45, 0.615)" +4144,100,100,,1,1,[1],4.1000000000000005,-1,4,"(0.61, 0.665)" +4145,100,100,,1,1,[1],4.1000000000000005,-1,5,"(0.49, 0.585)" +4146,100,100,,1,1,[1],4.1000000000000005,-1,6,"(0.58, 0.61)" +4147,100,100,,1,1,[1],4.1000000000000005,-1,7,"(0.52, 0.62)" +4148,100,100,,1,1,[1],4.1000000000000005,-1,8,"(0.55, 0.615)" +4149,100,100,,1,1,[1],4.1000000000000005,-1,9,"(0.53, 0.585)" +4150,100,100,,1,1,[1],4.1000000000000005,0,0,"(0.49, 0.545)" +4151,100,100,,1,1,[1],4.1000000000000005,0,1,"(0.62, 0.47)" +4152,100,100,,1,1,[1],4.1000000000000005,0,2,"(0.52, 0.51)" +4153,100,100,,1,1,[1],4.1000000000000005,0,3,"(0.65, 0.595)" +4154,100,100,,1,1,[1],4.1000000000000005,0,4,"(0.49, 0.505)" +4155,100,100,,1,1,[1],4.1000000000000005,0,5,"(0.49, 0.525)" +4156,100,100,,1,1,[1],4.1000000000000005,0,6,"(0.49, 0.475)" +4157,100,100,,1,1,[1],4.1000000000000005,0,7,"(0.41, 0.555)" +4158,100,100,,1,1,[1],4.1000000000000005,0,8,"(0.49, 0.495)" +4159,100,100,,1,1,[1],4.1000000000000005,0,9,"(0.6, 0.55)" +4160,100,100,,1,1,[1],4.1000000000000005,1,0,"(0.54, 0.37)" +4161,100,100,,1,1,[1],4.1000000000000005,1,1,"(0.48, 0.34)" +4162,100,100,,1,1,[1],4.1000000000000005,1,2,"(0.53, 0.445)" +4163,100,100,,1,1,[1],4.1000000000000005,1,3,"(0.55, 0.395)" +4164,100,100,,1,1,[1],4.1000000000000005,1,4,"(0.59, 0.375)" +4165,100,100,,1,1,[1],4.1000000000000005,1,5,"(0.62, 0.4)" +4166,100,100,,1,1,[1],4.1000000000000005,1,6,"(0.54, 0.41)" +4167,100,100,,1,1,[1],4.1000000000000005,1,7,"(0.53, 0.455)" +4168,100,100,,1,1,[1],4.1000000000000005,1,8,"(0.56, 0.49)" +4169,100,100,,1,1,[1],4.1000000000000005,1,9,"(0.5, 0.43)" +4170,100,100,,1,1,[1],4.1000000000000005,2,0,"(0.6, 0.34)" +4171,100,100,,1,1,[1],4.1000000000000005,2,1,"(0.54, 0.3)" +4172,100,100,,1,1,[1],4.1000000000000005,2,2,"(0.54, 0.36)" +4173,100,100,,1,1,[1],4.1000000000000005,2,3,"(0.58, 0.4)" +4174,100,100,,1,1,[1],4.1000000000000005,2,4,"(0.54, 0.3)" +4175,100,100,,1,1,[1],4.1000000000000005,2,5,"(0.6, 0.29)" +4176,100,100,,1,1,[1],4.1000000000000005,2,6,"(0.53, 0.365)" +4177,100,100,,1,1,[1],4.1000000000000005,2,7,"(0.6, 0.33)" +4178,100,100,,1,1,[1],4.1000000000000005,2,8,"(0.59, 0.315)" +4179,100,100,,1,1,[1],4.1000000000000005,2,9,"(0.6, 0.32)" +4180,100,100,,1,1,[1],4.1000000000000005,3,0,"(0.67, 0.255)" +4181,100,100,,1,1,[1],4.1000000000000005,3,1,"(0.69, 0.245)" +4182,100,100,,1,1,[1],4.1000000000000005,3,2,"(0.56, 0.32)" +4183,100,100,,1,1,[1],4.1000000000000005,3,3,"(0.64, 0.22)" +4184,100,100,,1,1,[1],4.1000000000000005,3,4,"(0.63, 0.225)" +4185,100,100,,1,1,[1],4.1000000000000005,3,5,"(0.75, 0.215)" +4186,100,100,,1,1,[1],4.1000000000000005,3,6,"(0.61, 0.265)" +4187,100,100,,1,1,[1],4.1000000000000005,3,7,"(0.63, 0.215)" +4188,100,100,,1,1,[1],4.1000000000000005,3,8,"(0.72, 0.16)" +4189,100,100,,1,1,[1],4.1000000000000005,3,9,"(0.66, 0.24)" +4190,100,100,,1,1,[1],4.1000000000000005,4,0,"(0.74, 0.19)" +4191,100,100,,1,1,[1],4.1000000000000005,4,1,"(0.74, 0.19)" +4192,100,100,,1,1,[1],4.1000000000000005,4,2,"(0.67, 0.205)" +4193,100,100,,1,1,[1],4.1000000000000005,4,3,"(0.73, 0.205)" +4194,100,100,,1,1,[1],4.1000000000000005,4,4,"(0.73, 0.205)" +4195,100,100,,1,1,[1],4.1000000000000005,4,5,"(0.71, 0.175)" +4196,100,100,,1,1,[1],4.1000000000000005,4,6,"(0.7, 0.18)" +4197,100,100,,1,1,[1],4.1000000000000005,4,7,"(0.78, 0.18)" +4198,100,100,,1,1,[1],4.1000000000000005,4,8,"(0.68, 0.21)" +4199,100,100,,1,1,[1],4.1000000000000005,4,9,"(0.7, 0.17)" +4200,100,100,,1,1,[1],4.2,-5,0,"(0.8, 0.89)" +4201,100,100,,1,1,[1],4.2,-5,1,"(0.82, 0.89)" +4202,100,100,,1,1,[1],4.2,-5,2,"(0.87, 0.895)" +4203,100,100,,1,1,[1],4.2,-5,3,"(0.85, 0.905)" +4204,100,100,,1,1,[1],4.2,-5,4,"(0.8, 0.89)" +4205,100,100,,1,1,[1],4.2,-5,5,"(0.73, 0.865)" +4206,100,100,,1,1,[1],4.2,-5,6,"(0.78, 0.89)" +4207,100,100,,1,1,[1],4.2,-5,7,"(0.82, 0.9)" +4208,100,100,,1,1,[1],4.2,-5,8,"(0.74, 0.86)" +4209,100,100,,1,1,[1],4.2,-5,9,"(0.81, 0.875)" +4210,100,100,,1,1,[1],4.2,-4,0,"(0.76, 0.85)" +4211,100,100,,1,1,[1],4.2,-4,1,"(0.64, 0.77)" +4212,100,100,,1,1,[1],4.2,-4,2,"(0.83, 0.895)" +4213,100,100,,1,1,[1],4.2,-4,3,"(0.69, 0.815)" +4214,100,100,,1,1,[1],4.2,-4,4,"(0.67, 0.825)" +4215,100,100,,1,1,[1],4.2,-4,5,"(0.72, 0.83)" +4216,100,100,,1,1,[1],4.2,-4,6,"(0.79, 0.865)" +4217,100,100,,1,1,[1],4.2,-4,7,"(0.75, 0.815)" +4218,100,100,,1,1,[1],4.2,-4,8,"(0.74, 0.82)" +4219,100,100,,1,1,[1],4.2,-4,9,"(0.76, 0.84)" +4220,100,100,,1,1,[1],4.2,-3,0,"(0.68, 0.76)" +4221,100,100,,1,1,[1],4.2,-3,1,"(0.56, 0.7)" +4222,100,100,,1,1,[1],4.2,-3,2,"(0.59, 0.715)" +4223,100,100,,1,1,[1],4.2,-3,3,"(0.62, 0.77)" +4224,100,100,,1,1,[1],4.2,-3,4,"(0.67, 0.765)" +4225,100,100,,1,1,[1],4.2,-3,5,"(0.6, 0.73)" +4226,100,100,,1,1,[1],4.2,-3,6,"(0.67, 0.795)" +4227,100,100,,1,1,[1],4.2,-3,7,"(0.59, 0.655)" +4228,100,100,,1,1,[1],4.2,-3,8,"(0.74, 0.8)" +4229,100,100,,1,1,[1],4.2,-3,9,"(0.66, 0.78)" +4230,100,100,,1,1,[1],4.2,-2,0,"(0.56, 0.65)" +4231,100,100,,1,1,[1],4.2,-2,1,"(0.59, 0.655)" +4232,100,100,,1,1,[1],4.2,-2,2,"(0.58, 0.62)" +4233,100,100,,1,1,[1],4.2,-2,3,"(0.56, 0.62)" +4234,100,100,,1,1,[1],4.2,-2,4,"(0.68, 0.73)" +4235,100,100,,1,1,[1],4.2,-2,5,"(0.65, 0.675)" +4236,100,100,,1,1,[1],4.2,-2,6,"(0.61, 0.685)" +4237,100,100,,1,1,[1],4.2,-2,7,"(0.52, 0.62)" +4238,100,100,,1,1,[1],4.2,-2,8,"(0.57, 0.625)" +4239,100,100,,1,1,[1],4.2,-2,9,"(0.63, 0.715)" +4240,100,100,,1,1,[1],4.2,-1,0,"(0.58, 0.57)" +4241,100,100,,1,1,[1],4.2,-1,1,"(0.55, 0.515)" +4242,100,100,,1,1,[1],4.2,-1,2,"(0.64, 0.56)" +4243,100,100,,1,1,[1],4.2,-1,3,"(0.46, 0.57)" +4244,100,100,,1,1,[1],4.2,-1,4,"(0.64, 0.56)" +4245,100,100,,1,1,[1],4.2,-1,5,"(0.52, 0.65)" +4246,100,100,,1,1,[1],4.2,-1,6,"(0.6, 0.64)" +4247,100,100,,1,1,[1],4.2,-1,7,"(0.55, 0.585)" +4248,100,100,,1,1,[1],4.2,-1,8,"(0.55, 0.565)" +4249,100,100,,1,1,[1],4.2,-1,9,"(0.6, 0.6)" +4250,100,100,,1,1,[1],4.2,0,0,"(0.59, 0.475)" +4251,100,100,,1,1,[1],4.2,0,1,"(0.53, 0.485)" +4252,100,100,,1,1,[1],4.2,0,2,"(0.55, 0.535)" +4253,100,100,,1,1,[1],4.2,0,3,"(0.51, 0.505)" +4254,100,100,,1,1,[1],4.2,0,4,"(0.53, 0.485)" +4255,100,100,,1,1,[1],4.2,0,5,"(0.6, 0.5)" +4256,100,100,,1,1,[1],4.2,0,6,"(0.58, 0.55)" +4257,100,100,,1,1,[1],4.2,0,7,"(0.49, 0.515)" +4258,100,100,,1,1,[1],4.2,0,8,"(0.53, 0.535)" +4259,100,100,,1,1,[1],4.2,0,9,"(0.53, 0.455)" +4260,100,100,,1,1,[1],4.2,1,0,"(0.55, 0.355)" +4261,100,100,,1,1,[1],4.2,1,1,"(0.58, 0.43)" +4262,100,100,,1,1,[1],4.2,1,2,"(0.56, 0.43)" +4263,100,100,,1,1,[1],4.2,1,3,"(0.64, 0.41)" +4264,100,100,,1,1,[1],4.2,1,4,"(0.6, 0.45)" +4265,100,100,,1,1,[1],4.2,1,5,"(0.54, 0.47)" +4266,100,100,,1,1,[1],4.2,1,6,"(0.57, 0.395)" +4267,100,100,,1,1,[1],4.2,1,7,"(0.63, 0.475)" +4268,100,100,,1,1,[1],4.2,1,8,"(0.57, 0.335)" +4269,100,100,,1,1,[1],4.2,1,9,"(0.53, 0.435)" +4270,100,100,,1,1,[1],4.2,2,0,"(0.55, 0.355)" +4271,100,100,,1,1,[1],4.2,2,1,"(0.57, 0.325)" +4272,100,100,,1,1,[1],4.2,2,2,"(0.68, 0.31)" +4273,100,100,,1,1,[1],4.2,2,3,"(0.61, 0.325)" +4274,100,100,,1,1,[1],4.2,2,4,"(0.69, 0.315)" +4275,100,100,,1,1,[1],4.2,2,5,"(0.67, 0.345)" +4276,100,100,,1,1,[1],4.2,2,6,"(0.56, 0.37)" +4277,100,100,,1,1,[1],4.2,2,7,"(0.64, 0.26)" +4278,100,100,,1,1,[1],4.2,2,8,"(0.56, 0.38)" +4279,100,100,,1,1,[1],4.2,2,9,"(0.52, 0.37)" +4280,100,100,,1,1,[1],4.2,3,0,"(0.66, 0.28)" +4281,100,100,,1,1,[1],4.2,3,1,"(0.68, 0.24)" +4282,100,100,,1,1,[1],4.2,3,2,"(0.67, 0.285)" +4283,100,100,,1,1,[1],4.2,3,3,"(0.63, 0.205)" +4284,100,100,,1,1,[1],4.2,3,4,"(0.61, 0.265)" +4285,100,100,,1,1,[1],4.2,3,5,"(0.67, 0.205)" +4286,100,100,,1,1,[1],4.2,3,6,"(0.71, 0.245)" +4287,100,100,,1,1,[1],4.2,3,7,"(0.63, 0.285)" +4288,100,100,,1,1,[1],4.2,3,8,"(0.69, 0.255)" +4289,100,100,,1,1,[1],4.2,3,9,"(0.74, 0.21)" +4290,100,100,,1,1,[1],4.2,4,0,"(0.65, 0.205)" +4291,100,100,,1,1,[1],4.2,4,1,"(0.65, 0.205)" +4292,100,100,,1,1,[1],4.2,4,2,"(0.63, 0.225)" +4293,100,100,,1,1,[1],4.2,4,3,"(0.77, 0.145)" +4294,100,100,,1,1,[1],4.2,4,4,"(0.75, 0.165)" +4295,100,100,,1,1,[1],4.2,4,5,"(0.71, 0.245)" +4296,100,100,,1,1,[1],4.2,4,6,"(0.78, 0.16)" +4297,100,100,,1,1,[1],4.2,4,7,"(0.76, 0.14)" +4298,100,100,,1,1,[1],4.2,4,8,"(0.75, 0.185)" +4299,100,100,,1,1,[1],4.2,4,9,"(0.69, 0.215)" +4300,100,100,,1,1,[1],4.3,-5,0,"(0.78, 0.87)" +4301,100,100,,1,1,[1],4.3,-5,1,"(0.74, 0.84)" +4302,100,100,,1,1,[1],4.3,-5,2,"(0.76, 0.88)" +4303,100,100,,1,1,[1],4.3,-5,3,"(0.74, 0.84)" +4304,100,100,,1,1,[1],4.3,-5,4,"(0.82, 0.87)" +4305,100,100,,1,1,[1],4.3,-5,5,"(0.72, 0.84)" +4306,100,100,,1,1,[1],4.3,-5,6,"(0.72, 0.83)" +4307,100,100,,1,1,[1],4.3,-5,7,"(0.77, 0.865)" +4308,100,100,,1,1,[1],4.3,-5,8,"(0.84, 0.9)" +4309,100,100,,1,1,[1],4.3,-5,9,"(0.74, 0.85)" +4310,100,100,,1,1,[1],4.3,-4,0,"(0.66, 0.78)" +4311,100,100,,1,1,[1],4.3,-4,1,"(0.71, 0.815)" +4312,100,100,,1,1,[1],4.3,-4,2,"(0.8, 0.87)" +4313,100,100,,1,1,[1],4.3,-4,3,"(0.69, 0.795)" +4314,100,100,,1,1,[1],4.3,-4,4,"(0.71, 0.815)" +4315,100,100,,1,1,[1],4.3,-4,5,"(0.65, 0.805)" +4316,100,100,,1,1,[1],4.3,-4,6,"(0.77, 0.845)" +4317,100,100,,1,1,[1],4.3,-4,7,"(0.72, 0.83)" +4318,100,100,,1,1,[1],4.3,-4,8,"(0.68, 0.82)" +4319,100,100,,1,1,[1],4.3,-4,9,"(0.62, 0.77)" +4320,100,100,,1,1,[1],4.3,-3,0,"(0.74, 0.82)" +4321,100,100,,1,1,[1],4.3,-3,1,"(0.59, 0.725)" +4322,100,100,,1,1,[1],4.3,-3,2,"(0.63, 0.725)" +4323,100,100,,1,1,[1],4.3,-3,3,"(0.65, 0.745)" +4324,100,100,,1,1,[1],4.3,-3,4,"(0.63, 0.745)" +4325,100,100,,1,1,[1],4.3,-3,5,"(0.61, 0.755)" +4326,100,100,,1,1,[1],4.3,-3,6,"(0.63, 0.795)" +4327,100,100,,1,1,[1],4.3,-3,7,"(0.64, 0.72)" +4328,100,100,,1,1,[1],4.3,-3,8,"(0.63, 0.735)" +4329,100,100,,1,1,[1],4.3,-3,9,"(0.72, 0.75)" +4330,100,100,,1,1,[1],4.3,-2,0,"(0.66, 0.69)" +4331,100,100,,1,1,[1],4.3,-2,1,"(0.61, 0.635)" +4332,100,100,,1,1,[1],4.3,-2,2,"(0.51, 0.665)" +4333,100,100,,1,1,[1],4.3,-2,3,"(0.59, 0.715)" +4334,100,100,,1,1,[1],4.3,-2,4,"(0.66, 0.7)" +4335,100,100,,1,1,[1],4.3,-2,5,"(0.58, 0.68)" +4336,100,100,,1,1,[1],4.3,-2,6,"(0.6, 0.67)" +4337,100,100,,1,1,[1],4.3,-2,7,"(0.6, 0.68)" +4338,100,100,,1,1,[1],4.3,-2,8,"(0.6, 0.63)" +4339,100,100,,1,1,[1],4.3,-2,9,"(0.55, 0.665)" +4340,100,100,,1,1,[1],4.3,-1,0,"(0.53, 0.605)" +4341,100,100,,1,1,[1],4.3,-1,1,"(0.58, 0.6)" +4342,100,100,,1,1,[1],4.3,-1,2,"(0.48, 0.57)" +4343,100,100,,1,1,[1],4.3,-1,3,"(0.62, 0.58)" +4344,100,100,,1,1,[1],4.3,-1,4,"(0.56, 0.58)" +4345,100,100,,1,1,[1],4.3,-1,5,"(0.51, 0.635)" +4346,100,100,,1,1,[1],4.3,-1,6,"(0.59, 0.595)" +4347,100,100,,1,1,[1],4.3,-1,7,"(0.62, 0.51)" +4348,100,100,,1,1,[1],4.3,-1,8,"(0.53, 0.565)" +4349,100,100,,1,1,[1],4.3,-1,9,"(0.63, 0.635)" +4350,100,100,,1,1,[1],4.3,0,0,"(0.56, 0.52)" +4351,100,100,,1,1,[1],4.3,0,1,"(0.57, 0.465)" +4352,100,100,,1,1,[1],4.3,0,2,"(0.56, 0.53)" +4353,100,100,,1,1,[1],4.3,0,3,"(0.46, 0.5)" +4354,100,100,,1,1,[1],4.3,0,4,"(0.48, 0.55)" +4355,100,100,,1,1,[1],4.3,0,5,"(0.53, 0.535)" +4356,100,100,,1,1,[1],4.3,0,6,"(0.57, 0.485)" +4357,100,100,,1,1,[1],4.3,0,7,"(0.58, 0.55)" +4358,100,100,,1,1,[1],4.3,0,8,"(0.57, 0.465)" +4359,100,100,,1,1,[1],4.3,0,9,"(0.54, 0.54)" +4360,100,100,,1,1,[1],4.3,1,0,"(0.51, 0.405)" +4361,100,100,,1,1,[1],4.3,1,1,"(0.52, 0.46)" +4362,100,100,,1,1,[1],4.3,1,2,"(0.55, 0.365)" +4363,100,100,,1,1,[1],4.3,1,3,"(0.54, 0.42)" +4364,100,100,,1,1,[1],4.3,1,4,"(0.45, 0.415)" +4365,100,100,,1,1,[1],4.3,1,5,"(0.58, 0.44)" +4366,100,100,,1,1,[1],4.3,1,6,"(0.57, 0.345)" +4367,100,100,,1,1,[1],4.3,1,7,"(0.58, 0.46)" +4368,100,100,,1,1,[1],4.3,1,8,"(0.59, 0.445)" +4369,100,100,,1,1,[1],4.3,1,9,"(0.52, 0.44)" +4370,100,100,,1,1,[1],4.3,2,0,"(0.62, 0.33)" +4371,100,100,,1,1,[1],4.3,2,1,"(0.61, 0.295)" +4372,100,100,,1,1,[1],4.3,2,2,"(0.51, 0.325)" +4373,100,100,,1,1,[1],4.3,2,3,"(0.59, 0.335)" +4374,100,100,,1,1,[1],4.3,2,4,"(0.53, 0.345)" +4375,100,100,,1,1,[1],4.3,2,5,"(0.65, 0.325)" +4376,100,100,,1,1,[1],4.3,2,6,"(0.55, 0.295)" +4377,100,100,,1,1,[1],4.3,2,7,"(0.61, 0.295)" +4378,100,100,,1,1,[1],4.3,2,8,"(0.58, 0.34)" +4379,100,100,,1,1,[1],4.3,2,9,"(0.59, 0.295)" +4380,100,100,,1,1,[1],4.3,3,0,"(0.64, 0.23)" +4381,100,100,,1,1,[1],4.3,3,1,"(0.64, 0.26)" +4382,100,100,,1,1,[1],4.3,3,2,"(0.59, 0.275)" +4383,100,100,,1,1,[1],4.3,3,3,"(0.62, 0.29)" +4384,100,100,,1,1,[1],4.3,3,4,"(0.64, 0.29)" +4385,100,100,,1,1,[1],4.3,3,5,"(0.66, 0.25)" +4386,100,100,,1,1,[1],4.3,3,6,"(0.67, 0.215)" +4387,100,100,,1,1,[1],4.3,3,7,"(0.72, 0.25)" +4388,100,100,,1,1,[1],4.3,3,8,"(0.65, 0.265)" +4389,100,100,,1,1,[1],4.3,3,9,"(0.6, 0.29)" +4390,100,100,,1,1,[1],4.3,4,0,"(0.73, 0.145)" +4391,100,100,,1,1,[1],4.3,4,1,"(0.67, 0.215)" +4392,100,100,,1,1,[1],4.3,4,2,"(0.71, 0.185)" +4393,100,100,,1,1,[1],4.3,4,3,"(0.74, 0.18)" +4394,100,100,,1,1,[1],4.3,4,4,"(0.66, 0.22)" +4395,100,100,,1,1,[1],4.3,4,5,"(0.75, 0.205)" +4396,100,100,,1,1,[1],4.3,4,6,"(0.66, 0.19)" +4397,100,100,,1,1,[1],4.3,4,7,"(0.69, 0.205)" +4398,100,100,,1,1,[1],4.3,4,8,"(0.71, 0.195)" +4399,100,100,,1,1,[1],4.3,4,9,"(0.66, 0.18)" +4400,100,100,,1,1,[1],4.4,-5,0,"(0.75, 0.845)" +4401,100,100,,1,1,[1],4.4,-5,1,"(0.81, 0.895)" +4402,100,100,,1,1,[1],4.4,-5,2,"(0.82, 0.87)" +4403,100,100,,1,1,[1],4.4,-5,3,"(0.77, 0.875)" +4404,100,100,,1,1,[1],4.4,-5,4,"(0.79, 0.885)" +4405,100,100,,1,1,[1],4.4,-5,5,"(0.73, 0.855)" +4406,100,100,,1,1,[1],4.4,-5,6,"(0.8, 0.87)" +4407,100,100,,1,1,[1],4.4,-5,7,"(0.75, 0.835)" +4408,100,100,,1,1,[1],4.4,-5,8,"(0.73, 0.845)" +4409,100,100,,1,1,[1],4.4,-5,9,"(0.73, 0.845)" +4410,100,100,,1,1,[1],4.4,-4,0,"(0.72, 0.84)" +4411,100,100,,1,1,[1],4.4,-4,1,"(0.74, 0.81)" +4412,100,100,,1,1,[1],4.4,-4,2,"(0.63, 0.795)" +4413,100,100,,1,1,[1],4.4,-4,3,"(0.75, 0.835)" +4414,100,100,,1,1,[1],4.4,-4,4,"(0.65, 0.765)" +4415,100,100,,1,1,[1],4.4,-4,5,"(0.7, 0.77)" +4416,100,100,,1,1,[1],4.4,-4,6,"(0.59, 0.785)" +4417,100,100,,1,1,[1],4.4,-4,7,"(0.75, 0.765)" +4418,100,100,,1,1,[1],4.4,-4,8,"(0.7, 0.8)" +4419,100,100,,1,1,[1],4.4,-4,9,"(0.73, 0.815)" +4420,100,100,,1,1,[1],4.4,-3,0,"(0.65, 0.765)" +4421,100,100,,1,1,[1],4.4,-3,1,"(0.73, 0.775)" +4422,100,100,,1,1,[1],4.4,-3,2,"(0.6, 0.7)" +4423,100,100,,1,1,[1],4.4,-3,3,"(0.64, 0.74)" +4424,100,100,,1,1,[1],4.4,-3,4,"(0.54, 0.7)" +4425,100,100,,1,1,[1],4.4,-3,5,"(0.65, 0.715)" +4426,100,100,,1,1,[1],4.4,-3,6,"(0.67, 0.715)" +4427,100,100,,1,1,[1],4.4,-3,7,"(0.66, 0.74)" +4428,100,100,,1,1,[1],4.4,-3,8,"(0.67, 0.715)" +4429,100,100,,1,1,[1],4.4,-3,9,"(0.65, 0.795)" +4430,100,100,,1,1,[1],4.4,-2,0,"(0.64, 0.66)" +4431,100,100,,1,1,[1],4.4,-2,1,"(0.59, 0.695)" +4432,100,100,,1,1,[1],4.4,-2,2,"(0.6, 0.68)" +4433,100,100,,1,1,[1],4.4,-2,3,"(0.58, 0.71)" +4434,100,100,,1,1,[1],4.4,-2,4,"(0.54, 0.67)" +4435,100,100,,1,1,[1],4.4,-2,5,"(0.52, 0.66)" +4436,100,100,,1,1,[1],4.4,-2,6,"(0.61, 0.655)" +4437,100,100,,1,1,[1],4.4,-2,7,"(0.64, 0.71)" +4438,100,100,,1,1,[1],4.4,-2,8,"(0.62, 0.67)" +4439,100,100,,1,1,[1],4.4,-2,9,"(0.62, 0.65)" +4440,100,100,,1,1,[1],4.4,-1,0,"(0.56, 0.62)" +4441,100,100,,1,1,[1],4.4,-1,1,"(0.55, 0.555)" +4442,100,100,,1,1,[1],4.4,-1,2,"(0.59, 0.575)" +4443,100,100,,1,1,[1],4.4,-1,3,"(0.55, 0.585)" +4444,100,100,,1,1,[1],4.4,-1,4,"(0.42, 0.51)" +4445,100,100,,1,1,[1],4.4,-1,5,"(0.55, 0.595)" +4446,100,100,,1,1,[1],4.4,-1,6,"(0.44, 0.56)" +4447,100,100,,1,1,[1],4.4,-1,7,"(0.47, 0.535)" +4448,100,100,,1,1,[1],4.4,-1,8,"(0.59, 0.635)" +4449,100,100,,1,1,[1],4.4,-1,9,"(0.56, 0.51)" +4450,100,100,,1,1,[1],4.4,0,0,"(0.52, 0.52)" +4451,100,100,,1,1,[1],4.4,0,1,"(0.57, 0.505)" +4452,100,100,,1,1,[1],4.4,0,2,"(0.53, 0.515)" +4453,100,100,,1,1,[1],4.4,0,3,"(0.47, 0.545)" +4454,100,100,,1,1,[1],4.4,0,4,"(0.52, 0.57)" +4455,100,100,,1,1,[1],4.4,0,5,"(0.52, 0.47)" +4456,100,100,,1,1,[1],4.4,0,6,"(0.57, 0.425)" +4457,100,100,,1,1,[1],4.4,0,7,"(0.67, 0.465)" +4458,100,100,,1,1,[1],4.4,0,8,"(0.53, 0.495)" +4459,100,100,,1,1,[1],4.4,0,9,"(0.49, 0.545)" +4460,100,100,,1,1,[1],4.4,1,0,"(0.44, 0.44)" +4461,100,100,,1,1,[1],4.4,1,1,"(0.56, 0.47)" +4462,100,100,,1,1,[1],4.4,1,2,"(0.59, 0.425)" +4463,100,100,,1,1,[1],4.4,1,3,"(0.45, 0.415)" +4464,100,100,,1,1,[1],4.4,1,4,"(0.54, 0.43)" +4465,100,100,,1,1,[1],4.4,1,5,"(0.56, 0.38)" +4466,100,100,,1,1,[1],4.4,1,6,"(0.65, 0.365)" +4467,100,100,,1,1,[1],4.4,1,7,"(0.6, 0.36)" +4468,100,100,,1,1,[1],4.4,1,8,"(0.53, 0.465)" +4469,100,100,,1,1,[1],4.4,1,9,"(0.54, 0.37)" +4470,100,100,,1,1,[1],4.4,2,0,"(0.56, 0.32)" +4471,100,100,,1,1,[1],4.4,2,1,"(0.57, 0.345)" +4472,100,100,,1,1,[1],4.4,2,2,"(0.56, 0.31)" +4473,100,100,,1,1,[1],4.4,2,3,"(0.64, 0.35)" +4474,100,100,,1,1,[1],4.4,2,4,"(0.58, 0.34)" +4475,100,100,,1,1,[1],4.4,2,5,"(0.56, 0.33)" +4476,100,100,,1,1,[1],4.4,2,6,"(0.56, 0.31)" +4477,100,100,,1,1,[1],4.4,2,7,"(0.52, 0.35)" +4478,100,100,,1,1,[1],4.4,2,8,"(0.63, 0.325)" +4479,100,100,,1,1,[1],4.4,2,9,"(0.58, 0.32)" +4480,100,100,,1,1,[1],4.4,3,0,"(0.62, 0.28)" +4481,100,100,,1,1,[1],4.4,3,1,"(0.65, 0.235)" +4482,100,100,,1,1,[1],4.4,3,2,"(0.65, 0.275)" +4483,100,100,,1,1,[1],4.4,3,3,"(0.7, 0.26)" +4484,100,100,,1,1,[1],4.4,3,4,"(0.6, 0.31)" +4485,100,100,,1,1,[1],4.4,3,5,"(0.57, 0.265)" +4486,100,100,,1,1,[1],4.4,3,6,"(0.65, 0.275)" +4487,100,100,,1,1,[1],4.4,3,7,"(0.55, 0.285)" +4488,100,100,,1,1,[1],4.4,3,8,"(0.63, 0.265)" +4489,100,100,,1,1,[1],4.4,3,9,"(0.69, 0.255)" +4490,100,100,,1,1,[1],4.4,4,0,"(0.73, 0.185)" +4491,100,100,,1,1,[1],4.4,4,1,"(0.68, 0.22)" +4492,100,100,,1,1,[1],4.4,4,2,"(0.75, 0.185)" +4493,100,100,,1,1,[1],4.4,4,3,"(0.72, 0.15)" +4494,100,100,,1,1,[1],4.4,4,4,"(0.59, 0.215)" +4495,100,100,,1,1,[1],4.4,4,5,"(0.67, 0.225)" +4496,100,100,,1,1,[1],4.4,4,6,"(0.71, 0.205)" +4497,100,100,,1,1,[1],4.4,4,7,"(0.73, 0.175)" +4498,100,100,,1,1,[1],4.4,4,8,"(0.8, 0.15)" +4499,100,100,,1,1,[1],4.4,4,9,"(0.74, 0.18)" +4500,100,100,,1,1,[1],4.5,-5,0,"(0.76, 0.85)" +4501,100,100,,1,1,[1],4.5,-5,1,"(0.74, 0.86)" +4502,100,100,,1,1,[1],4.5,-5,2,"(0.79, 0.855)" +4503,100,100,,1,1,[1],4.5,-5,3,"(0.81, 0.895)" +4504,100,100,,1,1,[1],4.5,-5,4,"(0.78, 0.83)" +4505,100,100,,1,1,[1],4.5,-5,5,"(0.74, 0.86)" +4506,100,100,,1,1,[1],4.5,-5,6,"(0.72, 0.86)" +4507,100,100,,1,1,[1],4.5,-5,7,"(0.69, 0.785)" +4508,100,100,,1,1,[1],4.5,-5,8,"(0.72, 0.84)" +4509,100,100,,1,1,[1],4.5,-5,9,"(0.78, 0.87)" +4510,100,100,,1,1,[1],4.5,-4,0,"(0.66, 0.73)" +4511,100,100,,1,1,[1],4.5,-4,1,"(0.61, 0.785)" +4512,100,100,,1,1,[1],4.5,-4,2,"(0.66, 0.75)" +4513,100,100,,1,1,[1],4.5,-4,3,"(0.73, 0.835)" +4514,100,100,,1,1,[1],4.5,-4,4,"(0.71, 0.775)" +4515,100,100,,1,1,[1],4.5,-4,5,"(0.69, 0.795)" +4516,100,100,,1,1,[1],4.5,-4,6,"(0.66, 0.77)" +4517,100,100,,1,1,[1],4.5,-4,7,"(0.73, 0.825)" +4518,100,100,,1,1,[1],4.5,-4,8,"(0.67, 0.765)" +4519,100,100,,1,1,[1],4.5,-4,9,"(0.61, 0.775)" +4520,100,100,,1,1,[1],4.5,-3,0,"(0.61, 0.705)" +4521,100,100,,1,1,[1],4.5,-3,1,"(0.66, 0.74)" +4522,100,100,,1,1,[1],4.5,-3,2,"(0.56, 0.73)" +4523,100,100,,1,1,[1],4.5,-3,3,"(0.66, 0.76)" +4524,100,100,,1,1,[1],4.5,-3,4,"(0.62, 0.65)" +4525,100,100,,1,1,[1],4.5,-3,5,"(0.64, 0.75)" +4526,100,100,,1,1,[1],4.5,-3,6,"(0.57, 0.725)" +4527,100,100,,1,1,[1],4.5,-3,7,"(0.66, 0.75)" +4528,100,100,,1,1,[1],4.5,-3,8,"(0.59, 0.675)" +4529,100,100,,1,1,[1],4.5,-3,9,"(0.59, 0.725)" +4530,100,100,,1,1,[1],4.5,-2,0,"(0.61, 0.705)" +4531,100,100,,1,1,[1],4.5,-2,1,"(0.59, 0.645)" +4532,100,100,,1,1,[1],4.5,-2,2,"(0.65, 0.675)" +4533,100,100,,1,1,[1],4.5,-2,3,"(0.56, 0.69)" +4534,100,100,,1,1,[1],4.5,-2,4,"(0.47, 0.645)" +4535,100,100,,1,1,[1],4.5,-2,5,"(0.56, 0.6)" +4536,100,100,,1,1,[1],4.5,-2,6,"(0.58, 0.63)" +4537,100,100,,1,1,[1],4.5,-2,7,"(0.55, 0.715)" +4538,100,100,,1,1,[1],4.5,-2,8,"(0.61, 0.665)" +4539,100,100,,1,1,[1],4.5,-2,9,"(0.55, 0.625)" +4540,100,100,,1,1,[1],4.5,-1,0,"(0.57, 0.565)" +4541,100,100,,1,1,[1],4.5,-1,1,"(0.49, 0.625)" +4542,100,100,,1,1,[1],4.5,-1,2,"(0.52, 0.57)" +4543,100,100,,1,1,[1],4.5,-1,3,"(0.57, 0.575)" +4544,100,100,,1,1,[1],4.5,-1,4,"(0.57, 0.555)" +4545,100,100,,1,1,[1],4.5,-1,5,"(0.5, 0.6)" +4546,100,100,,1,1,[1],4.5,-1,6,"(0.64, 0.57)" +4547,100,100,,1,1,[1],4.5,-1,7,"(0.53, 0.595)" +4548,100,100,,1,1,[1],4.5,-1,8,"(0.54, 0.53)" +4549,100,100,,1,1,[1],4.5,-1,9,"(0.55, 0.555)" +4550,100,100,,1,1,[1],4.5,0,0,"(0.48, 0.5)" +4551,100,100,,1,1,[1],4.5,0,1,"(0.58, 0.49)" +4552,100,100,,1,1,[1],4.5,0,2,"(0.53, 0.515)" +4553,100,100,,1,1,[1],4.5,0,3,"(0.53, 0.525)" +4554,100,100,,1,1,[1],4.5,0,4,"(0.52, 0.42)" +4555,100,100,,1,1,[1],4.5,0,5,"(0.58, 0.49)" +4556,100,100,,1,1,[1],4.5,0,6,"(0.45, 0.525)" +4557,100,100,,1,1,[1],4.5,0,7,"(0.51, 0.505)" +4558,100,100,,1,1,[1],4.5,0,8,"(0.54, 0.46)" +4559,100,100,,1,1,[1],4.5,0,9,"(0.5, 0.49)" +4560,100,100,,1,1,[1],4.5,1,0,"(0.61, 0.385)" +4561,100,100,,1,1,[1],4.5,1,1,"(0.57, 0.405)" +4562,100,100,,1,1,[1],4.5,1,2,"(0.48, 0.4)" +4563,100,100,,1,1,[1],4.5,1,3,"(0.49, 0.425)" +4564,100,100,,1,1,[1],4.5,1,4,"(0.53, 0.415)" +4565,100,100,,1,1,[1],4.5,1,5,"(0.58, 0.37)" +4566,100,100,,1,1,[1],4.5,1,6,"(0.48, 0.41)" +4567,100,100,,1,1,[1],4.5,1,7,"(0.49, 0.455)" +4568,100,100,,1,1,[1],4.5,1,8,"(0.54, 0.44)" +4569,100,100,,1,1,[1],4.5,1,9,"(0.53, 0.455)" +4570,100,100,,1,1,[1],4.5,2,0,"(0.49, 0.375)" +4571,100,100,,1,1,[1],4.5,2,1,"(0.59, 0.345)" +4572,100,100,,1,1,[1],4.5,2,2,"(0.55, 0.325)" +4573,100,100,,1,1,[1],4.5,2,3,"(0.46, 0.35)" +4574,100,100,,1,1,[1],4.5,2,4,"(0.55, 0.325)" +4575,100,100,,1,1,[1],4.5,2,5,"(0.48, 0.36)" +4576,100,100,,1,1,[1],4.5,2,6,"(0.51, 0.335)" +4577,100,100,,1,1,[1],4.5,2,7,"(0.62, 0.35)" +4578,100,100,,1,1,[1],4.5,2,8,"(0.55, 0.385)" +4579,100,100,,1,1,[1],4.5,2,9,"(0.59, 0.305)" +4580,100,100,,1,1,[1],4.5,3,0,"(0.65, 0.245)" +4581,100,100,,1,1,[1],4.5,3,1,"(0.66, 0.27)" +4582,100,100,,1,1,[1],4.5,3,2,"(0.55, 0.285)" +4583,100,100,,1,1,[1],4.5,3,3,"(0.67, 0.245)" +4584,100,100,,1,1,[1],4.5,3,4,"(0.64, 0.22)" +4585,100,100,,1,1,[1],4.5,3,5,"(0.66, 0.28)" +4586,100,100,,1,1,[1],4.5,3,6,"(0.62, 0.31)" +4587,100,100,,1,1,[1],4.5,3,7,"(0.59, 0.295)" +4588,100,100,,1,1,[1],4.5,3,8,"(0.59, 0.275)" +4589,100,100,,1,1,[1],4.5,3,9,"(0.65, 0.255)" +4590,100,100,,1,1,[1],4.5,4,0,"(0.64, 0.26)" +4591,100,100,,1,1,[1],4.5,4,1,"(0.64, 0.22)" +4592,100,100,,1,1,[1],4.5,4,2,"(0.71, 0.235)" +4593,100,100,,1,1,[1],4.5,4,3,"(0.71, 0.175)" +4594,100,100,,1,1,[1],4.5,4,4,"(0.66, 0.22)" +4595,100,100,,1,1,[1],4.5,4,5,"(0.7, 0.17)" +4596,100,100,,1,1,[1],4.5,4,6,"(0.69, 0.225)" +4597,100,100,,1,1,[1],4.5,4,7,"(0.69, 0.235)" +4598,100,100,,1,1,[1],4.5,4,8,"(0.73, 0.205)" +4599,100,100,,1,1,[1],4.5,4,9,"(0.7, 0.23)" +4600,100,100,,1,1,[1],4.6000000000000005,-5,0,"(0.75, 0.855)" +4601,100,100,,1,1,[1],4.6000000000000005,-5,1,"(0.79, 0.865)" +4602,100,100,,1,1,[1],4.6000000000000005,-5,2,"(0.76, 0.83)" +4603,100,100,,1,1,[1],4.6000000000000005,-5,3,"(0.71, 0.845)" +4604,100,100,,1,1,[1],4.6000000000000005,-5,4,"(0.74, 0.85)" +4605,100,100,,1,1,[1],4.6000000000000005,-5,5,"(0.78, 0.85)" +4606,100,100,,1,1,[1],4.6000000000000005,-5,6,"(0.76, 0.87)" +4607,100,100,,1,1,[1],4.6000000000000005,-5,7,"(0.71, 0.835)" +4608,100,100,,1,1,[1],4.6000000000000005,-5,8,"(0.69, 0.815)" +4609,100,100,,1,1,[1],4.6000000000000005,-5,9,"(0.81, 0.855)" +4610,100,100,,1,1,[1],4.6000000000000005,-4,0,"(0.63, 0.745)" +4611,100,100,,1,1,[1],4.6000000000000005,-4,1,"(0.62, 0.8)" +4612,100,100,,1,1,[1],4.6000000000000005,-4,2,"(0.68, 0.76)" +4613,100,100,,1,1,[1],4.6000000000000005,-4,3,"(0.68, 0.79)" +4614,100,100,,1,1,[1],4.6000000000000005,-4,4,"(0.78, 0.86)" +4615,100,100,,1,1,[1],4.6000000000000005,-4,5,"(0.71, 0.765)" +4616,100,100,,1,1,[1],4.6000000000000005,-4,6,"(0.72, 0.83)" +4617,100,100,,1,1,[1],4.6000000000000005,-4,7,"(0.68, 0.79)" +4618,100,100,,1,1,[1],4.6000000000000005,-4,8,"(0.73, 0.845)" +4619,100,100,,1,1,[1],4.6000000000000005,-4,9,"(0.7, 0.8)" +4620,100,100,,1,1,[1],4.6000000000000005,-3,0,"(0.71, 0.785)" +4621,100,100,,1,1,[1],4.6000000000000005,-3,1,"(0.64, 0.76)" +4622,100,100,,1,1,[1],4.6000000000000005,-3,2,"(0.66, 0.75)" +4623,100,100,,1,1,[1],4.6000000000000005,-3,3,"(0.63, 0.765)" +4624,100,100,,1,1,[1],4.6000000000000005,-3,4,"(0.59, 0.765)" +4625,100,100,,1,1,[1],4.6000000000000005,-3,5,"(0.67, 0.775)" +4626,100,100,,1,1,[1],4.6000000000000005,-3,6,"(0.63, 0.695)" +4627,100,100,,1,1,[1],4.6000000000000005,-3,7,"(0.66, 0.73)" +4628,100,100,,1,1,[1],4.6000000000000005,-3,8,"(0.55, 0.695)" +4629,100,100,,1,1,[1],4.6000000000000005,-3,9,"(0.66, 0.77)" +4630,100,100,,1,1,[1],4.6000000000000005,-2,0,"(0.62, 0.69)" +4631,100,100,,1,1,[1],4.6000000000000005,-2,1,"(0.61, 0.715)" +4632,100,100,,1,1,[1],4.6000000000000005,-2,2,"(0.67, 0.695)" +4633,100,100,,1,1,[1],4.6000000000000005,-2,3,"(0.58, 0.73)" +4634,100,100,,1,1,[1],4.6000000000000005,-2,4,"(0.61, 0.695)" +4635,100,100,,1,1,[1],4.6000000000000005,-2,5,"(0.59, 0.665)" +4636,100,100,,1,1,[1],4.6000000000000005,-2,6,"(0.51, 0.615)" +4637,100,100,,1,1,[1],4.6000000000000005,-2,7,"(0.56, 0.68)" +4638,100,100,,1,1,[1],4.6000000000000005,-2,8,"(0.56, 0.63)" +4639,100,100,,1,1,[1],4.6000000000000005,-2,9,"(0.57, 0.695)" +4640,100,100,,1,1,[1],4.6000000000000005,-1,0,"(0.57, 0.635)" +4641,100,100,,1,1,[1],4.6000000000000005,-1,1,"(0.51, 0.605)" +4642,100,100,,1,1,[1],4.6000000000000005,-1,2,"(0.58, 0.6)" +4643,100,100,,1,1,[1],4.6000000000000005,-1,3,"(0.46, 0.61)" +4644,100,100,,1,1,[1],4.6000000000000005,-1,4,"(0.58, 0.56)" +4645,100,100,,1,1,[1],4.6000000000000005,-1,5,"(0.53, 0.555)" +4646,100,100,,1,1,[1],4.6000000000000005,-1,6,"(0.46, 0.61)" +4647,100,100,,1,1,[1],4.6000000000000005,-1,7,"(0.54, 0.58)" +4648,100,100,,1,1,[1],4.6000000000000005,-1,8,"(0.63, 0.555)" +4649,100,100,,1,1,[1],4.6000000000000005,-1,9,"(0.65, 0.625)" +4650,100,100,,1,1,[1],4.6000000000000005,0,0,"(0.6, 0.47)" +4651,100,100,,1,1,[1],4.6000000000000005,0,1,"(0.54, 0.44)" +4652,100,100,,1,1,[1],4.6000000000000005,0,2,"(0.58, 0.47)" +4653,100,100,,1,1,[1],4.6000000000000005,0,3,"(0.63, 0.495)" +4654,100,100,,1,1,[1],4.6000000000000005,0,4,"(0.54, 0.45)" +4655,100,100,,1,1,[1],4.6000000000000005,0,5,"(0.53, 0.485)" +4656,100,100,,1,1,[1],4.6000000000000005,0,6,"(0.55, 0.505)" +4657,100,100,,1,1,[1],4.6000000000000005,0,7,"(0.49, 0.465)" +4658,100,100,,1,1,[1],4.6000000000000005,0,8,"(0.56, 0.54)" +4659,100,100,,1,1,[1],4.6000000000000005,0,9,"(0.56, 0.53)" +4660,100,100,,1,1,[1],4.6000000000000005,1,0,"(0.47, 0.405)" +4661,100,100,,1,1,[1],4.6000000000000005,1,1,"(0.54, 0.41)" +4662,100,100,,1,1,[1],4.6000000000000005,1,2,"(0.57, 0.415)" +4663,100,100,,1,1,[1],4.6000000000000005,1,3,"(0.46, 0.42)" +4664,100,100,,1,1,[1],4.6000000000000005,1,4,"(0.49, 0.435)" +4665,100,100,,1,1,[1],4.6000000000000005,1,5,"(0.5, 0.38)" +4666,100,100,,1,1,[1],4.6000000000000005,1,6,"(0.55, 0.455)" +4667,100,100,,1,1,[1],4.6000000000000005,1,7,"(0.53, 0.415)" +4668,100,100,,1,1,[1],4.6000000000000005,1,8,"(0.49, 0.425)" +4669,100,100,,1,1,[1],4.6000000000000005,1,9,"(0.55, 0.395)" +4670,100,100,,1,1,[1],4.6000000000000005,2,0,"(0.59, 0.335)" +4671,100,100,,1,1,[1],4.6000000000000005,2,1,"(0.49, 0.355)" +4672,100,100,,1,1,[1],4.6000000000000005,2,2,"(0.54, 0.4)" +4673,100,100,,1,1,[1],4.6000000000000005,2,3,"(0.64, 0.35)" +4674,100,100,,1,1,[1],4.6000000000000005,2,4,"(0.63, 0.285)" +4675,100,100,,1,1,[1],4.6000000000000005,2,5,"(0.55, 0.345)" +4676,100,100,,1,1,[1],4.6000000000000005,2,6,"(0.61, 0.345)" +4677,100,100,,1,1,[1],4.6000000000000005,2,7,"(0.61, 0.315)" +4678,100,100,,1,1,[1],4.6000000000000005,2,8,"(0.64, 0.3)" +4679,100,100,,1,1,[1],4.6000000000000005,2,9,"(0.54, 0.34)" +4680,100,100,,1,1,[1],4.6000000000000005,3,0,"(0.68, 0.27)" +4681,100,100,,1,1,[1],4.6000000000000005,3,1,"(0.58, 0.29)" +4682,100,100,,1,1,[1],4.6000000000000005,3,2,"(0.7, 0.25)" +4683,100,100,,1,1,[1],4.6000000000000005,3,3,"(0.64, 0.31)" +4684,100,100,,1,1,[1],4.6000000000000005,3,4,"(0.64, 0.24)" +4685,100,100,,1,1,[1],4.6000000000000005,3,5,"(0.59, 0.285)" +4686,100,100,,1,1,[1],4.6000000000000005,3,6,"(0.57, 0.315)" +4687,100,100,,1,1,[1],4.6000000000000005,3,7,"(0.68, 0.29)" +4688,100,100,,1,1,[1],4.6000000000000005,3,8,"(0.7, 0.28)" +4689,100,100,,1,1,[1],4.6000000000000005,3,9,"(0.74, 0.23)" +4690,100,100,,1,1,[1],4.6000000000000005,4,0,"(0.71, 0.165)" +4691,100,100,,1,1,[1],4.6000000000000005,4,1,"(0.68, 0.17)" +4692,100,100,,1,1,[1],4.6000000000000005,4,2,"(0.64, 0.24)" +4693,100,100,,1,1,[1],4.6000000000000005,4,3,"(0.62, 0.23)" +4694,100,100,,1,1,[1],4.6000000000000005,4,4,"(0.67, 0.205)" +4695,100,100,,1,1,[1],4.6000000000000005,4,5,"(0.72, 0.21)" +4696,100,100,,1,1,[1],4.6000000000000005,4,6,"(0.68, 0.24)" +4697,100,100,,1,1,[1],4.6000000000000005,4,7,"(0.72, 0.17)" +4698,100,100,,1,1,[1],4.6000000000000005,4,8,"(0.78, 0.16)" +4699,100,100,,1,1,[1],4.6000000000000005,4,9,"(0.66, 0.22)" +4700,100,100,,1,1,[1],4.7,-5,0,"(0.74, 0.84)" +4701,100,100,,1,1,[1],4.7,-5,1,"(0.78, 0.83)" +4702,100,100,,1,1,[1],4.7,-5,2,"(0.76, 0.86)" +4703,100,100,,1,1,[1],4.7,-5,3,"(0.77, 0.845)" +4704,100,100,,1,1,[1],4.7,-5,4,"(0.77, 0.815)" +4705,100,100,,1,1,[1],4.7,-5,5,"(0.65, 0.785)" +4706,100,100,,1,1,[1],4.7,-5,6,"(0.82, 0.88)" +4707,100,100,,1,1,[1],4.7,-5,7,"(0.83, 0.905)" +4708,100,100,,1,1,[1],4.7,-5,8,"(0.75, 0.825)" +4709,100,100,,1,1,[1],4.7,-5,9,"(0.78, 0.87)" +4710,100,100,,1,1,[1],4.7,-4,0,"(0.7, 0.82)" +4711,100,100,,1,1,[1],4.7,-4,1,"(0.7, 0.77)" +4712,100,100,,1,1,[1],4.7,-4,2,"(0.74, 0.82)" +4713,100,100,,1,1,[1],4.7,-4,3,"(0.65, 0.795)" +4714,100,100,,1,1,[1],4.7,-4,4,"(0.68, 0.78)" +4715,100,100,,1,1,[1],4.7,-4,5,"(0.67, 0.805)" +4716,100,100,,1,1,[1],4.7,-4,6,"(0.67, 0.765)" +4717,100,100,,1,1,[1],4.7,-4,7,"(0.73, 0.825)" +4718,100,100,,1,1,[1],4.7,-4,8,"(0.75, 0.845)" +4719,100,100,,1,1,[1],4.7,-4,9,"(0.67, 0.775)" +4720,100,100,,1,1,[1],4.7,-3,0,"(0.71, 0.795)" +4721,100,100,,1,1,[1],4.7,-3,1,"(0.6, 0.69)" +4722,100,100,,1,1,[1],4.7,-3,2,"(0.64, 0.74)" +4723,100,100,,1,1,[1],4.7,-3,3,"(0.67, 0.715)" +4724,100,100,,1,1,[1],4.7,-3,4,"(0.68, 0.75)" +4725,100,100,,1,1,[1],4.7,-3,5,"(0.58, 0.74)" +4726,100,100,,1,1,[1],4.7,-3,6,"(0.58, 0.75)" +4727,100,100,,1,1,[1],4.7,-3,7,"(0.59, 0.705)" +4728,100,100,,1,1,[1],4.7,-3,8,"(0.57, 0.695)" +4729,100,100,,1,1,[1],4.7,-3,9,"(0.61, 0.705)" +4730,100,100,,1,1,[1],4.7,-2,0,"(0.58, 0.67)" +4731,100,100,,1,1,[1],4.7,-2,1,"(0.64, 0.62)" +4732,100,100,,1,1,[1],4.7,-2,2,"(0.6, 0.68)" +4733,100,100,,1,1,[1],4.7,-2,3,"(0.56, 0.63)" +4734,100,100,,1,1,[1],4.7,-2,4,"(0.62, 0.64)" +4735,100,100,,1,1,[1],4.7,-2,5,"(0.58, 0.67)" +4736,100,100,,1,1,[1],4.7,-2,6,"(0.59, 0.625)" +4737,100,100,,1,1,[1],4.7,-2,7,"(0.66, 0.75)" +4738,100,100,,1,1,[1],4.7,-2,8,"(0.56, 0.66)" +4739,100,100,,1,1,[1],4.7,-2,9,"(0.5, 0.65)" +4740,100,100,,1,1,[1],4.7,-1,0,"(0.62, 0.59)" +4741,100,100,,1,1,[1],4.7,-1,1,"(0.56, 0.67)" +4742,100,100,,1,1,[1],4.7,-1,2,"(0.51, 0.605)" +4743,100,100,,1,1,[1],4.7,-1,3,"(0.55, 0.585)" +4744,100,100,,1,1,[1],4.7,-1,4,"(0.52, 0.52)" +4745,100,100,,1,1,[1],4.7,-1,5,"(0.56, 0.5)" +4746,100,100,,1,1,[1],4.7,-1,6,"(0.53, 0.485)" +4747,100,100,,1,1,[1],4.7,-1,7,"(0.54, 0.59)" +4748,100,100,,1,1,[1],4.7,-1,8,"(0.47, 0.545)" +4749,100,100,,1,1,[1],4.7,-1,9,"(0.51, 0.595)" +4750,100,100,,1,1,[1],4.7,0,0,"(0.44, 0.52)" +4751,100,100,,1,1,[1],4.7,0,1,"(0.56, 0.5)" +4752,100,100,,1,1,[1],4.7,0,2,"(0.53, 0.485)" +4753,100,100,,1,1,[1],4.7,0,3,"(0.57, 0.525)" +4754,100,100,,1,1,[1],4.7,0,4,"(0.49, 0.515)" +4755,100,100,,1,1,[1],4.7,0,5,"(0.59, 0.475)" +4756,100,100,,1,1,[1],4.7,0,6,"(0.61, 0.505)" +4757,100,100,,1,1,[1],4.7,0,7,"(0.57, 0.505)" +4758,100,100,,1,1,[1],4.7,0,8,"(0.54, 0.51)" +4759,100,100,,1,1,[1],4.7,0,9,"(0.5, 0.48)" +4760,100,100,,1,1,[1],4.7,1,0,"(0.63, 0.385)" +4761,100,100,,1,1,[1],4.7,1,1,"(0.58, 0.5)" +4762,100,100,,1,1,[1],4.7,1,2,"(0.47, 0.445)" +4763,100,100,,1,1,[1],4.7,1,3,"(0.5, 0.45)" +4764,100,100,,1,1,[1],4.7,1,4,"(0.54, 0.43)" +4765,100,100,,1,1,[1],4.7,1,5,"(0.58, 0.4)" +4766,100,100,,1,1,[1],4.7,1,6,"(0.54, 0.42)" +4767,100,100,,1,1,[1],4.7,1,7,"(0.54, 0.5)" +4768,100,100,,1,1,[1],4.7,1,8,"(0.53, 0.445)" +4769,100,100,,1,1,[1],4.7,1,9,"(0.49, 0.435)" +4770,100,100,,1,1,[1],4.7,2,0,"(0.62, 0.34)" +4771,100,100,,1,1,[1],4.7,2,1,"(0.6, 0.34)" +4772,100,100,,1,1,[1],4.7,2,2,"(0.6, 0.36)" +4773,100,100,,1,1,[1],4.7,2,3,"(0.52, 0.39)" +4774,100,100,,1,1,[1],4.7,2,4,"(0.58, 0.36)" +4775,100,100,,1,1,[1],4.7,2,5,"(0.54, 0.38)" +4776,100,100,,1,1,[1],4.7,2,6,"(0.57, 0.325)" +4777,100,100,,1,1,[1],4.7,2,7,"(0.63, 0.255)" +4778,100,100,,1,1,[1],4.7,2,8,"(0.57, 0.325)" +4779,100,100,,1,1,[1],4.7,2,9,"(0.61, 0.295)" +4780,100,100,,1,1,[1],4.7,3,0,"(0.65, 0.245)" +4781,100,100,,1,1,[1],4.7,3,1,"(0.62, 0.26)" +4782,100,100,,1,1,[1],4.7,3,2,"(0.57, 0.255)" +4783,100,100,,1,1,[1],4.7,3,3,"(0.64, 0.31)" +4784,100,100,,1,1,[1],4.7,3,4,"(0.66, 0.25)" +4785,100,100,,1,1,[1],4.7,3,5,"(0.62, 0.26)" +4786,100,100,,1,1,[1],4.7,3,6,"(0.66, 0.25)" +4787,100,100,,1,1,[1],4.7,3,7,"(0.57, 0.285)" +4788,100,100,,1,1,[1],4.7,3,8,"(0.63, 0.275)" +4789,100,100,,1,1,[1],4.7,3,9,"(0.64, 0.26)" +4790,100,100,,1,1,[1],4.7,4,0,"(0.61, 0.265)" +4791,100,100,,1,1,[1],4.7,4,1,"(0.61, 0.255)" +4792,100,100,,1,1,[1],4.7,4,2,"(0.75, 0.225)" +4793,100,100,,1,1,[1],4.7,4,3,"(0.67, 0.175)" +4794,100,100,,1,1,[1],4.7,4,4,"(0.7, 0.22)" +4795,100,100,,1,1,[1],4.7,4,5,"(0.68, 0.23)" +4796,100,100,,1,1,[1],4.7,4,6,"(0.7, 0.21)" +4797,100,100,,1,1,[1],4.7,4,7,"(0.7, 0.22)" +4798,100,100,,1,1,[1],4.7,4,8,"(0.67, 0.235)" +4799,100,100,,1,1,[1],4.7,4,9,"(0.66, 0.21)" +4800,100,100,,1,1,[1],4.800000000000001,-5,0,"(0.73, 0.825)" +4801,100,100,,1,1,[1],4.800000000000001,-5,1,"(0.81, 0.865)" +4802,100,100,,1,1,[1],4.800000000000001,-5,2,"(0.73, 0.825)" +4803,100,100,,1,1,[1],4.800000000000001,-5,3,"(0.8, 0.86)" +4804,100,100,,1,1,[1],4.800000000000001,-5,4,"(0.73, 0.835)" +4805,100,100,,1,1,[1],4.800000000000001,-5,5,"(0.78, 0.86)" +4806,100,100,,1,1,[1],4.800000000000001,-5,6,"(0.72, 0.84)" +4807,100,100,,1,1,[1],4.800000000000001,-5,7,"(0.74, 0.83)" +4808,100,100,,1,1,[1],4.800000000000001,-5,8,"(0.66, 0.79)" +4809,100,100,,1,1,[1],4.800000000000001,-5,9,"(0.77, 0.855)" +4810,100,100,,1,1,[1],4.800000000000001,-4,0,"(0.65, 0.785)" +4811,100,100,,1,1,[1],4.800000000000001,-4,1,"(0.67, 0.765)" +4812,100,100,,1,1,[1],4.800000000000001,-4,2,"(0.6, 0.78)" +4813,100,100,,1,1,[1],4.800000000000001,-4,3,"(0.56, 0.75)" +4814,100,100,,1,1,[1],4.800000000000001,-4,4,"(0.75, 0.825)" +4815,100,100,,1,1,[1],4.800000000000001,-4,5,"(0.67, 0.775)" +4816,100,100,,1,1,[1],4.800000000000001,-4,6,"(0.63, 0.755)" +4817,100,100,,1,1,[1],4.800000000000001,-4,7,"(0.65, 0.795)" +4818,100,100,,1,1,[1],4.800000000000001,-4,8,"(0.64, 0.78)" +4819,100,100,,1,1,[1],4.800000000000001,-4,9,"(0.74, 0.8)" +4820,100,100,,1,1,[1],4.800000000000001,-3,0,"(0.6, 0.75)" +4821,100,100,,1,1,[1],4.800000000000001,-3,1,"(0.57, 0.725)" +4822,100,100,,1,1,[1],4.800000000000001,-3,2,"(0.61, 0.755)" +4823,100,100,,1,1,[1],4.800000000000001,-3,3,"(0.55, 0.725)" +4824,100,100,,1,1,[1],4.800000000000001,-3,4,"(0.57, 0.725)" +4825,100,100,,1,1,[1],4.800000000000001,-3,5,"(0.61, 0.725)" +4826,100,100,,1,1,[1],4.800000000000001,-3,6,"(0.61, 0.715)" +4827,100,100,,1,1,[1],4.800000000000001,-3,7,"(0.67, 0.795)" +4828,100,100,,1,1,[1],4.800000000000001,-3,8,"(0.71, 0.825)" +4829,100,100,,1,1,[1],4.800000000000001,-3,9,"(0.6, 0.72)" +4830,100,100,,1,1,[1],4.800000000000001,-2,0,"(0.56, 0.62)" +4831,100,100,,1,1,[1],4.800000000000001,-2,1,"(0.49, 0.575)" +4832,100,100,,1,1,[1],4.800000000000001,-2,2,"(0.55, 0.665)" +4833,100,100,,1,1,[1],4.800000000000001,-2,3,"(0.59, 0.625)" +4834,100,100,,1,1,[1],4.800000000000001,-2,4,"(0.6, 0.71)" +4835,100,100,,1,1,[1],4.800000000000001,-2,5,"(0.57, 0.615)" +4836,100,100,,1,1,[1],4.800000000000001,-2,6,"(0.58, 0.67)" +4837,100,100,,1,1,[1],4.800000000000001,-2,7,"(0.53, 0.655)" +4838,100,100,,1,1,[1],4.800000000000001,-2,8,"(0.66, 0.7)" +4839,100,100,,1,1,[1],4.800000000000001,-2,9,"(0.62, 0.7)" +4840,100,100,,1,1,[1],4.800000000000001,-1,0,"(0.49, 0.575)" +4841,100,100,,1,1,[1],4.800000000000001,-1,1,"(0.57, 0.595)" +4842,100,100,,1,1,[1],4.800000000000001,-1,2,"(0.54, 0.58)" +4843,100,100,,1,1,[1],4.800000000000001,-1,3,"(0.6, 0.54)" +4844,100,100,,1,1,[1],4.800000000000001,-1,4,"(0.57, 0.575)" +4845,100,100,,1,1,[1],4.800000000000001,-1,5,"(0.6, 0.61)" +4846,100,100,,1,1,[1],4.800000000000001,-1,6,"(0.49, 0.595)" +4847,100,100,,1,1,[1],4.800000000000001,-1,7,"(0.51, 0.575)" +4848,100,100,,1,1,[1],4.800000000000001,-1,8,"(0.59, 0.575)" +4849,100,100,,1,1,[1],4.800000000000001,-1,9,"(0.48, 0.58)" +4850,100,100,,1,1,[1],4.800000000000001,0,0,"(0.54, 0.46)" +4851,100,100,,1,1,[1],4.800000000000001,0,1,"(0.41, 0.495)" +4852,100,100,,1,1,[1],4.800000000000001,0,2,"(0.51, 0.495)" +4853,100,100,,1,1,[1],4.800000000000001,0,3,"(0.67, 0.445)" +4854,100,100,,1,1,[1],4.800000000000001,0,4,"(0.6, 0.5)" +4855,100,100,,1,1,[1],4.800000000000001,0,5,"(0.53, 0.465)" +4856,100,100,,1,1,[1],4.800000000000001,0,6,"(0.58, 0.51)" +4857,100,100,,1,1,[1],4.800000000000001,0,7,"(0.51, 0.455)" +4858,100,100,,1,1,[1],4.800000000000001,0,8,"(0.57, 0.565)" +4859,100,100,,1,1,[1],4.800000000000001,0,9,"(0.47, 0.535)" +4860,100,100,,1,1,[1],4.800000000000001,1,0,"(0.55, 0.395)" +4861,100,100,,1,1,[1],4.800000000000001,1,1,"(0.61, 0.415)" +4862,100,100,,1,1,[1],4.800000000000001,1,2,"(0.47, 0.455)" +4863,100,100,,1,1,[1],4.800000000000001,1,3,"(0.5, 0.43)" +4864,100,100,,1,1,[1],4.800000000000001,1,4,"(0.5, 0.38)" +4865,100,100,,1,1,[1],4.800000000000001,1,5,"(0.53, 0.395)" +4866,100,100,,1,1,[1],4.800000000000001,1,6,"(0.51, 0.435)" +4867,100,100,,1,1,[1],4.800000000000001,1,7,"(0.54, 0.47)" +4868,100,100,,1,1,[1],4.800000000000001,1,8,"(0.61, 0.465)" +4869,100,100,,1,1,[1],4.800000000000001,1,9,"(0.5, 0.46)" +4870,100,100,,1,1,[1],4.800000000000001,2,0,"(0.57, 0.385)" +4871,100,100,,1,1,[1],4.800000000000001,2,1,"(0.56, 0.36)" +4872,100,100,,1,1,[1],4.800000000000001,2,2,"(0.65, 0.285)" +4873,100,100,,1,1,[1],4.800000000000001,2,3,"(0.49, 0.325)" +4874,100,100,,1,1,[1],4.800000000000001,2,4,"(0.51, 0.375)" +4875,100,100,,1,1,[1],4.800000000000001,2,5,"(0.61, 0.365)" +4876,100,100,,1,1,[1],4.800000000000001,2,6,"(0.56, 0.35)" +4877,100,100,,1,1,[1],4.800000000000001,2,7,"(0.59, 0.365)" +4878,100,100,,1,1,[1],4.800000000000001,2,8,"(0.5, 0.38)" +4879,100,100,,1,1,[1],4.800000000000001,2,9,"(0.63, 0.315)" +4880,100,100,,1,1,[1],4.800000000000001,3,0,"(0.63, 0.225)" +4881,100,100,,1,1,[1],4.800000000000001,3,1,"(0.69, 0.275)" +4882,100,100,,1,1,[1],4.800000000000001,3,2,"(0.62, 0.27)" +4883,100,100,,1,1,[1],4.800000000000001,3,3,"(0.62, 0.27)" +4884,100,100,,1,1,[1],4.800000000000001,3,4,"(0.56, 0.29)" +4885,100,100,,1,1,[1],4.800000000000001,3,5,"(0.61, 0.265)" +4886,100,100,,1,1,[1],4.800000000000001,3,6,"(0.54, 0.29)" +4887,100,100,,1,1,[1],4.800000000000001,3,7,"(0.69, 0.205)" +4888,100,100,,1,1,[1],4.800000000000001,3,8,"(0.63, 0.275)" +4889,100,100,,1,1,[1],4.800000000000001,3,9,"(0.65, 0.285)" +4890,100,100,,1,1,[1],4.800000000000001,4,0,"(0.67, 0.255)" +4891,100,100,,1,1,[1],4.800000000000001,4,1,"(0.76, 0.18)" +4892,100,100,,1,1,[1],4.800000000000001,4,2,"(0.63, 0.215)" +4893,100,100,,1,1,[1],4.800000000000001,4,3,"(0.7, 0.19)" +4894,100,100,,1,1,[1],4.800000000000001,4,4,"(0.72, 0.19)" +4895,100,100,,1,1,[1],4.800000000000001,4,5,"(0.7, 0.18)" +4896,100,100,,1,1,[1],4.800000000000001,4,6,"(0.62, 0.24)" +4897,100,100,,1,1,[1],4.800000000000001,4,7,"(0.67, 0.225)" +4898,100,100,,1,1,[1],4.800000000000001,4,8,"(0.61, 0.235)" +4899,100,100,,1,1,[1],4.800000000000001,4,9,"(0.71, 0.215)" +4900,100,100,,1,1,[1],4.9,-5,0,"(0.72, 0.82)" +4901,100,100,,1,1,[1],4.9,-5,1,"(0.7, 0.82)" +4902,100,100,,1,1,[1],4.9,-5,2,"(0.71, 0.825)" +4903,100,100,,1,1,[1],4.9,-5,3,"(0.73, 0.825)" +4904,100,100,,1,1,[1],4.9,-5,4,"(0.75, 0.855)" +4905,100,100,,1,1,[1],4.9,-5,5,"(0.74, 0.84)" +4906,100,100,,1,1,[1],4.9,-5,6,"(0.7, 0.81)" +4907,100,100,,1,1,[1],4.9,-5,7,"(0.8, 0.82)" +4908,100,100,,1,1,[1],4.9,-5,8,"(0.8, 0.82)" +4909,100,100,,1,1,[1],4.9,-5,9,"(0.78, 0.86)" +4910,100,100,,1,1,[1],4.9,-4,0,"(0.73, 0.795)" +4911,100,100,,1,1,[1],4.9,-4,1,"(0.68, 0.77)" +4912,100,100,,1,1,[1],4.9,-4,2,"(0.63, 0.775)" +4913,100,100,,1,1,[1],4.9,-4,3,"(0.69, 0.795)" +4914,100,100,,1,1,[1],4.9,-4,4,"(0.75, 0.815)" +4915,100,100,,1,1,[1],4.9,-4,5,"(0.65, 0.735)" +4916,100,100,,1,1,[1],4.9,-4,6,"(0.73, 0.825)" +4917,100,100,,1,1,[1],4.9,-4,7,"(0.69, 0.785)" +4918,100,100,,1,1,[1],4.9,-4,8,"(0.78, 0.85)" +4919,100,100,,1,1,[1],4.9,-4,9,"(0.66, 0.74)" +4920,100,100,,1,1,[1],4.9,-3,0,"(0.72, 0.77)" +4921,100,100,,1,1,[1],4.9,-3,1,"(0.62, 0.73)" +4922,100,100,,1,1,[1],4.9,-3,2,"(0.66, 0.72)" +4923,100,100,,1,1,[1],4.9,-3,3,"(0.58, 0.71)" +4924,100,100,,1,1,[1],4.9,-3,4,"(0.57, 0.665)" +4925,100,100,,1,1,[1],4.9,-3,5,"(0.65, 0.735)" +4926,100,100,,1,1,[1],4.9,-3,6,"(0.58, 0.71)" +4927,100,100,,1,1,[1],4.9,-3,7,"(0.66, 0.71)" +4928,100,100,,1,1,[1],4.9,-3,8,"(0.6, 0.71)" +4929,100,100,,1,1,[1],4.9,-3,9,"(0.66, 0.77)" +4930,100,100,,1,1,[1],4.9,-2,0,"(0.55, 0.585)" +4931,100,100,,1,1,[1],4.9,-2,1,"(0.53, 0.595)" +4932,100,100,,1,1,[1],4.9,-2,2,"(0.56, 0.71)" +4933,100,100,,1,1,[1],4.9,-2,3,"(0.47, 0.545)" +4934,100,100,,1,1,[1],4.9,-2,4,"(0.58, 0.64)" +4935,100,100,,1,1,[1],4.9,-2,5,"(0.57, 0.665)" +4936,100,100,,1,1,[1],4.9,-2,6,"(0.66, 0.68)" +4937,100,100,,1,1,[1],4.9,-2,7,"(0.62, 0.68)" +4938,100,100,,1,1,[1],4.9,-2,8,"(0.66, 0.64)" +4939,100,100,,1,1,[1],4.9,-2,9,"(0.63, 0.625)" +4940,100,100,,1,1,[1],4.9,-1,0,"(0.61, 0.595)" +4941,100,100,,1,1,[1],4.9,-1,1,"(0.53, 0.615)" +4942,100,100,,1,1,[1],4.9,-1,2,"(0.59, 0.625)" +4943,100,100,,1,1,[1],4.9,-1,3,"(0.47, 0.505)" +4944,100,100,,1,1,[1],4.9,-1,4,"(0.55, 0.535)" +4945,100,100,,1,1,[1],4.9,-1,5,"(0.54, 0.63)" +4946,100,100,,1,1,[1],4.9,-1,6,"(0.52, 0.54)" +4947,100,100,,1,1,[1],4.9,-1,7,"(0.52, 0.6)" +4948,100,100,,1,1,[1],4.9,-1,8,"(0.5, 0.66)" +4949,100,100,,1,1,[1],4.9,-1,9,"(0.59, 0.525)" +4950,100,100,,1,1,[1],4.9,0,0,"(0.44, 0.56)" +4951,100,100,,1,1,[1],4.9,0,1,"(0.48, 0.51)" +4952,100,100,,1,1,[1],4.9,0,2,"(0.49, 0.495)" +4953,100,100,,1,1,[1],4.9,0,3,"(0.5, 0.57)" +4954,100,100,,1,1,[1],4.9,0,4,"(0.47, 0.495)" +4955,100,100,,1,1,[1],4.9,0,5,"(0.53, 0.445)" +4956,100,100,,1,1,[1],4.9,0,6,"(0.54, 0.46)" +4957,100,100,,1,1,[1],4.9,0,7,"(0.48, 0.47)" +4958,100,100,,1,1,[1],4.9,0,8,"(0.49, 0.505)" +4959,100,100,,1,1,[1],4.9,0,9,"(0.55, 0.505)" +4960,100,100,,1,1,[1],4.9,1,0,"(0.48, 0.45)" +4961,100,100,,1,1,[1],4.9,1,1,"(0.54, 0.43)" +4962,100,100,,1,1,[1],4.9,1,2,"(0.5, 0.41)" +4963,100,100,,1,1,[1],4.9,1,3,"(0.41, 0.465)" +4964,100,100,,1,1,[1],4.9,1,4,"(0.54, 0.44)" +4965,100,100,,1,1,[1],4.9,1,5,"(0.5, 0.37)" +4966,100,100,,1,1,[1],4.9,1,6,"(0.56, 0.46)" +4967,100,100,,1,1,[1],4.9,1,7,"(0.47, 0.475)" +4968,100,100,,1,1,[1],4.9,1,8,"(0.58, 0.42)" +4969,100,100,,1,1,[1],4.9,1,9,"(0.5, 0.4)" +4970,100,100,,1,1,[1],4.9,2,0,"(0.43, 0.375)" +4971,100,100,,1,1,[1],4.9,2,1,"(0.57, 0.345)" +4972,100,100,,1,1,[1],4.9,2,2,"(0.53, 0.355)" +4973,100,100,,1,1,[1],4.9,2,3,"(0.6, 0.35)" +4974,100,100,,1,1,[1],4.9,2,4,"(0.57, 0.375)" +4975,100,100,,1,1,[1],4.9,2,5,"(0.57, 0.335)" +4976,100,100,,1,1,[1],4.9,2,6,"(0.54, 0.34)" +4977,100,100,,1,1,[1],4.9,2,7,"(0.61, 0.315)" +4978,100,100,,1,1,[1],4.9,2,8,"(0.67, 0.345)" +4979,100,100,,1,1,[1],4.9,2,9,"(0.64, 0.36)" +4980,100,100,,1,1,[1],4.9,3,0,"(0.65, 0.295)" +4981,100,100,,1,1,[1],4.9,3,1,"(0.6, 0.26)" +4982,100,100,,1,1,[1],4.9,3,2,"(0.66, 0.22)" +4983,100,100,,1,1,[1],4.9,3,3,"(0.65, 0.285)" +4984,100,100,,1,1,[1],4.9,3,4,"(0.61, 0.315)" +4985,100,100,,1,1,[1],4.9,3,5,"(0.64, 0.29)" +4986,100,100,,1,1,[1],4.9,3,6,"(0.7, 0.24)" +4987,100,100,,1,1,[1],4.9,3,7,"(0.6, 0.37)" +4988,100,100,,1,1,[1],4.9,3,8,"(0.65, 0.295)" +4989,100,100,,1,1,[1],4.9,3,9,"(0.66, 0.28)" +4990,100,100,,1,1,[1],4.9,4,0,"(0.68, 0.19)" +4991,100,100,,1,1,[1],4.9,4,1,"(0.73, 0.195)" +4992,100,100,,1,1,[1],4.9,4,2,"(0.67, 0.185)" +4993,100,100,,1,1,[1],4.9,4,3,"(0.71, 0.205)" +4994,100,100,,1,1,[1],4.9,4,4,"(0.65, 0.225)" +4995,100,100,,1,1,[1],4.9,4,5,"(0.61, 0.235)" +4996,100,100,,1,1,[1],4.9,4,6,"(0.72, 0.14)" +4997,100,100,,1,1,[1],4.9,4,7,"(0.73, 0.165)" +4998,100,100,,1,1,[1],4.9,4,8,"(0.65, 0.235)" +4999,100,100,,1,1,[1],4.9,4,9,"(0.67, 0.225)" diff --git a/python/palin/internal_noise/double_pass.py b/python/palin/internal_noise/double_pass.py index 9fad4f2..f3c62ff 100644 --- a/python/palin/internal_noise/double_pass.py +++ b/python/palin/internal_noise/double_pass.py @@ -8,40 +8,50 @@ import pandas as pd import numpy as np +import os.path +import warnings +import ast from .internal_noise_extractor import InternalNoiseExtractor from ..simulation.linear_observer import LinearObserver from ..simulation.simple_experiment import SimpleExperiment from ..simulation.trial import Int2Trial, Int1Trial +from ..simulation.double_pass_experiment import DoublePassExperiment +from ..simulation.trial import Int2Trial, Int1Trial +from ..simulation.linear_observer import LinearObserver +from ..simulation.double_pass_statistics import DoublePassStatistics +from ..simulation.simulation import Simulation as Sim + class DoublePass(InternalNoiseExtractor): @classmethod - def extract_single_internal_noise(cls,data_df, trial_id, stim_id = 'stim', feature_id = 'feature', value_id = 'value', response_id = 'response'): + def extract_single_internal_noise(cls,data_df, trial_id, stim_id, feature_id, value_id, response_id, model_file, rebuild_model=False, internal_noise_range=np.arange(0,5,.1),criteria_range=np.arange(-5,5,1), n_repeated_trials=100, n_runs=10): double_pass_id = 'double_pass_id' # column by which to identify double pass trials # index double pass trials data_df = cls.index_double_pass_trials(data_df, trial_id=trial_id, value_id = value_id, double_pass_id = double_pass_id) # compute probability of agreement over double pass - prob_agree = compute_prob_agreement(data_df, trial_id=trial_id, response_id=response_id, double_pass_id=double_pass_id) + prob_agree = cls.compute_prob_agreement(data_df, trial_id=trial_id, response_id=response_id, double_pass_id=double_pass_id) # compute probability of choosing first response option - prob_first = compute_prob_first(data_df, trial_id=trial_id, response_id=response_id, stim_id=stim_id, double_pass_id=double_pass_id) + prob_first = cls.compute_prob_first(data_df, trial_id=trial_id, response_id=response_id, stim_id=stim_id, double_pass_id=double_pass_id) - return 0 + internal_noise, criteria = cls.estimate_noise_criteria(prob_agree, prob_first, model_file, rebuild_model, internal_noise_range,criteria_range, n_repeated_trials, n_runs) + + return internal_noise,criteria def __str__(self): return 'Double-Pass method' @classmethod - def index_double_pass_trials(cls, data_df, trial_id='trial',double_pass_id='double_pass_id',value_id='stim_parameter_id'): - ''' identify repeated trials in experimental sessions (i.e. 'double pass trials'), and tag them with a unique id stored in a new column. - ''' + def index_double_pass_trials(cls, data_df, trial_id='trial',double_pass_id='double_pass_id',value_id='value'): + # represent the several values of a given trial (ex. 6 features for interval 1, 6 features for interval 2) as a tuple - frozen_set_df = data_df.groupby(trial_id).agg({value_id: lambda group: tuple(group)}).reset_index() + set_df = data_df.groupby(trial_id).agg({value_id: lambda group: tuple(group)}).reset_index() # count how many trials have each unique pair of stimuli - pass_count_df = frozen_set_df.groupby(value_id).agg({trial_id: ['nunique','first','last']}) - pass_count_df.columns = ["_".join(x) for x in pass_count_df.columns.ravel()] + pass_count_df = set_df.groupby(value_id).agg({trial_id: ['nunique','first','last']}) + pass_count_df.columns = ["_".join(x) for x in pass_count_df.columns] pass_count_df = pass_count_df.reset_index() # identify pairs of stimuli that have 2 trials (i.e. for which there has been a double pass) @@ -86,23 +96,41 @@ def first_option(group, stim_id, response_id): return firsts.sum()/len(firsts) @classmethod - def simulate_observer(cls,internal_noise_std,criteria, n_trials, n_blocks=1): + def estimate_noise_criteria(cls,prob_agree, prob_first, model_file,rebuild_model=False, internal_noise_range=np.arange(0,5,.1),criteria_range=np.arange(-5,5,1), n_repeated_trials=100, n_runs=10): - # simulate observer with (criteria, internal_noise_sigma) - # in the midterm, this should be done with a Simulation object, for which we need a prob_a, prob_first analyser + # load model or rebuild + if os.path.isfile(model_file) & ~rebuild_model: + model_df = pd.read_csv(model_file, index_col=0) + else: + model_df = cls.build_model(internal_noise_range, criteria_range, n_repeated_trials, n_runs) + model_df.to_csv(model_file) - obs = LinearObserver(kernel=[1], internal_noise_std=internal_noise_std, criteria=criteria) - exp = SimpleExperiment(n_trials=n_trials, trial_type=Int2Trial, n_features=1, external_noise_std=1) + # find internal_noise & criteria settings that minimizes distance to prob_agree and prob_first - responses_pass_1 = obs.respond_to_experiment(exp) - responses_pass_2 = obs.respond_to_experiment(exp) - - # probability interval 1 (average of prob in both pass) - prob_first = (np.mean(responses_pass_1) + np.mean(responses_pass_2))/2 - - #probability of agreement between pass - prob_agree = np.mean(responses_pass_1==responses_pass_2) - - return prob_agree,prob_first + model_df['dist'] = model_df.apply(lambda row: (ast.literal_eval(row.metric)[0]-prob_agree)**2 + (ast.literal_eval(row.metric)[1]-prob_first)**2, axis=1) + + best_match = model_df[model_df.dist==model_df.dist.min()] + + return best_match.internal_noise_std.iloc[0], best_match.criteria.iloc[0] + + @classmethod + def build_model(cls,internal_noise_range=np.arange(0,5,.1),criteria_range=np.arange(-5,5,1), n_repeated_trials=100, n_runs=10): + + print('Rebuilding double-pass model') + + observer_params = {'kernel':[[1]], + 'internal_noise_std':internal_noise_range, + 'criteria':criteria_range} + experiment_params = {'n_trials':[n_repeated_trials], + 'n_repeated':[n_repeated_trials], + 'trial_type': [Int2Trial], + 'n_features': [1], + 'external_noise_std': [1]} + analyser_params = {} + + sim = Sim(DoublePassExperiment, experiment_params, + LinearObserver, observer_params, + DoublePassStatistics, analyser_params) + return sim.run_all(n_runs=n_runs, verbose=False) \ No newline at end of file diff --git a/python/palin/simulation/__pycache__/simulation.cpython-38.pyc b/python/palin/simulation/__pycache__/simulation.cpython-38.pyc index 8882d368430b9b981482ea453d977f76c01a577c..08fb3cd1da29ab8b257603a405757e8d614ef581 100644 GIT binary patch delta 1074 zcmZ`&OK;Oa5Z>`Re&s>hhEQ4_7Eox4#JjXSS|Py+p;n@WLnRcYwws0~cDi;ERE~OR zCB&hJuy8=)kVqWLl>-;f{0Phs;Lec~vyMY65MFt9Uf=BO%jYj_a^W z;FK-TU8z<5DBEMo%?hhDeEtJUkmCc={6J0|Mis!-quiH1qiuqoIwNfC5R%BaU9b6p z#53s`b>ZgcSAhU?bcsySwx{c^*F2-^`+$F)mRMA?QLDGeuJHR~7L zDy5@TlhxcHqIJh*$1`}lNOGHzg3WQO4m&LrvgI{juwibbMz=JU6)MFoV-m>p7 ztmI#MeqTFZh%<|G6!(d1dX>M@CL~zopR{v!UL29O>J{I|wyt`1JmTzH-}ykv_b=Id sG|4N_BrPj}p&JDz^d&u_m1T=bB7%4aY=qC~!z1H@6%PMILIeC|a)D^0Qz-wcH7Bn$9(Dm!pgluq09NYn@D&w2av37_lB_nEsJ= zF*&9kGd9$2qlB4M5pFn<)v;srqXd~H31vxKkeVMbmr6r;jj--Zqv1!qR&^adjHU4` zf^5?ulm?0rtou?!MWkMBhHv<3n2RIPhLpn}hvES*xWib*4nwD#~~z5hUekS%KEC^)v2OIGdi g*|Un!2)%%Lf={bMCfIDC>K7EH%KVQq`D~y22iarzegFUf diff --git a/python/palin/simulation/analyser.py b/python/palin/simulation/analyser.py index f887e67..5b1c7e6 100644 --- a/python/palin/simulation/analyser.py +++ b/python/palin/simulation/analyser.py @@ -28,8 +28,8 @@ def to_df(csl, experiment, responses): values.append(value) resps.append(True if response == num_stim else False) - return pd.DataFrame.from_dict({'trial_id': trial_ids, - 'stim_order': stim_orders, + return pd.DataFrame.from_dict({'trial': trial_ids, + 'stim': stim_orders, 'feature': features, 'value': values, 'response': resps}) diff --git a/python/palin/simulation/double_pass_experiment.py b/python/palin/simulation/double_pass_experiment.py new file mode 100644 index 0000000..bc00e1d --- /dev/null +++ b/python/palin/simulation/double_pass_experiment.py @@ -0,0 +1,23 @@ +import numpy as np + +from .simple_experiment import SimpleExperiment + + +class DoublePassExperiment(SimpleExperiment): + + def __init__(self, n_trials, n_repeated, trial_type, n_features, external_noise_std): + # init parameters + self.n_repeated = n_repeated + super().__init__(n_trials, trial_type, n_features, external_noise_std) + # generate trials + self.generate_trials() + + def generate_trials(self): + + # generate n_trials + super().generate_trials() + + # and then an extra n_repeated trials copied from the original trials (first n_repeated trials) + if self.n_repeated > self.n_trials: + self.n_repeated = self.n_trials + self.trials += self.trials[:self.n_repeated] \ No newline at end of file diff --git a/python/palin/simulation/double_pass_statistics.py b/python/palin/simulation/double_pass_statistics.py new file mode 100644 index 0000000..b3e1f08 --- /dev/null +++ b/python/palin/simulation/double_pass_statistics.py @@ -0,0 +1,20 @@ + +from .analyser import Analyser +from palin.internal_noise.double_pass import DoublePass + +class DoublePassStatistics(Analyser): + + def analyse(self, experiment, participant, participant_responses): + + responses_df = self.to_df(experiment, participant_responses) + + # index double_pass + responses_df = DoublePass.index_double_pass_trials(data_df = responses_df, + trial_id='trial',value_id='value', double_pass_id='double_pass_id') + + # compute probability of agreement over double pass + prob_agree = DoublePass.compute_prob_agreement(responses_df, trial_id='trial', response_id='response', double_pass_id='double_pass_id') + # compute probability of choosing first response option + prob_first = DoublePass.compute_prob_first(responses_df, trial_id='trial', response_id='response', stim_id='stim', double_pass_id='double_pass_id') + + return prob_agree, prob_first \ No newline at end of file diff --git a/python/palin/simulation/internal_noise_value.py b/python/palin/simulation/internal_noise_value.py new file mode 100644 index 0000000..ecece73 --- /dev/null +++ b/python/palin/simulation/internal_noise_value.py @@ -0,0 +1,32 @@ + +from .analyser import Analyser +import numpy as np + +class InternalNoiseValue(Analyser): + + def __init__(self, internal_noise_extractor, model_file, rebuild_model = False, internal_noise_range=np.arange(0,5,.1),criteria_range=np.arange(-5,5,1), n_repeated_trials=100, n_runs=10): + self.internal_noise_extractor = internal_noise_extractor + self.model_file = model_file + self.rebuild_model = rebuild_model + self.internal_noise_range = internal_noise_range + self.criteria_range = criteria_range + self.n_repeated_trials = n_repeated_trials + self.n_runs = n_runs + + def analyse(self, experiment, participant, participant_responses): + + #true_internal_noise = participant.internal_noise_std + + return self.estimate_internal_noise(experiment, participant_responses)[0] + + def estimate_internal_noise(self, experiment, participant_responses): + + responses_df = self.to_df(experiment, participant_responses) + + internal_noise = self.internal_noise_extractor.extract_single_internal_noise(data_df = responses_df, + trial_id = 'trial', stim_id = 'stim', feature_id = 'feature', value_id = 'value', response_id = 'response', model_file = self.model_file, + internal_noise_range=self.internal_noise_range, criteria_range=self.criteria_range, n_repeated_trials=self.n_repeated_trials, n_runs=self.n_runs) + + return internal_noise + + \ No newline at end of file diff --git a/python/palin/simulation/simulation.py b/python/palin/simulation/simulation.py index 51f9930..e9e1960 100644 --- a/python/palin/simulation/simulation.py +++ b/python/palin/simulation/simulation.py @@ -16,11 +16,10 @@ def __init__(self, experiment, experiment_params, observer, observer_params, ana self.experiment_params = experiment_params self.observer_params = observer_params self.analyser_params = analyser_params - self.run_params = self.generate_runs(self.experiment_params,self.observer_params,self.analyser_params) - print("generated %d runs"%len(self.run_params)) - + self.config_params = self.generate_configs(self.experiment_params,self.observer_params,self.analyser_params) + @classmethod - def generate_runs(cls, experiment_params, observer_params, analyser_params): + def generate_configs(cls, experiment_params, observer_params, analyser_params): # construct simulation plan sim_params ={} for d in (experiment_params, observer_params, analyser_params): @@ -29,30 +28,36 @@ def generate_runs(cls, experiment_params, observer_params, analyser_params): return [dict(zip(keys, v)) for v in itertools.product(*values)] - def run_all(self, n_samples): + def run_all(self, n_runs, verbose=True): + if verbose: + print("Running %d configs"%len(self.config_params)) + runs = [] - for run_param in self.run_params: - print(run_param) - for sample in np.arange(n_samples): - print('.',end='') - res = self.run(run_param) - run_res = run_param.copy() - run_res.update({'sample':sample, 'metric':res}) + for config_param in self.config_params: + if verbose: + print(config_param) + for run in np.arange(n_runs): + if verbose: + print('.',end='') + res = self.run(config_param) + run_res = config_param.copy() + run_res.update({'run':run, 'metric':res}) runs.append(run_res) - print('') + if verbose: + print(';') return pd.DataFrame(runs) - def run(self, run_param): + def run(self, config_param): # separate this run's parameters into distinct sets - run_experiment_params = {k: v for k, v in run_param.items() if k in self.experiment_params} - run_observer_params = {k: v for k, v in run_param.items() if k in self.observer_params} - run_analyser_params = {k: v for k, v in run_param.items() if k in self.analyser_params} + config_experiment_params = {k: v for k, v in config_param.items() if k in self.experiment_params} + config_observer_params = {k: v for k, v in config_param.items() if k in self.observer_params} + config_analyser_params = {k: v for k, v in config_param.items() if k in self.analyser_params} - exp = self.experiment(**run_experiment_params) - obs = self.observer(**run_observer_params) - ana = self.analyser(**run_analyser_params) + exp = self.experiment(**config_experiment_params) + obs = self.observer(**config_observer_params) + ana = self.analyser(**config_analyser_params) responses = obs.respond_to_experiment(exp) diff --git a/python/sandbox.ipynb b/python/sandbox.ipynb index 872ddbb..8e60145 100644 --- a/python/sandbox.ipynb +++ b/python/sandbox.ipynb @@ -2,15 +2,24 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, - "id": "264735f2", + "execution_count": 51, + "id": "7de7295a", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T04:07:14.254091Z", - "start_time": "2024-04-10T04:07:14.212928Z" + "end_time": "2024-04-10T12:37:25.098785Z", + "start_time": "2024-04-10T12:37:25.041938Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], "source": [ "%load_ext autoreload\n", "%autoreload 2" @@ -18,12 +27,12 @@ }, { "cell_type": "code", - "execution_count": 2, - "id": "c7f458e5", + "execution_count": 179, + "id": "e244d137", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T04:07:15.786461Z", - "start_time": "2024-04-10T04:07:14.480236Z" + "end_time": "2024-04-11T04:19:40.595606Z", + "start_time": "2024-04-11T04:19:40.530803Z" } }, "outputs": [], @@ -36,12 +45,12 @@ }, { "cell_type": "code", - "execution_count": 3, - "id": "187bfd56", + "execution_count": 53, + "id": "c49b53cd", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T04:07:15.833288Z", - "start_time": "2024-04-10T04:07:15.787409Z" + "end_time": "2024-04-10T12:37:27.663173Z", + "start_time": "2024-04-10T12:37:27.618292Z" } }, "outputs": [], @@ -51,35 +60,346 @@ }, { "cell_type": "code", - "execution_count": 7, - "id": "edb2ad9c", + "execution_count": 123, + "id": "baa1e06a", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T04:13:23.133408Z", - "start_time": "2024-04-10T04:13:23.083499Z" + "end_time": "2024-04-10T12:56:54.870854Z", + "start_time": "2024-04-10T12:56:54.764155Z" } }, "outputs": [], "source": [ - "from palin.simulation.simple_experiment import SimpleExperiment as Exp\n", + "from palin.simulation.simple_experiment import SimpleExperiment\n", + "from palin.simulation.double_pass_experiment import DoublePassExperiment\n", "from palin.simulation.trial import Int2Trial, Int1Trial \n", - "from palin.simulation.linear_observer import LinearObserver as Obs\n", - "from palin.simulation.kernel_distance import KernelDistance as Analyser\n", + "from palin.simulation.linear_observer import LinearObserver\n", + "from palin.simulation.kernel_distance import KernelDistance\n", + "from palin.simulation.internal_noise_value import InternalNoiseValue\n", + "from palin.simulation.double_pass_statistics import DoublePassStatistics\n", "from palin.kernels.classification_images import ClassificationImage\n", + "from palin.internal_noise.double_pass import DoublePass\n", "from palin.simulation.simulation import Simulation as Sim" ] }, + { + "cell_type": "markdown", + "id": "fa2978b0", + "metadata": {}, + "source": [ + "## Simulate with internal noise" + ] + }, + { + "cell_type": "markdown", + "id": "bd21029c", + "metadata": {}, + "source": [ + "Single run" + ] + }, { "cell_type": "code", - "execution_count": 14, - "id": "a860c359", + "execution_count": 122, + "id": "2b2b91ae", "metadata": { "ExecuteTime": { - "end_time": "2024-04-09T16:49:31.299979Z", - "start_time": "2024-04-09T16:49:31.293995Z" + "end_time": "2024-04-10T12:42:09.804159Z", + "start_time": "2024-04-10T12:42:09.665497Z" } }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "E:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:43: FutureWarning: Index.ravel returning ndarray is deprecated; in a future version this will return a view on self.\n", + " pass_count_df.columns = [\"_\".join(x) for x in pass_count_df.columns.ravel()]\n" + ] + }, + { + "data": { + "text/plain": [ + "0.24" + ] + }, + "execution_count": 122, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# single run: \n", + "exp = DoublePassExperiment(n_trials = 100, n_repeated=50,\n", + " trial_type = Int2Trial, \n", + " n_features = 5, \n", + " external_noise_std = 100)\n", + "obs = Obs.with_random_kernel(n_features = exp.n_features, \n", + " internal_noise_std = 0, \n", + " criteria = 1)\n", + "responses = obs.respond_to_experiment(exp)\n", + "ana = InternalNoiseValue(internal_noise_extractor = DoublePass)\n", + "ana.analyse(exp, obs, responses)" + ] + }, + { + "cell_type": "markdown", + "id": "6396b632", + "metadata": {}, + "source": [ + "Simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "21b866b8", + "metadata": { + "ExecuteTime": { + "start_time": "2024-04-11T04:20:32.079Z" + }, + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Running 1 configs\n", + "{'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 100, 'kernel': [1], 'internal_noise_std': 0, 'criteria': 0, 'internal_noise_extractor': , 'model_file': 'model_11_04_2024.csv', 'rebuild_model': False, 'internal_noise_range': array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. , 1.1, 1.2,\n", + " 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1, 2.2, 2.3, 2.4, 2.5,\n", + " 2.6, 2.7, 2.8, 2.9, 3. , 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,\n", + " 3.9, 4. , 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5. ]), 'criteria_range': array([-5.00000000e+00, -4.90000000e+00, -4.80000000e+00, -4.70000000e+00,\n", + " -4.60000000e+00, -4.50000000e+00, -4.40000000e+00, -4.30000000e+00,\n", + " -4.20000000e+00, -4.10000000e+00, -4.00000000e+00, -3.90000000e+00,\n", + " -3.80000000e+00, -3.70000000e+00, -3.60000000e+00, -3.50000000e+00,\n", + " -3.40000000e+00, -3.30000000e+00, -3.20000000e+00, -3.10000000e+00,\n", + " -3.00000000e+00, -2.90000000e+00, -2.80000000e+00, -2.70000000e+00,\n", + " -2.60000000e+00, -2.50000000e+00, -2.40000000e+00, -2.30000000e+00,\n", + " -2.20000000e+00, -2.10000000e+00, -2.00000000e+00, -1.90000000e+00,\n", + " -1.80000000e+00, -1.70000000e+00, -1.60000000e+00, -1.50000000e+00,\n", + " -1.40000000e+00, -1.30000000e+00, -1.20000000e+00, -1.10000000e+00,\n", + " -1.00000000e+00, -9.00000000e-01, -8.00000000e-01, -7.00000000e-01,\n", + " -6.00000000e-01, -5.00000000e-01, -4.00000000e-01, -3.00000000e-01,\n", + " -2.00000000e-01, -1.00000000e-01, -1.77635684e-14, 1.00000000e-01,\n", + " 2.00000000e-01, 3.00000000e-01, 4.00000000e-01, 5.00000000e-01,\n", + " 6.00000000e-01, 7.00000000e-01, 8.00000000e-01, 9.00000000e-01,\n", + " 1.00000000e+00, 1.10000000e+00, 1.20000000e+00, 1.30000000e+00,\n", + " 1.40000000e+00, 1.50000000e+00, 1.60000000e+00, 1.70000000e+00,\n", + " 1.80000000e+00, 1.90000000e+00, 2.00000000e+00, 2.10000000e+00,\n", + " 2.20000000e+00, 2.30000000e+00, 2.40000000e+00, 2.50000000e+00,\n", + " 2.60000000e+00, 2.70000000e+00, 2.80000000e+00, 2.90000000e+00,\n", + " 3.00000000e+00, 3.10000000e+00, 3.20000000e+00, 3.30000000e+00,\n", + " 3.40000000e+00, 3.50000000e+00, 3.60000000e+00, 3.70000000e+00,\n", + " 3.80000000e+00, 3.90000000e+00, 4.00000000e+00, 4.10000000e+00,\n", + " 4.20000000e+00, 4.30000000e+00, 4.40000000e+00, 4.50000000e+00,\n", + " 4.60000000e+00, 4.70000000e+00, 4.80000000e+00, 4.90000000e+00])}\n", + ".Rebuilding double-pass model\n" + ] + } + ], + "source": [ + "observer_params = {'kernel':[[1]],\n", + " 'internal_noise_std':[0], \n", + " 'criteria':[0]}\n", + "experiment_params = {'n_trials':[1000],#np.arange(1,1000,100),\n", + " 'n_repeated':[1000],\n", + " 'trial_type': [Int2Trial],\n", + " 'n_features': [1],\n", + " 'external_noise_std': [100]}\n", + "analyser_params = {'internal_noise_extractor':[DoublePass], \n", + " 'model_file': ['model_11_04_2024.csv'], \n", + " 'rebuild_model': [False],\n", + " 'internal_noise_range':[np.arange(0,5.1,0.1)],\n", + " 'criteria_range':[np.arange(-5,5,0.1)]\n", + " }\n", + "\n", + "\n", + "sim = Sim(DoublePassExperiment, experiment_params, \n", + " LinearObserver, observer_params, \n", + " InternalNoiseValue, analyser_params)\n", + "sim_df = sim.run_all(n_runs=1)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 177, + "id": "0264e72a", + "metadata": { + "ExecuteTime": { + "end_time": "2024-04-11T04:11:28.822698Z", + "start_time": "2024-04-11T04:11:28.763833Z" + } + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
n_trialsn_repeatedtrial_typen_featuresexternal_noise_stdkernelinternal_noise_stdcriteriainternal_noise_extractormodel_filerunmetric
010001000<class 'palin.simulation.trial.Int2Trial'>1100[1]0-1<class 'palin.internal_noise.double_pass.Doubl...model.csv00.0
110001000<class 'palin.simulation.trial.Int2Trial'>1100[1]01<class 'palin.internal_noise.double_pass.Doubl...model.csv00.0
210001000<class 'palin.simulation.trial.Int2Trial'>1100[1]1-1<class 'palin.internal_noise.double_pass.Doubl...model.csv01.0
310001000<class 'palin.simulation.trial.Int2Trial'>1100[1]11<class 'palin.internal_noise.double_pass.Doubl...model.csv00.7
\n", + "
" + ], + "text/plain": [ + " n_trials n_repeated trial_type \\\n", + "0 1000 1000 \n", + "1 1000 1000 \n", + "2 1000 1000 \n", + "3 1000 1000 \n", + "\n", + " n_features external_noise_std kernel internal_noise_std criteria \\\n", + "0 1 100 [1] 0 -1 \n", + "1 1 100 [1] 0 1 \n", + "2 1 100 [1] 1 -1 \n", + "3 1 100 [1] 1 1 \n", + "\n", + " internal_noise_extractor model_file run metric \n", + "0 \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
n_trialsn_repeatedtrial_typen_featuresexternal_noise_stdkernelinternal_noise_stdcriteriasamplemetricdistprob_agreeprob_first
010050<class 'palin.simulation.trial.Int2Trial'>1100[1]0.0-50(1.0, 1.0)0.29000.80.5
110050<class 'palin.simulation.trial.Int2Trial'>1100[1]0.0-40(1.0, 1.0)0.29000.80.5
210050<class 'palin.simulation.trial.Int2Trial'>1100[1]0.0-30(1.0, 1.0)0.29000.80.5
310050<class 'palin.simulation.trial.Int2Trial'>1100[1]0.0-20(1.0, 0.88)0.18440.80.5
410050<class 'palin.simulation.trial.Int2Trial'>1100[1]0.0-10(1.0, 0.68)0.07240.80.5
..........................................
49510050<class 'palin.simulation.trial.Int2Trial'>1100[1]4.900(0.56, 0.5)0.05760.80.5
49610050<class 'palin.simulation.trial.Int2Trial'>1100[1]4.910(0.56, 0.34)0.08320.80.5
49710050<class 'palin.simulation.trial.Int2Trial'>1100[1]4.920(0.54, 0.41)0.07570.80.5
49810050<class 'palin.simulation.trial.Int2Trial'>1100[1]4.930(0.62, 0.23)0.10530.80.5
49910050<class 'palin.simulation.trial.Int2Trial'>1100[1]4.940(0.72, 0.16)0.12200.80.5
\n", + "

500 rows × 13 columns

\n", + "" + ], + "text/plain": [ + " n_trials n_repeated trial_type \\\n", + "0 100 50 \n", + "1 100 50 \n", + "2 100 50 \n", + "3 100 50 \n", + "4 100 50 \n", + ".. ... ... ... \n", + "495 100 50 \n", + "496 100 50 \n", + "497 100 50 \n", + "498 100 50 \n", + "499 100 50 \n", + "\n", + " n_features external_noise_std kernel internal_noise_std criteria \\\n", + "0 1 100 [1] 0.0 -5 \n", + "1 1 100 [1] 0.0 -4 \n", + "2 1 100 [1] 0.0 -3 \n", + "3 1 100 [1] 0.0 -2 \n", + "4 1 100 [1] 0.0 -1 \n", + ".. ... ... ... ... ... \n", + "495 1 100 [1] 4.9 0 \n", + "496 1 100 [1] 4.9 1 \n", + "497 1 100 [1] 4.9 2 \n", + "498 1 100 [1] 4.9 3 \n", + "499 1 100 [1] 4.9 4 \n", + "\n", + " sample metric dist prob_agree prob_first \n", + "0 0 (1.0, 1.0) 0.2900 0.8 0.5 \n", + "1 0 (1.0, 1.0) 0.2900 0.8 0.5 \n", + "2 0 (1.0, 1.0) 0.2900 0.8 0.5 \n", + "3 0 (1.0, 0.88) 0.1844 0.8 0.5 \n", + "4 0 (1.0, 0.68) 0.0724 0.8 0.5 \n", + ".. ... ... ... ... ... \n", + "495 0 (0.56, 0.5) 0.0576 0.8 0.5 \n", + "496 0 (0.56, 0.34) 0.0832 0.8 0.5 \n", + "497 0 (0.54, 0.41) 0.0757 0.8 0.5 \n", + "498 0 (0.62, 0.23) 0.1053 0.8 0.5 \n", + "499 0 (0.72, 0.16) 0.1220 0.8 0.5 \n", + "\n", + "[500 rows x 13 columns]" + ] + }, + "execution_count": 147, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim_df" + ] + }, { "cell_type": "code", "execution_count": 17, - "id": "59b42cc5", + "id": "5f7ad1b1", "metadata": { "ExecuteTime": { "end_time": "2024-04-10T04:42:50.935778Z", @@ -194,199 +795,253 @@ }, { "cell_type": "code", - "execution_count": 74, - "id": "1d2dda2d", + "execution_count": 168, + "id": "ea12e662", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T05:45:07.904380Z", - "start_time": "2024-04-10T05:45:07.847512Z" - } - }, - "outputs": [], - "source": [ - "def index_double_pass_trials(data_df, trial_id='trial',double_pass_id='double_pass_id',value_id='stim_parameter_id'):\n", - " \n", - " # represent the several values of a given trial (ex. 6 features for interval 1, 6 features for interval 2) as a frozenset\n", - " frozen_set_df = data_df.groupby(trial_id).agg({value_id: lambda group: tuple(group)}).reset_index()\n", - "\n", - " # count how many trials have each unique pair of stimuli\n", - " pass_count_df = frozen_set_df.groupby(value_id).agg({trial_id: ['nunique','first','last']})\n", - " pass_count_df.columns = [\"_\".join(x) for x in pass_count_df.columns.ravel()]\n", - " pass_count_df = pass_count_df.reset_index()\n", - "\n", - " # identify pairs of stimuli that have 2 trials (i.e. for which there has been a double pass)\n", - " double_pass_df = pass_count_df[pass_count_df['%s_nunique'%trial_id]==2].reset_index(drop=True)\n", - " \n", - " # assign unique id\n", - " double_pass_df[double_pass_id] = double_pass_df.index\n", - "\n", - " # join to base dataset\n", - " double_pass_df = double_pass_df.melt(id_vars=double_pass_id, \n", - " value_vars=['%s_first'%trial_id,'%s_last'%trial_id], \n", - " var_name='%s_type'%trial_id, \n", - " value_name=trial_id)\n", - " data_df= pd.merge(data_df, double_pass_df[[trial_id, double_pass_id]], \n", - " how=\"left\", on=trial_id)\n", - " return data_df " - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "id": "6cf44e37", - "metadata": { - "ExecuteTime": { - "end_time": "2024-04-10T05:45:08.457461Z", - "start_time": "2024-04-10T05:45:08.403620Z" - } - }, - "outputs": [], - "source": [ - "def compute_prob_agreement(data_df, trial_id='trial', response_id='response', order_id='stim_order', double_pass_id='double_pass_id'):\n", - " # computes the probability of agreement between two responses to a repeated stimuli on the double pass trials \n", - "\n", - " def same_answer(group, trial_id, response_id): \n", - " d = group.groupby(trial_id).agg({response_id: lambda group: tuple(group)}).reset_index()\n", - " return d.response.nunique()==1\n", - " \n", - " # compute agreements for each double_pass trial\n", - " agrees = data_df.groupby(double_pass_id).apply(lambda group: same_answer(group, trial_id, response_id))\n", - " \n", - " # return agreement probability\n", - " return agrees.sum()/len(agrees)" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "id": "99e19273", - "metadata": { - "ExecuteTime": { - "end_time": "2024-04-10T06:12:08.125017Z", - "start_time": "2024-04-10T06:12:08.066174Z" + "end_time": "2024-04-11T04:08:49.331441Z", + "start_time": "2024-04-11T04:08:49.277585Z" } }, "outputs": [ { "data": { "text/plain": [ - "0" + "['subj',\n", + " 'trial',\n", + " 'block',\n", + " 'date',\n", + " 'stim',\n", + " 'stim_order',\n", + " 'response',\n", + " 'rt',\n", + " 'age',\n", + " 'sex',\n", + " 'param_index',\n", + " 'segment_time',\n", + " 'pitch']" ] }, - "execution_count": 79, + "execution_count": 168, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data_df.trial.iloc[0]" + "list(data_df)" ] }, { "cell_type": "code", - "execution_count": 89, - "id": "0712267b", + "execution_count": 174, + "id": "be5177b7", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T06:14:59.604305Z", - "start_time": "2024-04-10T06:14:59.550411Z" + "end_time": "2024-04-11T04:10:11.894810Z", + "start_time": "2024-04-11T04:10:11.830804Z" } }, "outputs": [], "source": [ - "def compute_prob_interval1(data_df, trial_id='trial', response_id='response', stim_id='stim_order', double_pass_id='double_pass_id', p_int_1_identifier = 'p_int1'):\n", - " ''' Computes probability that each subject defined unique in session_identifiers responds true to the first interval, i.e. to the stimulus in each trial identified by order_identifier = 0\n", - " This computes p_int1 only on the subset of repeated trials, and assumes that the dataset already has a column (e.g. double_pass_id) identifying repeated trials. Use utils.index_double_pass_trials to create that column if doesn't exist. \n", - " '''\n", + "data_df = pd.read_csv('../data/pitch_interrogation/results_subj_20111971.csv')\n", + "\n", + "\n", + "set_df = data_df.groupby('trial').agg({'pitch': lambda group: tuple(group)}).reset_index()\n", + "\n", + "# count how many trials have each unique pair of stimuli\n", + "pass_count_df = set_df.groupby('pitch').agg({'trial': ['nunique','first','last']})\n", + "pass_count_df.columns = [\"_\".join(x) for x in pass_count_df.columns]\n", + "\n", "\n", - " def first_answer(group, stim_id, response_id): \n", - " resp = group.sort_values(by=stim_id)[response_id].iloc[0]\n", - " return resp==1\n", - " \n", - " # compute agreements for each double_pass trial\n", - " firsts = data_df[data_df[double_pass_id].notna()].groupby(trial_id).apply(lambda group: first_answer(group, stim_id, response_id))\n", - " \n", - " return firsts.sum()/len(firsts)" + "\n" ] }, { "cell_type": "code", - "execution_count": 90, - "id": "f93df38c", + "execution_count": 173, + "id": "e657a304", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T06:15:00.751582Z", - "start_time": "2024-04-10T06:15:00.656700Z" + "end_time": "2024-04-11T04:09:56.002651Z", + "start_time": "2024-04-11T04:09:55.949793Z" } }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\Aucouturier\\AppData\\Local\\Temp\\ipykernel_18576\\1815507022.py:8: FutureWarning: Index.ravel returning ndarray is deprecated; in a future version this will return a view on self.\n", - " pass_count_df.columns = [\"_\".join(x) for x in pass_count_df.columns.ravel()]\n" - ] - }, { "data": { "text/plain": [ - "0.5" + "['trial_nunique', 'trial_first', 'trial_last']" ] }, - "execution_count": 90, + "execution_count": 173, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "data_df = pd.read_csv('../data/pitch_interrogation/results_subj_20111971.csv')\n", - "data_df = index_double_pass_trials(data_df, trial_id='trial',double_pass_id='double_pass_id',value_id='pitch')\n", - "compute_prob_interval1(data_df, trial_id='trial', response_id='response', stim_id='stim_order', double_pass_id='double_pass_id') \n", - "\n", - "\n" + "[\"_\".join(x) for x in pass_count_df.columns]\n" ] }, { "cell_type": "code", - "execution_count": 70, - "id": "3df8cfe1", + "execution_count": 175, + "id": "c4826227", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T05:29:57.912823Z", - "start_time": "2024-04-10T05:29:57.802132Z" - }, - "scrolled": false + "end_time": "2024-04-11T04:10:14.250903Z", + "start_time": "2024-04-11T04:10:14.190027Z" + } }, "outputs": [ { "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
trial_nuniquetrial_firsttrial_last
pitch
(-140.284917, 56.043903, -2.142699, -41.999388, -69.522618, 29.697532, 40.565741, 23.45052, 102.584681, 38.2243, -16.427695, 7.421137, -9.369055, -89.176758)11818
(-135.344658, -76.172858, -130.999312, -146.306144, -78.266251, 30.254136, -114.179281, 102.170357, 20.715456, 81.972821, -125.018297, 103.374214, -81.704677, 85.109238)282132
(-133.8014, 34.189717, -145.714669, 1.717896, 99.036025, 56.473042, 113.578937, 126.187147, 44.969184, -108.017243, 6.480803, 89.811831, 60.034007, 63.317816)269119
(-133.486308, -51.704384, 123.73441, -122.063627, 105.373754, 42.489978, 65.5363, -67.009894, -124.385437, -32.338754, -145.840775, -6.786611, 89.278278, -47.823672)272122
(-132.910898, -40.348113, -144.469254, -148.365603, 29.209812, -68.789467, 116.539457, 102.52713, 114.03702, -45.723055, -109.210749, -29.266312, -77.798514, -133.179439)296146
............
(139.821339, -90.088416, -144.376143, -83.117215, -15.266959, -78.645111, 18.56671, 123.541183, -79.641893, -129.036775, -12.372422, 47.099802, 133.796504, 125.051187)13131
(141.243943, -34.322435, 10.018864, -24.066951, 45.502655, 107.276086, 58.11038, 46.973159, -61.71182, 14.836428, 30.862549, 28.459321, 2.114815, 86.651936)11111
(143.598511, 23.645136, -118.740497, -109.046436, 66.022521, -13.059175, 22.70066, 69.316576, -9.39536, -16.21002, 5.282415, -92.031474, -71.382142, -144.168558)280130
(144.813706, 36.420023, -15.581887, -108.080315, 44.82704, -140.857646, -19.601185, -95.161618, -119.152564, 18.051976, -26.870716, 87.472746, -56.607347, 148.066508)13333
(147.824484, -35.75356, -17.671801, 145.037411, 17.430899, -34.827913, -148.430397, 20.473057, -103.427341, -58.67029, -88.181786, -145.892431, -121.19713, 3.215116)12626
\n", + "

100 rows × 3 columns

\n", + "
" + ], "text/plain": [ - "0.72" + " trial_nunique \\\n", + "pitch \n", + "(-140.284917, 56.043903, -2.142699, -41.999388,... 1 \n", + "(-135.344658, -76.172858, -130.999312, -146.306... 2 \n", + "(-133.8014, 34.189717, -145.714669, 1.717896, 9... 2 \n", + "(-133.486308, -51.704384, 123.73441, -122.06362... 2 \n", + "(-132.910898, -40.348113, -144.469254, -148.365... 2 \n", + "... ... \n", + "(139.821339, -90.088416, -144.376143, -83.11721... 1 \n", + "(141.243943, -34.322435, 10.018864, -24.066951,... 1 \n", + "(143.598511, 23.645136, -118.740497, -109.04643... 2 \n", + "(144.813706, 36.420023, -15.581887, -108.080315... 1 \n", + "(147.824484, -35.75356, -17.671801, 145.037411,... 1 \n", + "\n", + " trial_first trial_last \n", + "pitch \n", + "(-140.284917, 56.043903, -2.142699, -41.999388,... 18 18 \n", + "(-135.344658, -76.172858, -130.999312, -146.306... 82 132 \n", + "(-133.8014, 34.189717, -145.714669, 1.717896, 9... 69 119 \n", + "(-133.486308, -51.704384, 123.73441, -122.06362... 72 122 \n", + "(-132.910898, -40.348113, -144.469254, -148.365... 96 146 \n", + "... ... ... \n", + "(139.821339, -90.088416, -144.376143, -83.11721... 31 31 \n", + "(141.243943, -34.322435, 10.018864, -24.066951,... 11 11 \n", + "(143.598511, 23.645136, -118.740497, -109.04643... 80 130 \n", + "(144.813706, 36.420023, -15.581887, -108.080315... 33 33 \n", + "(147.824484, -35.75356, -17.671801, 145.037411,... 26 26 \n", + "\n", + "[100 rows x 3 columns]" ] }, - "execution_count": 70, + "execution_count": 175, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "def same_answer(group, trial_id='trial', response_id='response'):\n", - " \n", - " d = group.groupby(trial_id).agg({response_id: lambda group: tuple(group)}).reset_index()\n", - " return d.response.nunique()==1\n", - " \n", - "\n", - "d = data_df.groupby('double_pass_id').apply(lambda group: same_answer(group))\n", - "d.sum()/len(d)\n", - "\n", - "\n" + "pass_count_df" ] }, { "cell_type": "code", "execution_count": null, - "id": "612dc5a9", + "id": "cca19c67", "metadata": {}, "outputs": [], "source": [] From 63f20836155a4ef4f8ab12b6100b9e7282bf28fb Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Mon, 22 Apr 2024 16:12:53 +0200 Subject: [PATCH 15/17] latest batch --- python/palin/internal_noise/double_pass.py | 46 +++++++--- .../__pycache__/simulation.cpython-38.pyc | Bin 2501 -> 4944 bytes python/palin/simulation/analyser.py | 4 + .../simulation/double_pass_statistics.py | 3 + python/palin/simulation/experiment.py | 7 ++ .../palin/simulation/internal_noise_value.py | 11 +-- python/palin/simulation/kernel_distance.py | 3 + python/palin/simulation/simulation.py | 84 +++++++++++++++--- 8 files changed, 130 insertions(+), 28 deletions(-) diff --git a/python/palin/internal_noise/double_pass.py b/python/palin/internal_noise/double_pass.py index f3c62ff..6fdec7a 100644 --- a/python/palin/internal_noise/double_pass.py +++ b/python/palin/internal_noise/double_pass.py @@ -23,12 +23,19 @@ class DoublePass(InternalNoiseExtractor): + ''' + This class provides methods to estimate internal noise and criteria from reverse correlation data, provided the data has double pass trials. + Internal noise and criteria are computed using the Ponsot/Neri double-pass simulation method, by first computing prob_agree and prob_first from double-pass data, + and then simulating an ideal observer with a range of internal noise and criteria values to find what duplet of values generates prob_agree and prob_first that are closest to those observed in the actual data. + ''' @classmethod def extract_single_internal_noise(cls,data_df, trial_id, stim_id, feature_id, value_id, response_id, model_file, rebuild_model=False, internal_noise_range=np.arange(0,5,.1),criteria_range=np.arange(-5,5,1), n_repeated_trials=100, n_runs=10): - + ''' + Extracts internal noise and criteria for a single observer/session. + To extract for several users/sessions, use the superclass's method extract_internal_noise + ''' double_pass_id = 'double_pass_id' # column by which to identify double pass trials - # index double pass trials data_df = cls.index_double_pass_trials(data_df, trial_id=trial_id, value_id = value_id, double_pass_id = double_pass_id) # compute probability of agreement over double pass @@ -45,7 +52,10 @@ def __str__(self): @classmethod def index_double_pass_trials(cls, data_df, trial_id='trial',double_pass_id='double_pass_id',value_id='value'): - + ''' + Runs over data by a single user, identifies any repeated trials based on the set of their values, and tags them with a column called double_pass_id. + At the end of the procedure, data-df[double_pass_id].max() is the total number of repeated trials found in the data. + ''' # represent the several values of a given trial (ex. 6 features for interval 1, 6 features for interval 2) as a tuple set_df = data_df.groupby(trial_id).agg({value_id: lambda group: tuple(group)}).reset_index() @@ -72,8 +82,9 @@ def index_double_pass_trials(cls, data_df, trial_id='trial',double_pass_id='doub @classmethod def compute_prob_agreement(cls,data_df, trial_id='trial', response_id='response', double_pass_id='double_pass_id'): - # computes the probability of agreement between two responses to a repeated stimuli on the double pass trials - + ''' + Computes the probability of giving the same response over all pairs of repeated trials (as identified by double_pass_id, see index_double_pass_trials) + ''' # compute agreements for each double_pass trial def same_answer(group, trial_id, response_id): d = group.groupby(trial_id).agg({response_id: lambda group: tuple(group)}).reset_index() @@ -85,7 +96,9 @@ def same_answer(group, trial_id, response_id): @classmethod def compute_prob_first(cls, data_df, trial_id='trial', response_id='response', stim_id='stim_order', double_pass_id='double_pass_id'): - # Computes probability that responds true to the first interval across the subset of double_pass trialslumn (e.g. double_pass_id) identifying repeated trials. Use utils.index_double_pass_trials to create that column if doesn't exist. + ''' + Computes probability to choose the first response option (i.e. a measure of response bias) across the subset of double_pass trials + ''' # compute first response for each double_pass trial def first_option(group, stim_id, response_id): @@ -97,7 +110,11 @@ def first_option(group, stim_id, response_id): @classmethod def estimate_noise_criteria(cls,prob_agree, prob_first, model_file,rebuild_model=False, internal_noise_range=np.arange(0,5,.1),criteria_range=np.arange(-5,5,1), n_repeated_trials=100, n_runs=10): - + ''' + Estimates internal noise and criteria given a measure of prob_agree and prob_first. + Either uses a prebuilt model (a dataframe previously generated by @build_model and stored as a .csv file), or rebuild a new model. + Searches through a range of possible internal noise and criteria values + ''' # load model or rebuild if os.path.isfile(model_file) & ~rebuild_model: model_df = pd.read_csv(model_file, index_col=0) @@ -106,8 +123,7 @@ def estimate_noise_criteria(cls,prob_agree, prob_first, model_file,rebuild_model model_df.to_csv(model_file) # find internal_noise & criteria settings that minimizes distance to prob_agree and prob_first - - model_df['dist'] = model_df.apply(lambda row: (ast.literal_eval(row.metric)[0]-prob_agree)**2 + (ast.literal_eval(row.metric)[1]-prob_first)**2, axis=1) + model_df['dist'] = model_df.apply(lambda row: (row.prob_agree-prob_agree)**2 + (row.prob_first-prob_first)**2, axis=1) best_match = model_df[model_df.dist==model_df.dist.min()] @@ -115,7 +131,10 @@ def estimate_noise_criteria(cls,prob_agree, prob_first, model_file,rebuild_model @classmethod def build_model(cls,internal_noise_range=np.arange(0,5,.1),criteria_range=np.arange(-5,5,1), n_repeated_trials=100, n_runs=10): - + ''' + Build a model that associates a range of internal noise and criteria values with their corresponding (simulated) prob_agree and prob_first. + This uses a simulated LinearObserver, and returns the model as a dataframe + ''' print('Rebuilding double-pass model') observer_params = {'kernel':[[1]], @@ -131,6 +150,11 @@ def build_model(cls,internal_noise_range=np.arange(0,5,.1),criteria_range=np.ara sim = Sim(DoublePassExperiment, experiment_params, LinearObserver, observer_params, DoublePassStatistics, analyser_params) - return sim.run_all(n_runs=n_runs, verbose=False) + + sim_df = sim.run_all(n_runs=n_runs, verbose=True) + + # average measures over all runs + sim_df.groupby(['internal_noise_std','criteria'])[DoublePassStatistics.get_metric_names()].mean() + return sim_df \ No newline at end of file diff --git a/python/palin/simulation/__pycache__/simulation.cpython-38.pyc b/python/palin/simulation/__pycache__/simulation.cpython-38.pyc index 08fb3cd1da29ab8b257603a405757e8d614ef581..1db8caf2783210af54ba6e2e1344e1c9199434d0 100644 GIT binary patch literal 4944 zcmb_gPjB4D73Yv#?jNmW#X)4JDNr^@AT6-i$S!)QExSrAy9rXrh3z!OS^`Uvvl3-4 zxgK(DOXZ$qpy{CoiuMCYNB7(>(GSqeTyx4-$f>_KB$t%zra)1yI2^tizIlItZ$@7& zE_O6rPyTsjB;V7tZ|S9enRwa6o%|k+ulX$0#%##O`cP-|u7}3ZP)~E%P)}>v^bOw( zTjTbyjX8$j2s`72;ezU0VRyVZTx8m>G{5P$UTS`evlC;u9B^Mi7e%tSW()1S~*`n+`493&YO@lac6G+mr zaoq{sB(c*2H?@QDB;+JVV!L)SpWC;C0Uv-Q+-RTM@u(c*zP(v0Qm_y_nZ%KAr?I_R z=>>kEJwJ#OZezwYq!k1QRq2YMAU(jFy;*8MP_k9>=JSInNCP*;y6OW@i5|IQp4e-A zus^Wz0aU0K?%Tf(BJPS(%D(+27ZDG)f+Te#kN1>dHO(fj0K1fnLLZVcjN=KGbUhKn zQqK=~WQ%Duu$71pYU&7{PQl%`g9z4|KxfzX-P9cs&wRSqg!9Ua`VHK7a3{CXWGvGh zEi=%vtbta~bhJihqBS!MEvTn>9%9ZRsE3U+n%(pnJgmF_vI?(~XTMO^3WH-9nk-Ye z{!QD#`BCM3yKcVHaLP`lbNcG-qN#j7f~^rr-1dXfhzkUg?Zwe3*iXnJ&kq9cKn+)+ zWd})a%iKC7^;d`=qD4Wp54m#&eLDv0xJVj`A&N5iC{_b}opr zBKkz(Nm~4Ca&8`Fup3E0>QwUfZSF#eD)2}F_d(3WZ*>k|2GZC=L?tBq(>`XVqlK5+L!Zm*?BlfZMs@Ca*%$j}~X{!D$}FT&@Cf((9CDM^;N`@$t8 zxKYK`MMZDfe^||RS-tUi70~9#YIvTJemvu3_!oN_5L;d^)Rti6~pVhv-!$Z zES4svl_DpFRl?*PuWR77P7K$<&&C|VC!F97vp^)8`pSV}`05S&@fT5g{Soom?a$XE zZRZzwjKE=vIHCDJCl>t0MNiQX@vnp~Q=u;M1w()h6|z`BxUF~!hy4bDPYaA=pNGyU z2$hWa>%dE%t=1Mm3fZ>^gx0EW>p1g<)!wGye~I0Guu7`r2~e-Yj1$-RH%xM5?F>fiWJq;R7^SGAlKhkd0J!>(mQ?50d?zx!L{|9 zDsw9j6rW$CF|3ydZm-JdIzktKI7cW#`$C`s+wI(tc8VQNp>)CtY|`_4fdrw2(mBTo zn7Ibb+r5_TR3ge&sjF<2-jwfD zB$sR46`G1JDz;pjuaFZL6>+{wPFw=Gjgi}#6f19fPe$TpRuG>*eWHYXzXr(W7?igz$W`CE{G1sPs;;F>au zm@looQ01cjm}Zf@;u4x);7-&bMK{?J>#}8b{J{^1`^Y2jlvf)aGUXlI$v@C!x>!kZ zj)8BqLzr;|9$+x=%t&ch2nzi8az~$;@TD$3hsn*%Jb~A)P_J>quBb2426mF{jAnm6 zvoLc6t~mGjjX&dLlr>J9XWFcpHBVcI*+9~v$l#GL4dngz>?Tetjfntw zNh9Qupm3LM9$}|Mxhf5us-zxGq?MOtX?pSGNc;rTM33fL?qovj^ocLqTiAo&qdj=9 ztvo5M9Ft@dC$K#nN~DQZ6NEtI^B1yP2Y{Si6XU4PhzT@we97HR37vs(ChO`gJUjSx@z!C-mun$F{PDR*c~f2#Wpq4Hsrq+xs^rVqsdlDP zZ>B3M4uLOQHL9Vg<^`(xjdsXJ2%uMN)<9oJ-$36&-$36)znNL52$I6Z4TL}&uC{O- zvEXiF)&XEFq|L0Ibxw4I&N2e6J6p^avxTg?p*{UuMu*MDc{m^yC{q<2*yscV2Uqba zo9P(<;ZS>G357#{t$_klIrrKSgdmbV5g*|Bn&s(O8NahZ(4jElF(xD}G!}jx!i5jd zTe$`W^N-FU*Z(Z4LWWydS`aW*kR>+px`X?iT>qanDMZA7T66c}n!T2==>tL(L3kt< z(8%|St%{SzPF3V2Dr4&41R?^@QDeCRfH+&`Ut@JKU=NXvPY| zPwyi8x_XCl(V*-^9xk1aknJ9Ogxv;8EotpIvg0_|;!Z>AcOB>H)D4S~rsMdr=Q!dD zi9}E@HmISMYX~uqR6&tR)>qY_#Z0T!YqdKoir%{fmG?YB5FjWD#ZS>lOZ^`q5kI4s u1`rT9_X&+E2NFKy{-hG2{3)o!D~@jyLAEw>Wo}csR$GW=)>6ORH2((Fl5uApp6rYd%zV-TS;6#Y6oQyy|84w6Ch*%aVr+_Gkghjzg5n65*dy~DrWp)n) zT4N!*MT#|PBBi*i5=)Vb^r;X%Wi)>PN|!z~ytivUig2U*?acf5y*IykuTQ=@6x^Ab z@(BEfzqB6w?(PP2bY*vGsdb$QE{q)_jEHXYo+H>A>6p7e&F}ubxGdNX>G8;@L$+zp z6b)esdx!Qc;RqMJw(uaq*WOw@7$sp54^y?z?wSOwRK0PZFGv%rN(aG0a1m?->}QY2 zK>gv}oW_7W03h6=7FA~BFB+(qjfEB({UKYx5kZUTm^(ah6Q7$X8Bkvhy19o`ID{Z*i_s<8|3HJ95+J9F6`tw^Q z`GIxG_Zyo=$>iCBl*Trtq~K$tq!S9BtD7cxZWTl@6zc_}q$FdrG$wS@Dvhx+s=VrA(CYbhj zB>4&`@-_gW2AyRF_2BE!0MLiML!0W)U@^d#!%5-r&!4G(g2xVORXP){)O7bU5_f3z z%6nWMf|I5{%ER#8qg9)A{ew9Xalf9EWi{Q*PaGsy({T|}es|*_ z630P)E)t`2oDvI`M;Pf?@(WC;CcPSRTdmG~Ib(-um^{g&j$3zlPCcJlKV8?YI>2r# zDbFKi6M*m*g~faj$7dc>*JiJ5N%ZJOKMC_3-gsjus=<{Pz+9z&qW#B98Q{fcs@Zm! zGsURqdWR+2JFe#8{k~+#fRf8&0NTpJRD`)ag$FYo4PZbP$uhVx>Hn%|XJs%Hqa<3T N5K*bpgg1r7-T^=v?^*x= diff --git a/python/palin/simulation/analyser.py b/python/palin/simulation/analyser.py index 5b1c7e6..50a5cd3 100644 --- a/python/palin/simulation/analyser.py +++ b/python/palin/simulation/analyser.py @@ -9,6 +9,10 @@ class Analyser(ABC): def analyse(self,experiment, participant, participant_responses): raise NotImplementedError() + @abstractmethod + def get_metric_names(self): + raise NotImplementedError() + @classmethod def to_df(csl, experiment, responses): diff --git a/python/palin/simulation/double_pass_statistics.py b/python/palin/simulation/double_pass_statistics.py index b3e1f08..677f97b 100644 --- a/python/palin/simulation/double_pass_statistics.py +++ b/python/palin/simulation/double_pass_statistics.py @@ -4,6 +4,9 @@ class DoublePassStatistics(Analyser): + def get_metric_names(self): + return ['prob_agree', 'prob_first'] + def analyse(self, experiment, participant, participant_responses): responses_df = self.to_df(experiment, participant_responses) diff --git a/python/palin/simulation/experiment.py b/python/palin/simulation/experiment.py index 002db6f..b719b49 100644 --- a/python/palin/simulation/experiment.py +++ b/python/palin/simulation/experiment.py @@ -1,9 +1,16 @@ from abc import ABC, abstractmethod class Experiment(ABC): + ''' + Abstract class that represents a simulated experimental paradigm, with trials that are then submitted to a simulated observer. + See e.g. @SimpleExperiment for a example of implementation + ''' # possibly yield next_trial(), if we want more abstraction ? @abstractmethod def generate_trials(self): + ''' + Generates the experiment's trials, to be called upon __init__() + ''' raise NotImplementedError() \ No newline at end of file diff --git a/python/palin/simulation/internal_noise_value.py b/python/palin/simulation/internal_noise_value.py index ecece73..dace51d 100644 --- a/python/palin/simulation/internal_noise_value.py +++ b/python/palin/simulation/internal_noise_value.py @@ -12,21 +12,22 @@ def __init__(self, internal_noise_extractor, model_file, rebuild_model = False, self.criteria_range = criteria_range self.n_repeated_trials = n_repeated_trials self.n_runs = n_runs + + def get_metric_names(self): + return ['estimated_internal_noise','estimated_criteria'] def analyse(self, experiment, participant, participant_responses): - #true_internal_noise = participant.internal_noise_std - - return self.estimate_internal_noise(experiment, participant_responses)[0] + return self.estimate_internal_noise(experiment, participant_responses) def estimate_internal_noise(self, experiment, participant_responses): responses_df = self.to_df(experiment, participant_responses) - internal_noise = self.internal_noise_extractor.extract_single_internal_noise(data_df = responses_df, + internal_noise, criteria = self.internal_noise_extractor.extract_single_internal_noise(data_df = responses_df, trial_id = 'trial', stim_id = 'stim', feature_id = 'feature', value_id = 'value', response_id = 'response', model_file = self.model_file, internal_noise_range=self.internal_noise_range, criteria_range=self.criteria_range, n_repeated_trials=self.n_repeated_trials, n_runs=self.n_runs) - return internal_noise + return internal_noise, criteria \ No newline at end of file diff --git a/python/palin/simulation/kernel_distance.py b/python/palin/simulation/kernel_distance.py index 0789e27..6140879 100644 --- a/python/palin/simulation/kernel_distance.py +++ b/python/palin/simulation/kernel_distance.py @@ -7,6 +7,9 @@ class KernelDistance(Analyser): def __init__(self, kernel_extractor, distance='CORR'): self.kernel_extractor = kernel_extractor self.distance = distance + + def get_metric_names(self): + return [distance.lower()] def analyse(self, experiment, participant, participant_responses): diff --git a/python/palin/simulation/simulation.py b/python/palin/simulation/simulation.py index e9e1960..d0cb543 100644 --- a/python/palin/simulation/simulation.py +++ b/python/palin/simulation/simulation.py @@ -2,15 +2,51 @@ import itertools import pandas as pd import numpy as np +from .observer import Observer +from .experiment import Experiment +from .analyser import Analyser class Simulation(ABC): + ''' + Class that implements a simulation, i.e. a range of simulated @Observers that respond to @Experiments and whose results are analysed with an @Analyser. + Simulations are initiated with class names (e.g. SimpleExperiment, LinearObserver, KernelDistance) and a range of parameters that are looped across when run. + Results are returned in a panda dataframe + ''' - def __init__(self, experiment, experiment_params, observer, observer_params, analyser, analyser_params): + def __init__(self, experiment_class, experiment_params, observer_class, observer_params, analyser_class, analyser_params): + ''' + Initialize a Simulation with class names than implement Experiment, Observer and Analyser, and parameters that define the different configs in which the simulation is run. + Upon running a config, one observer responds to one experiment, and their responses are analysed with one analyser. + When initializing the simulation, each class name is associated with a dictionary of parameters whose keys are the arguments of the __init__() method of the corresponding class name. + For instance, if observer_class is LinearObserver, observer_params should be a dictionary with keys kernel,internal_noise_std and criteria. + Values for each key should be an iterable (typically a list) of values, which define the different configs. + + Example: + observer_params = {'kernel':['random'],'internal_noise_std':[np.arange(0,10,1)],'criteria':[0]} + experiment_params = {'n_trials':[np.arange(1,1000,100)], 'n_repeated':[100], 'trial_type': [Int2Trial], + 'n_features': [5], 'external_noise_std': [100]} + analyser_params = {'internal_noise_extractor':[DoublePass], 'model_file': ['model.csv']} + sim = Sim(DoublePassExperiment, experiment_params, + LinearObserver, observer_params, + InternalNoiseValue, analyser_params) + sim.run_all(n_runs=1) + + will run a simulation where LinearObservers respond to DoublePassExperiments, and computes their InternalNoiseValue, + in 100 different configurations (observers with true internal noise values between 0..10; and experiments with 1..1000 trials). + Upon running, each of the configuration is run n_runs times, and separate results are stored for each run. + ''' + + if not issubclass(experiment_class,Experiment): + raise TypeError('argument experiment_class %s does not implement an Experiment') + self.experiment = experiment_class - # store simulation classes - self.experiment = experiment - self.observer = observer - self.analyser = analyser + if not issubclass(observer_class,Observer): + raise TypeError('argument observer_class %s does not implement an Observer') + self.observer = observer_class + + if not issubclass(analyser_class,Analyser): + raise TypeError('argument analyser_class %s does not implement an Analyser') + self.analyser = analyser_class # construct simulation plan self.experiment_params = experiment_params @@ -18,8 +54,11 @@ def __init__(self, experiment, experiment_params, observer, observer_params, ana self.analyser_params = analyser_params self.config_params = self.generate_configs(self.experiment_params,self.observer_params,self.analyser_params) - @classmethod - def generate_configs(cls, experiment_params, observer_params, analyser_params): + def generate_configs(self, experiment_params, observer_params, analyser_params): + ''' + Generates all combinations of parameters from the constructor's parameters. + Each of these combinations will be individual configs that the Simulation will then run. + ''' # construct simulation plan sim_params ={} for d in (experiment_params, observer_params, analyser_params): @@ -29,19 +68,26 @@ def generate_configs(cls, experiment_params, observer_params, analyser_params): def run_all(self, n_runs, verbose=True): + ''' + Run all configs stored in self.config_params. Each config is run n_runs times, and separate results are stored for each run. + Each run instanciates one Observer, one Experiment and one Analyser (see @run). + Results are returned into a dataframe; each row is a run, and columns store config parameters, run number and analyser results. + ''' if verbose: print("Running %d configs"%len(self.config_params)) runs = [] - for config_param in self.config_params: + for index, config_param in enumerate(self.config_params): if verbose: - print(config_param) + print(str(index) + " : " +str(config_param)) for run in np.arange(n_runs): if verbose: print('.',end='') - res = self.run(config_param) + # store run's config, run_number and results as a dict run_res = config_param.copy() - run_res.update({'run':run, 'metric':res}) + run_res.update({'run':run}) + results = self.run(config_param) + run_res.update(results) runs.append(run_res) if verbose: print(';') @@ -49,6 +95,12 @@ def run_all(self, n_runs, verbose=True): def run(self, config_param): + ''' + Perform individual run for a config defined by config_param. + Each run instanciates one Observer, one Experiment and one Analyser. + The observer responds to the experiment, and their responses are analysed with the analyser. + Results are then returned in a dictionary of metric_name:value pairs. + ''' # separate this run's parameters into distinct sets config_experiment_params = {k: v for k, v in config_param.items() if k in self.experiment_params} @@ -61,5 +113,13 @@ def run(self, config_param): responses = obs.respond_to_experiment(exp) - return ana.analyse(exp, obs, responses) + metrics = ana.get_metric_names() + values = ana.analyse(exp, obs, responses) + + # return the metrics as a dict of name:value pairs + results = {} + for metric,value in zip(metrics,values): + results[metric] = value + return results + From d09bc5830fbd336f09e331daa897dd66d85e0051 Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Mon, 22 Apr 2024 16:13:22 +0200 Subject: [PATCH 16/17] latest batch, cted --- python/sandbox.ipynb | 2466 +++++++++++++++++++++++++++++++++++++++--- 1 file changed, 2298 insertions(+), 168 deletions(-) diff --git a/python/sandbox.ipynb b/python/sandbox.ipynb index 8e60145..40c5f81 100644 --- a/python/sandbox.ipynb +++ b/python/sandbox.ipynb @@ -3,7 +3,7 @@ { "cell_type": "code", "execution_count": 51, - "id": "7de7295a", + "id": "87dd4fb9", "metadata": { "ExecuteTime": { "end_time": "2024-04-10T12:37:25.098785Z", @@ -28,7 +28,7 @@ { "cell_type": "code", "execution_count": 179, - "id": "e244d137", + "id": "ab35c09e", "metadata": { "ExecuteTime": { "end_time": "2024-04-11T04:19:40.595606Z", @@ -46,7 +46,7 @@ { "cell_type": "code", "execution_count": 53, - "id": "c49b53cd", + "id": "6a76823c", "metadata": { "ExecuteTime": { "end_time": "2024-04-10T12:37:27.663173Z", @@ -60,16 +60,17 @@ }, { "cell_type": "code", - "execution_count": 123, - "id": "baa1e06a", + "execution_count": 208, + "id": "29b09a91", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T12:56:54.870854Z", - "start_time": "2024-04-10T12:56:54.764155Z" + "end_time": "2024-04-11T11:24:47.119855Z", + "start_time": "2024-04-11T11:24:47.063798Z" } }, "outputs": [], "source": [ + "from palin.simulation.experiment import Experiment\n", "from palin.simulation.simple_experiment import SimpleExperiment\n", "from palin.simulation.double_pass_experiment import DoublePassExperiment\n", "from palin.simulation.trial import Int2Trial, Int1Trial \n", @@ -84,7 +85,7 @@ }, { "cell_type": "markdown", - "id": "fa2978b0", + "id": "31bb6aee", "metadata": {}, "source": [ "## Simulate with internal noise" @@ -92,7 +93,7 @@ }, { "cell_type": "markdown", - "id": "bd21029c", + "id": "cd63729b", "metadata": {}, "source": [ "Single run" @@ -100,30 +101,22 @@ }, { "cell_type": "code", - "execution_count": 122, - "id": "2b2b91ae", + "execution_count": 189, + "id": "63e53f77", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T12:42:09.804159Z", - "start_time": "2024-04-10T12:42:09.665497Z" + "end_time": "2024-04-11T04:53:29.899499Z", + "start_time": "2024-04-11T04:53:29.371264Z" } }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "E:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:43: FutureWarning: Index.ravel returning ndarray is deprecated; in a future version this will return a view on self.\n", - " pass_count_df.columns = [\"_\".join(x) for x in pass_count_df.columns.ravel()]\n" - ] - }, { "data": { "text/plain": [ - "0.24" + "(0.1, 1)" ] }, - "execution_count": 122, + "execution_count": 189, "metadata": {}, "output_type": "execute_result" } @@ -138,13 +131,13 @@ " internal_noise_std = 0, \n", " criteria = 1)\n", "responses = obs.respond_to_experiment(exp)\n", - "ana = InternalNoiseValue(internal_noise_extractor = DoublePass)\n", + "ana = InternalNoiseValue(internal_noise_extractor = DoublePass, model_file='model.csv')\n", "ana.analyse(exp, obs, responses)" ] }, { "cell_type": "markdown", - "id": "6396b632", + "id": "d90d2366", "metadata": {}, "source": [ "Simulation" @@ -152,11 +145,12 @@ }, { "cell_type": "code", - "execution_count": null, - "id": "21b866b8", + "execution_count": 200, + "id": "fc511049", "metadata": { "ExecuteTime": { - "start_time": "2024-04-11T04:20:32.079Z" + "end_time": "2024-04-11T06:57:34.621971Z", + "start_time": "2024-04-11T06:00:58.596353Z" }, "scrolled": false }, @@ -166,7 +160,7 @@ "output_type": "stream", "text": [ "Running 1 configs\n", - "{'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 100, 'kernel': [1], 'internal_noise_std': 0, 'criteria': 0, 'internal_noise_extractor': , 'model_file': 'model_11_04_2024.csv', 'rebuild_model': False, 'internal_noise_range': array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. , 1.1, 1.2,\n", + "{'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 100, 'kernel': [1], 'internal_noise_std': 0, 'criteria': 0, 'internal_noise_extractor': , 'model_file': 'model_large.csv', 'rebuild_model': False, 'internal_noise_range': array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. , 1.1, 1.2,\n", " 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1, 2.2, 2.3, 2.4, 2.5,\n", " 2.6, 2.7, 2.8, 2.9, 3. , 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,\n", " 3.9, 4. , 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5. ]), 'criteria_range': array([-5.00000000e+00, -4.90000000e+00, -4.80000000e+00, -4.70000000e+00,\n", @@ -193,9 +187,55 @@ " 3.40000000e+00, 3.50000000e+00, 3.60000000e+00, 3.70000000e+00,\n", " 3.80000000e+00, 3.90000000e+00, 4.00000000e+00, 4.10000000e+00,\n", " 4.20000000e+00, 4.30000000e+00, 4.40000000e+00, 4.50000000e+00,\n", - " 4.60000000e+00, 4.70000000e+00, 4.80000000e+00, 4.90000000e+00])}\n", + " 4.60000000e+00, 4.70000000e+00, 4.80000000e+00, 4.90000000e+00]), 'n_runs': 2}\n", ".Rebuilding double-pass model\n" ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[200], line 19\u001b[0m\n\u001b[0;32m 9\u001b[0m analyser_params \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124minternal_noise_extractor\u001b[39m\u001b[38;5;124m'\u001b[39m:[DoublePass], \n\u001b[0;32m 10\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmodel_file\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmodel_large.csv\u001b[39m\u001b[38;5;124m'\u001b[39m], \n\u001b[0;32m 11\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrebuild_model\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;28;01mFalse\u001b[39;00m],\n\u001b[0;32m 12\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124minternal_noise_range\u001b[39m\u001b[38;5;124m'\u001b[39m:[np\u001b[38;5;241m.\u001b[39marange(\u001b[38;5;241m0\u001b[39m,\u001b[38;5;241m5.1\u001b[39m,\u001b[38;5;241m0.1\u001b[39m)],\n\u001b[0;32m 13\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcriteria_range\u001b[39m\u001b[38;5;124m'\u001b[39m:[np\u001b[38;5;241m.\u001b[39marange(\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m5\u001b[39m,\u001b[38;5;241m5\u001b[39m,\u001b[38;5;241m0.1\u001b[39m)],\n\u001b[0;32m 14\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mn_runs\u001b[39m\u001b[38;5;124m'\u001b[39m:[\u001b[38;5;241m2\u001b[39m]}\n\u001b[0;32m 16\u001b[0m sim \u001b[38;5;241m=\u001b[39m Sim(DoublePassExperiment, experiment_params, \n\u001b[0;32m 17\u001b[0m LinearObserver, observer_params, \n\u001b[0;32m 18\u001b[0m InternalNoiseValue, analyser_params)\n\u001b[1;32m---> 19\u001b[0m sim_df \u001b[38;5;241m=\u001b[39m \u001b[43msim\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_all\u001b[49m\u001b[43m(\u001b[49m\u001b[43mn_runs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\simulation.py:45\u001b[0m, in \u001b[0;36mSimulation.run_all\u001b[1;34m(self, n_runs, verbose)\u001b[0m\n\u001b[0;32m 43\u001b[0m run_res \u001b[38;5;241m=\u001b[39m config_param\u001b[38;5;241m.\u001b[39mcopy() \n\u001b[0;32m 44\u001b[0m run_res\u001b[38;5;241m.\u001b[39mupdate({\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrun\u001b[39m\u001b[38;5;124m'\u001b[39m:run}) \n\u001b[1;32m---> 45\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconfig_param\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 46\u001b[0m run_res\u001b[38;5;241m.\u001b[39mupdate(results)\n\u001b[0;32m 47\u001b[0m runs\u001b[38;5;241m.\u001b[39mappend(run_res)\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\simulation.py:67\u001b[0m, in \u001b[0;36mSimulation.run\u001b[1;34m(self, config_param)\u001b[0m\n\u001b[0;32m 64\u001b[0m responses \u001b[38;5;241m=\u001b[39m obs\u001b[38;5;241m.\u001b[39mrespond_to_experiment(exp)\n\u001b[0;32m 66\u001b[0m metrics \u001b[38;5;241m=\u001b[39m ana\u001b[38;5;241m.\u001b[39mget_metric_names()\n\u001b[1;32m---> 67\u001b[0m values \u001b[38;5;241m=\u001b[39m \u001b[43mana\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mobs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponses\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 69\u001b[0m \u001b[38;5;66;03m# return the metrics as a dict of name:value pairs\u001b[39;00m\n\u001b[0;32m 70\u001b[0m results \u001b[38;5;241m=\u001b[39m {}\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\internal_noise_value.py:21\u001b[0m, in \u001b[0;36mInternalNoiseValue.analyse\u001b[1;34m(self, experiment, participant, participant_responses)\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21manalyse\u001b[39m(\u001b[38;5;28mself\u001b[39m, experiment, participant, participant_responses): \n\u001b[1;32m---> 21\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mestimate_internal_noise\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexperiment\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparticipant_responses\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\internal_noise_value.py:27\u001b[0m, in \u001b[0;36mInternalNoiseValue.estimate_internal_noise\u001b[1;34m(self, experiment, participant_responses)\u001b[0m\n\u001b[0;32m 23\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mestimate_internal_noise\u001b[39m(\u001b[38;5;28mself\u001b[39m, experiment, participant_responses): \n\u001b[0;32m 25\u001b[0m responses_df \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mto_df(experiment, participant_responses)\n\u001b[1;32m---> 27\u001b[0m internal_noise, criteria \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minternal_noise_extractor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextract_single_internal_noise\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata_df\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mresponses_df\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 28\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial_id\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtrial\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstim_id\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mstim\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfeature_id\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mfeature\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalue_id\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mvalue\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_id\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mresponse\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel_file\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel_file\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 29\u001b[0m \u001b[43m \u001b[49m\u001b[43minternal_noise_range\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minternal_noise_range\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcriteria_range\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcriteria_range\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_repeated_trials\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_repeated_trials\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_runs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_runs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 31\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m internal_noise, criteria\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:46\u001b[0m, in \u001b[0;36mDoublePass.extract_single_internal_noise\u001b[1;34m(cls, data_df, trial_id, stim_id, feature_id, value_id, response_id, model_file, rebuild_model, internal_noise_range, criteria_range, n_repeated_trials, n_runs)\u001b[0m\n\u001b[0;32m 43\u001b[0m \u001b[38;5;66;03m# compute probability of choosing first response option\u001b[39;00m\n\u001b[0;32m 44\u001b[0m prob_first \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mcompute_prob_first(data_df, trial_id\u001b[38;5;241m=\u001b[39mtrial_id, response_id\u001b[38;5;241m=\u001b[39mresponse_id, stim_id\u001b[38;5;241m=\u001b[39mstim_id, double_pass_id\u001b[38;5;241m=\u001b[39mdouble_pass_id)\n\u001b[1;32m---> 46\u001b[0m internal_noise, criteria \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mestimate_noise_criteria\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprob_agree\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprob_first\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel_file\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrebuild_model\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minternal_noise_range\u001b[49m\u001b[43m,\u001b[49m\u001b[43mcriteria_range\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_repeated_trials\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_runs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 48\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m internal_noise,criteria\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:122\u001b[0m, in \u001b[0;36mDoublePass.estimate_noise_criteria\u001b[1;34m(cls, prob_agree, prob_first, model_file, rebuild_model, internal_noise_range, criteria_range, n_repeated_trials, n_runs)\u001b[0m\n\u001b[0;32m 120\u001b[0m model_df \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mread_csv(model_file, index_col\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\n\u001b[0;32m 121\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 122\u001b[0m model_df \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbuild_model\u001b[49m\u001b[43m(\u001b[49m\u001b[43minternal_noise_range\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcriteria_range\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_repeated_trials\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_runs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 123\u001b[0m model_df\u001b[38;5;241m.\u001b[39mto_csv(model_file)\n\u001b[0;32m 125\u001b[0m \u001b[38;5;66;03m# find internal_noise & criteria settings that minimizes distance to prob_agree and prob_first \u001b[39;00m\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:154\u001b[0m, in \u001b[0;36mDoublePass.build_model\u001b[1;34m(cls, internal_noise_range, criteria_range, n_repeated_trials, n_runs)\u001b[0m\n\u001b[0;32m 148\u001b[0m analyser_params \u001b[38;5;241m=\u001b[39m {}\n\u001b[0;32m 150\u001b[0m sim \u001b[38;5;241m=\u001b[39m Sim(DoublePassExperiment, experiment_params,\n\u001b[0;32m 151\u001b[0m LinearObserver, observer_params, \n\u001b[0;32m 152\u001b[0m DoublePassStatistics, analyser_params)\n\u001b[1;32m--> 154\u001b[0m sim_df \u001b[38;5;241m=\u001b[39m \u001b[43msim\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_all\u001b[49m\u001b[43m(\u001b[49m\u001b[43mn_runs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mn_runs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[0;32m 156\u001b[0m \u001b[38;5;66;03m# average measures over all runs\u001b[39;00m\n\u001b[0;32m 157\u001b[0m sim_df\u001b[38;5;241m.\u001b[39mgroupby([\u001b[38;5;124m'\u001b[39m\u001b[38;5;124minternal_noise_std\u001b[39m\u001b[38;5;124m'\u001b[39m,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcriteria\u001b[39m\u001b[38;5;124m'\u001b[39m])[DoublePassStatistics\u001b[38;5;241m.\u001b[39mget_metric_names]\u001b[38;5;241m.\u001b[39mmean()\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\simulation.py:45\u001b[0m, in \u001b[0;36mSimulation.run_all\u001b[1;34m(self, n_runs, verbose)\u001b[0m\n\u001b[0;32m 43\u001b[0m run_res \u001b[38;5;241m=\u001b[39m config_param\u001b[38;5;241m.\u001b[39mcopy() \n\u001b[0;32m 44\u001b[0m run_res\u001b[38;5;241m.\u001b[39mupdate({\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrun\u001b[39m\u001b[38;5;124m'\u001b[39m:run}) \n\u001b[1;32m---> 45\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconfig_param\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 46\u001b[0m run_res\u001b[38;5;241m.\u001b[39mupdate(results)\n\u001b[0;32m 47\u001b[0m runs\u001b[38;5;241m.\u001b[39mappend(run_res)\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\simulation.py:67\u001b[0m, in \u001b[0;36mSimulation.run\u001b[1;34m(self, config_param)\u001b[0m\n\u001b[0;32m 64\u001b[0m responses \u001b[38;5;241m=\u001b[39m obs\u001b[38;5;241m.\u001b[39mrespond_to_experiment(exp)\n\u001b[0;32m 66\u001b[0m metrics \u001b[38;5;241m=\u001b[39m ana\u001b[38;5;241m.\u001b[39mget_metric_names()\n\u001b[1;32m---> 67\u001b[0m values \u001b[38;5;241m=\u001b[39m \u001b[43mana\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mobs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponses\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 69\u001b[0m \u001b[38;5;66;03m# return the metrics as a dict of name:value pairs\u001b[39;00m\n\u001b[0;32m 70\u001b[0m results \u001b[38;5;241m=\u001b[39m {}\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\double_pass_statistics.py:19\u001b[0m, in \u001b[0;36mDoublePassStatistics.analyse\u001b[1;34m(self, experiment, participant, participant_responses)\u001b[0m\n\u001b[0;32m 15\u001b[0m responses_df \u001b[38;5;241m=\u001b[39m DoublePass\u001b[38;5;241m.\u001b[39mindex_double_pass_trials(data_df \u001b[38;5;241m=\u001b[39m responses_df, \n\u001b[0;32m 16\u001b[0m trial_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrial\u001b[39m\u001b[38;5;124m'\u001b[39m,value_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvalue\u001b[39m\u001b[38;5;124m'\u001b[39m, double_pass_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdouble_pass_id\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 18\u001b[0m \u001b[38;5;66;03m# compute probability of agreement over double pass\u001b[39;00m\n\u001b[1;32m---> 19\u001b[0m prob_agree \u001b[38;5;241m=\u001b[39m \u001b[43mDoublePass\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompute_prob_agreement\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresponses_df\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrial_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtrial\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mresponse\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdouble_pass_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mdouble_pass_id\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 20\u001b[0m \u001b[38;5;66;03m# compute probability of choosing first response option\u001b[39;00m\n\u001b[0;32m 21\u001b[0m prob_first \u001b[38;5;241m=\u001b[39m DoublePass\u001b[38;5;241m.\u001b[39mcompute_prob_first(responses_df, trial_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrial\u001b[39m\u001b[38;5;124m'\u001b[39m, response_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mresponse\u001b[39m\u001b[38;5;124m'\u001b[39m, stim_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mstim\u001b[39m\u001b[38;5;124m'\u001b[39m, double_pass_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdouble_pass_id\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:92\u001b[0m, in \u001b[0;36mDoublePass.compute_prob_agreement\u001b[1;34m(cls, data_df, trial_id, response_id, double_pass_id)\u001b[0m\n\u001b[0;32m 90\u001b[0m d \u001b[38;5;241m=\u001b[39m group\u001b[38;5;241m.\u001b[39mgroupby(trial_id)\u001b[38;5;241m.\u001b[39magg({response_id: \u001b[38;5;28;01mlambda\u001b[39;00m group: \u001b[38;5;28mtuple\u001b[39m(group)})\u001b[38;5;241m.\u001b[39mreset_index()\n\u001b[0;32m 91\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m d\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mnunique()\u001b[38;5;241m==\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[1;32m---> 92\u001b[0m agrees \u001b[38;5;241m=\u001b[39m \u001b[43mdata_df\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgroupby\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdouble_pass_id\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43;01mlambda\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43msame_answer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrial_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_id\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 94\u001b[0m \u001b[38;5;66;03m# return agreement probability\u001b[39;00m\n\u001b[0;32m 95\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m agrees\u001b[38;5;241m.\u001b[39msum()\u001b[38;5;241m/\u001b[39m\u001b[38;5;28mlen\u001b[39m(agrees)\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\groupby.py:1567\u001b[0m, in \u001b[0;36mGroupBy.apply\u001b[1;34m(self, func, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1559\u001b[0m new_msg \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 1560\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe operation \u001b[39m\u001b[38;5;132;01m{\u001b[39;00morig_func\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m failed on a column. If any error is \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1561\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mraised, this will raise an exception in a future version \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1562\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mof pandas. Drop these columns to avoid this warning.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1563\u001b[0m )\n\u001b[0;32m 1564\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m rewrite_warning(\n\u001b[0;32m 1565\u001b[0m old_msg, \u001b[38;5;167;01mFutureWarning\u001b[39;00m, new_msg\n\u001b[0;32m 1566\u001b[0m ) \u001b[38;5;28;01mif\u001b[39;00m is_np_func \u001b[38;5;28;01melse\u001b[39;00m nullcontext():\n\u001b[1;32m-> 1567\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_python_apply_general\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_selected_obj\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1568\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[0;32m 1569\u001b[0m \u001b[38;5;66;03m# gh-20949\u001b[39;00m\n\u001b[0;32m 1570\u001b[0m \u001b[38;5;66;03m# try again, with .apply acting as a filtering\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1574\u001b[0m \u001b[38;5;66;03m# fails on *some* columns, e.g. a numeric operation\u001b[39;00m\n\u001b[0;32m 1575\u001b[0m \u001b[38;5;66;03m# on a string grouper column\u001b[39;00m\n\u001b[0;32m 1577\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_group_selection_context():\n\u001b[0;32m 1578\u001b[0m \u001b[38;5;66;03m# GH#50538\u001b[39;00m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\groupby.py:1629\u001b[0m, in \u001b[0;36mGroupBy._python_apply_general\u001b[1;34m(self, f, data, not_indexed_same, is_transform, is_agg)\u001b[0m\n\u001b[0;32m 1592\u001b[0m \u001b[38;5;129m@final\u001b[39m\n\u001b[0;32m 1593\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_python_apply_general\u001b[39m(\n\u001b[0;32m 1594\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1599\u001b[0m is_agg: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[0;32m 1600\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NDFrameT:\n\u001b[0;32m 1601\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1602\u001b[0m \u001b[38;5;124;03m Apply function f in python space\u001b[39;00m\n\u001b[0;32m 1603\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1627\u001b[0m \u001b[38;5;124;03m data after applying f\u001b[39;00m\n\u001b[0;32m 1628\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m-> 1629\u001b[0m values, mutated \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgrouper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1630\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m not_indexed_same \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 1631\u001b[0m not_indexed_same \u001b[38;5;241m=\u001b[39m mutated \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmutated\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\ops.py:839\u001b[0m, in \u001b[0;36mBaseGrouper.apply\u001b[1;34m(self, f, data, axis)\u001b[0m\n\u001b[0;32m 837\u001b[0m \u001b[38;5;66;03m# group might be modified\u001b[39;00m\n\u001b[0;32m 838\u001b[0m group_axes \u001b[38;5;241m=\u001b[39m group\u001b[38;5;241m.\u001b[39maxes\n\u001b[1;32m--> 839\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 840\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m mutated \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m _is_indexed_like(res, group_axes, axis):\n\u001b[0;32m 841\u001b[0m mutated \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:92\u001b[0m, in \u001b[0;36mDoublePass.compute_prob_agreement..\u001b[1;34m(group)\u001b[0m\n\u001b[0;32m 90\u001b[0m d \u001b[38;5;241m=\u001b[39m group\u001b[38;5;241m.\u001b[39mgroupby(trial_id)\u001b[38;5;241m.\u001b[39magg({response_id: \u001b[38;5;28;01mlambda\u001b[39;00m group: \u001b[38;5;28mtuple\u001b[39m(group)})\u001b[38;5;241m.\u001b[39mreset_index()\n\u001b[0;32m 91\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m d\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mnunique()\u001b[38;5;241m==\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[1;32m---> 92\u001b[0m agrees \u001b[38;5;241m=\u001b[39m data_df\u001b[38;5;241m.\u001b[39mgroupby(double_pass_id)\u001b[38;5;241m.\u001b[39mapply(\u001b[38;5;28;01mlambda\u001b[39;00m group: \u001b[43msame_answer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrial_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_id\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 94\u001b[0m \u001b[38;5;66;03m# return agreement probability\u001b[39;00m\n\u001b[0;32m 95\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m agrees\u001b[38;5;241m.\u001b[39msum()\u001b[38;5;241m/\u001b[39m\u001b[38;5;28mlen\u001b[39m(agrees)\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:90\u001b[0m, in \u001b[0;36mDoublePass.compute_prob_agreement..same_answer\u001b[1;34m(group, trial_id, response_id)\u001b[0m\n\u001b[0;32m 89\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msame_answer\u001b[39m(group, trial_id, response_id): \n\u001b[1;32m---> 90\u001b[0m d \u001b[38;5;241m=\u001b[39m \u001b[43mgroup\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgroupby\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrial_id\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magg\u001b[49m\u001b[43m(\u001b[49m\u001b[43m{\u001b[49m\u001b[43mresponse_id\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mlambda\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mtuple\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m)\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mreset_index()\n\u001b[0;32m 91\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m d\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mnunique()\u001b[38;5;241m==\u001b[39m\u001b[38;5;241m1\u001b[39m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\generic.py:895\u001b[0m, in \u001b[0;36mDataFrameGroupBy.aggregate\u001b[1;34m(self, func, engine, engine_kwargs, *args, **kwargs)\u001b[0m\n\u001b[0;32m 892\u001b[0m func \u001b[38;5;241m=\u001b[39m maybe_mangle_lambdas(func)\n\u001b[0;32m 894\u001b[0m op \u001b[38;5;241m=\u001b[39m GroupByApply(\u001b[38;5;28mself\u001b[39m, func, args, kwargs)\n\u001b[1;32m--> 895\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mop\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magg\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 896\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_dict_like(func) \u001b[38;5;129;01mand\u001b[39;00m result \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 897\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\apply.py:172\u001b[0m, in \u001b[0;36mApply.agg\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 169\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mapply_str()\n\u001b[0;32m 171\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_dict_like(arg):\n\u001b[1;32m--> 172\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magg_dict_like\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 173\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m is_list_like(arg):\n\u001b[0;32m 174\u001b[0m \u001b[38;5;66;03m# we require a list, but not a 'str'\u001b[39;00m\n\u001b[0;32m 175\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39magg_list_like()\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\apply.py:504\u001b[0m, in \u001b[0;36mApply.agg_dict_like\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 501\u001b[0m results \u001b[38;5;241m=\u001b[39m {key: colg\u001b[38;5;241m.\u001b[39magg(how) \u001b[38;5;28;01mfor\u001b[39;00m key, how \u001b[38;5;129;01min\u001b[39;00m arg\u001b[38;5;241m.\u001b[39mitems()}\n\u001b[0;32m 502\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 503\u001b[0m \u001b[38;5;66;03m# key used for column selection and output\u001b[39;00m\n\u001b[1;32m--> 504\u001b[0m results \u001b[38;5;241m=\u001b[39m {\n\u001b[0;32m 505\u001b[0m key: obj\u001b[38;5;241m.\u001b[39m_gotitem(key, ndim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\u001b[38;5;241m.\u001b[39magg(how) \u001b[38;5;28;01mfor\u001b[39;00m key, how \u001b[38;5;129;01min\u001b[39;00m arg\u001b[38;5;241m.\u001b[39mitems()\n\u001b[0;32m 506\u001b[0m }\n\u001b[0;32m 508\u001b[0m \u001b[38;5;66;03m# set the final keys\u001b[39;00m\n\u001b[0;32m 509\u001b[0m keys \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(arg\u001b[38;5;241m.\u001b[39mkeys())\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\apply.py:505\u001b[0m, in \u001b[0;36m\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m 501\u001b[0m results \u001b[38;5;241m=\u001b[39m {key: colg\u001b[38;5;241m.\u001b[39magg(how) \u001b[38;5;28;01mfor\u001b[39;00m key, how \u001b[38;5;129;01min\u001b[39;00m arg\u001b[38;5;241m.\u001b[39mitems()}\n\u001b[0;32m 502\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 503\u001b[0m \u001b[38;5;66;03m# key used for column selection and output\u001b[39;00m\n\u001b[0;32m 504\u001b[0m results \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m--> 505\u001b[0m key: \u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_gotitem\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mndim\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magg\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhow\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m key, how \u001b[38;5;129;01min\u001b[39;00m arg\u001b[38;5;241m.\u001b[39mitems()\n\u001b[0;32m 506\u001b[0m }\n\u001b[0;32m 508\u001b[0m \u001b[38;5;66;03m# set the final keys\u001b[39;00m\n\u001b[0;32m 509\u001b[0m keys \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(arg\u001b[38;5;241m.\u001b[39mkeys())\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\generic.py:297\u001b[0m, in \u001b[0;36mSeriesGroupBy.aggregate\u001b[1;34m(self, func, engine, engine_kwargs, *args, **kwargs)\u001b[0m\n\u001b[0;32m 294\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_python_agg_general(func, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 296\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 297\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_python_agg_general\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 298\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m:\n\u001b[0;32m 299\u001b[0m \u001b[38;5;66;03m# TODO: KeyError is raised in _python_agg_general,\u001b[39;00m\n\u001b[0;32m 300\u001b[0m \u001b[38;5;66;03m# see test_groupby.test_basic\u001b[39;00m\n\u001b[0;32m 301\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_aggregate_named(func, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\groupby.py:1673\u001b[0m, in \u001b[0;36mGroupBy._python_agg_general\u001b[1;34m(self, func, raise_on_typeerror, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1670\u001b[0m \u001b[38;5;66;03m# iterate through \"columns\" ex exclusions to populate output dict\u001b[39;00m\n\u001b[0;32m 1671\u001b[0m output: \u001b[38;5;28mdict\u001b[39m[base\u001b[38;5;241m.\u001b[39mOutputKey, ArrayLike] \u001b[38;5;241m=\u001b[39m {}\n\u001b[1;32m-> 1673\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mngroups\u001b[49m \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m 1674\u001b[0m \u001b[38;5;66;03m# agg_series below assumes ngroups > 0\u001b[39;00m\n\u001b[0;32m 1675\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_python_apply_general(f, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_selected_obj, is_agg\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 1677\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m idx, obj \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_iterate_slices()):\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\groupby.py:677\u001b[0m, in \u001b[0;36mBaseGroupBy.ngroups\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 674\u001b[0m \u001b[38;5;129m@final\u001b[39m\n\u001b[0;32m 675\u001b[0m \u001b[38;5;129m@property\u001b[39m\n\u001b[0;32m 676\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mngroups\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mint\u001b[39m:\n\u001b[1;32m--> 677\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgrouper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mngroups\u001b[49m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\_libs\\properties.pyx:36\u001b[0m, in \u001b[0;36mpandas._libs.properties.CachedProperty.__get__\u001b[1;34m()\u001b[0m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\ops.py:982\u001b[0m, in \u001b[0;36mBaseGrouper.ngroups\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 979\u001b[0m \u001b[38;5;129m@final\u001b[39m\n\u001b[0;32m 980\u001b[0m \u001b[38;5;129m@cache_readonly\u001b[39m\n\u001b[0;32m 981\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mngroups\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mint\u001b[39m:\n\u001b[1;32m--> 982\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult_index\u001b[49m)\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\_libs\\properties.pyx:36\u001b[0m, in \u001b[0;36mpandas._libs.properties.CachedProperty.__get__\u001b[1;34m()\u001b[0m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\ops.py:993\u001b[0m, in \u001b[0;36mBaseGrouper.result_index\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 990\u001b[0m \u001b[38;5;129m@cache_readonly\u001b[39m\n\u001b[0;32m 991\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mresult_index\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Index:\n\u001b[0;32m 992\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgroupings) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m--> 993\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgroupings\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult_index\u001b[49m\u001b[38;5;241m.\u001b[39mrename(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnames[\u001b[38;5;241m0\u001b[39m])\n\u001b[0;32m 995\u001b[0m codes \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mreconstructed_codes\n\u001b[0;32m 996\u001b[0m levels \u001b[38;5;241m=\u001b[39m [ping\u001b[38;5;241m.\u001b[39mresult_index \u001b[38;5;28;01mfor\u001b[39;00m ping \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgroupings]\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\_libs\\properties.pyx:36\u001b[0m, in \u001b[0;36mpandas._libs.properties.CachedProperty.__get__\u001b[1;34m()\u001b[0m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\grouper.py:647\u001b[0m, in \u001b[0;36mGrouping.result_index\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 645\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(group_idx, CategoricalIndex)\n\u001b[0;32m 646\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m recode_from_groupby(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_all_grouper, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sort, group_idx)\n\u001b[1;32m--> 647\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgroup_index\u001b[49m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\_libs\\properties.pyx:36\u001b[0m, in \u001b[0;36mpandas._libs.properties.CachedProperty.__get__\u001b[1;34m()\u001b[0m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\grouper.py:655\u001b[0m, in \u001b[0;36mGrouping.group_index\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 651\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_group_index \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 652\u001b[0m \u001b[38;5;66;03m# _group_index is set in __init__ for MultiIndex cases\u001b[39;00m\n\u001b[0;32m 653\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_group_index\n\u001b[1;32m--> 655\u001b[0m uniques \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_codes_and_uniques\u001b[49m[\u001b[38;5;241m1\u001b[39m]\n\u001b[0;32m 656\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m Index\u001b[38;5;241m.\u001b[39m_with_infer(uniques, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname)\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\_libs\\properties.pyx:36\u001b[0m, in \u001b[0;36mpandas._libs.properties.CachedProperty.__get__\u001b[1;34m()\u001b[0m\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\grouper.py:692\u001b[0m, in \u001b[0;36mGrouping._codes_and_uniques\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 685\u001b[0m uniques \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 686\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgrouping_vector\u001b[38;5;241m.\u001b[39mresult_index\u001b[38;5;241m.\u001b[39m_values \u001b[38;5;66;03m# type: ignore[assignment]\u001b[39;00m\n\u001b[0;32m 687\u001b[0m )\n\u001b[0;32m 688\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 689\u001b[0m \u001b[38;5;66;03m# GH35667, replace dropna=False with use_na_sentinel=False\u001b[39;00m\n\u001b[0;32m 690\u001b[0m \u001b[38;5;66;03m# error: Incompatible types in assignment (expression has type \"Union[\u001b[39;00m\n\u001b[0;32m 691\u001b[0m \u001b[38;5;66;03m# ndarray[Any, Any], Index]\", variable has type \"Categorical\")\u001b[39;00m\n\u001b[1;32m--> 692\u001b[0m codes, uniques \u001b[38;5;241m=\u001b[39m \u001b[43malgorithms\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfactorize\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[assignment]\u001b[39;49;00m\n\u001b[0;32m 693\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgrouping_vector\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sort\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muse_na_sentinel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dropna\u001b[49m\n\u001b[0;32m 694\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 695\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m codes, uniques\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\algorithms.py:832\u001b[0m, in \u001b[0;36mfactorize\u001b[1;34m(values, sort, na_sentinel, use_na_sentinel, size_hint)\u001b[0m\n\u001b[0;32m 829\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m na_sentinel \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 830\u001b[0m \u001b[38;5;66;03m# TODO: Can remove when na_sentinel=na_sentinel as in TODO above\u001b[39;00m\n\u001b[0;32m 831\u001b[0m na_sentinel \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[1;32m--> 832\u001b[0m uniques, codes \u001b[38;5;241m=\u001b[39m \u001b[43msafe_sort\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 833\u001b[0m \u001b[43m \u001b[49m\u001b[43muniques\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcodes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mna_sentinel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mna_sentinel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43massume_unique\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\n\u001b[0;32m 834\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 836\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m dropna \u001b[38;5;129;01mand\u001b[39;00m sort:\n\u001b[0;32m 837\u001b[0m \u001b[38;5;66;03m# TODO: Can remove entire block when na_sentinel=na_sentinel as in TODO above\u001b[39;00m\n\u001b[0;32m 838\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m na_sentinel \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\algorithms.py:1875\u001b[0m, in \u001b[0;36msafe_sort\u001b[1;34m(values, codes, na_sentinel, assume_unique, verify)\u001b[0m\n\u001b[0;32m 1873\u001b[0m ordered \u001b[38;5;241m=\u001b[39m original_values\u001b[38;5;241m.\u001b[39mtake(sorter)\n\u001b[0;32m 1874\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m-> 1875\u001b[0m ordered \u001b[38;5;241m=\u001b[39m \u001b[43mvalues\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtake\u001b[49m\u001b[43m(\u001b[49m\u001b[43msorter\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1876\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[0;32m 1877\u001b[0m \u001b[38;5;66;03m# Previous sorters failed or were not applicable, try `_sort_mixed`\u001b[39;00m\n\u001b[0;32m 1878\u001b[0m \u001b[38;5;66;03m# which would work, but which fails for special case of 1d arrays\u001b[39;00m\n\u001b[0;32m 1879\u001b[0m \u001b[38;5;66;03m# with tuples.\u001b[39;00m\n\u001b[0;32m 1880\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m values\u001b[38;5;241m.\u001b[39msize \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(values[\u001b[38;5;241m0\u001b[39m], \u001b[38;5;28mtuple\u001b[39m):\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + ] } ], "source": [ @@ -208,13 +248,12 @@ " 'n_features': [1],\n", " 'external_noise_std': [100]}\n", "analyser_params = {'internal_noise_extractor':[DoublePass], \n", - " 'model_file': ['model_11_04_2024.csv'], \n", - " 'rebuild_model': [False],\n", + " 'model_file': ['model_large.csv'], \n", + " 'rebuild_model': [False],\n", " 'internal_noise_range':[np.arange(0,5.1,0.1)],\n", - " 'criteria_range':[np.arange(-5,5,0.1)]\n", - " }\n", - "\n", - "\n", + " 'criteria_range':[np.arange(-5,5,0.1)],\n", + " 'n_runs':[2]}\n", + " \n", "sim = Sim(DoublePassExperiment, experiment_params, \n", " LinearObserver, observer_params, \n", " InternalNoiseValue, analyser_params)\n", @@ -224,147 +263,2238 @@ }, { "cell_type": "code", - "execution_count": 177, - "id": "0264e72a", + "execution_count": 216, + "id": "d36ad464", "metadata": { "ExecuteTime": { - "end_time": "2024-04-11T04:11:28.822698Z", - "start_time": "2024-04-11T04:11:28.763833Z" + "end_time": "2024-04-11T11:28:06.869895Z", + "start_time": "2024-04-11T11:28:06.817000Z" } }, "outputs": [ { "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
n_trialsn_repeatedtrial_typen_featuresexternal_noise_stdkernelinternal_noise_stdcriteriainternal_noise_extractormodel_filerunmetric
010001000<class 'palin.simulation.trial.Int2Trial'>1100[1]0-1<class 'palin.internal_noise.double_pass.Doubl...model.csv00.0
110001000<class 'palin.simulation.trial.Int2Trial'>1100[1]01<class 'palin.internal_noise.double_pass.Doubl...model.csv00.0
210001000<class 'palin.simulation.trial.Int2Trial'>1100[1]1-1<class 'palin.internal_noise.double_pass.Doubl...model.csv01.0
310001000<class 'palin.simulation.trial.Int2Trial'>1100[1]11<class 'palin.internal_noise.double_pass.Doubl...model.csv00.7
\n", - "
" - ], "text/plain": [ - " n_trials n_repeated trial_type \\\n", - "0 1000 1000 \n", - "1 1000 1000 \n", - "2 1000 1000 \n", - "3 1000 1000 \n", - "\n", - " n_features external_noise_std kernel internal_noise_std criteria \\\n", - "0 1 100 [1] 0 -1 \n", - "1 1 100 [1] 0 1 \n", - "2 1 100 [1] 1 -1 \n", - "3 1 100 [1] 1 1 \n", - "\n", - " internal_noise_extractor model_file run metric \n", - "0 , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': -5.0}\n", + "..........;\n", + "1 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': -4.5}\n", + "..........;\n", + "2 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': -4.0}\n", + "..........;\n", + "3 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': -3.5}\n", + "..........;\n", + "4 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': -3.0}\n", + "..........;\n", + "5 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': -2.5}\n", + "..........;\n", + "6 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': -2.0}\n", + "..........;\n", + "7 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': -1.5}\n", + "..........;\n", + "8 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': -1.0}\n", + "..........;\n", + "9 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': -0.5}\n", + "..........;\n", + "10 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': 0.0}\n", + "..........;\n", + "11 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': 0.5}\n", + "..........;\n", + "12 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': 1.0}\n", + "..........;\n", + "13 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': 1.5}\n", + "..........;\n", + "14 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': 2.0}\n", + "..........;\n", + "15 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': 2.5}\n", + "..........;\n", + "16 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': 3.0}\n", + "..........;\n", + "17 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': 3.5}\n", + "..........;\n", + "18 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': 4.0}\n", + "..........;\n", + "19 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.0, 'criteria': 4.5}\n", + "..........;\n", + "20 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': -5.0}\n", + "..........;\n", + "21 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': -4.5}\n", + "..........;\n", + "22 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': -4.0}\n", + "..........;\n", + "23 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': -3.5}\n", + "..........;\n", + "24 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': -3.0}\n", + "..........;\n", + "25 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': -2.5}\n", + "..........;\n", + "26 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': -2.0}\n", + "..........;\n", + "27 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': -1.5}\n", + "..........;\n", + "28 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': -1.0}\n", + "..........;\n", + "29 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': -0.5}\n", + "..........;\n", + "30 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': 0.0}\n", + "..........;\n", + "31 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': 0.5}\n", + "..........;\n", + "32 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': 1.0}\n", + "..........;\n", + "33 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': 1.5}\n", + "..........;\n", + "34 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': 2.0}\n", + "..........;\n", + "35 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': 2.5}\n", + "..........;\n", + "36 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': 3.0}\n", + "..........;\n", + "37 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': 3.5}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "38 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': 4.0}\n", + "..........;\n", + "39 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.1, 'criteria': 4.5}\n", + "..........;\n", + "40 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': -5.0}\n", + "..........;\n", + "41 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': -4.5}\n", + "..........;\n", + "42 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': -4.0}\n", + "..........;\n", + "43 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': -3.5}\n", + "..........;\n", + "44 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': -3.0}\n", + "..........;\n", + "45 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': -2.5}\n", + "..........;\n", + "46 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': -2.0}\n", + "..........;\n", + "47 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': -1.5}\n", + "..........;\n", + "48 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': -1.0}\n", + "..........;\n", + "49 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': -0.5}\n", + "..........;\n", + "50 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': 0.0}\n", + "..........;\n", + "51 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': 0.5}\n", + "..........;\n", + "52 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': 1.0}\n", + "..........;\n", + "53 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': 1.5}\n", + "..........;\n", + "54 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': 2.0}\n", + "..........;\n", + "55 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': 2.5}\n", + "..........;\n", + "56 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': 3.0}\n", + "..........;\n", + "57 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': 3.5}\n", + "..........;\n", + "58 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': 4.0}\n", + "..........;\n", + "59 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.2, 'criteria': 4.5}\n", + "..........;\n", + "60 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': -5.0}\n", + "..........;\n", + "61 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': -4.5}\n", + "..........;\n", + "62 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': -4.0}\n", + "..........;\n", + "63 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': -3.5}\n", + "..........;\n", + "64 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': -3.0}\n", + "..........;\n", + "65 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': -2.5}\n", + "..........;\n", + "66 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': -2.0}\n", + "..........;\n", + "67 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': -1.5}\n", + "..........;\n", + "68 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': -1.0}\n", + "..........;\n", + "69 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': -0.5}\n", + "..........;\n", + "70 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': 0.0}\n", + "..........;\n", + "71 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': 0.5}\n", + "..........;\n", + "72 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': 1.0}\n", + "..........;\n", + "73 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': 1.5}\n", + "..........;\n", + "74 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': 2.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "75 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': 2.5}\n", + "..........;\n", + "76 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': 3.0}\n", + "..........;\n", + "77 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': 3.5}\n", + "..........;\n", + "78 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': 4.0}\n", + "..........;\n", + "79 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.30000000000000004, 'criteria': 4.5}\n", + "..........;\n", + "80 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': -5.0}\n", + "..........;\n", + "81 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': -4.5}\n", + "..........;\n", + "82 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': -4.0}\n", + "..........;\n", + "83 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': -3.5}\n", + "..........;\n", + "84 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': -3.0}\n", + "..........;\n", + "85 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': -2.5}\n", + "..........;\n", + "86 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': -2.0}\n", + "..........;\n", + "87 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': -1.5}\n", + "..........;\n", + "88 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': -1.0}\n", + "..........;\n", + "89 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': -0.5}\n", + "..........;\n", + "90 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': 0.0}\n", + "..........;\n", + "91 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': 0.5}\n", + "..........;\n", + "92 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': 1.0}\n", + "..........;\n", + "93 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': 1.5}\n", + "..........;\n", + "94 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': 2.0}\n", + "..........;\n", + "95 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': 2.5}\n", + "..........;\n", + "96 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': 3.0}\n", + "..........;\n", + "97 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': 3.5}\n", + "..........;\n", + "98 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': 4.0}\n", + "..........;\n", + "99 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.4, 'criteria': 4.5}\n", + "..........;\n", + "100 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': -5.0}\n", + "..........;\n", + "101 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': -4.5}\n", + "..........;\n", + "102 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': -4.0}\n", + "..........;\n", + "103 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': -3.5}\n", + "..........;\n", + "104 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': -3.0}\n", + "..........;\n", + "105 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': -2.5}\n", + "..........;\n", + "106 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': -2.0}\n", + "..........;\n", + "107 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': -1.5}\n", + "..........;\n", + "108 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': -1.0}\n", + "..........;\n", + "109 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': -0.5}\n", + "..........;\n", + "110 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': 0.0}\n", + "..........;\n", + "111 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': 0.5}\n", + "..........;\n", + "112 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': 1.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "113 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': 1.5}\n", + "..........;\n", + "114 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': 2.0}\n", + "..........;\n", + "115 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': 2.5}\n", + "..........;\n", + "116 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': 3.0}\n", + "..........;\n", + "117 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': 3.5}\n", + "..........;\n", + "118 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': 4.0}\n", + "..........;\n", + "119 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.5, 'criteria': 4.5}\n", + "..........;\n", + "120 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': -5.0}\n", + "..........;\n", + "121 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': -4.5}\n", + "..........;\n", + "122 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': -4.0}\n", + "..........;\n", + "123 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': -3.5}\n", + "..........;\n", + "124 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': -3.0}\n", + "..........;\n", + "125 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': -2.5}\n", + "..........;\n", + "126 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': -2.0}\n", + "..........;\n", + "127 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': -1.5}\n", + "..........;\n", + "128 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': -1.0}\n", + "..........;\n", + "129 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': -0.5}\n", + "..........;\n", + "130 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': 0.0}\n", + "..........;\n", + "131 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': 0.5}\n", + "..........;\n", + "132 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': 1.0}\n", + "..........;\n", + "133 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': 1.5}\n", + "..........;\n", + "134 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': 2.0}\n", + "..........;\n", + "135 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': 2.5}\n", + "..........;\n", + "136 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': 3.0}\n", + "..........;\n", + "137 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': 3.5}\n", + "..........;\n", + "138 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': 4.0}\n", + "..........;\n", + "139 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.6000000000000001, 'criteria': 4.5}\n", + "..........;\n", + "140 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': -5.0}\n", + "..........;\n", + "141 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': -4.5}\n", + "..........;\n", + "142 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': -4.0}\n", + "..........;\n", + "143 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': -3.5}\n", + "..........;\n", + "144 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': -3.0}\n", + "..........;\n", + "145 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': -2.5}\n", + "..........;\n", + "146 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': -2.0}\n", + "..........;\n", + "147 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': -1.5}\n", + "..........;\n", + "148 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': -1.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "149 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': -0.5}\n", + "..........;\n", + "150 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': 0.0}\n", + "..........;\n", + "151 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': 0.5}\n", + "..........;\n", + "152 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': 1.0}\n", + "..........;\n", + "153 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': 1.5}\n", + "..........;\n", + "154 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': 2.0}\n", + "..........;\n", + "155 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': 2.5}\n", + "..........;\n", + "156 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': 3.0}\n", + "..........;\n", + "157 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': 3.5}\n", + "..........;\n", + "158 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': 4.0}\n", + "..........;\n", + "159 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.7000000000000001, 'criteria': 4.5}\n", + "..........;\n", + "160 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': -5.0}\n", + "..........;\n", + "161 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': -4.5}\n", + "..........;\n", + "162 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': -4.0}\n", + "..........;\n", + "163 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': -3.5}\n", + "..........;\n", + "164 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': -3.0}\n", + "..........;\n", + "165 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': -2.5}\n", + "..........;\n", + "166 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': -2.0}\n", + "..........;\n", + "167 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': -1.5}\n", + "..........;\n", + "168 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': -1.0}\n", + "..........;\n", + "169 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': -0.5}\n", + "..........;\n", + "170 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': 0.0}\n", + "..........;\n", + "171 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': 0.5}\n", + "..........;\n", + "172 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': 1.0}\n", + "..........;\n", + "173 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': 1.5}\n", + "..........;\n", + "174 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': 2.0}\n", + "..........;\n", + "175 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': 2.5}\n", + "..........;\n", + "176 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': 3.0}\n", + "..........;\n", + "177 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': 3.5}\n", + "..........;\n", + "178 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': 4.0}\n", + "..........;\n", + "179 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.8, 'criteria': 4.5}\n", + "..........;\n", + "180 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': -5.0}\n", + "..........;\n", + "181 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': -4.5}\n", + "..........;\n", + "182 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': -4.0}\n", + "..........;\n", + "183 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': -3.5}\n", + "..........;\n", + "184 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': -3.0}\n", + "..........;\n", + "185 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': -2.5}\n", + "..........;\n", + "186 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': -2.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "187 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': -1.5}\n", + "..........;\n", + "188 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': -1.0}\n", + "..........;\n", + "189 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': -0.5}\n", + "..........;\n", + "190 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': 0.0}\n", + "..........;\n", + "191 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': 0.5}\n", + "..........;\n", + "192 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': 1.0}\n", + "..........;\n", + "193 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': 1.5}\n", + "..........;\n", + "194 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': 2.0}\n", + "..........;\n", + "195 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': 2.5}\n", + "..........;\n", + "196 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': 3.0}\n", + "..........;\n", + "197 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': 3.5}\n", + "..........;\n", + "198 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': 4.0}\n", + "..........;\n", + "199 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 0.9, 'criteria': 4.5}\n", + "..........;\n", + "200 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': -5.0}\n", + "..........;\n", + "201 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': -4.5}\n", + "..........;\n", + "202 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': -4.0}\n", + "..........;\n", + "203 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': -3.5}\n", + "..........;\n", + "204 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': -3.0}\n", + "..........;\n", + "205 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': -2.5}\n", + "..........;\n", + "206 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': -2.0}\n", + "..........;\n", + "207 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': -1.5}\n", + "..........;\n", + "208 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': -1.0}\n", + "..........;\n", + "209 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': -0.5}\n", + "..........;\n", + "210 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': 0.0}\n", + "..........;\n", + "211 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': 0.5}\n", + "..........;\n", + "212 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': 1.0}\n", + "..........;\n", + "213 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': 1.5}\n", + "..........;\n", + "214 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': 2.0}\n", + "..........;\n", + "215 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': 2.5}\n", + "..........;\n", + "216 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': 3.0}\n", + "..........;\n", + "217 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': 3.5}\n", + "..........;\n", + "218 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': 4.0}\n", + "..........;\n", + "219 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.0, 'criteria': 4.5}\n", + "..........;\n", + "220 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': -5.0}\n", + "..........;\n", + "221 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': -4.5}\n", + "..........;\n", + "222 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': -4.0}\n", + "..........;\n", + "223 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': -3.5}\n", + "..........;\n", + "224 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': -3.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "225 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': -2.5}\n", + "..........;\n", + "226 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': -2.0}\n", + "..........;\n", + "227 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': -1.5}\n", + "..........;\n", + "228 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': -1.0}\n", + "..........;\n", + "229 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': -0.5}\n", + "..........;\n", + "230 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': 0.0}\n", + "..........;\n", + "231 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': 0.5}\n", + "..........;\n", + "232 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': 1.0}\n", + "..........;\n", + "233 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': 1.5}\n", + "..........;\n", + "234 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': 2.0}\n", + "..........;\n", + "235 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': 2.5}\n", + "..........;\n", + "236 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': 3.0}\n", + "..........;\n", + "237 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': 3.5}\n", + "..........;\n", + "238 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': 4.0}\n", + "..........;\n", + "239 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.1, 'criteria': 4.5}\n", + "..........;\n", + "240 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': -5.0}\n", + "..........;\n", + "241 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': -4.5}\n", + "..........;\n", + "242 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': -4.0}\n", + "..........;\n", + "243 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': -3.5}\n", + "..........;\n", + "244 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': -3.0}\n", + "..........;\n", + "245 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': -2.5}\n", + "..........;\n", + "246 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': -2.0}\n", + "..........;\n", + "247 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': -1.5}\n", + "..........;\n", + "248 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': -1.0}\n", + "..........;\n", + "249 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': -0.5}\n", + "..........;\n", + "250 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': 0.0}\n", + "..........;\n", + "251 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': 0.5}\n", + "..........;\n", + "252 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': 1.0}\n", + "..........;\n", + "253 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': 1.5}\n", + "..........;\n", + "254 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': 2.0}\n", + "..........;\n", + "255 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': 2.5}\n", + "..........;\n", + "256 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': 3.0}\n", + "..........;\n", + "257 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': 3.5}\n", + "..........;\n", + "258 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': 4.0}\n", + "..........;\n", + "259 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.2000000000000002, 'criteria': 4.5}\n", + "..........;\n", + "260 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': -5.0}\n", + "..........;\n", + "261 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': -4.5}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "262 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': -4.0}\n", + "..........;\n", + "263 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': -3.5}\n", + "..........;\n", + "264 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': -3.0}\n", + "..........;\n", + "265 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': -2.5}\n", + "..........;\n", + "266 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': -2.0}\n", + "..........;\n", + "267 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': -1.5}\n", + "..........;\n", + "268 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': -1.0}\n", + "..........;\n", + "269 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': -0.5}\n", + "..........;\n", + "270 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': 0.0}\n", + "..........;\n", + "271 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': 0.5}\n", + "..........;\n", + "272 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': 1.0}\n", + "..........;\n", + "273 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': 1.5}\n", + "..........;\n", + "274 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': 2.0}\n", + "..........;\n", + "275 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': 2.5}\n", + "..........;\n", + "276 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': 3.0}\n", + "..........;\n", + "277 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': 3.5}\n", + "..........;\n", + "278 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': 4.0}\n", + "..........;\n", + "279 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.3, 'criteria': 4.5}\n", + "..........;\n", + "280 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': -5.0}\n", + "..........;\n", + "281 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': -4.5}\n", + "..........;\n", + "282 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': -4.0}\n", + "..........;\n", + "283 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': -3.5}\n", + "..........;\n", + "284 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': -3.0}\n", + "..........;\n", + "285 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': -2.5}\n", + "..........;\n", + "286 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': -2.0}\n", + "..........;\n", + "287 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': -1.5}\n", + "..........;\n", + "288 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': -1.0}\n", + "..........;\n", + "289 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': -0.5}\n", + "..........;\n", + "290 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': 0.0}\n", + "..........;\n", + "291 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': 0.5}\n", + "..........;\n", + "292 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': 1.0}\n", + "..........;\n", + "293 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': 1.5}\n", + "..........;\n", + "294 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': 2.0}\n", + "..........;\n", + "295 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': 2.5}\n", + "..........;\n", + "296 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': 3.0}\n", + "..........;\n", + "297 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': 3.5}\n", + "..........;\n", + "298 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': 4.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "299 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.4000000000000001, 'criteria': 4.5}\n", + "..........;\n", + "300 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': -5.0}\n", + "..........;\n", + "301 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': -4.5}\n", + "..........;\n", + "302 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': -4.0}\n", + "..........;\n", + "303 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': -3.5}\n", + "..........;\n", + "304 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': -3.0}\n", + "..........;\n", + "305 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': -2.5}\n", + "..........;\n", + "306 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': -2.0}\n", + "..........;\n", + "307 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': -1.5}\n", + "..........;\n", + "308 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': -1.0}\n", + "..........;\n", + "309 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': -0.5}\n", + "..........;\n", + "310 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': 0.0}\n", + "..........;\n", + "311 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': 0.5}\n", + "..........;\n", + "312 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': 1.0}\n", + "..........;\n", + "313 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': 1.5}\n", + "..........;\n", + "314 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': 2.0}\n", + "..........;\n", + "315 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': 2.5}\n", + "..........;\n", + "316 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': 3.0}\n", + "..........;\n", + "317 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': 3.5}\n", + "..........;\n", + "318 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': 4.0}\n", + "..........;\n", + "319 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.5, 'criteria': 4.5}\n", + "..........;\n", + "320 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': -5.0}\n", + "..........;\n", + "321 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': -4.5}\n", + "..........;\n", + "322 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': -4.0}\n", + "..........;\n", + "323 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': -3.5}\n", + "..........;\n", + "324 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': -3.0}\n", + "..........;\n", + "325 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': -2.5}\n", + "..........;\n", + "326 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': -2.0}\n", + "..........;\n", + "327 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': -1.5}\n", + "..........;\n", + "328 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': -1.0}\n", + "..........;\n", + "329 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': -0.5}\n", + "..........;\n", + "330 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': 0.0}\n", + "..........;\n", + "331 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': 0.5}\n", + "..........;\n", + "332 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': 1.0}\n", + "..........;\n", + "333 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': 1.5}\n", + "..........;\n", + "334 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': 2.0}\n", + "..........;\n", + "335 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': 2.5}\n", + "..........;\n", + "336 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': 3.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "337 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': 3.5}\n", + "..........;\n", + "338 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': 4.0}\n", + "..........;\n", + "339 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.6, 'criteria': 4.5}\n", + "..........;\n", + "340 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': -5.0}\n", + "..........;\n", + "341 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': -4.5}\n", + "..........;\n", + "342 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': -4.0}\n", + "..........;\n", + "343 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': -3.5}\n", + "..........;\n", + "344 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': -3.0}\n", + "..........;\n", + "345 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': -2.5}\n", + "..........;\n", + "346 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': -2.0}\n", + "..........;\n", + "347 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': -1.5}\n", + "..........;\n", + "348 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': -1.0}\n", + "..........;\n", + "349 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': -0.5}\n", + "..........;\n", + "350 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': 0.0}\n", + "..........;\n", + "351 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': 0.5}\n", + "..........;\n", + "352 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': 1.0}\n", + "..........;\n", + "353 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': 1.5}\n", + "..........;\n", + "354 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': 2.0}\n", + "..........;\n", + "355 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': 2.5}\n", + "..........;\n", + "356 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': 3.0}\n", + "..........;\n", + "357 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': 3.5}\n", + "..........;\n", + "358 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': 4.0}\n", + "..........;\n", + "359 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.7000000000000002, 'criteria': 4.5}\n", + "..........;\n", + "360 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': -5.0}\n", + "..........;\n", + "361 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': -4.5}\n", + "..........;\n", + "362 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': -4.0}\n", + "..........;\n", + "363 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': -3.5}\n", + "..........;\n", + "364 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': -3.0}\n", + "..........;\n", + "365 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': -2.5}\n", + "..........;\n", + "366 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': -2.0}\n", + "..........;\n", + "367 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': -1.5}\n", + "..........;\n", + "368 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': -1.0}\n", + "..........;\n", + "369 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': -0.5}\n", + "..........;\n", + "370 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': 0.0}\n", + "..........;\n", + "371 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': 0.5}\n", + "..........;\n", + "372 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': 1.0}\n", + "..........;\n", + "373 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': 1.5}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "374 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': 2.0}\n", + "..........;\n", + "375 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': 2.5}\n", + "..........;\n", + "376 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': 3.0}\n", + "..........;\n", + "377 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': 3.5}\n", + "..........;\n", + "378 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': 4.0}\n", + "..........;\n", + "379 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.8, 'criteria': 4.5}\n", + "..........;\n", + "380 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': -5.0}\n", + "..........;\n", + "381 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': -4.5}\n", + "..........;\n", + "382 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': -4.0}\n", + "..........;\n", + "383 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': -3.5}\n", + "..........;\n", + "384 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': -3.0}\n", + "..........;\n", + "385 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': -2.5}\n", + "..........;\n", + "386 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': -2.0}\n", + "..........;\n", + "387 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': -1.5}\n", + "..........;\n", + "388 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': -1.0}\n", + "..........;\n", + "389 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': -0.5}\n", + "..........;\n", + "390 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': 0.0}\n", + "..........;\n", + "391 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': 0.5}\n", + "..........;\n", + "392 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': 1.0}\n", + "..........;\n", + "393 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': 1.5}\n", + "..........;\n", + "394 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': 2.0}\n", + "..........;\n", + "395 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': 2.5}\n", + "..........;\n", + "396 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': 3.0}\n", + "..........;\n", + "397 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': 3.5}\n", + "..........;\n", + "398 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': 4.0}\n", + "..........;\n", + "399 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 1.9000000000000001, 'criteria': 4.5}\n", + "..........;\n", + "400 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': -5.0}\n", + "..........;\n", + "401 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': -4.5}\n", + "..........;\n", + "402 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': -4.0}\n", + "..........;\n", + "403 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': -3.5}\n", + "..........;\n", + "404 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': -3.0}\n", + "..........;\n", + "405 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': -2.5}\n", + "..........;\n", + "406 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': -2.0}\n", + "..........;\n", + "407 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': -1.5}\n", + "..........;\n", + "408 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': -1.0}\n", + "..........;\n", + "409 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': -0.5}\n", + "..........;\n", + "410 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': 0.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "411 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': 0.5}\n", + "..........;\n", + "412 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': 1.0}\n", + "..........;\n", + "413 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': 1.5}\n", + "..........;\n", + "414 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': 2.0}\n", + "..........;\n", + "415 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': 2.5}\n", + "..........;\n", + "416 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': 3.0}\n", + "..........;\n", + "417 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': 3.5}\n", + "..........;\n", + "418 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': 4.0}\n", + "..........;\n", + "419 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.0, 'criteria': 4.5}\n", + "..........;\n", + "420 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': -5.0}\n", + "..........;\n", + "421 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': -4.5}\n", + "..........;\n", + "422 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': -4.0}\n", + "..........;\n", + "423 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': -3.5}\n", + "..........;\n", + "424 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': -3.0}\n", + "..........;\n", + "425 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': -2.5}\n", + "..........;\n", + "426 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': -2.0}\n", + "..........;\n", + "427 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': -1.5}\n", + "..........;\n", + "428 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': -1.0}\n", + "..........;\n", + "429 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': -0.5}\n", + "..........;\n", + "430 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': 0.0}\n", + "..........;\n", + "431 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': 0.5}\n", + "..........;\n", + "432 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': 1.0}\n", + "..........;\n", + "433 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': 1.5}\n", + "..........;\n", + "434 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': 2.0}\n", + "..........;\n", + "435 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': 2.5}\n", + "..........;\n", + "436 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': 3.0}\n", + "..........;\n", + "437 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': 3.5}\n", + "..........;\n", + "438 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': 4.0}\n", + "..........;\n", + "439 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.1, 'criteria': 4.5}\n", + "..........;\n", + "440 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': -5.0}\n", + "..........;\n", + "441 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': -4.5}\n", + "..........;\n", + "442 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': -4.0}\n", + "..........;\n", + "443 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': -3.5}\n", + "..........;\n", + "444 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': -3.0}\n", + "..........;\n", + "445 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': -2.5}\n", + "..........;\n", + "446 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': -2.0}\n", + "..........;\n", + "447 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': -1.5}\n", + "..........;\n", + "448 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': -1.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "449 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': -0.5}\n", + "..........;\n", + "450 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': 0.0}\n", + "..........;\n", + "451 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': 0.5}\n", + "..........;\n", + "452 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': 1.0}\n", + "..........;\n", + "453 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': 1.5}\n", + "..........;\n", + "454 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': 2.0}\n", + "..........;\n", + "455 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': 2.5}\n", + "..........;\n", + "456 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': 3.0}\n", + "..........;\n", + "457 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': 3.5}\n", + "..........;\n", + "458 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': 4.0}\n", + "..........;\n", + "459 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.2, 'criteria': 4.5}\n", + "..........;\n", + "460 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': -5.0}\n", + "..........;\n", + "461 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': -4.5}\n", + "..........;\n", + "462 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': -4.0}\n", + "..........;\n", + "463 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': -3.5}\n", + "..........;\n", + "464 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': -3.0}\n", + "..........;\n", + "465 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': -2.5}\n", + "..........;\n", + "466 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': -2.0}\n", + "..........;\n", + "467 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': -1.5}\n", + "..........;\n", + "468 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': -1.0}\n", + "..........;\n", + "469 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': -0.5}\n", + "..........;\n", + "470 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': 0.0}\n", + "..........;\n", + "471 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': 0.5}\n", + "..........;\n", + "472 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': 1.0}\n", + "..........;\n", + "473 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': 1.5}\n", + "..........;\n", + "474 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': 2.0}\n", + "..........;\n", + "475 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': 2.5}\n", + "..........;\n", + "476 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': 3.0}\n", + "..........;\n", + "477 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': 3.5}\n", + "..........;\n", + "478 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': 4.0}\n", + "..........;\n", + "479 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.3000000000000003, 'criteria': 4.5}\n", + "..........;\n", + "480 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': -5.0}\n", + "..........;\n", + "481 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': -4.5}\n", + "..........;\n", + "482 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': -4.0}\n", + "..........;\n", + "483 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': -3.5}\n", + "..........;\n", + "484 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': -3.0}\n", + "..........;\n", + "485 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': -2.5}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "486 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': -2.0}\n", + "..........;\n", + "487 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': -1.5}\n", + "..........;\n", + "488 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': -1.0}\n", + "..........;\n", + "489 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': -0.5}\n", + "..........;\n", + "490 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': 0.0}\n", + "..........;\n", + "491 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': 0.5}\n", + "..........;\n", + "492 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': 1.0}\n", + "..........;\n", + "493 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': 1.5}\n", + "..........;\n", + "494 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': 2.0}\n", + "..........;\n", + "495 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': 2.5}\n", + "..........;\n", + "496 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': 3.0}\n", + "..........;\n", + "497 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': 3.5}\n", + "..........;\n", + "498 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': 4.0}\n", + "..........;\n", + "499 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.4000000000000004, 'criteria': 4.5}\n", + "..........;\n", + "500 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': -5.0}\n", + "..........;\n", + "501 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': -4.5}\n", + "..........;\n", + "502 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': -4.0}\n", + "..........;\n", + "503 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': -3.5}\n", + "..........;\n", + "504 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': -3.0}\n", + "..........;\n", + "505 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': -2.5}\n", + "..........;\n", + "506 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': -2.0}\n", + "..........;\n", + "507 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': -1.5}\n", + "..........;\n", + "508 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': -1.0}\n", + "..........;\n", + "509 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': -0.5}\n", + "..........;\n", + "510 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': 0.0}\n", + "..........;\n", + "511 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': 0.5}\n", + "..........;\n", + "512 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': 1.0}\n", + "..........;\n", + "513 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': 1.5}\n", + "..........;\n", + "514 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': 2.0}\n", + "..........;\n", + "515 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': 2.5}\n", + "..........;\n", + "516 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': 3.0}\n", + "..........;\n", + "517 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': 3.5}\n", + "..........;\n", + "518 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': 4.0}\n", + "..........;\n", + "519 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.5, 'criteria': 4.5}\n", + "..........;\n", + "520 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': -5.0}\n", + "..........;\n", + "521 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': -4.5}\n", + "..........;\n", + "522 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': -4.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "523 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': -3.5}\n", + "..........;\n", + "524 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': -3.0}\n", + "..........;\n", + "525 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': -2.5}\n", + "..........;\n", + "526 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': -2.0}\n", + "..........;\n", + "527 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': -1.5}\n", + "..........;\n", + "528 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': -1.0}\n", + "..........;\n", + "529 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': -0.5}\n", + "..........;\n", + "530 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': 0.0}\n", + "..........;\n", + "531 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': 0.5}\n", + "..........;\n", + "532 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': 1.0}\n", + "..........;\n", + "533 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': 1.5}\n", + "..........;\n", + "534 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': 2.0}\n", + "..........;\n", + "535 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': 2.5}\n", + "..........;\n", + "536 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': 3.0}\n", + "..........;\n", + "537 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': 3.5}\n", + "..........;\n", + "538 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': 4.0}\n", + "..........;\n", + "539 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.6, 'criteria': 4.5}\n", + "..........;\n", + "540 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': -5.0}\n", + "..........;\n", + "541 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': -4.5}\n", + "..........;\n", + "542 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': -4.0}\n", + "..........;\n", + "543 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': -3.5}\n", + "..........;\n", + "544 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': -3.0}\n", + "..........;\n", + "545 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': -2.5}\n", + "..........;\n", + "546 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': -2.0}\n", + "..........;\n", + "547 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': -1.5}\n", + "..........;\n", + "548 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': -1.0}\n", + "..........;\n", + "549 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': -0.5}\n", + "..........;\n", + "550 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': 0.0}\n", + "..........;\n", + "551 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': 0.5}\n", + "..........;\n", + "552 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': 1.0}\n", + "..........;\n", + "553 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': 1.5}\n", + "..........;\n", + "554 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': 2.0}\n", + "..........;\n", + "555 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': 2.5}\n", + "..........;\n", + "556 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': 3.0}\n", + "..........;\n", + "557 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': 3.5}\n", + "..........;\n", + "558 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': 4.0}\n", + "..........;\n", + "559 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.7, 'criteria': 4.5}\n", + "..........;\n", + "560 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': -5.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "561 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': -4.5}\n", + "..........;\n", + "562 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': -4.0}\n", + "..........;\n", + "563 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': -3.5}\n", + "..........;\n", + "564 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': -3.0}\n", + "..........;\n", + "565 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': -2.5}\n", + "..........;\n", + "566 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': -2.0}\n", + "..........;\n", + "567 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': -1.5}\n", + "..........;\n", + "568 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': -1.0}\n", + "..........;\n", + "569 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': -0.5}\n", + "..........;\n", + "570 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': 0.0}\n", + "..........;\n", + "571 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': 0.5}\n", + "..........;\n", + "572 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': 1.0}\n", + "..........;\n", + "573 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': 1.5}\n", + "..........;\n", + "574 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': 2.0}\n", + "..........;\n", + "575 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': 2.5}\n", + "..........;\n", + "576 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': 3.0}\n", + "..........;\n", + "577 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': 3.5}\n", + "..........;\n", + "578 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': 4.0}\n", + "..........;\n", + "579 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.8000000000000003, 'criteria': 4.5}\n", + "..........;\n", + "580 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': -5.0}\n", + "..........;\n", + "581 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': -4.5}\n", + "..........;\n", + "582 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': -4.0}\n", + "..........;\n", + "583 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': -3.5}\n", + "..........;\n", + "584 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': -3.0}\n", + "..........;\n", + "585 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': -2.5}\n", + "..........;\n", + "586 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': -2.0}\n", + "..........;\n", + "587 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': -1.5}\n", + "..........;\n", + "588 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': -1.0}\n", + "..........;\n", + "589 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': -0.5}\n", + "..........;\n", + "590 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': 0.0}\n", + "..........;\n", + "591 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': 0.5}\n", + "..........;\n", + "592 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': 1.0}\n", + "..........;\n", + "593 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': 1.5}\n", + "..........;\n", + "594 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': 2.0}\n", + "..........;\n", + "595 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': 2.5}\n", + "..........;\n", + "596 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': 3.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "597 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': 3.5}\n", + "..........;\n", + "598 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': 4.0}\n", + "..........;\n", + "599 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 2.9000000000000004, 'criteria': 4.5}\n", + "..........;\n", + "600 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': -5.0}\n", + "..........;\n", + "601 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': -4.5}\n", + "..........;\n", + "602 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': -4.0}\n", + "..........;\n", + "603 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': -3.5}\n", + "..........;\n", + "604 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': -3.0}\n", + "..........;\n", + "605 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': -2.5}\n", + "..........;\n", + "606 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': -2.0}\n", + "..........;\n", + "607 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': -1.5}\n", + "..........;\n", + "608 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': -1.0}\n", + "..........;\n", + "609 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': -0.5}\n", + "..........;\n", + "610 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': 0.0}\n", + "..........;\n", + "611 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': 0.5}\n", + "..........;\n", + "612 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': 1.0}\n", + "..........;\n", + "613 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': 1.5}\n", + "..........;\n", + "614 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': 2.0}\n", + "..........;\n", + "615 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': 2.5}\n", + "..........;\n", + "616 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': 3.0}\n", + "..........;\n", + "617 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': 3.5}\n", + "..........;\n", + "618 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': 4.0}\n", + "..........;\n", + "619 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.0, 'criteria': 4.5}\n", + "..........;\n", + "620 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': -5.0}\n", + "..........;\n", + "621 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': -4.5}\n", + "..........;\n", + "622 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': -4.0}\n", + "..........;\n", + "623 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': -3.5}\n", + "..........;\n", + "624 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': -3.0}\n", + "..........;\n", + "625 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': -2.5}\n", + "..........;\n", + "626 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': -2.0}\n", + "..........;\n", + "627 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': -1.5}\n", + "..........;\n", + "628 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': -1.0}\n", + "..........;\n", + "629 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': -0.5}\n", + "..........;\n", + "630 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': 0.0}\n", + "..........;\n", + "631 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': 0.5}\n", + "..........;\n", + "632 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': 1.0}\n", + "..........;\n", + "633 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': 1.5}\n", + "..........;\n", + "634 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': 2.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "635 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': 2.5}\n", + "..........;\n", + "636 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': 3.0}\n", + "..........;\n", + "637 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': 3.5}\n", + "..........;\n", + "638 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': 4.0}\n", + "..........;\n", + "639 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.1, 'criteria': 4.5}\n", + "..........;\n", + "640 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': -5.0}\n", + "..........;\n", + "641 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': -4.5}\n", + "..........;\n", + "642 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': -4.0}\n", + "..........;\n", + "643 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': -3.5}\n", + "..........;\n", + "644 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': -3.0}\n", + "..........;\n", + "645 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': -2.5}\n", + "..........;\n", + "646 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': -2.0}\n", + "..........;\n", + "647 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': -1.5}\n", + "..........;\n", + "648 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': -1.0}\n", + "..........;\n", + "649 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': -0.5}\n", + "..........;\n", + "650 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': 0.0}\n", + "..........;\n", + "651 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': 0.5}\n", + "..........;\n", + "652 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': 1.0}\n", + "..........;\n", + "653 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': 1.5}\n", + "..........;\n", + "654 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': 2.0}\n", + "..........;\n", + "655 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': 2.5}\n", + "..........;\n", + "656 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': 3.0}\n", + "..........;\n", + "657 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': 3.5}\n", + "..........;\n", + "658 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': 4.0}\n", + "..........;\n", + "659 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.2, 'criteria': 4.5}\n", + "..........;\n", + "660 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': -5.0}\n", + "..........;\n", + "661 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': -4.5}\n", + "..........;\n", + "662 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': -4.0}\n", + "..........;\n", + "663 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': -3.5}\n", + "..........;\n", + "664 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': -3.0}\n", + "..........;\n", + "665 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': -2.5}\n", + "..........;\n", + "666 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': -2.0}\n", + "..........;\n", + "667 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': -1.5}\n", + "..........;\n", + "668 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': -1.0}\n", + "..........;\n", + "669 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': -0.5}\n", + "..........;\n", + "670 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 0.0}\n", + "..........;\n", + "671 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 0.5}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "672 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 1.0}\n", + "..........;\n", + "673 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 1.5}\n", + "..........;\n", + "674 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 2.0}\n", + "..........;\n", + "675 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 2.5}\n", + "..........;\n", + "676 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 3.0}\n", + "..........;\n", + "677 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 3.5}\n", + "..........;\n", + "678 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 4.0}\n", + "..........;\n", + "679 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 4.5}\n", + "..........;\n", + "680 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': -5.0}\n", + "..........;\n", + "681 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': -4.5}\n", + "..........;\n", + "682 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': -4.0}\n", + "..........;\n", + "683 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': -3.5}\n", + "..........;\n", + "684 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': -3.0}\n", + "..........;\n", + "685 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': -2.5}\n", + "..........;\n", + "686 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': -2.0}\n", + "..........;\n", + "687 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': -1.5}\n", + "..........;\n", + "688 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': -1.0}\n", + "..........;\n", + "689 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': -0.5}\n", + "..........;\n", + "690 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': 0.0}\n", + "..........;\n", + "691 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': 0.5}\n", + "..........;\n", + "692 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': 1.0}\n", + "..........;\n", + "693 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': 1.5}\n", + "..........;\n", + "694 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': 2.0}\n", + "..........;\n", + "695 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': 2.5}\n", + "..........;\n", + "696 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': 3.0}\n", + "..........;\n", + "697 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': 3.5}\n", + "..........;\n", + "698 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': 4.0}\n", + "..........;\n", + "699 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.4000000000000004, 'criteria': 4.5}\n", + "..........;\n", + "700 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': -5.0}\n", + "..........;\n", + "701 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': -4.5}\n", + "..........;\n", + "702 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': -4.0}\n", + "..........;\n", + "703 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': -3.5}\n", + "..........;\n", + "704 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': -3.0}\n", + "..........;\n", + "705 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': -2.5}\n", + "..........;\n", + "706 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': -2.0}\n", + "..........;\n", + "707 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': -1.5}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "708 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': -1.0}\n", + "..........;\n", + "709 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': -0.5}\n", + "..........;\n", + "710 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': 0.0}\n", + "..........;\n", + "711 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': 0.5}\n", + "..........;\n", + "712 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': 1.0}\n", + "..........;\n", + "713 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': 1.5}\n", + "..........;\n", + "714 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': 2.0}\n", + "..........;\n", + "715 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': 2.5}\n", + "..........;\n", + "716 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': 3.0}\n", + "..........;\n", + "717 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': 3.5}\n", + "..........;\n", + "718 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': 4.0}\n", + "..........;\n", + "719 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.5, 'criteria': 4.5}\n", + "..........;\n", + "720 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': -5.0}\n", + "..........;\n", + "721 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': -4.5}\n", + "..........;\n", + "722 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': -4.0}\n", + "..........;\n", + "723 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': -3.5}\n", + "..........;\n", + "724 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': -3.0}\n", + "..........;\n", + "725 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': -2.5}\n", + "..........;\n", + "726 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': -2.0}\n", + "..........;\n", + "727 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': -1.5}\n", + "..........;\n", + "728 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': -1.0}\n", + "..........;\n", + "729 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': -0.5}\n", + "..........;\n", + "730 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': 0.0}\n", + "..........;\n", + "731 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': 0.5}\n", + "..........;\n", + "732 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': 1.0}\n", + "..........;\n", + "733 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': 1.5}\n", + "..........;\n", + "734 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': 2.0}\n", + "..........;\n", + "735 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': 2.5}\n", + "..........;\n", + "736 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': 3.0}\n", + "..........;\n", + "737 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': 3.5}\n", + "..........;\n", + "738 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': 4.0}\n", + "..........;\n", + "739 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.6, 'criteria': 4.5}\n", + "..........;\n", + "740 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': -5.0}\n", + "..........;\n", + "741 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': -4.5}\n", + "..........;\n", + "742 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': -4.0}\n", + "..........;\n", + "743 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': -3.5}\n", + "..........;\n", + "744 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': -3.0}\n", + "..........;\n", + "745 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': -2.5}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "746 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': -2.0}\n", + "..........;\n", + "747 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': -1.5}\n", + "..........;\n", + "748 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': -1.0}\n", + "..........;\n", + "749 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': -0.5}\n", + "..........;\n", + "750 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': 0.0}\n", + "..........;\n", + "751 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': 0.5}\n", + "..........;\n", + "752 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': 1.0}\n", + "..........;\n", + "753 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': 1.5}\n", + "..........;\n", + "754 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': 2.0}\n", + "..........;\n", + "755 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': 2.5}\n", + "..........;\n", + "756 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': 3.0}\n", + "..........;\n", + "757 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': 3.5}\n", + "..........;\n", + "758 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': 4.0}\n", + "..........;\n", + "759 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.7, 'criteria': 4.5}\n", + "..........;\n", + "760 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': -5.0}\n", + "..........;\n", + "761 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': -4.5}\n", + "..........;\n", + "762 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': -4.0}\n", + "..........;\n", + "763 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': -3.5}\n", + "..........;\n", + "764 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': -3.0}\n", + "..........;\n", + "765 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': -2.5}\n", + "..........;\n", + "766 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': -2.0}\n", + "..........;\n", + "767 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': -1.5}\n", + "..........;\n", + "768 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': -1.0}\n", + "..........;\n", + "769 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': -0.5}\n", + "..........;\n", + "770 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': 0.0}\n", + "..........;\n", + "771 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': 0.5}\n", + "..........;\n", + "772 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': 1.0}\n", + "..........;\n", + "773 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': 1.5}\n", + "..........;\n", + "774 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': 2.0}\n", + "..........;\n", + "775 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': 2.5}\n", + "..........;\n", + "776 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': 3.0}\n", + "..........;\n", + "777 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': 3.5}\n", + "..........;\n", + "778 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': 4.0}\n", + "..........;\n", + "779 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.8000000000000003, 'criteria': 4.5}\n", + "..........;\n", + "780 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': -5.0}\n", + "..........;\n", + "781 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': -4.5}\n", + "..........;\n", + "782 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': -4.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "783 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': -3.5}\n", + "..........;\n", + "784 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': -3.0}\n", + "..........;\n", + "785 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': -2.5}\n", + "..........;\n", + "786 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': -2.0}\n", + "..........;\n", + "787 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': -1.5}\n", + "..........;\n", + "788 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': -1.0}\n", + "..........;\n", + "789 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': -0.5}\n", + "..........;\n", + "790 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': 0.0}\n", + "..........;\n", + "791 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': 0.5}\n", + "..........;\n", + "792 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': 1.0}\n", + "..........;\n", + "793 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': 1.5}\n", + "..........;\n", + "794 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': 2.0}\n", + "..........;\n", + "795 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': 2.5}\n", + "..........;\n", + "796 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': 3.0}\n", + "..........;\n", + "797 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': 3.5}\n", + "..........;\n", + "798 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': 4.0}\n", + "..........;\n", + "799 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.9000000000000004, 'criteria': 4.5}\n", + "..........;\n", + "800 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': -5.0}\n", + "..........;\n", + "801 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': -4.5}\n", + "..........;\n", + "802 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': -4.0}\n", + "..........;\n", + "803 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': -3.5}\n", + "..........;\n", + "804 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': -3.0}\n", + "..........;\n", + "805 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': -2.5}\n", + "..........;\n", + "806 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': -2.0}\n", + "..........;\n", + "807 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': -1.5}\n", + "..........;\n", + "808 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': -1.0}\n", + "..........;\n", + "809 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': -0.5}\n", + "..........;\n", + "810 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': 0.0}\n", + "..........;\n", + "811 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': 0.5}\n", + "..........;\n", + "812 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': 1.0}\n", + "..........;\n", + "813 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': 1.5}\n", + "..........;\n", + "814 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': 2.0}\n", + "..........;\n", + "815 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': 2.5}\n", + "..........;\n", + "816 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': 3.0}\n", + "..........;\n", + "817 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': 3.5}\n", + "..........;\n", + "818 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': 4.0}\n", + "..........;\n", + "819 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.0, 'criteria': 4.5}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "820 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': -5.0}\n", + "..........;\n", + "821 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': -4.5}\n", + "..........;\n", + "822 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': -4.0}\n", + "..........;\n", + "823 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': -3.5}\n", + "..........;\n", + "824 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': -3.0}\n", + "..........;\n", + "825 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': -2.5}\n", + "..........;\n", + "826 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': -2.0}\n", + "..........;\n", + "827 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': -1.5}\n", + "..........;\n", + "828 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': -1.0}\n", + "..........;\n", + "829 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': -0.5}\n", + "..........;\n", + "830 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': 0.0}\n", + "..........;\n", + "831 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': 0.5}\n", + "..........;\n", + "832 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': 1.0}\n", + "..........;\n", + "833 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': 1.5}\n", + "..........;\n", + "834 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': 2.0}\n", + "..........;\n", + "835 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': 2.5}\n", + "..........;\n", + "836 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': 3.0}\n", + "..........;\n", + "837 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': 3.5}\n", + "..........;\n", + "838 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': 4.0}\n", + "..........;\n", + "839 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.1000000000000005, 'criteria': 4.5}\n", + "..........;\n", + "840 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': -5.0}\n", + "..........;\n", + "841 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': -4.5}\n", + "..........;\n", + "842 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': -4.0}\n", + "..........;\n", + "843 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': -3.5}\n", + "..........;\n", + "844 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': -3.0}\n", + "..........;\n", + "845 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': -2.5}\n", + "..........;\n", + "846 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': -2.0}\n", + "..........;\n", + "847 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': -1.5}\n", + "..........;\n", + "848 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': -1.0}\n", + "..........;\n", + "849 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': -0.5}\n", + "..........;\n", + "850 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': 0.0}\n", + "..........;\n", + "851 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': 0.5}\n", + "..........;\n", + "852 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': 1.0}\n", + "..........;\n", + "853 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': 1.5}\n", + "..........;\n", + "854 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': 2.0}\n", + "..........;\n", + "855 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': 2.5}\n", + "..........;\n", + "856 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': 3.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "857 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': 3.5}\n", + "..........;\n", + "858 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': 4.0}\n", + "..........;\n", + "859 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.2, 'criteria': 4.5}\n", + "..........;\n", + "860 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': -5.0}\n", + "..........;\n", + "861 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': -4.5}\n", + "..........;\n", + "862 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': -4.0}\n", + "..........;\n", + "863 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': -3.5}\n", + "..........;\n", + "864 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': -3.0}\n", + "..........;\n", + "865 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': -2.5}\n", + "..........;\n", + "866 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': -2.0}\n", + "..........;\n", + "867 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': -1.5}\n", + "..........;\n", + "868 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': -1.0}\n", + "..........;\n", + "869 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': -0.5}\n", + "..........;\n", + "870 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': 0.0}\n", + "..........;\n", + "871 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': 0.5}\n", + "..........;\n", + "872 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': 1.0}\n", + "..........;\n", + "873 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': 1.5}\n", + "..........;\n", + "874 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': 2.0}\n", + "..........;\n", + "875 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': 2.5}\n", + "..........;\n", + "876 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': 3.0}\n", + "..........;\n", + "877 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': 3.5}\n", + "..........;\n", + "878 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': 4.0}\n", + "..........;\n", + "879 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.3, 'criteria': 4.5}\n", + "..........;\n", + "880 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': -5.0}\n", + "..........;\n", + "881 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': -4.5}\n", + "..........;\n", + "882 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': -4.0}\n", + "..........;\n", + "883 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': -3.5}\n", + "..........;\n", + "884 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': -3.0}\n", + "..........;\n", + "885 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': -2.5}\n", + "..........;\n", + "886 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': -2.0}\n", + "..........;\n", + "887 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': -1.5}\n", + "..........;\n", + "888 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': -1.0}\n", + "..........;\n", + "889 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': -0.5}\n", + "..........;\n", + "890 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': 0.0}\n", + "..........;\n", + "891 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': 0.5}\n", + "..........;\n", + "892 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': 1.0}\n", + "..........;\n", + "893 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': 1.5}\n", + "..........;\n", + "894 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': 2.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "895 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': 2.5}\n", + "..........;\n", + "896 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': 3.0}\n", + "..........;\n", + "897 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': 3.5}\n", + "..........;\n", + "898 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': 4.0}\n", + "..........;\n", + "899 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.4, 'criteria': 4.5}\n", + "..........;\n", + "900 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': -5.0}\n", + "..........;\n", + "901 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': -4.5}\n", + "..........;\n", + "902 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': -4.0}\n", + "..........;\n", + "903 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': -3.5}\n", + "..........;\n", + "904 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': -3.0}\n", + "..........;\n", + "905 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': -2.5}\n", + "..........;\n", + "906 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': -2.0}\n", + "..........;\n", + "907 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': -1.5}\n", + "..........;\n", + "908 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': -1.0}\n", + "..........;\n", + "909 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': -0.5}\n", + "..........;\n", + "910 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': 0.0}\n", + "..........;\n", + "911 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': 0.5}\n", + "..........;\n", + "912 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': 1.0}\n", + "..........;\n", + "913 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': 1.5}\n", + "..........;\n", + "914 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': 2.0}\n", + "..........;\n", + "915 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': 2.5}\n", + "..........;\n", + "916 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': 3.0}\n", + "..........;\n", + "917 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': 3.5}\n", + "..........;\n", + "918 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': 4.0}\n", + "..........;\n", + "919 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.5, 'criteria': 4.5}\n", + "..........;\n", + "920 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': -5.0}\n", + "..........;\n", + "921 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': -4.5}\n", + "..........;\n", + "922 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': -4.0}\n", + "..........;\n", + "923 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': -3.5}\n", + "..........;\n", + "924 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': -3.0}\n", + "..........;\n", + "925 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': -2.5}\n", + "..........;\n", + "926 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': -2.0}\n", + "..........;\n", + "927 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': -1.5}\n", + "..........;\n", + "928 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': -1.0}\n", + "..........;\n", + "929 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': -0.5}\n", + "..........;\n", + "930 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 0.0}\n", + "..........;\n", + "931 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 0.5}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "932 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 1.0}\n", + "..........;\n", + "933 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 1.5}\n", + "..........;\n", + "934 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 2.0}\n", + "..........;\n", + "935 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 2.5}\n", + "..........;\n", + "936 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 3.0}\n", + "..........;\n", + "937 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 3.5}\n", + "..........;\n", + "938 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 4.0}\n", + "..........;\n", + "939 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 4.5}\n", + "..........;\n", + "940 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': -5.0}\n", + "..........;\n", + "941 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': -4.5}\n", + "..........;\n", + "942 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': -4.0}\n", + "..........;\n", + "943 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': -3.5}\n", + "..........;\n", + "944 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': -3.0}\n", + "..........;\n", + "945 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': -2.5}\n", + "..........;\n", + "946 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': -2.0}\n", + "..........;\n", + "947 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': -1.5}\n", + "..........;\n", + "948 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': -1.0}\n", + "..........;\n", + "949 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': -0.5}\n", + "..........;\n", + "950 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': 0.0}\n", + "..........;\n", + "951 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': 0.5}\n", + "..........;\n", + "952 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': 1.0}\n", + "..........;\n", + "953 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': 1.5}\n", + "..........;\n", + "954 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': 2.0}\n", + "..........;\n", + "955 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': 2.5}\n", + "..........;\n", + "956 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': 3.0}\n", + "..........;\n", + "957 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': 3.5}\n", + "..........;\n", + "958 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': 4.0}\n", + "..........;\n", + "959 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.7, 'criteria': 4.5}\n", + "..........;\n", + "960 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': -5.0}\n", + "..........;\n", + "961 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': -4.5}\n", + "..........;\n", + "962 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': -4.0}\n", + "..........;\n", + "963 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': -3.5}\n", + "..........;\n", + "964 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': -3.0}\n", + "..........;\n", + "965 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': -2.5}\n", + "..........;\n", + "966 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': -2.0}\n", + "..........;\n", + "967 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': -1.5}\n", + "..........;\n", + "968 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': -1.0}\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "..........;\n", + "969 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': -0.5}\n", + "..........;\n", + "970 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': 0.0}\n", + "..........;\n", + "971 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': 0.5}\n", + "..........;\n", + "972 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': 1.0}\n", + "..........;\n", + "973 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': 1.5}\n", + "..........;\n", + "974 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': 2.0}\n", + "..........;\n", + "975 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': 2.5}\n", + "..........;\n", + "976 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': 3.0}\n", + "..........;\n", + "977 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': 3.5}\n", + "..........;\n", + "978 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': 4.0}\n", + "..........;\n", + "979 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.800000000000001, 'criteria': 4.5}\n", + "..........;\n", + "980 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': -5.0}\n", + "..........;\n", + "981 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': -4.5}\n", + "..........;\n", + "982 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': -4.0}\n", + "..........;\n", + "983 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': -3.5}\n", + "..........;\n", + "984 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': -3.0}\n", + "..........;\n", + "985 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': -2.5}\n", + "..........;\n", + "986 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': -2.0}\n", + "..........;\n", + "987 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': -1.5}\n", + "..........;\n", + "988 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': -1.0}\n", + "..........;\n", + "989 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': -0.5}\n", + "..........;\n", + "990 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': 0.0}\n", + "..........;\n", + "991 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': 0.5}\n", + "..........;\n", + "992 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': 1.0}\n", + "..........;\n", + "993 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': 1.5}\n", + "..........;\n", + "994 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': 2.0}\n", + "..........;\n", + "995 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': 2.5}\n", + "..........;\n", + "996 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': 3.0}\n", + "..........;\n", + "997 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': 3.5}\n", + "..........;\n", + "998 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': 4.0}\n", + "..........;\n", + "999 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.9, 'criteria': 4.5}\n", + "..........;\n" + ] + }, + { + "ename": "TypeError", + "evalue": "get_metric_names() missing 1 required positional argument: 'self'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[1;32mIn[219], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m model \u001b[38;5;241m=\u001b[39m \u001b[43mDoublePass\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbuild_model\u001b[49m\u001b[43m(\u001b[49m\u001b[43minternal_noise_range\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43marange\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m.1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[43mcriteria_range\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43marange\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m.5\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43mn_repeated_trials\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1000\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_runs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:157\u001b[0m, in \u001b[0;36mDoublePass.build_model\u001b[1;34m(cls, internal_noise_range, criteria_range, n_repeated_trials, n_runs)\u001b[0m\n\u001b[0;32m 154\u001b[0m sim_df \u001b[38;5;241m=\u001b[39m sim\u001b[38;5;241m.\u001b[39mrun_all(n_runs\u001b[38;5;241m=\u001b[39mn_runs, verbose\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 156\u001b[0m \u001b[38;5;66;03m# average measures over all runs\u001b[39;00m\n\u001b[1;32m--> 157\u001b[0m sim_df\u001b[38;5;241m.\u001b[39mgroupby([\u001b[38;5;124m'\u001b[39m\u001b[38;5;124minternal_noise_std\u001b[39m\u001b[38;5;124m'\u001b[39m,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcriteria\u001b[39m\u001b[38;5;124m'\u001b[39m])[\u001b[43mDoublePassStatistics\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_metric_names\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m]\u001b[38;5;241m.\u001b[39mmean()\n\u001b[0;32m 158\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m sim_df\n", + "\u001b[1;31mTypeError\u001b[0m: get_metric_names() missing 1 required positional argument: 'self'" + ] + } + ], + "source": [ + "model = DoublePass.build_model(internal_noise_range=np.arange(0,5,.1),\n", + " criteria_range=np.arange(-5,5,.5),\n", + " n_repeated_trials=1000, n_runs=10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "94a3c61d", + "metadata": {}, + "outputs": [], + "source": [ + "model.to_csv('model_large.csv')" ] }, { "cell_type": "markdown", - "id": "2629230e", + "id": "f217823b", "metadata": {}, "source": [ "## Simulate with kernels" @@ -372,7 +2502,7 @@ }, { "cell_type": "markdown", - "id": "d808e31a", + "id": "26ee88e2", "metadata": {}, "source": [ "Single run" @@ -381,7 +2511,7 @@ { "cell_type": "code", "execution_count": 104, - "id": "52fc9460", + "id": "986cc8b8", "metadata": { "ExecuteTime": { "end_time": "2024-04-10T12:41:07.781836Z", @@ -417,7 +2547,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "43c24287", + "id": "85ac8a46", "metadata": { "ExecuteTime": { "end_time": "2024-04-10T04:42:23.899935Z", @@ -477,7 +2607,7 @@ { "cell_type": "code", "execution_count": 147, - "id": "918f61b8", + "id": "1e0c8a43", "metadata": { "ExecuteTime": { "end_time": "2024-04-10T15:36:24.243659Z", @@ -758,7 +2888,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "5f7ad1b1", + "id": "3d71bdcd", "metadata": { "ExecuteTime": { "end_time": "2024-04-10T04:42:50.935778Z", @@ -796,7 +2926,7 @@ { "cell_type": "code", "execution_count": 168, - "id": "ea12e662", + "id": "81eef14d", "metadata": { "ExecuteTime": { "end_time": "2024-04-11T04:08:49.331441Z", @@ -834,7 +2964,7 @@ { "cell_type": "code", "execution_count": 174, - "id": "be5177b7", + "id": "caf9471b", "metadata": { "ExecuteTime": { "end_time": "2024-04-11T04:10:11.894810Z", @@ -859,7 +2989,7 @@ { "cell_type": "code", "execution_count": 173, - "id": "e657a304", + "id": "ed2de38c", "metadata": { "ExecuteTime": { "end_time": "2024-04-11T04:09:56.002651Z", @@ -885,7 +3015,7 @@ { "cell_type": "code", "execution_count": 175, - "id": "c4826227", + "id": "48a2e99c", "metadata": { "ExecuteTime": { "end_time": "2024-04-11T04:10:14.250903Z", @@ -1041,7 +3171,7 @@ { "cell_type": "code", "execution_count": null, - "id": "cca19c67", + "id": "f578f871", "metadata": {}, "outputs": [], "source": [] From 3548eecd066c11be68d077d65d6722b1198e8d24 Mon Sep 17 00:00:00 2001 From: JJ Aucouturier Date: Mon, 22 Apr 2024 17:26:16 +0200 Subject: [PATCH 17/17] bug fixes --- python/model.csv | 10102 ++++++++-------- python/new_sim.ipynb | 130 +- python/palin/internal_noise/double_pass.py | 6 +- .../internal_noise_extractor.py | 4 +- .../__pycache__/simulation.cpython-38.pyc | Bin 4944 -> 6135 bytes python/palin/simulation/kernel_distance.py | 4 +- python/palin/simulation/simulation.py | 2 +- python/sandbox.ipynb | 594 +- 8 files changed, 5400 insertions(+), 5442 deletions(-) diff --git a/python/model.csv b/python/model.csv index 2c57d2a..549f6f6 100644 --- a/python/model.csv +++ b/python/model.csv @@ -1,5001 +1,5101 @@ -,n_trials,n_repeated,trial_type,n_features,external_noise_std,kernel,internal_noise_std,criteria,run,metric -0,100,100,,1,1,[1],0.0,-5,0,"(1.0, 1.0)" -1,100,100,,1,1,[1],0.0,-5,1,"(1.0, 1.0)" -2,100,100,,1,1,[1],0.0,-5,2,"(1.0, 1.0)" -3,100,100,,1,1,[1],0.0,-5,3,"(1.0, 1.0)" -4,100,100,,1,1,[1],0.0,-5,4,"(1.0, 1.0)" -5,100,100,,1,1,[1],0.0,-5,5,"(1.0, 1.0)" -6,100,100,,1,1,[1],0.0,-5,6,"(1.0, 1.0)" -7,100,100,,1,1,[1],0.0,-5,7,"(1.0, 1.0)" -8,100,100,,1,1,[1],0.0,-5,8,"(1.0, 1.0)" -9,100,100,,1,1,[1],0.0,-5,9,"(1.0, 1.0)" -10,100,100,,1,1,[1],0.0,-4,0,"(1.0, 1.0)" -11,100,100,,1,1,[1],0.0,-4,1,"(1.0, 1.0)" -12,100,100,,1,1,[1],0.0,-4,2,"(1.0, 1.0)" -13,100,100,,1,1,[1],0.0,-4,3,"(1.0, 1.0)" -14,100,100,,1,1,[1],0.0,-4,4,"(1.0, 1.0)" -15,100,100,,1,1,[1],0.0,-4,5,"(1.0, 0.99)" -16,100,100,,1,1,[1],0.0,-4,6,"(1.0, 1.0)" -17,100,100,,1,1,[1],0.0,-4,7,"(1.0, 1.0)" -18,100,100,,1,1,[1],0.0,-4,8,"(1.0, 0.99)" -19,100,100,,1,1,[1],0.0,-4,9,"(1.0, 0.97)" -20,100,100,,1,1,[1],0.0,-3,0,"(1.0, 0.98)" -21,100,100,,1,1,[1],0.0,-3,1,"(1.0, 1.0)" -22,100,100,,1,1,[1],0.0,-3,2,"(1.0, 1.0)" -23,100,100,,1,1,[1],0.0,-3,3,"(1.0, 0.99)" -24,100,100,,1,1,[1],0.0,-3,4,"(1.0, 0.98)" -25,100,100,,1,1,[1],0.0,-3,5,"(1.0, 0.99)" -26,100,100,,1,1,[1],0.0,-3,6,"(1.0, 1.0)" -27,100,100,,1,1,[1],0.0,-3,7,"(1.0, 0.99)" -28,100,100,,1,1,[1],0.0,-3,8,"(1.0, 1.0)" -29,100,100,,1,1,[1],0.0,-3,9,"(1.0, 0.98)" -30,100,100,,1,1,[1],0.0,-2,0,"(1.0, 0.89)" -31,100,100,,1,1,[1],0.0,-2,1,"(1.0, 0.89)" -32,100,100,,1,1,[1],0.0,-2,2,"(1.0, 0.9)" -33,100,100,,1,1,[1],0.0,-2,3,"(1.0, 0.92)" -34,100,100,,1,1,[1],0.0,-2,4,"(1.0, 0.93)" -35,100,100,,1,1,[1],0.0,-2,5,"(1.0, 0.92)" -36,100,100,,1,1,[1],0.0,-2,6,"(1.0, 0.89)" -37,100,100,,1,1,[1],0.0,-2,7,"(1.0, 0.9)" -38,100,100,,1,1,[1],0.0,-2,8,"(1.0, 0.9)" -39,100,100,,1,1,[1],0.0,-2,9,"(1.0, 0.95)" -40,100,100,,1,1,[1],0.0,-1,0,"(1.0, 0.78)" -41,100,100,,1,1,[1],0.0,-1,1,"(1.0, 0.74)" -42,100,100,,1,1,[1],0.0,-1,2,"(1.0, 0.83)" -43,100,100,,1,1,[1],0.0,-1,3,"(1.0, 0.82)" -44,100,100,,1,1,[1],0.0,-1,4,"(1.0, 0.72)" -45,100,100,,1,1,[1],0.0,-1,5,"(1.0, 0.83)" -46,100,100,,1,1,[1],0.0,-1,6,"(1.0, 0.85)" -47,100,100,,1,1,[1],0.0,-1,7,"(1.0, 0.79)" -48,100,100,,1,1,[1],0.0,-1,8,"(1.0, 0.76)" -49,100,100,,1,1,[1],0.0,-1,9,"(1.0, 0.74)" -50,100,100,,1,1,[1],0.0,0,0,"(1.0, 0.53)" -51,100,100,,1,1,[1],0.0,0,1,"(1.0, 0.45)" -52,100,100,,1,1,[1],0.0,0,2,"(1.0, 0.44)" -53,100,100,,1,1,[1],0.0,0,3,"(1.0, 0.49)" -54,100,100,,1,1,[1],0.0,0,4,"(1.0, 0.49)" -55,100,100,,1,1,[1],0.0,0,5,"(1.0, 0.53)" -56,100,100,,1,1,[1],0.0,0,6,"(1.0, 0.53)" -57,100,100,,1,1,[1],0.0,0,7,"(1.0, 0.62)" -58,100,100,,1,1,[1],0.0,0,8,"(1.0, 0.57)" -59,100,100,,1,1,[1],0.0,0,9,"(1.0, 0.49)" -60,100,100,,1,1,[1],0.0,1,0,"(1.0, 0.27)" -61,100,100,,1,1,[1],0.0,1,1,"(1.0, 0.22)" -62,100,100,,1,1,[1],0.0,1,2,"(1.0, 0.24)" -63,100,100,,1,1,[1],0.0,1,3,"(1.0, 0.23)" -64,100,100,,1,1,[1],0.0,1,4,"(1.0, 0.24)" -65,100,100,,1,1,[1],0.0,1,5,"(1.0, 0.27)" -66,100,100,,1,1,[1],0.0,1,6,"(1.0, 0.31)" -67,100,100,,1,1,[1],0.0,1,7,"(1.0, 0.31)" -68,100,100,,1,1,[1],0.0,1,8,"(1.0, 0.24)" -69,100,100,,1,1,[1],0.0,1,9,"(1.0, 0.22)" -70,100,100,,1,1,[1],0.0,2,0,"(1.0, 0.07)" -71,100,100,,1,1,[1],0.0,2,1,"(1.0, 0.09)" -72,100,100,,1,1,[1],0.0,2,2,"(1.0, 0.1)" -73,100,100,,1,1,[1],0.0,2,3,"(1.0, 0.09)" -74,100,100,,1,1,[1],0.0,2,4,"(1.0, 0.07)" -75,100,100,,1,1,[1],0.0,2,5,"(1.0, 0.05)" -76,100,100,,1,1,[1],0.0,2,6,"(1.0, 0.07)" -77,100,100,,1,1,[1],0.0,2,7,"(1.0, 0.11)" -78,100,100,,1,1,[1],0.0,2,8,"(1.0, 0.08)" -79,100,100,,1,1,[1],0.0,2,9,"(1.0, 0.07)" -80,100,100,,1,1,[1],0.0,3,0,"(1.0, 0.0)" -81,100,100,,1,1,[1],0.0,3,1,"(1.0, 0.03)" -82,100,100,,1,1,[1],0.0,3,2,"(1.0, 0.01)" -83,100,100,,1,1,[1],0.0,3,3,"(1.0, 0.0)" -84,100,100,,1,1,[1],0.0,3,4,"(1.0, 0.04)" -85,100,100,,1,1,[1],0.0,3,5,"(1.0, 0.03)" -86,100,100,,1,1,[1],0.0,3,6,"(1.0, 0.01)" -87,100,100,,1,1,[1],0.0,3,7,"(1.0, 0.04)" -88,100,100,,1,1,[1],0.0,3,8,"(1.0, 0.02)" -89,100,100,,1,1,[1],0.0,3,9,"(1.0, 0.03)" -90,100,100,,1,1,[1],0.0,4,0,"(1.0, 0.0)" -91,100,100,,1,1,[1],0.0,4,1,"(1.0, 0.0)" -92,100,100,,1,1,[1],0.0,4,2,"(1.0, 0.0)" -93,100,100,,1,1,[1],0.0,4,3,"(1.0, 0.0)" -94,100,100,,1,1,[1],0.0,4,4,"(1.0, 0.0)" -95,100,100,,1,1,[1],0.0,4,5,"(1.0, 0.01)" -96,100,100,,1,1,[1],0.0,4,6,"(1.0, 0.0)" -97,100,100,,1,1,[1],0.0,4,7,"(1.0, 0.01)" -98,100,100,,1,1,[1],0.0,4,8,"(1.0, 0.0)" -99,100,100,,1,1,[1],0.0,4,9,"(1.0, 0.0)" -100,100,100,,1,1,[1],0.1,-5,0,"(1.0, 1.0)" -101,100,100,,1,1,[1],0.1,-5,1,"(1.0, 1.0)" -102,100,100,,1,1,[1],0.1,-5,2,"(1.0, 1.0)" -103,100,100,,1,1,[1],0.1,-5,3,"(1.0, 0.99)" -104,100,100,,1,1,[1],0.1,-5,4,"(1.0, 1.0)" -105,100,100,,1,1,[1],0.1,-5,5,"(1.0, 1.0)" -106,100,100,,1,1,[1],0.1,-5,6,"(1.0, 1.0)" -107,100,100,,1,1,[1],0.1,-5,7,"(1.0, 1.0)" -108,100,100,,1,1,[1],0.1,-5,8,"(1.0, 1.0)" -109,100,100,,1,1,[1],0.1,-5,9,"(1.0, 1.0)" -110,100,100,,1,1,[1],0.1,-4,0,"(1.0, 1.0)" -111,100,100,,1,1,[1],0.1,-4,1,"(1.0, 1.0)" -112,100,100,,1,1,[1],0.1,-4,2,"(1.0, 1.0)" -113,100,100,,1,1,[1],0.1,-4,3,"(1.0, 1.0)" -114,100,100,,1,1,[1],0.1,-4,4,"(1.0, 1.0)" -115,100,100,,1,1,[1],0.1,-4,5,"(1.0, 1.0)" -116,100,100,,1,1,[1],0.1,-4,6,"(1.0, 1.0)" -117,100,100,,1,1,[1],0.1,-4,7,"(0.99, 0.985)" -118,100,100,,1,1,[1],0.1,-4,8,"(1.0, 0.99)" -119,100,100,,1,1,[1],0.1,-4,9,"(1.0, 1.0)" -120,100,100,,1,1,[1],0.1,-3,0,"(1.0, 0.98)" -121,100,100,,1,1,[1],0.1,-3,1,"(1.0, 0.98)" -122,100,100,,1,1,[1],0.1,-3,2,"(1.0, 0.99)" -123,100,100,,1,1,[1],0.1,-3,3,"(1.0, 0.98)" -124,100,100,,1,1,[1],0.1,-3,4,"(0.99, 0.985)" -125,100,100,,1,1,[1],0.1,-3,5,"(0.98, 0.98)" -126,100,100,,1,1,[1],0.1,-3,6,"(1.0, 0.99)" -127,100,100,,1,1,[1],0.1,-3,7,"(1.0, 0.97)" -128,100,100,,1,1,[1],0.1,-3,8,"(1.0, 0.98)" -129,100,100,,1,1,[1],0.1,-3,9,"(1.0, 1.0)" -130,100,100,,1,1,[1],0.1,-2,0,"(0.98, 0.96)" -131,100,100,,1,1,[1],0.1,-2,1,"(0.99, 0.945)" -132,100,100,,1,1,[1],0.1,-2,2,"(0.98, 0.85)" -133,100,100,,1,1,[1],0.1,-2,3,"(0.99, 0.905)" -134,100,100,,1,1,[1],0.1,-2,4,"(0.97, 0.915)" -135,100,100,,1,1,[1],0.1,-2,5,"(1.0, 0.94)" -136,100,100,,1,1,[1],0.1,-2,6,"(0.98, 0.85)" -137,100,100,,1,1,[1],0.1,-2,7,"(1.0, 0.97)" -138,100,100,,1,1,[1],0.1,-2,8,"(1.0, 0.95)" -139,100,100,,1,1,[1],0.1,-2,9,"(0.99, 0.955)" -140,100,100,,1,1,[1],0.1,-1,0,"(0.99, 0.765)" -141,100,100,,1,1,[1],0.1,-1,1,"(0.95, 0.715)" -142,100,100,,1,1,[1],0.1,-1,2,"(0.98, 0.79)" -143,100,100,,1,1,[1],0.1,-1,3,"(0.97, 0.785)" -144,100,100,,1,1,[1],0.1,-1,4,"(1.0, 0.77)" -145,100,100,,1,1,[1],0.1,-1,5,"(0.95, 0.835)" -146,100,100,,1,1,[1],0.1,-1,6,"(0.96, 0.72)" -147,100,100,,1,1,[1],0.1,-1,7,"(0.96, 0.72)" -148,100,100,,1,1,[1],0.1,-1,8,"(0.97, 0.765)" -149,100,100,,1,1,[1],0.1,-1,9,"(0.98, 0.84)" -150,100,100,,1,1,[1],0.1,0,0,"(0.95, 0.555)" -151,100,100,,1,1,[1],0.1,0,1,"(0.97, 0.545)" -152,100,100,,1,1,[1],0.1,0,2,"(0.95, 0.485)" -153,100,100,,1,1,[1],0.1,0,3,"(0.96, 0.49)" -154,100,100,,1,1,[1],0.1,0,4,"(0.93, 0.555)" -155,100,100,,1,1,[1],0.1,0,5,"(0.94, 0.56)" -156,100,100,,1,1,[1],0.1,0,6,"(0.97, 0.485)" -157,100,100,,1,1,[1],0.1,0,7,"(0.94, 0.59)" -158,100,100,,1,1,[1],0.1,0,8,"(0.99, 0.535)" -159,100,100,,1,1,[1],0.1,0,9,"(0.95, 0.475)" -160,100,100,,1,1,[1],0.1,1,0,"(0.98, 0.28)" -161,100,100,,1,1,[1],0.1,1,1,"(0.97, 0.285)" -162,100,100,,1,1,[1],0.1,1,2,"(0.96, 0.23)" -163,100,100,,1,1,[1],0.1,1,3,"(0.98, 0.28)" -164,100,100,,1,1,[1],0.1,1,4,"(0.96, 0.18)" -165,100,100,,1,1,[1],0.1,1,5,"(0.99, 0.285)" -166,100,100,,1,1,[1],0.1,1,6,"(0.95, 0.375)" -167,100,100,,1,1,[1],0.1,1,7,"(1.0, 0.21)" -168,100,100,,1,1,[1],0.1,1,8,"(0.99, 0.295)" -169,100,100,,1,1,[1],0.1,1,9,"(0.97, 0.265)" -170,100,100,,1,1,[1],0.1,2,0,"(1.0, 0.1)" -171,100,100,,1,1,[1],0.1,2,1,"(0.98, 0.07)" -172,100,100,,1,1,[1],0.1,2,2,"(1.0, 0.08)" -173,100,100,,1,1,[1],0.1,2,3,"(1.0, 0.08)" -174,100,100,,1,1,[1],0.1,2,4,"(0.99, 0.125)" -175,100,100,,1,1,[1],0.1,2,5,"(1.0, 0.11)" -176,100,100,,1,1,[1],0.1,2,6,"(0.99, 0.115)" -177,100,100,,1,1,[1],0.1,2,7,"(0.99, 0.045)" -178,100,100,,1,1,[1],0.1,2,8,"(0.98, 0.11)" -179,100,100,,1,1,[1],0.1,2,9,"(1.0, 0.07)" -180,100,100,,1,1,[1],0.1,3,0,"(1.0, 0.02)" -181,100,100,,1,1,[1],0.1,3,1,"(1.0, 0.01)" -182,100,100,,1,1,[1],0.1,3,2,"(1.0, 0.02)" -183,100,100,,1,1,[1],0.1,3,3,"(0.98, 0.04)" -184,100,100,,1,1,[1],0.1,3,4,"(1.0, 0.01)" -185,100,100,,1,1,[1],0.1,3,5,"(0.99, 0.055)" -186,100,100,,1,1,[1],0.1,3,6,"(1.0, 0.03)" -187,100,100,,1,1,[1],0.1,3,7,"(0.99, 0.025)" -188,100,100,,1,1,[1],0.1,3,8,"(1.0, 0.02)" -189,100,100,,1,1,[1],0.1,3,9,"(1.0, 0.0)" -190,100,100,,1,1,[1],0.1,4,0,"(1.0, 0.0)" -191,100,100,,1,1,[1],0.1,4,1,"(1.0, 0.0)" -192,100,100,,1,1,[1],0.1,4,2,"(1.0, 0.0)" -193,100,100,,1,1,[1],0.1,4,3,"(1.0, 0.0)" -194,100,100,,1,1,[1],0.1,4,4,"(1.0, 0.0)" -195,100,100,,1,1,[1],0.1,4,5,"(0.99, 0.005)" -196,100,100,,1,1,[1],0.1,4,6,"(1.0, 0.0)" -197,100,100,,1,1,[1],0.1,4,7,"(1.0, 0.0)" -198,100,100,,1,1,[1],0.1,4,8,"(0.99, 0.005)" -199,100,100,,1,1,[1],0.1,4,9,"(1.0, 0.0)" -200,100,100,,1,1,[1],0.2,-5,0,"(1.0, 1.0)" -201,100,100,,1,1,[1],0.2,-5,1,"(1.0, 1.0)" -202,100,100,,1,1,[1],0.2,-5,2,"(1.0, 1.0)" -203,100,100,,1,1,[1],0.2,-5,3,"(1.0, 1.0)" -204,100,100,,1,1,[1],0.2,-5,4,"(1.0, 1.0)" -205,100,100,,1,1,[1],0.2,-5,5,"(1.0, 1.0)" -206,100,100,,1,1,[1],0.2,-5,6,"(1.0, 1.0)" -207,100,100,,1,1,[1],0.2,-5,7,"(1.0, 1.0)" -208,100,100,,1,1,[1],0.2,-5,8,"(1.0, 1.0)" -209,100,100,,1,1,[1],0.2,-5,9,"(1.0, 1.0)" -210,100,100,,1,1,[1],0.2,-4,0,"(0.99, 0.995)" -211,100,100,,1,1,[1],0.2,-4,1,"(1.0, 1.0)" -212,100,100,,1,1,[1],0.2,-4,2,"(1.0, 1.0)" -213,100,100,,1,1,[1],0.2,-4,3,"(1.0, 1.0)" -214,100,100,,1,1,[1],0.2,-4,4,"(1.0, 1.0)" -215,100,100,,1,1,[1],0.2,-4,5,"(1.0, 0.99)" -216,100,100,,1,1,[1],0.2,-4,6,"(1.0, 1.0)" -217,100,100,,1,1,[1],0.2,-4,7,"(1.0, 1.0)" -218,100,100,,1,1,[1],0.2,-4,8,"(1.0, 0.99)" -219,100,100,,1,1,[1],0.2,-4,9,"(1.0, 1.0)" -220,100,100,,1,1,[1],0.2,-3,0,"(0.99, 0.995)" -221,100,100,,1,1,[1],0.2,-3,1,"(0.98, 0.98)" -222,100,100,,1,1,[1],0.2,-3,2,"(0.99, 0.975)" -223,100,100,,1,1,[1],0.2,-3,3,"(1.0, 1.0)" -224,100,100,,1,1,[1],0.2,-3,4,"(0.98, 0.98)" -225,100,100,,1,1,[1],0.2,-3,5,"(1.0, 0.98)" -226,100,100,,1,1,[1],0.2,-3,6,"(0.99, 0.975)" -227,100,100,,1,1,[1],0.2,-3,7,"(0.99, 0.975)" -228,100,100,,1,1,[1],0.2,-3,8,"(1.0, 0.98)" -229,100,100,,1,1,[1],0.2,-3,9,"(1.0, 0.98)" -230,100,100,,1,1,[1],0.2,-2,0,"(0.97, 0.895)" -231,100,100,,1,1,[1],0.2,-2,1,"(0.95, 0.945)" -232,100,100,,1,1,[1],0.2,-2,2,"(0.98, 0.91)" -233,100,100,,1,1,[1],0.2,-2,3,"(0.98, 0.91)" -234,100,100,,1,1,[1],0.2,-2,4,"(0.97, 0.915)" -235,100,100,,1,1,[1],0.2,-2,5,"(0.99, 0.905)" -236,100,100,,1,1,[1],0.2,-2,6,"(0.97, 0.895)" -237,100,100,,1,1,[1],0.2,-2,7,"(0.98, 0.92)" -238,100,100,,1,1,[1],0.2,-2,8,"(0.99, 0.935)" -239,100,100,,1,1,[1],0.2,-2,9,"(0.97, 0.915)" -240,100,100,,1,1,[1],0.2,-1,0,"(0.92, 0.68)" -241,100,100,,1,1,[1],0.2,-1,1,"(0.96, 0.79)" -242,100,100,,1,1,[1],0.2,-1,2,"(0.95, 0.735)" -243,100,100,,1,1,[1],0.2,-1,3,"(0.98, 0.78)" -244,100,100,,1,1,[1],0.2,-1,4,"(0.98, 0.76)" -245,100,100,,1,1,[1],0.2,-1,5,"(0.95, 0.765)" -246,100,100,,1,1,[1],0.2,-1,6,"(0.95, 0.735)" -247,100,100,,1,1,[1],0.2,-1,7,"(0.95, 0.715)" -248,100,100,,1,1,[1],0.2,-1,8,"(0.97, 0.785)" -249,100,100,,1,1,[1],0.2,-1,9,"(0.97, 0.775)" -250,100,100,,1,1,[1],0.2,0,0,"(0.91, 0.485)" -251,100,100,,1,1,[1],0.2,0,1,"(0.94, 0.52)" -252,100,100,,1,1,[1],0.2,0,2,"(0.93, 0.535)" -253,100,100,,1,1,[1],0.2,0,3,"(0.93, 0.555)" -254,100,100,,1,1,[1],0.2,0,4,"(0.95, 0.505)" -255,100,100,,1,1,[1],0.2,0,5,"(0.98, 0.52)" -256,100,100,,1,1,[1],0.2,0,6,"(0.94, 0.47)" -257,100,100,,1,1,[1],0.2,0,7,"(0.92, 0.48)" -258,100,100,,1,1,[1],0.2,0,8,"(0.97, 0.545)" -259,100,100,,1,1,[1],0.2,0,9,"(0.93, 0.585)" -260,100,100,,1,1,[1],0.2,1,0,"(0.97, 0.265)" -261,100,100,,1,1,[1],0.2,1,1,"(0.96, 0.27)" -262,100,100,,1,1,[1],0.2,1,2,"(0.93, 0.315)" -263,100,100,,1,1,[1],0.2,1,3,"(0.95, 0.185)" -264,100,100,,1,1,[1],0.2,1,4,"(0.92, 0.24)" -265,100,100,,1,1,[1],0.2,1,5,"(0.97, 0.295)" -266,100,100,,1,1,[1],0.2,1,6,"(0.93, 0.215)" -267,100,100,,1,1,[1],0.2,1,7,"(0.92, 0.18)" -268,100,100,,1,1,[1],0.2,1,8,"(0.93, 0.255)" -269,100,100,,1,1,[1],0.2,1,9,"(0.95, 0.215)" -270,100,100,,1,1,[1],0.2,2,0,"(0.99, 0.075)" -271,100,100,,1,1,[1],0.2,2,1,"(0.98, 0.08)" -272,100,100,,1,1,[1],0.2,2,2,"(0.98, 0.06)" -273,100,100,,1,1,[1],0.2,2,3,"(0.97, 0.105)" -274,100,100,,1,1,[1],0.2,2,4,"(0.98, 0.08)" -275,100,100,,1,1,[1],0.2,2,5,"(0.93, 0.105)" -276,100,100,,1,1,[1],0.2,2,6,"(0.97, 0.085)" -277,100,100,,1,1,[1],0.2,2,7,"(1.0, 0.06)" -278,100,100,,1,1,[1],0.2,2,8,"(0.97, 0.075)" -279,100,100,,1,1,[1],0.2,2,9,"(0.98, 0.08)" -280,100,100,,1,1,[1],0.2,3,0,"(0.98, 0.02)" -281,100,100,,1,1,[1],0.2,3,1,"(0.99, 0.025)" -282,100,100,,1,1,[1],0.2,3,2,"(0.99, 0.005)" -283,100,100,,1,1,[1],0.2,3,3,"(1.0, 0.01)" -284,100,100,,1,1,[1],0.2,3,4,"(0.97, 0.015)" -285,100,100,,1,1,[1],0.2,3,5,"(0.99, 0.025)" -286,100,100,,1,1,[1],0.2,3,6,"(0.98, 0.04)" -287,100,100,,1,1,[1],0.2,3,7,"(0.99, 0.015)" -288,100,100,,1,1,[1],0.2,3,8,"(1.0, 0.0)" -289,100,100,,1,1,[1],0.2,3,9,"(0.99, 0.025)" -290,100,100,,1,1,[1],0.2,4,0,"(0.99, 0.005)" -291,100,100,,1,1,[1],0.2,4,1,"(1.0, 0.01)" -292,100,100,,1,1,[1],0.2,4,2,"(1.0, 0.02)" -293,100,100,,1,1,[1],0.2,4,3,"(1.0, 0.0)" -294,100,100,,1,1,[1],0.2,4,4,"(1.0, 0.0)" -295,100,100,,1,1,[1],0.2,4,5,"(1.0, 0.0)" -296,100,100,,1,1,[1],0.2,4,6,"(1.0, 0.0)" -297,100,100,,1,1,[1],0.2,4,7,"(0.99, 0.005)" -298,100,100,,1,1,[1],0.2,4,8,"(1.0, 0.0)" -299,100,100,,1,1,[1],0.2,4,9,"(1.0, 0.0)" -300,100,100,,1,1,[1],0.30000000000000004,-5,0,"(1.0, 1.0)" -301,100,100,,1,1,[1],0.30000000000000004,-5,1,"(1.0, 1.0)" -302,100,100,,1,1,[1],0.30000000000000004,-5,2,"(1.0, 1.0)" -303,100,100,,1,1,[1],0.30000000000000004,-5,3,"(1.0, 1.0)" -304,100,100,,1,1,[1],0.30000000000000004,-5,4,"(1.0, 1.0)" -305,100,100,,1,1,[1],0.30000000000000004,-5,5,"(1.0, 1.0)" -306,100,100,,1,1,[1],0.30000000000000004,-5,6,"(1.0, 1.0)" -307,100,100,,1,1,[1],0.30000000000000004,-5,7,"(1.0, 1.0)" -308,100,100,,1,1,[1],0.30000000000000004,-5,8,"(1.0, 1.0)" -309,100,100,,1,1,[1],0.30000000000000004,-5,9,"(1.0, 1.0)" -310,100,100,,1,1,[1],0.30000000000000004,-4,0,"(1.0, 0.99)" -311,100,100,,1,1,[1],0.30000000000000004,-4,1,"(1.0, 1.0)" -312,100,100,,1,1,[1],0.30000000000000004,-4,2,"(1.0, 0.99)" -313,100,100,,1,1,[1],0.30000000000000004,-4,3,"(1.0, 1.0)" -314,100,100,,1,1,[1],0.30000000000000004,-4,4,"(1.0, 1.0)" -315,100,100,,1,1,[1],0.30000000000000004,-4,5,"(0.99, 0.995)" -316,100,100,,1,1,[1],0.30000000000000004,-4,6,"(1.0, 1.0)" -317,100,100,,1,1,[1],0.30000000000000004,-4,7,"(1.0, 1.0)" -318,100,100,,1,1,[1],0.30000000000000004,-4,8,"(1.0, 1.0)" -319,100,100,,1,1,[1],0.30000000000000004,-4,9,"(1.0, 0.99)" -320,100,100,,1,1,[1],0.30000000000000004,-3,0,"(1.0, 0.99)" -321,100,100,,1,1,[1],0.30000000000000004,-3,1,"(0.99, 0.985)" -322,100,100,,1,1,[1],0.30000000000000004,-3,2,"(0.99, 0.985)" -323,100,100,,1,1,[1],0.30000000000000004,-3,3,"(1.0, 0.99)" -324,100,100,,1,1,[1],0.30000000000000004,-3,4,"(0.99, 0.995)" -325,100,100,,1,1,[1],0.30000000000000004,-3,5,"(0.98, 0.99)" -326,100,100,,1,1,[1],0.30000000000000004,-3,6,"(0.99, 0.995)" -327,100,100,,1,1,[1],0.30000000000000004,-3,7,"(0.99, 0.975)" -328,100,100,,1,1,[1],0.30000000000000004,-3,8,"(0.98, 0.97)" -329,100,100,,1,1,[1],0.30000000000000004,-3,9,"(0.96, 0.98)" -330,100,100,,1,1,[1],0.30000000000000004,-2,0,"(0.96, 0.93)" -331,100,100,,1,1,[1],0.30000000000000004,-2,1,"(0.97, 0.865)" -332,100,100,,1,1,[1],0.30000000000000004,-2,2,"(0.94, 0.92)" -333,100,100,,1,1,[1],0.30000000000000004,-2,3,"(0.94, 0.9)" -334,100,100,,1,1,[1],0.30000000000000004,-2,4,"(0.97, 0.945)" -335,100,100,,1,1,[1],0.30000000000000004,-2,5,"(0.96, 0.91)" -336,100,100,,1,1,[1],0.30000000000000004,-2,6,"(0.97, 0.925)" -337,100,100,,1,1,[1],0.30000000000000004,-2,7,"(0.97, 0.955)" -338,100,100,,1,1,[1],0.30000000000000004,-2,8,"(0.94, 0.88)" -339,100,100,,1,1,[1],0.30000000000000004,-2,9,"(0.91, 0.955)" -340,100,100,,1,1,[1],0.30000000000000004,-1,0,"(0.91, 0.765)" -341,100,100,,1,1,[1],0.30000000000000004,-1,1,"(0.92, 0.78)" -342,100,100,,1,1,[1],0.30000000000000004,-1,2,"(0.92, 0.72)" -343,100,100,,1,1,[1],0.30000000000000004,-1,3,"(0.96, 0.81)" -344,100,100,,1,1,[1],0.30000000000000004,-1,4,"(0.96, 0.69)" -345,100,100,,1,1,[1],0.30000000000000004,-1,5,"(0.93, 0.725)" -346,100,100,,1,1,[1],0.30000000000000004,-1,6,"(0.91, 0.695)" -347,100,100,,1,1,[1],0.30000000000000004,-1,7,"(0.9, 0.71)" -348,100,100,,1,1,[1],0.30000000000000004,-1,8,"(0.85, 0.715)" -349,100,100,,1,1,[1],0.30000000000000004,-1,9,"(0.91, 0.755)" -350,100,100,,1,1,[1],0.30000000000000004,0,0,"(0.85, 0.585)" -351,100,100,,1,1,[1],0.30000000000000004,0,1,"(0.88, 0.59)" -352,100,100,,1,1,[1],0.30000000000000004,0,2,"(0.88, 0.56)" -353,100,100,,1,1,[1],0.30000000000000004,0,3,"(0.94, 0.58)" -354,100,100,,1,1,[1],0.30000000000000004,0,4,"(0.92, 0.56)" -355,100,100,,1,1,[1],0.30000000000000004,0,5,"(0.93, 0.475)" -356,100,100,,1,1,[1],0.30000000000000004,0,6,"(0.91, 0.505)" -357,100,100,,1,1,[1],0.30000000000000004,0,7,"(0.9, 0.46)" -358,100,100,,1,1,[1],0.30000000000000004,0,8,"(0.88, 0.58)" -359,100,100,,1,1,[1],0.30000000000000004,0,9,"(0.96, 0.55)" -360,100,100,,1,1,[1],0.30000000000000004,1,0,"(0.9, 0.34)" -361,100,100,,1,1,[1],0.30000000000000004,1,1,"(0.94, 0.2)" -362,100,100,,1,1,[1],0.30000000000000004,1,2,"(0.88, 0.25)" -363,100,100,,1,1,[1],0.30000000000000004,1,3,"(0.95, 0.255)" -364,100,100,,1,1,[1],0.30000000000000004,1,4,"(0.87, 0.365)" -365,100,100,,1,1,[1],0.30000000000000004,1,5,"(0.95, 0.215)" -366,100,100,,1,1,[1],0.30000000000000004,1,6,"(0.95, 0.275)" -367,100,100,,1,1,[1],0.30000000000000004,1,7,"(0.93, 0.295)" -368,100,100,,1,1,[1],0.30000000000000004,1,8,"(0.96, 0.21)" -369,100,100,,1,1,[1],0.30000000000000004,1,9,"(0.93, 0.255)" -370,100,100,,1,1,[1],0.30000000000000004,2,0,"(0.94, 0.08)" -371,100,100,,1,1,[1],0.30000000000000004,2,1,"(0.96, 0.08)" -372,100,100,,1,1,[1],0.30000000000000004,2,2,"(0.95, 0.075)" -373,100,100,,1,1,[1],0.30000000000000004,2,3,"(1.0, 0.06)" -374,100,100,,1,1,[1],0.30000000000000004,2,4,"(0.99, 0.055)" -375,100,100,,1,1,[1],0.30000000000000004,2,5,"(0.96, 0.06)" -376,100,100,,1,1,[1],0.30000000000000004,2,6,"(0.99, 0.085)" -377,100,100,,1,1,[1],0.30000000000000004,2,7,"(0.98, 0.09)" -378,100,100,,1,1,[1],0.30000000000000004,2,8,"(0.94, 0.11)" -379,100,100,,1,1,[1],0.30000000000000004,2,9,"(0.97, 0.085)" -380,100,100,,1,1,[1],0.30000000000000004,3,0,"(1.0, 0.01)" -381,100,100,,1,1,[1],0.30000000000000004,3,1,"(0.99, 0.025)" -382,100,100,,1,1,[1],0.30000000000000004,3,2,"(1.0, 0.0)" -383,100,100,,1,1,[1],0.30000000000000004,3,3,"(0.99, 0.005)" -384,100,100,,1,1,[1],0.30000000000000004,3,4,"(0.99, 0.025)" -385,100,100,,1,1,[1],0.30000000000000004,3,5,"(1.0, 0.02)" -386,100,100,,1,1,[1],0.30000000000000004,3,6,"(1.0, 0.0)" -387,100,100,,1,1,[1],0.30000000000000004,3,7,"(1.0, 0.03)" -388,100,100,,1,1,[1],0.30000000000000004,3,8,"(0.99, 0.025)" -389,100,100,,1,1,[1],0.30000000000000004,3,9,"(0.98, 0.01)" -390,100,100,,1,1,[1],0.30000000000000004,4,0,"(0.99, 0.005)" -391,100,100,,1,1,[1],0.30000000000000004,4,1,"(1.0, 0.0)" -392,100,100,,1,1,[1],0.30000000000000004,4,2,"(1.0, 0.0)" -393,100,100,,1,1,[1],0.30000000000000004,4,3,"(1.0, 0.0)" -394,100,100,,1,1,[1],0.30000000000000004,4,4,"(0.99, 0.005)" -395,100,100,,1,1,[1],0.30000000000000004,4,5,"(1.0, 0.0)" -396,100,100,,1,1,[1],0.30000000000000004,4,6,"(1.0, 0.0)" -397,100,100,,1,1,[1],0.30000000000000004,4,7,"(0.99, 0.005)" -398,100,100,,1,1,[1],0.30000000000000004,4,8,"(1.0, 0.0)" -399,100,100,,1,1,[1],0.30000000000000004,4,9,"(0.99, 0.005)" -400,100,100,,1,1,[1],0.4,-5,0,"(1.0, 1.0)" -401,100,100,,1,1,[1],0.4,-5,1,"(1.0, 1.0)" -402,100,100,,1,1,[1],0.4,-5,2,"(1.0, 1.0)" -403,100,100,,1,1,[1],0.4,-5,3,"(1.0, 1.0)" -404,100,100,,1,1,[1],0.4,-5,4,"(1.0, 1.0)" -405,100,100,,1,1,[1],0.4,-5,5,"(1.0, 1.0)" -406,100,100,,1,1,[1],0.4,-5,6,"(1.0, 1.0)" -407,100,100,,1,1,[1],0.4,-5,7,"(1.0, 1.0)" -408,100,100,,1,1,[1],0.4,-5,8,"(1.0, 1.0)" -409,100,100,,1,1,[1],0.4,-5,9,"(1.0, 1.0)" -410,100,100,,1,1,[1],0.4,-4,0,"(0.99, 0.995)" -411,100,100,,1,1,[1],0.4,-4,1,"(0.98, 0.99)" -412,100,100,,1,1,[1],0.4,-4,2,"(1.0, 0.99)" -413,100,100,,1,1,[1],0.4,-4,3,"(1.0, 1.0)" -414,100,100,,1,1,[1],0.4,-4,4,"(1.0, 1.0)" -415,100,100,,1,1,[1],0.4,-4,5,"(1.0, 1.0)" -416,100,100,,1,1,[1],0.4,-4,6,"(1.0, 1.0)" -417,100,100,,1,1,[1],0.4,-4,7,"(1.0, 0.99)" -418,100,100,,1,1,[1],0.4,-4,8,"(1.0, 0.99)" -419,100,100,,1,1,[1],0.4,-4,9,"(0.99, 0.995)" -420,100,100,,1,1,[1],0.4,-3,0,"(1.0, 0.98)" -421,100,100,,1,1,[1],0.4,-3,1,"(0.98, 0.96)" -422,100,100,,1,1,[1],0.4,-3,2,"(0.99, 0.975)" -423,100,100,,1,1,[1],0.4,-3,3,"(1.0, 0.99)" -424,100,100,,1,1,[1],0.4,-3,4,"(0.99, 0.975)" -425,100,100,,1,1,[1],0.4,-3,5,"(0.96, 0.95)" -426,100,100,,1,1,[1],0.4,-3,6,"(0.98, 0.96)" -427,100,100,,1,1,[1],0.4,-3,7,"(0.99, 0.975)" -428,100,100,,1,1,[1],0.4,-3,8,"(0.97, 0.985)" -429,100,100,,1,1,[1],0.4,-3,9,"(0.97, 0.965)" -430,100,100,,1,1,[1],0.4,-2,0,"(0.97, 0.955)" -431,100,100,,1,1,[1],0.4,-2,1,"(0.98, 0.91)" -432,100,100,,1,1,[1],0.4,-2,2,"(0.94, 0.94)" -433,100,100,,1,1,[1],0.4,-2,3,"(0.97, 0.935)" -434,100,100,,1,1,[1],0.4,-2,4,"(0.91, 0.875)" -435,100,100,,1,1,[1],0.4,-2,5,"(0.96, 0.95)" -436,100,100,,1,1,[1],0.4,-2,6,"(0.95, 0.885)" -437,100,100,,1,1,[1],0.4,-2,7,"(0.94, 0.93)" -438,100,100,,1,1,[1],0.4,-2,8,"(0.99, 0.915)" -439,100,100,,1,1,[1],0.4,-2,9,"(0.93, 0.915)" -440,100,100,,1,1,[1],0.4,-1,0,"(0.93, 0.785)" -441,100,100,,1,1,[1],0.4,-1,1,"(0.89, 0.725)" -442,100,100,,1,1,[1],0.4,-1,2,"(0.87, 0.775)" -443,100,100,,1,1,[1],0.4,-1,3,"(0.88, 0.76)" -444,100,100,,1,1,[1],0.4,-1,4,"(0.9, 0.71)" -445,100,100,,1,1,[1],0.4,-1,5,"(0.89, 0.755)" -446,100,100,,1,1,[1],0.4,-1,6,"(0.87, 0.645)" -447,100,100,,1,1,[1],0.4,-1,7,"(0.83, 0.725)" -448,100,100,,1,1,[1],0.4,-1,8,"(0.95, 0.725)" -449,100,100,,1,1,[1],0.4,-1,9,"(0.84, 0.74)" -450,100,100,,1,1,[1],0.4,0,0,"(0.85, 0.505)" -451,100,100,,1,1,[1],0.4,0,1,"(0.86, 0.45)" -452,100,100,,1,1,[1],0.4,0,2,"(0.9, 0.56)" -453,100,100,,1,1,[1],0.4,0,3,"(0.91, 0.515)" -454,100,100,,1,1,[1],0.4,0,4,"(0.84, 0.42)" -455,100,100,,1,1,[1],0.4,0,5,"(0.88, 0.48)" -456,100,100,,1,1,[1],0.4,0,6,"(0.87, 0.525)" -457,100,100,,1,1,[1],0.4,0,7,"(0.86, 0.46)" -458,100,100,,1,1,[1],0.4,0,8,"(0.88, 0.42)" -459,100,100,,1,1,[1],0.4,0,9,"(0.87, 0.555)" -460,100,100,,1,1,[1],0.4,1,0,"(0.93, 0.245)" -461,100,100,,1,1,[1],0.4,1,1,"(0.93, 0.275)" -462,100,100,,1,1,[1],0.4,1,2,"(0.92, 0.24)" -463,100,100,,1,1,[1],0.4,1,3,"(0.88, 0.24)" -464,100,100,,1,1,[1],0.4,1,4,"(0.9, 0.29)" -465,100,100,,1,1,[1],0.4,1,5,"(0.93, 0.185)" -466,100,100,,1,1,[1],0.4,1,6,"(0.88, 0.35)" -467,100,100,,1,1,[1],0.4,1,7,"(0.88, 0.28)" -468,100,100,,1,1,[1],0.4,1,8,"(0.9, 0.25)" -469,100,100,,1,1,[1],0.4,1,9,"(0.88, 0.27)" -470,100,100,,1,1,[1],0.4,2,0,"(0.99, 0.055)" -471,100,100,,1,1,[1],0.4,2,1,"(0.92, 0.12)" -472,100,100,,1,1,[1],0.4,2,2,"(0.96, 0.09)" -473,100,100,,1,1,[1],0.4,2,3,"(0.92, 0.12)" -474,100,100,,1,1,[1],0.4,2,4,"(0.94, 0.12)" -475,100,100,,1,1,[1],0.4,2,5,"(0.94, 0.09)" -476,100,100,,1,1,[1],0.4,2,6,"(0.96, 0.1)" -477,100,100,,1,1,[1],0.4,2,7,"(0.94, 0.12)" -478,100,100,,1,1,[1],0.4,2,8,"(0.98, 0.07)" -479,100,100,,1,1,[1],0.4,2,9,"(0.93, 0.085)" -480,100,100,,1,1,[1],0.4,3,0,"(0.98, 0.01)" -481,100,100,,1,1,[1],0.4,3,1,"(0.98, 0.03)" -482,100,100,,1,1,[1],0.4,3,2,"(0.99, 0.005)" -483,100,100,,1,1,[1],0.4,3,3,"(0.97, 0.015)" -484,100,100,,1,1,[1],0.4,3,4,"(0.94, 0.05)" -485,100,100,,1,1,[1],0.4,3,5,"(0.97, 0.035)" -486,100,100,,1,1,[1],0.4,3,6,"(1.0, 0.02)" -487,100,100,,1,1,[1],0.4,3,7,"(0.94, 0.04)" -488,100,100,,1,1,[1],0.4,3,8,"(0.98, 0.02)" -489,100,100,,1,1,[1],0.4,3,9,"(1.0, 0.01)" -490,100,100,,1,1,[1],0.4,4,0,"(1.0, 0.0)" -491,100,100,,1,1,[1],0.4,4,1,"(1.0, 0.0)" -492,100,100,,1,1,[1],0.4,4,2,"(1.0, 0.0)" -493,100,100,,1,1,[1],0.4,4,3,"(1.0, 0.0)" -494,100,100,,1,1,[1],0.4,4,4,"(0.98, 0.01)" -495,100,100,,1,1,[1],0.4,4,5,"(1.0, 0.0)" -496,100,100,,1,1,[1],0.4,4,6,"(0.99, 0.005)" -497,100,100,,1,1,[1],0.4,4,7,"(0.99, 0.005)" -498,100,100,,1,1,[1],0.4,4,8,"(1.0, 0.0)" -499,100,100,,1,1,[1],0.4,4,9,"(0.98, 0.01)" -500,100,100,,1,1,[1],0.5,-5,0,"(1.0, 1.0)" -501,100,100,,1,1,[1],0.5,-5,1,"(1.0, 1.0)" -502,100,100,,1,1,[1],0.5,-5,2,"(1.0, 1.0)" -503,100,100,,1,1,[1],0.5,-5,3,"(1.0, 1.0)" -504,100,100,,1,1,[1],0.5,-5,4,"(1.0, 1.0)" -505,100,100,,1,1,[1],0.5,-5,5,"(1.0, 1.0)" -506,100,100,,1,1,[1],0.5,-5,6,"(1.0, 1.0)" -507,100,100,,1,1,[1],0.5,-5,7,"(1.0, 1.0)" -508,100,100,,1,1,[1],0.5,-5,8,"(1.0, 1.0)" -509,100,100,,1,1,[1],0.5,-5,9,"(1.0, 1.0)" -510,100,100,,1,1,[1],0.5,-4,0,"(1.0, 1.0)" -511,100,100,,1,1,[1],0.5,-4,1,"(1.0, 1.0)" -512,100,100,,1,1,[1],0.5,-4,2,"(1.0, 1.0)" -513,100,100,,1,1,[1],0.5,-4,3,"(0.99, 0.985)" -514,100,100,,1,1,[1],0.5,-4,4,"(0.99, 0.995)" -515,100,100,,1,1,[1],0.5,-4,5,"(0.98, 0.99)" -516,100,100,,1,1,[1],0.5,-4,6,"(0.99, 0.995)" -517,100,100,,1,1,[1],0.5,-4,7,"(1.0, 0.98)" -518,100,100,,1,1,[1],0.5,-4,8,"(1.0, 0.99)" -519,100,100,,1,1,[1],0.5,-4,9,"(0.99, 0.995)" -520,100,100,,1,1,[1],0.5,-3,0,"(0.97, 0.965)" -521,100,100,,1,1,[1],0.5,-3,1,"(0.97, 0.965)" -522,100,100,,1,1,[1],0.5,-3,2,"(0.98, 0.98)" -523,100,100,,1,1,[1],0.5,-3,3,"(0.98, 0.99)" -524,100,100,,1,1,[1],0.5,-3,4,"(0.98, 0.98)" -525,100,100,,1,1,[1],0.5,-3,5,"(0.99, 0.985)" -526,100,100,,1,1,[1],0.5,-3,6,"(0.98, 0.97)" -527,100,100,,1,1,[1],0.5,-3,7,"(0.97, 0.965)" -528,100,100,,1,1,[1],0.5,-3,8,"(0.97, 0.975)" -529,100,100,,1,1,[1],0.5,-3,9,"(0.99, 0.985)" -530,100,100,,1,1,[1],0.5,-2,0,"(0.99, 0.935)" -531,100,100,,1,1,[1],0.5,-2,1,"(0.94, 0.89)" -532,100,100,,1,1,[1],0.5,-2,2,"(0.91, 0.875)" -533,100,100,,1,1,[1],0.5,-2,3,"(0.96, 0.89)" -534,100,100,,1,1,[1],0.5,-2,4,"(0.94, 0.9)" -535,100,100,,1,1,[1],0.5,-2,5,"(0.95, 0.905)" -536,100,100,,1,1,[1],0.5,-2,6,"(0.96, 0.95)" -537,100,100,,1,1,[1],0.5,-2,7,"(0.94, 0.88)" -538,100,100,,1,1,[1],0.5,-2,8,"(0.92, 0.92)" -539,100,100,,1,1,[1],0.5,-2,9,"(0.93, 0.905)" -540,100,100,,1,1,[1],0.5,-1,0,"(0.89, 0.705)" -541,100,100,,1,1,[1],0.5,-1,1,"(0.93, 0.765)" -542,100,100,,1,1,[1],0.5,-1,2,"(0.84, 0.75)" -543,100,100,,1,1,[1],0.5,-1,3,"(0.9, 0.76)" -544,100,100,,1,1,[1],0.5,-1,4,"(0.9, 0.7)" -545,100,100,,1,1,[1],0.5,-1,5,"(0.87, 0.795)" -546,100,100,,1,1,[1],0.5,-1,6,"(0.86, 0.75)" -547,100,100,,1,1,[1],0.5,-1,7,"(0.86, 0.73)" -548,100,100,,1,1,[1],0.5,-1,8,"(0.86, 0.71)" -549,100,100,,1,1,[1],0.5,-1,9,"(0.85, 0.735)" -550,100,100,,1,1,[1],0.5,0,0,"(0.8, 0.49)" -551,100,100,,1,1,[1],0.5,0,1,"(0.82, 0.43)" -552,100,100,,1,1,[1],0.5,0,2,"(0.87, 0.505)" -553,100,100,,1,1,[1],0.5,0,3,"(0.8, 0.52)" -554,100,100,,1,1,[1],0.5,0,4,"(0.82, 0.49)" -555,100,100,,1,1,[1],0.5,0,5,"(0.83, 0.485)" -556,100,100,,1,1,[1],0.5,0,6,"(0.96, 0.56)" -557,100,100,,1,1,[1],0.5,0,7,"(0.82, 0.54)" -558,100,100,,1,1,[1],0.5,0,8,"(0.88, 0.55)" -559,100,100,,1,1,[1],0.5,0,9,"(0.88, 0.42)" -560,100,100,,1,1,[1],0.5,1,0,"(0.85, 0.275)" -561,100,100,,1,1,[1],0.5,1,1,"(0.92, 0.23)" -562,100,100,,1,1,[1],0.5,1,2,"(0.91, 0.275)" -563,100,100,,1,1,[1],0.5,1,3,"(0.9, 0.21)" -564,100,100,,1,1,[1],0.5,1,4,"(0.87, 0.195)" -565,100,100,,1,1,[1],0.5,1,5,"(0.86, 0.22)" -566,100,100,,1,1,[1],0.5,1,6,"(0.8, 0.23)" -567,100,100,,1,1,[1],0.5,1,7,"(0.87, 0.275)" -568,100,100,,1,1,[1],0.5,1,8,"(0.87, 0.235)" -569,100,100,,1,1,[1],0.5,1,9,"(0.87, 0.275)" -570,100,100,,1,1,[1],0.5,2,0,"(0.92, 0.1)" -571,100,100,,1,1,[1],0.5,2,1,"(0.97, 0.085)" -572,100,100,,1,1,[1],0.5,2,2,"(0.95, 0.055)" -573,100,100,,1,1,[1],0.5,2,3,"(0.95, 0.055)" -574,100,100,,1,1,[1],0.5,2,4,"(0.95, 0.055)" -575,100,100,,1,1,[1],0.5,2,5,"(0.97, 0.105)" -576,100,100,,1,1,[1],0.5,2,6,"(0.98, 0.1)" -577,100,100,,1,1,[1],0.5,2,7,"(0.95, 0.045)" -578,100,100,,1,1,[1],0.5,2,8,"(0.97, 0.105)" -579,100,100,,1,1,[1],0.5,2,9,"(0.96, 0.09)" -580,100,100,,1,1,[1],0.5,3,0,"(1.0, 0.01)" -581,100,100,,1,1,[1],0.5,3,1,"(0.96, 0.05)" -582,100,100,,1,1,[1],0.5,3,2,"(0.99, 0.015)" -583,100,100,,1,1,[1],0.5,3,3,"(0.99, 0.015)" -584,100,100,,1,1,[1],0.5,3,4,"(0.96, 0.02)" -585,100,100,,1,1,[1],0.5,3,5,"(1.0, 0.01)" -586,100,100,,1,1,[1],0.5,3,6,"(0.96, 0.03)" -587,100,100,,1,1,[1],0.5,3,7,"(1.0, 0.02)" -588,100,100,,1,1,[1],0.5,3,8,"(1.0, 0.01)" -589,100,100,,1,1,[1],0.5,3,9,"(1.0, 0.02)" -590,100,100,,1,1,[1],0.5,4,0,"(1.0, 0.0)" -591,100,100,,1,1,[1],0.5,4,1,"(1.0, 0.0)" -592,100,100,,1,1,[1],0.5,4,2,"(0.99, 0.005)" -593,100,100,,1,1,[1],0.5,4,3,"(0.99, 0.005)" -594,100,100,,1,1,[1],0.5,4,4,"(0.99, 0.005)" -595,100,100,,1,1,[1],0.5,4,5,"(1.0, 0.0)" -596,100,100,,1,1,[1],0.5,4,6,"(0.99, 0.015)" -597,100,100,,1,1,[1],0.5,4,7,"(0.99, 0.005)" -598,100,100,,1,1,[1],0.5,4,8,"(1.0, 0.01)" -599,100,100,,1,1,[1],0.5,4,9,"(1.0, 0.0)" -600,100,100,,1,1,[1],0.6000000000000001,-5,0,"(1.0, 1.0)" -601,100,100,,1,1,[1],0.6000000000000001,-5,1,"(1.0, 1.0)" -602,100,100,,1,1,[1],0.6000000000000001,-5,2,"(1.0, 1.0)" -603,100,100,,1,1,[1],0.6000000000000001,-5,3,"(1.0, 1.0)" -604,100,100,,1,1,[1],0.6000000000000001,-5,4,"(0.99, 0.995)" -605,100,100,,1,1,[1],0.6000000000000001,-5,5,"(1.0, 1.0)" -606,100,100,,1,1,[1],0.6000000000000001,-5,6,"(1.0, 1.0)" -607,100,100,,1,1,[1],0.6000000000000001,-5,7,"(1.0, 1.0)" -608,100,100,,1,1,[1],0.6000000000000001,-5,8,"(1.0, 1.0)" -609,100,100,,1,1,[1],0.6000000000000001,-5,9,"(1.0, 1.0)" -610,100,100,,1,1,[1],0.6000000000000001,-4,0,"(1.0, 0.99)" -611,100,100,,1,1,[1],0.6000000000000001,-4,1,"(1.0, 1.0)" -612,100,100,,1,1,[1],0.6000000000000001,-4,2,"(1.0, 1.0)" -613,100,100,,1,1,[1],0.6000000000000001,-4,3,"(1.0, 1.0)" -614,100,100,,1,1,[1],0.6000000000000001,-4,4,"(0.99, 0.995)" -615,100,100,,1,1,[1],0.6000000000000001,-4,5,"(0.99, 0.995)" -616,100,100,,1,1,[1],0.6000000000000001,-4,6,"(1.0, 1.0)" -617,100,100,,1,1,[1],0.6000000000000001,-4,7,"(0.99, 0.995)" -618,100,100,,1,1,[1],0.6000000000000001,-4,8,"(0.99, 0.995)" -619,100,100,,1,1,[1],0.6000000000000001,-4,9,"(1.0, 1.0)" -620,100,100,,1,1,[1],0.6000000000000001,-3,0,"(0.97, 0.975)" -621,100,100,,1,1,[1],0.6000000000000001,-3,1,"(0.96, 0.96)" -622,100,100,,1,1,[1],0.6000000000000001,-3,2,"(0.96, 0.97)" -623,100,100,,1,1,[1],0.6000000000000001,-3,3,"(0.98, 0.98)" -624,100,100,,1,1,[1],0.6000000000000001,-3,4,"(0.99, 0.995)" -625,100,100,,1,1,[1],0.6000000000000001,-3,5,"(0.98, 0.97)" -626,100,100,,1,1,[1],0.6000000000000001,-3,6,"(0.99, 0.985)" -627,100,100,,1,1,[1],0.6000000000000001,-3,7,"(0.97, 0.965)" -628,100,100,,1,1,[1],0.6000000000000001,-3,8,"(0.98, 0.97)" -629,100,100,,1,1,[1],0.6000000000000001,-3,9,"(0.99, 0.985)" -630,100,100,,1,1,[1],0.6000000000000001,-2,0,"(0.88, 0.87)" -631,100,100,,1,1,[1],0.6000000000000001,-2,1,"(0.95, 0.905)" -632,100,100,,1,1,[1],0.6000000000000001,-2,2,"(0.9, 0.89)" -633,100,100,,1,1,[1],0.6000000000000001,-2,3,"(0.9, 0.91)" -634,100,100,,1,1,[1],0.6000000000000001,-2,4,"(0.88, 0.87)" -635,100,100,,1,1,[1],0.6000000000000001,-2,5,"(0.96, 0.94)" -636,100,100,,1,1,[1],0.6000000000000001,-2,6,"(0.94, 0.89)" -637,100,100,,1,1,[1],0.6000000000000001,-2,7,"(0.89, 0.905)" -638,100,100,,1,1,[1],0.6000000000000001,-2,8,"(0.94, 0.91)" -639,100,100,,1,1,[1],0.6000000000000001,-2,9,"(0.88, 0.91)" -640,100,100,,1,1,[1],0.6000000000000001,-1,0,"(0.83, 0.755)" -641,100,100,,1,1,[1],0.6000000000000001,-1,1,"(0.88, 0.8)" -642,100,100,,1,1,[1],0.6000000000000001,-1,2,"(0.78, 0.66)" -643,100,100,,1,1,[1],0.6000000000000001,-1,3,"(0.86, 0.75)" -644,100,100,,1,1,[1],0.6000000000000001,-1,4,"(0.84, 0.76)" -645,100,100,,1,1,[1],0.6000000000000001,-1,5,"(0.85, 0.795)" -646,100,100,,1,1,[1],0.6000000000000001,-1,6,"(0.81, 0.765)" -647,100,100,,1,1,[1],0.6000000000000001,-1,7,"(0.86, 0.75)" -648,100,100,,1,1,[1],0.6000000000000001,-1,8,"(0.86, 0.72)" -649,100,100,,1,1,[1],0.6000000000000001,-1,9,"(0.87, 0.765)" -650,100,100,,1,1,[1],0.6000000000000001,0,0,"(0.82, 0.52)" -651,100,100,,1,1,[1],0.6000000000000001,0,1,"(0.79, 0.415)" -652,100,100,,1,1,[1],0.6000000000000001,0,2,"(0.82, 0.46)" -653,100,100,,1,1,[1],0.6000000000000001,0,3,"(0.84, 0.53)" -654,100,100,,1,1,[1],0.6000000000000001,0,4,"(0.72, 0.45)" -655,100,100,,1,1,[1],0.6000000000000001,0,5,"(0.81, 0.555)" -656,100,100,,1,1,[1],0.6000000000000001,0,6,"(0.85, 0.485)" -657,100,100,,1,1,[1],0.6000000000000001,0,7,"(0.83, 0.545)" -658,100,100,,1,1,[1],0.6000000000000001,0,8,"(0.82, 0.42)" -659,100,100,,1,1,[1],0.6000000000000001,0,9,"(0.81, 0.485)" -660,100,100,,1,1,[1],0.6000000000000001,1,0,"(0.86, 0.25)" -661,100,100,,1,1,[1],0.6000000000000001,1,1,"(0.87, 0.245)" -662,100,100,,1,1,[1],0.6000000000000001,1,2,"(0.84, 0.27)" -663,100,100,,1,1,[1],0.6000000000000001,1,3,"(0.9, 0.37)" -664,100,100,,1,1,[1],0.6000000000000001,1,4,"(0.86, 0.35)" -665,100,100,,1,1,[1],0.6000000000000001,1,5,"(0.94, 0.23)" -666,100,100,,1,1,[1],0.6000000000000001,1,6,"(0.89, 0.235)" -667,100,100,,1,1,[1],0.6000000000000001,1,7,"(0.85, 0.225)" -668,100,100,,1,1,[1],0.6000000000000001,1,8,"(0.87, 0.205)" -669,100,100,,1,1,[1],0.6000000000000001,1,9,"(0.83, 0.285)" -670,100,100,,1,1,[1],0.6000000000000001,2,0,"(0.94, 0.13)" -671,100,100,,1,1,[1],0.6000000000000001,2,1,"(0.96, 0.09)" -672,100,100,,1,1,[1],0.6000000000000001,2,2,"(0.89, 0.105)" -673,100,100,,1,1,[1],0.6000000000000001,2,3,"(0.87, 0.115)" -674,100,100,,1,1,[1],0.6000000000000001,2,4,"(0.93, 0.115)" -675,100,100,,1,1,[1],0.6000000000000001,2,5,"(0.95, 0.075)" -676,100,100,,1,1,[1],0.6000000000000001,2,6,"(0.9, 0.14)" -677,100,100,,1,1,[1],0.6000000000000001,2,7,"(0.91, 0.065)" -678,100,100,,1,1,[1],0.6000000000000001,2,8,"(0.92, 0.09)" -679,100,100,,1,1,[1],0.6000000000000001,2,9,"(0.96, 0.1)" -680,100,100,,1,1,[1],0.6000000000000001,3,0,"(0.98, 0.03)" -681,100,100,,1,1,[1],0.6000000000000001,3,1,"(0.97, 0.035)" -682,100,100,,1,1,[1],0.6000000000000001,3,2,"(0.99, 0.015)" -683,100,100,,1,1,[1],0.6000000000000001,3,3,"(0.98, 0.02)" -684,100,100,,1,1,[1],0.6000000000000001,3,4,"(0.97, 0.015)" -685,100,100,,1,1,[1],0.6000000000000001,3,5,"(0.96, 0.04)" -686,100,100,,1,1,[1],0.6000000000000001,3,6,"(0.99, 0.045)" -687,100,100,,1,1,[1],0.6000000000000001,3,7,"(0.99, 0.025)" -688,100,100,,1,1,[1],0.6000000000000001,3,8,"(0.99, 0.005)" -689,100,100,,1,1,[1],0.6000000000000001,3,9,"(0.93, 0.045)" -690,100,100,,1,1,[1],0.6000000000000001,4,0,"(1.0, 0.0)" -691,100,100,,1,1,[1],0.6000000000000001,4,1,"(1.0, 0.0)" -692,100,100,,1,1,[1],0.6000000000000001,4,2,"(0.98, 0.01)" -693,100,100,,1,1,[1],0.6000000000000001,4,3,"(1.0, 0.01)" -694,100,100,,1,1,[1],0.6000000000000001,4,4,"(1.0, 0.0)" -695,100,100,,1,1,[1],0.6000000000000001,4,5,"(0.99, 0.005)" -696,100,100,,1,1,[1],0.6000000000000001,4,6,"(1.0, 0.0)" -697,100,100,,1,1,[1],0.6000000000000001,4,7,"(1.0, 0.0)" -698,100,100,,1,1,[1],0.6000000000000001,4,8,"(0.99, 0.005)" -699,100,100,,1,1,[1],0.6000000000000001,4,9,"(1.0, 0.0)" -700,100,100,,1,1,[1],0.7000000000000001,-5,0,"(1.0, 1.0)" -701,100,100,,1,1,[1],0.7000000000000001,-5,1,"(1.0, 1.0)" -702,100,100,,1,1,[1],0.7000000000000001,-5,2,"(1.0, 1.0)" -703,100,100,,1,1,[1],0.7000000000000001,-5,3,"(1.0, 1.0)" -704,100,100,,1,1,[1],0.7000000000000001,-5,4,"(1.0, 1.0)" -705,100,100,,1,1,[1],0.7000000000000001,-5,5,"(1.0, 1.0)" -706,100,100,,1,1,[1],0.7000000000000001,-5,6,"(1.0, 1.0)" -707,100,100,,1,1,[1],0.7000000000000001,-5,7,"(1.0, 1.0)" -708,100,100,,1,1,[1],0.7000000000000001,-5,8,"(0.98, 0.99)" -709,100,100,,1,1,[1],0.7000000000000001,-5,9,"(0.99, 0.995)" -710,100,100,,1,1,[1],0.7000000000000001,-4,0,"(1.0, 1.0)" -711,100,100,,1,1,[1],0.7000000000000001,-4,1,"(0.99, 0.995)" -712,100,100,,1,1,[1],0.7000000000000001,-4,2,"(0.99, 0.995)" -713,100,100,,1,1,[1],0.7000000000000001,-4,3,"(1.0, 1.0)" -714,100,100,,1,1,[1],0.7000000000000001,-4,4,"(1.0, 0.99)" -715,100,100,,1,1,[1],0.7000000000000001,-4,5,"(0.98, 0.98)" -716,100,100,,1,1,[1],0.7000000000000001,-4,6,"(1.0, 1.0)" -717,100,100,,1,1,[1],0.7000000000000001,-4,7,"(1.0, 1.0)" -718,100,100,,1,1,[1],0.7000000000000001,-4,8,"(0.99, 0.995)" -719,100,100,,1,1,[1],0.7000000000000001,-4,9,"(0.99, 0.995)" -720,100,100,,1,1,[1],0.7000000000000001,-3,0,"(0.99, 0.975)" -721,100,100,,1,1,[1],0.7000000000000001,-3,1,"(0.97, 0.965)" -722,100,100,,1,1,[1],0.7000000000000001,-3,2,"(0.97, 0.975)" -723,100,100,,1,1,[1],0.7000000000000001,-3,3,"(0.94, 0.94)" -724,100,100,,1,1,[1],0.7000000000000001,-3,4,"(0.98, 0.96)" -725,100,100,,1,1,[1],0.7000000000000001,-3,5,"(0.98, 0.96)" -726,100,100,,1,1,[1],0.7000000000000001,-3,6,"(0.98, 0.99)" -727,100,100,,1,1,[1],0.7000000000000001,-3,7,"(0.99, 0.995)" -728,100,100,,1,1,[1],0.7000000000000001,-3,8,"(0.97, 0.975)" -729,100,100,,1,1,[1],0.7000000000000001,-3,9,"(0.98, 0.97)" -730,100,100,,1,1,[1],0.7000000000000001,-2,0,"(0.89, 0.905)" -731,100,100,,1,1,[1],0.7000000000000001,-2,1,"(0.86, 0.86)" -732,100,100,,1,1,[1],0.7000000000000001,-2,2,"(0.92, 0.88)" -733,100,100,,1,1,[1],0.7000000000000001,-2,3,"(0.91, 0.925)" -734,100,100,,1,1,[1],0.7000000000000001,-2,4,"(0.92, 0.92)" -735,100,100,,1,1,[1],0.7000000000000001,-2,5,"(0.96, 0.94)" -736,100,100,,1,1,[1],0.7000000000000001,-2,6,"(0.92, 0.9)" -737,100,100,,1,1,[1],0.7000000000000001,-2,7,"(0.93, 0.905)" -738,100,100,,1,1,[1],0.7000000000000001,-2,8,"(0.94, 0.92)" -739,100,100,,1,1,[1],0.7000000000000001,-2,9,"(0.9, 0.87)" -740,100,100,,1,1,[1],0.7000000000000001,-1,0,"(0.8, 0.66)" -741,100,100,,1,1,[1],0.7000000000000001,-1,1,"(0.86, 0.75)" -742,100,100,,1,1,[1],0.7000000000000001,-1,2,"(0.87, 0.745)" -743,100,100,,1,1,[1],0.7000000000000001,-1,3,"(0.86, 0.75)" -744,100,100,,1,1,[1],0.7000000000000001,-1,4,"(0.85, 0.805)" -745,100,100,,1,1,[1],0.7000000000000001,-1,5,"(0.84, 0.76)" -746,100,100,,1,1,[1],0.7000000000000001,-1,6,"(0.78, 0.74)" -747,100,100,,1,1,[1],0.7000000000000001,-1,7,"(0.83, 0.735)" -748,100,100,,1,1,[1],0.7000000000000001,-1,8,"(0.83, 0.815)" -749,100,100,,1,1,[1],0.7000000000000001,-1,9,"(0.82, 0.68)" -750,100,100,,1,1,[1],0.7000000000000001,0,0,"(0.79, 0.485)" -751,100,100,,1,1,[1],0.7000000000000001,0,1,"(0.8, 0.44)" -752,100,100,,1,1,[1],0.7000000000000001,0,2,"(0.77, 0.435)" -753,100,100,,1,1,[1],0.7000000000000001,0,3,"(0.79, 0.515)" -754,100,100,,1,1,[1],0.7000000000000001,0,4,"(0.73, 0.515)" -755,100,100,,1,1,[1],0.7000000000000001,0,5,"(0.71, 0.465)" -756,100,100,,1,1,[1],0.7000000000000001,0,6,"(0.75, 0.505)" -757,100,100,,1,1,[1],0.7000000000000001,0,7,"(0.85, 0.505)" -758,100,100,,1,1,[1],0.7000000000000001,0,8,"(0.79, 0.515)" -759,100,100,,1,1,[1],0.7000000000000001,0,9,"(0.81, 0.595)" -760,100,100,,1,1,[1],0.7000000000000001,1,0,"(0.9, 0.32)" -761,100,100,,1,1,[1],0.7000000000000001,1,1,"(0.86, 0.27)" -762,100,100,,1,1,[1],0.7000000000000001,1,2,"(0.85, 0.265)" -763,100,100,,1,1,[1],0.7000000000000001,1,3,"(0.79, 0.255)" -764,100,100,,1,1,[1],0.7000000000000001,1,4,"(0.8, 0.23)" -765,100,100,,1,1,[1],0.7000000000000001,1,5,"(0.82, 0.29)" -766,100,100,,1,1,[1],0.7000000000000001,1,6,"(0.78, 0.31)" -767,100,100,,1,1,[1],0.7000000000000001,1,7,"(0.78, 0.31)" -768,100,100,,1,1,[1],0.7000000000000001,1,8,"(0.85, 0.255)" -769,100,100,,1,1,[1],0.7000000000000001,1,9,"(0.84, 0.22)" -770,100,100,,1,1,[1],0.7000000000000001,2,0,"(0.96, 0.06)" -771,100,100,,1,1,[1],0.7000000000000001,2,1,"(0.9, 0.08)" -772,100,100,,1,1,[1],0.7000000000000001,2,2,"(0.98, 0.08)" -773,100,100,,1,1,[1],0.7000000000000001,2,3,"(0.94, 0.1)" -774,100,100,,1,1,[1],0.7000000000000001,2,4,"(0.97, 0.045)" -775,100,100,,1,1,[1],0.7000000000000001,2,5,"(0.89, 0.095)" -776,100,100,,1,1,[1],0.7000000000000001,2,6,"(0.85, 0.095)" -777,100,100,,1,1,[1],0.7000000000000001,2,7,"(0.92, 0.11)" -778,100,100,,1,1,[1],0.7000000000000001,2,8,"(0.89, 0.125)" -779,100,100,,1,1,[1],0.7000000000000001,2,9,"(0.91, 0.115)" -780,100,100,,1,1,[1],0.7000000000000001,3,0,"(0.99, 0.005)" -781,100,100,,1,1,[1],0.7000000000000001,3,1,"(0.97, 0.025)" -782,100,100,,1,1,[1],0.7000000000000001,3,2,"(0.96, 0.04)" -783,100,100,,1,1,[1],0.7000000000000001,3,3,"(0.96, 0.02)" -784,100,100,,1,1,[1],0.7000000000000001,3,4,"(0.99, 0.025)" -785,100,100,,1,1,[1],0.7000000000000001,3,5,"(0.97, 0.035)" -786,100,100,,1,1,[1],0.7000000000000001,3,6,"(0.96, 0.03)" -787,100,100,,1,1,[1],0.7000000000000001,3,7,"(0.98, 0.01)" -788,100,100,,1,1,[1],0.7000000000000001,3,8,"(0.98, 0.03)" -789,100,100,,1,1,[1],0.7000000000000001,3,9,"(0.98, 0.01)" -790,100,100,,1,1,[1],0.7000000000000001,4,0,"(0.99, 0.005)" -791,100,100,,1,1,[1],0.7000000000000001,4,1,"(1.0, 0.01)" -792,100,100,,1,1,[1],0.7000000000000001,4,2,"(1.0, 0.0)" -793,100,100,,1,1,[1],0.7000000000000001,4,3,"(1.0, 0.0)" -794,100,100,,1,1,[1],0.7000000000000001,4,4,"(0.99, 0.005)" -795,100,100,,1,1,[1],0.7000000000000001,4,5,"(0.99, 0.005)" -796,100,100,,1,1,[1],0.7000000000000001,4,6,"(1.0, 0.0)" -797,100,100,,1,1,[1],0.7000000000000001,4,7,"(0.99, 0.015)" -798,100,100,,1,1,[1],0.7000000000000001,4,8,"(0.99, 0.005)" -799,100,100,,1,1,[1],0.7000000000000001,4,9,"(1.0, 0.0)" -800,100,100,,1,1,[1],0.8,-5,0,"(1.0, 1.0)" -801,100,100,,1,1,[1],0.8,-5,1,"(0.99, 0.995)" -802,100,100,,1,1,[1],0.8,-5,2,"(0.99, 0.995)" -803,100,100,,1,1,[1],0.8,-5,3,"(1.0, 1.0)" -804,100,100,,1,1,[1],0.8,-5,4,"(0.99, 0.995)" -805,100,100,,1,1,[1],0.8,-5,5,"(1.0, 1.0)" -806,100,100,,1,1,[1],0.8,-5,6,"(1.0, 1.0)" -807,100,100,,1,1,[1],0.8,-5,7,"(1.0, 1.0)" -808,100,100,,1,1,[1],0.8,-5,8,"(1.0, 1.0)" -809,100,100,,1,1,[1],0.8,-5,9,"(1.0, 1.0)" -810,100,100,,1,1,[1],0.8,-4,0,"(1.0, 1.0)" -811,100,100,,1,1,[1],0.8,-4,1,"(0.98, 0.99)" -812,100,100,,1,1,[1],0.8,-4,2,"(1.0, 1.0)" -813,100,100,,1,1,[1],0.8,-4,3,"(0.99, 0.995)" -814,100,100,,1,1,[1],0.8,-4,4,"(1.0, 1.0)" -815,100,100,,1,1,[1],0.8,-4,5,"(0.99, 0.995)" -816,100,100,,1,1,[1],0.8,-4,6,"(0.99, 0.995)" -817,100,100,,1,1,[1],0.8,-4,7,"(0.99, 0.995)" -818,100,100,,1,1,[1],0.8,-4,8,"(0.99, 0.995)" -819,100,100,,1,1,[1],0.8,-4,9,"(1.0, 1.0)" -820,100,100,,1,1,[1],0.8,-3,0,"(0.93, 0.965)" -821,100,100,,1,1,[1],0.8,-3,1,"(0.98, 0.97)" -822,100,100,,1,1,[1],0.8,-3,2,"(0.95, 0.965)" -823,100,100,,1,1,[1],0.8,-3,3,"(0.96, 0.94)" -824,100,100,,1,1,[1],0.8,-3,4,"(0.98, 0.99)" -825,100,100,,1,1,[1],0.8,-3,5,"(0.98, 0.98)" -826,100,100,,1,1,[1],0.8,-3,6,"(0.99, 0.995)" -827,100,100,,1,1,[1],0.8,-3,7,"(0.94, 0.95)" -828,100,100,,1,1,[1],0.8,-3,8,"(0.95, 0.955)" -829,100,100,,1,1,[1],0.8,-3,9,"(0.95, 0.965)" -830,100,100,,1,1,[1],0.8,-2,0,"(0.91, 0.905)" -831,100,100,,1,1,[1],0.8,-2,1,"(0.96, 0.92)" -832,100,100,,1,1,[1],0.8,-2,2,"(0.9, 0.88)" -833,100,100,,1,1,[1],0.8,-2,3,"(0.9, 0.85)" -834,100,100,,1,1,[1],0.8,-2,4,"(0.94, 0.9)" -835,100,100,,1,1,[1],0.8,-2,5,"(0.9, 0.91)" -836,100,100,,1,1,[1],0.8,-2,6,"(0.88, 0.86)" -837,100,100,,1,1,[1],0.8,-2,7,"(0.92, 0.91)" -838,100,100,,1,1,[1],0.8,-2,8,"(0.9, 0.89)" -839,100,100,,1,1,[1],0.8,-2,9,"(0.84, 0.88)" -840,100,100,,1,1,[1],0.8,-1,0,"(0.85, 0.765)" -841,100,100,,1,1,[1],0.8,-1,1,"(0.85, 0.745)" -842,100,100,,1,1,[1],0.8,-1,2,"(0.84, 0.76)" -843,100,100,,1,1,[1],0.8,-1,3,"(0.81, 0.755)" -844,100,100,,1,1,[1],0.8,-1,4,"(0.78, 0.74)" -845,100,100,,1,1,[1],0.8,-1,5,"(0.85, 0.725)" -846,100,100,,1,1,[1],0.8,-1,6,"(0.8, 0.68)" -847,100,100,,1,1,[1],0.8,-1,7,"(0.85, 0.775)" -848,100,100,,1,1,[1],0.8,-1,8,"(0.77, 0.735)" -849,100,100,,1,1,[1],0.8,-1,9,"(0.84, 0.73)" -850,100,100,,1,1,[1],0.8,0,0,"(0.8, 0.49)" -851,100,100,,1,1,[1],0.8,0,1,"(0.73, 0.475)" -852,100,100,,1,1,[1],0.8,0,2,"(0.72, 0.44)" -853,100,100,,1,1,[1],0.8,0,3,"(0.81, 0.475)" -854,100,100,,1,1,[1],0.8,0,4,"(0.75, 0.525)" -855,100,100,,1,1,[1],0.8,0,5,"(0.78, 0.5)" -856,100,100,,1,1,[1],0.8,0,6,"(0.78, 0.57)" -857,100,100,,1,1,[1],0.8,0,7,"(0.83, 0.505)" -858,100,100,,1,1,[1],0.8,0,8,"(0.81, 0.475)" -859,100,100,,1,1,[1],0.8,0,9,"(0.83, 0.435)" -860,100,100,,1,1,[1],0.8,1,0,"(0.79, 0.325)" -861,100,100,,1,1,[1],0.8,1,1,"(0.8, 0.41)" -862,100,100,,1,1,[1],0.8,1,2,"(0.83, 0.245)" -863,100,100,,1,1,[1],0.8,1,3,"(0.87, 0.265)" -864,100,100,,1,1,[1],0.8,1,4,"(0.73, 0.275)" -865,100,100,,1,1,[1],0.8,1,5,"(0.76, 0.3)" -866,100,100,,1,1,[1],0.8,1,6,"(0.83, 0.255)" -867,100,100,,1,1,[1],0.8,1,7,"(0.82, 0.25)" -868,100,100,,1,1,[1],0.8,1,8,"(0.81, 0.255)" -869,100,100,,1,1,[1],0.8,1,9,"(0.84, 0.26)" -870,100,100,,1,1,[1],0.8,2,0,"(0.86, 0.1)" -871,100,100,,1,1,[1],0.8,2,1,"(0.96, 0.07)" -872,100,100,,1,1,[1],0.8,2,2,"(0.88, 0.1)" -873,100,100,,1,1,[1],0.8,2,3,"(0.91, 0.095)" -874,100,100,,1,1,[1],0.8,2,4,"(0.91, 0.105)" -875,100,100,,1,1,[1],0.8,2,5,"(0.86, 0.12)" -876,100,100,,1,1,[1],0.8,2,6,"(0.89, 0.085)" -877,100,100,,1,1,[1],0.8,2,7,"(0.89, 0.085)" -878,100,100,,1,1,[1],0.8,2,8,"(0.96, 0.06)" -879,100,100,,1,1,[1],0.8,2,9,"(0.87, 0.115)" -880,100,100,,1,1,[1],0.8,3,0,"(0.96, 0.02)" -881,100,100,,1,1,[1],0.8,3,1,"(0.99, 0.025)" -882,100,100,,1,1,[1],0.8,3,2,"(0.96, 0.02)" -883,100,100,,1,1,[1],0.8,3,3,"(0.96, 0.02)" -884,100,100,,1,1,[1],0.8,3,4,"(0.95, 0.055)" -885,100,100,,1,1,[1],0.8,3,5,"(0.98, 0.04)" -886,100,100,,1,1,[1],0.8,3,6,"(0.98, 0.03)" -887,100,100,,1,1,[1],0.8,3,7,"(0.89, 0.055)" -888,100,100,,1,1,[1],0.8,3,8,"(0.98, 0.02)" -889,100,100,,1,1,[1],0.8,3,9,"(0.97, 0.055)" -890,100,100,,1,1,[1],0.8,4,0,"(0.99, 0.005)" -891,100,100,,1,1,[1],0.8,4,1,"(0.98, 0.01)" -892,100,100,,1,1,[1],0.8,4,2,"(0.99, 0.005)" -893,100,100,,1,1,[1],0.8,4,3,"(0.99, 0.005)" -894,100,100,,1,1,[1],0.8,4,4,"(1.0, 0.0)" -895,100,100,,1,1,[1],0.8,4,5,"(0.99, 0.005)" -896,100,100,,1,1,[1],0.8,4,6,"(0.98, 0.01)" -897,100,100,,1,1,[1],0.8,4,7,"(0.99, 0.015)" -898,100,100,,1,1,[1],0.8,4,8,"(1.0, 0.0)" -899,100,100,,1,1,[1],0.8,4,9,"(0.99, 0.005)" -900,100,100,,1,1,[1],0.9,-5,0,"(1.0, 1.0)" -901,100,100,,1,1,[1],0.9,-5,1,"(1.0, 1.0)" -902,100,100,,1,1,[1],0.9,-5,2,"(1.0, 1.0)" -903,100,100,,1,1,[1],0.9,-5,3,"(0.99, 0.995)" -904,100,100,,1,1,[1],0.9,-5,4,"(1.0, 1.0)" -905,100,100,,1,1,[1],0.9,-5,5,"(1.0, 1.0)" -906,100,100,,1,1,[1],0.9,-5,6,"(1.0, 1.0)" -907,100,100,,1,1,[1],0.9,-5,7,"(1.0, 1.0)" -908,100,100,,1,1,[1],0.9,-5,8,"(0.99, 0.995)" -909,100,100,,1,1,[1],0.9,-5,9,"(1.0, 1.0)" -910,100,100,,1,1,[1],0.9,-4,0,"(0.97, 0.985)" -911,100,100,,1,1,[1],0.9,-4,1,"(0.99, 0.995)" -912,100,100,,1,1,[1],0.9,-4,2,"(1.0, 1.0)" -913,100,100,,1,1,[1],0.9,-4,3,"(1.0, 1.0)" -914,100,100,,1,1,[1],0.9,-4,4,"(0.99, 0.995)" -915,100,100,,1,1,[1],0.9,-4,5,"(0.99, 0.995)" -916,100,100,,1,1,[1],0.9,-4,6,"(0.99, 0.995)" -917,100,100,,1,1,[1],0.9,-4,7,"(1.0, 1.0)" -918,100,100,,1,1,[1],0.9,-4,8,"(0.99, 0.995)" -919,100,100,,1,1,[1],0.9,-4,9,"(1.0, 1.0)" -920,100,100,,1,1,[1],0.9,-3,0,"(0.98, 0.97)" -921,100,100,,1,1,[1],0.9,-3,1,"(0.95, 0.965)" -922,100,100,,1,1,[1],0.9,-3,2,"(0.95, 0.965)" -923,100,100,,1,1,[1],0.9,-3,3,"(0.99, 0.985)" -924,100,100,,1,1,[1],0.9,-3,4,"(0.97, 0.975)" -925,100,100,,1,1,[1],0.9,-3,5,"(0.95, 0.975)" -926,100,100,,1,1,[1],0.9,-3,6,"(0.97, 0.975)" -927,100,100,,1,1,[1],0.9,-3,7,"(0.97, 0.975)" -928,100,100,,1,1,[1],0.9,-3,8,"(0.93, 0.955)" -929,100,100,,1,1,[1],0.9,-3,9,"(0.98, 0.99)" -930,100,100,,1,1,[1],0.9,-2,0,"(0.88, 0.91)" -931,100,100,,1,1,[1],0.9,-2,1,"(0.88, 0.85)" -932,100,100,,1,1,[1],0.9,-2,2,"(0.87, 0.885)" -933,100,100,,1,1,[1],0.9,-2,3,"(0.9, 0.92)" -934,100,100,,1,1,[1],0.9,-2,4,"(0.88, 0.91)" -935,100,100,,1,1,[1],0.9,-2,5,"(0.91, 0.915)" -936,100,100,,1,1,[1],0.9,-2,6,"(0.86, 0.85)" -937,100,100,,1,1,[1],0.9,-2,7,"(0.89, 0.925)" -938,100,100,,1,1,[1],0.9,-2,8,"(0.89, 0.875)" -939,100,100,,1,1,[1],0.9,-2,9,"(0.88, 0.81)" -940,100,100,,1,1,[1],0.9,-1,0,"(0.82, 0.71)" -941,100,100,,1,1,[1],0.9,-1,1,"(0.78, 0.71)" -942,100,100,,1,1,[1],0.9,-1,2,"(0.72, 0.64)" -943,100,100,,1,1,[1],0.9,-1,3,"(0.74, 0.66)" -944,100,100,,1,1,[1],0.9,-1,4,"(0.8, 0.7)" -945,100,100,,1,1,[1],0.9,-1,5,"(0.75, 0.735)" -946,100,100,,1,1,[1],0.9,-1,6,"(0.84, 0.78)" -947,100,100,,1,1,[1],0.9,-1,7,"(0.75, 0.665)" -948,100,100,,1,1,[1],0.9,-1,8,"(0.84, 0.7)" -949,100,100,,1,1,[1],0.9,-1,9,"(0.8, 0.77)" -950,100,100,,1,1,[1],0.9,0,0,"(0.81, 0.545)" -951,100,100,,1,1,[1],0.9,0,1,"(0.76, 0.49)" -952,100,100,,1,1,[1],0.9,0,2,"(0.8, 0.57)" -953,100,100,,1,1,[1],0.9,0,3,"(0.73, 0.515)" -954,100,100,,1,1,[1],0.9,0,4,"(0.79, 0.475)" -955,100,100,,1,1,[1],0.9,0,5,"(0.75, 0.495)" -956,100,100,,1,1,[1],0.9,0,6,"(0.81, 0.515)" -957,100,100,,1,1,[1],0.9,0,7,"(0.71, 0.545)" -958,100,100,,1,1,[1],0.9,0,8,"(0.78, 0.47)" -959,100,100,,1,1,[1],0.9,0,9,"(0.78, 0.46)" -960,100,100,,1,1,[1],0.9,1,0,"(0.76, 0.28)" -961,100,100,,1,1,[1],0.9,1,1,"(0.76, 0.24)" -962,100,100,,1,1,[1],0.9,1,2,"(0.81, 0.245)" -963,100,100,,1,1,[1],0.9,1,3,"(0.78, 0.21)" -964,100,100,,1,1,[1],0.9,1,4,"(0.84, 0.27)" -965,100,100,,1,1,[1],0.9,1,5,"(0.81, 0.215)" -966,100,100,,1,1,[1],0.9,1,6,"(0.76, 0.29)" -967,100,100,,1,1,[1],0.9,1,7,"(0.83, 0.255)" -968,100,100,,1,1,[1],0.9,1,8,"(0.78, 0.29)" -969,100,100,,1,1,[1],0.9,1,9,"(0.77, 0.245)" -970,100,100,,1,1,[1],0.9,2,0,"(0.92, 0.1)" -971,100,100,,1,1,[1],0.9,2,1,"(0.91, 0.145)" -972,100,100,,1,1,[1],0.9,2,2,"(0.89, 0.095)" -973,100,100,,1,1,[1],0.9,2,3,"(0.94, 0.07)" -974,100,100,,1,1,[1],0.9,2,4,"(0.9, 0.13)" -975,100,100,,1,1,[1],0.9,2,5,"(0.92, 0.09)" -976,100,100,,1,1,[1],0.9,2,6,"(0.86, 0.11)" -977,100,100,,1,1,[1],0.9,2,7,"(0.86, 0.12)" -978,100,100,,1,1,[1],0.9,2,8,"(0.88, 0.13)" -979,100,100,,1,1,[1],0.9,2,9,"(0.83, 0.135)" -980,100,100,,1,1,[1],0.9,3,0,"(0.98, 0.03)" -981,100,100,,1,1,[1],0.9,3,1,"(0.95, 0.035)" -982,100,100,,1,1,[1],0.9,3,2,"(0.97, 0.035)" -983,100,100,,1,1,[1],0.9,3,3,"(0.95, 0.045)" -984,100,100,,1,1,[1],0.9,3,4,"(0.95, 0.065)" -985,100,100,,1,1,[1],0.9,3,5,"(0.94, 0.04)" -986,100,100,,1,1,[1],0.9,3,6,"(0.97, 0.015)" -987,100,100,,1,1,[1],0.9,3,7,"(0.97, 0.045)" -988,100,100,,1,1,[1],0.9,3,8,"(0.91, 0.055)" -989,100,100,,1,1,[1],0.9,3,9,"(0.94, 0.04)" -990,100,100,,1,1,[1],0.9,4,0,"(1.0, 0.01)" -991,100,100,,1,1,[1],0.9,4,1,"(1.0, 0.01)" -992,100,100,,1,1,[1],0.9,4,2,"(0.99, 0.005)" -993,100,100,,1,1,[1],0.9,4,3,"(0.99, 0.005)" -994,100,100,,1,1,[1],0.9,4,4,"(0.99, 0.005)" -995,100,100,,1,1,[1],0.9,4,5,"(0.99, 0.005)" -996,100,100,,1,1,[1],0.9,4,6,"(1.0, 0.0)" -997,100,100,,1,1,[1],0.9,4,7,"(0.99, 0.015)" -998,100,100,,1,1,[1],0.9,4,8,"(0.97, 0.015)" -999,100,100,,1,1,[1],0.9,4,9,"(0.98, 0.02)" -1000,100,100,,1,1,[1],1.0,-5,0,"(1.0, 1.0)" -1001,100,100,,1,1,[1],1.0,-5,1,"(1.0, 1.0)" -1002,100,100,,1,1,[1],1.0,-5,2,"(1.0, 1.0)" -1003,100,100,,1,1,[1],1.0,-5,3,"(1.0, 1.0)" -1004,100,100,,1,1,[1],1.0,-5,4,"(1.0, 1.0)" -1005,100,100,,1,1,[1],1.0,-5,5,"(0.99, 0.995)" -1006,100,100,,1,1,[1],1.0,-5,6,"(0.99, 0.995)" -1007,100,100,,1,1,[1],1.0,-5,7,"(1.0, 1.0)" -1008,100,100,,1,1,[1],1.0,-5,8,"(1.0, 1.0)" -1009,100,100,,1,1,[1],1.0,-5,9,"(1.0, 1.0)" -1010,100,100,,1,1,[1],1.0,-4,0,"(0.98, 0.99)" -1011,100,100,,1,1,[1],1.0,-4,1,"(0.98, 0.98)" -1012,100,100,,1,1,[1],1.0,-4,2,"(1.0, 1.0)" -1013,100,100,,1,1,[1],1.0,-4,3,"(1.0, 1.0)" -1014,100,100,,1,1,[1],1.0,-4,4,"(0.99, 0.995)" -1015,100,100,,1,1,[1],1.0,-4,5,"(1.0, 0.99)" -1016,100,100,,1,1,[1],1.0,-4,6,"(0.97, 0.975)" -1017,100,100,,1,1,[1],1.0,-4,7,"(0.98, 0.99)" -1018,100,100,,1,1,[1],1.0,-4,8,"(1.0, 1.0)" -1019,100,100,,1,1,[1],1.0,-4,9,"(0.99, 0.995)" -1020,100,100,,1,1,[1],1.0,-3,0,"(0.94, 0.94)" -1021,100,100,,1,1,[1],1.0,-3,1,"(0.97, 0.985)" -1022,100,100,,1,1,[1],1.0,-3,2,"(0.94, 0.97)" -1023,100,100,,1,1,[1],1.0,-3,3,"(0.97, 0.975)" -1024,100,100,,1,1,[1],1.0,-3,4,"(0.96, 0.97)" -1025,100,100,,1,1,[1],1.0,-3,5,"(0.94, 0.96)" -1026,100,100,,1,1,[1],1.0,-3,6,"(0.92, 0.94)" -1027,100,100,,1,1,[1],1.0,-3,7,"(0.93, 0.915)" -1028,100,100,,1,1,[1],1.0,-3,8,"(0.97, 0.965)" -1029,100,100,,1,1,[1],1.0,-3,9,"(0.96, 0.96)" -1030,100,100,,1,1,[1],1.0,-2,0,"(0.92, 0.91)" -1031,100,100,,1,1,[1],1.0,-2,1,"(0.86, 0.9)" -1032,100,100,,1,1,[1],1.0,-2,2,"(0.87, 0.865)" -1033,100,100,,1,1,[1],1.0,-2,3,"(0.87, 0.885)" -1034,100,100,,1,1,[1],1.0,-2,4,"(0.9, 0.85)" -1035,100,100,,1,1,[1],1.0,-2,5,"(0.89, 0.905)" -1036,100,100,,1,1,[1],1.0,-2,6,"(0.88, 0.91)" -1037,100,100,,1,1,[1],1.0,-2,7,"(0.85, 0.835)" -1038,100,100,,1,1,[1],1.0,-2,8,"(0.81, 0.815)" -1039,100,100,,1,1,[1],1.0,-2,9,"(0.89, 0.875)" -1040,100,100,,1,1,[1],1.0,-1,0,"(0.76, 0.69)" -1041,100,100,,1,1,[1],1.0,-1,1,"(0.81, 0.775)" -1042,100,100,,1,1,[1],1.0,-1,2,"(0.72, 0.64)" -1043,100,100,,1,1,[1],1.0,-1,3,"(0.75, 0.705)" -1044,100,100,,1,1,[1],1.0,-1,4,"(0.8, 0.71)" -1045,100,100,,1,1,[1],1.0,-1,5,"(0.76, 0.68)" -1046,100,100,,1,1,[1],1.0,-1,6,"(0.74, 0.71)" -1047,100,100,,1,1,[1],1.0,-1,7,"(0.81, 0.725)" -1048,100,100,,1,1,[1],1.0,-1,8,"(0.77, 0.695)" -1049,100,100,,1,1,[1],1.0,-1,9,"(0.78, 0.71)" -1050,100,100,,1,1,[1],1.0,0,0,"(0.77, 0.465)" -1051,100,100,,1,1,[1],1.0,0,1,"(0.67, 0.485)" -1052,100,100,,1,1,[1],1.0,0,2,"(0.73, 0.485)" -1053,100,100,,1,1,[1],1.0,0,3,"(0.77, 0.525)" -1054,100,100,,1,1,[1],1.0,0,4,"(0.65, 0.505)" -1055,100,100,,1,1,[1],1.0,0,5,"(0.8, 0.56)" -1056,100,100,,1,1,[1],1.0,0,6,"(0.75, 0.455)" -1057,100,100,,1,1,[1],1.0,0,7,"(0.73, 0.505)" -1058,100,100,,1,1,[1],1.0,0,8,"(0.77, 0.455)" -1059,100,100,,1,1,[1],1.0,0,9,"(0.78, 0.47)" -1060,100,100,,1,1,[1],1.0,1,0,"(0.86, 0.23)" -1061,100,100,,1,1,[1],1.0,1,1,"(0.72, 0.24)" -1062,100,100,,1,1,[1],1.0,1,2,"(0.68, 0.29)" -1063,100,100,,1,1,[1],1.0,1,3,"(0.78, 0.26)" -1064,100,100,,1,1,[1],1.0,1,4,"(0.74, 0.27)" -1065,100,100,,1,1,[1],1.0,1,5,"(0.78, 0.22)" -1066,100,100,,1,1,[1],1.0,1,6,"(0.77, 0.265)" -1067,100,100,,1,1,[1],1.0,1,7,"(0.76, 0.25)" -1068,100,100,,1,1,[1],1.0,1,8,"(0.77, 0.295)" -1069,100,100,,1,1,[1],1.0,1,9,"(0.76, 0.25)" -1070,100,100,,1,1,[1],1.0,2,0,"(0.86, 0.12)" -1071,100,100,,1,1,[1],1.0,2,1,"(0.9, 0.12)" -1072,100,100,,1,1,[1],1.0,2,2,"(0.92, 0.12)" -1073,100,100,,1,1,[1],1.0,2,3,"(0.84, 0.13)" -1074,100,100,,1,1,[1],1.0,2,4,"(0.85, 0.125)" -1075,100,100,,1,1,[1],1.0,2,5,"(0.89, 0.095)" -1076,100,100,,1,1,[1],1.0,2,6,"(0.85, 0.145)" -1077,100,100,,1,1,[1],1.0,2,7,"(0.79, 0.145)" -1078,100,100,,1,1,[1],1.0,2,8,"(0.85, 0.115)" -1079,100,100,,1,1,[1],1.0,2,9,"(0.83, 0.165)" -1080,100,100,,1,1,[1],1.0,3,0,"(0.95, 0.035)" -1081,100,100,,1,1,[1],1.0,3,1,"(0.97, 0.035)" -1082,100,100,,1,1,[1],1.0,3,2,"(0.95, 0.045)" -1083,100,100,,1,1,[1],1.0,3,3,"(0.94, 0.04)" -1084,100,100,,1,1,[1],1.0,3,4,"(0.94, 0.05)" -1085,100,100,,1,1,[1],1.0,3,5,"(0.94, 0.03)" -1086,100,100,,1,1,[1],1.0,3,6,"(0.96, 0.03)" -1087,100,100,,1,1,[1],1.0,3,7,"(0.96, 0.04)" -1088,100,100,,1,1,[1],1.0,3,8,"(0.94, 0.05)" -1089,100,100,,1,1,[1],1.0,3,9,"(0.94, 0.07)" -1090,100,100,,1,1,[1],1.0,4,0,"(0.98, 0.02)" -1091,100,100,,1,1,[1],1.0,4,1,"(0.98, 0.01)" -1092,100,100,,1,1,[1],1.0,4,2,"(0.99, 0.005)" -1093,100,100,,1,1,[1],1.0,4,3,"(0.99, 0.005)" -1094,100,100,,1,1,[1],1.0,4,4,"(0.98, 0.01)" -1095,100,100,,1,1,[1],1.0,4,5,"(0.97, 0.025)" -1096,100,100,,1,1,[1],1.0,4,6,"(0.98, 0.01)" -1097,100,100,,1,1,[1],1.0,4,7,"(1.0, 0.0)" -1098,100,100,,1,1,[1],1.0,4,8,"(0.99, 0.005)" -1099,100,100,,1,1,[1],1.0,4,9,"(0.99, 0.005)" -1100,100,100,,1,1,[1],1.1,-5,0,"(1.0, 1.0)" -1101,100,100,,1,1,[1],1.1,-5,1,"(1.0, 1.0)" -1102,100,100,,1,1,[1],1.1,-5,2,"(0.99, 0.995)" -1103,100,100,,1,1,[1],1.1,-5,3,"(0.99, 0.995)" -1104,100,100,,1,1,[1],1.1,-5,4,"(0.99, 0.995)" -1105,100,100,,1,1,[1],1.1,-5,5,"(1.0, 1.0)" -1106,100,100,,1,1,[1],1.1,-5,6,"(1.0, 1.0)" -1107,100,100,,1,1,[1],1.1,-5,7,"(0.99, 0.995)" -1108,100,100,,1,1,[1],1.1,-5,8,"(1.0, 1.0)" -1109,100,100,,1,1,[1],1.1,-5,9,"(0.99, 0.995)" -1110,100,100,,1,1,[1],1.1,-4,0,"(0.97, 0.985)" -1111,100,100,,1,1,[1],1.1,-4,1,"(0.93, 0.955)" -1112,100,100,,1,1,[1],1.1,-4,2,"(0.97, 0.985)" -1113,100,100,,1,1,[1],1.1,-4,3,"(0.96, 0.98)" -1114,100,100,,1,1,[1],1.1,-4,4,"(0.98, 0.99)" -1115,100,100,,1,1,[1],1.1,-4,5,"(0.99, 0.985)" -1116,100,100,,1,1,[1],1.1,-4,6,"(0.99, 0.995)" -1117,100,100,,1,1,[1],1.1,-4,7,"(0.99, 0.995)" -1118,100,100,,1,1,[1],1.1,-4,8,"(0.97, 0.985)" -1119,100,100,,1,1,[1],1.1,-4,9,"(1.0, 1.0)" -1120,100,100,,1,1,[1],1.1,-3,0,"(0.93, 0.915)" -1121,100,100,,1,1,[1],1.1,-3,1,"(0.89, 0.935)" -1122,100,100,,1,1,[1],1.1,-3,2,"(0.92, 0.95)" -1123,100,100,,1,1,[1],1.1,-3,3,"(0.94, 0.94)" -1124,100,100,,1,1,[1],1.1,-3,4,"(0.92, 0.95)" -1125,100,100,,1,1,[1],1.1,-3,5,"(0.96, 0.98)" -1126,100,100,,1,1,[1],1.1,-3,6,"(0.91, 0.955)" -1127,100,100,,1,1,[1],1.1,-3,7,"(0.96, 0.95)" -1128,100,100,,1,1,[1],1.1,-3,8,"(0.91, 0.955)" -1129,100,100,,1,1,[1],1.1,-3,9,"(0.94, 0.94)" -1130,100,100,,1,1,[1],1.1,-2,0,"(0.82, 0.85)" -1131,100,100,,1,1,[1],1.1,-2,1,"(0.88, 0.89)" -1132,100,100,,1,1,[1],1.1,-2,2,"(0.88, 0.82)" -1133,100,100,,1,1,[1],1.1,-2,3,"(0.8, 0.86)" -1134,100,100,,1,1,[1],1.1,-2,4,"(0.84, 0.85)" -1135,100,100,,1,1,[1],1.1,-2,5,"(0.8, 0.84)" -1136,100,100,,1,1,[1],1.1,-2,6,"(0.91, 0.925)" -1137,100,100,,1,1,[1],1.1,-2,7,"(0.86, 0.86)" -1138,100,100,,1,1,[1],1.1,-2,8,"(0.86, 0.86)" -1139,100,100,,1,1,[1],1.1,-2,9,"(0.84, 0.86)" -1140,100,100,,1,1,[1],1.1,-1,0,"(0.77, 0.755)" -1141,100,100,,1,1,[1],1.1,-1,1,"(0.75, 0.725)" -1142,100,100,,1,1,[1],1.1,-1,2,"(0.76, 0.72)" -1143,100,100,,1,1,[1],1.1,-1,3,"(0.77, 0.775)" -1144,100,100,,1,1,[1],1.1,-1,4,"(0.77, 0.675)" -1145,100,100,,1,1,[1],1.1,-1,5,"(0.76, 0.75)" -1146,100,100,,1,1,[1],1.1,-1,6,"(0.72, 0.64)" -1147,100,100,,1,1,[1],1.1,-1,7,"(0.78, 0.64)" -1148,100,100,,1,1,[1],1.1,-1,8,"(0.69, 0.705)" -1149,100,100,,1,1,[1],1.1,-1,9,"(0.73, 0.775)" -1150,100,100,,1,1,[1],1.1,0,0,"(0.67, 0.485)" -1151,100,100,,1,1,[1],1.1,0,1,"(0.68, 0.48)" -1152,100,100,,1,1,[1],1.1,0,2,"(0.8, 0.57)" -1153,100,100,,1,1,[1],1.1,0,3,"(0.72, 0.5)" -1154,100,100,,1,1,[1],1.1,0,4,"(0.69, 0.495)" -1155,100,100,,1,1,[1],1.1,0,5,"(0.72, 0.49)" -1156,100,100,,1,1,[1],1.1,0,6,"(0.71, 0.485)" -1157,100,100,,1,1,[1],1.1,0,7,"(0.69, 0.485)" -1158,100,100,,1,1,[1],1.1,0,8,"(0.69, 0.535)" -1159,100,100,,1,1,[1],1.1,0,9,"(0.75, 0.495)" -1160,100,100,,1,1,[1],1.1,1,0,"(0.8, 0.23)" -1161,100,100,,1,1,[1],1.1,1,1,"(0.8, 0.31)" -1162,100,100,,1,1,[1],1.1,1,2,"(0.72, 0.27)" -1163,100,100,,1,1,[1],1.1,1,3,"(0.8, 0.25)" -1164,100,100,,1,1,[1],1.1,1,4,"(0.72, 0.25)" -1165,100,100,,1,1,[1],1.1,1,5,"(0.8, 0.21)" -1166,100,100,,1,1,[1],1.1,1,6,"(0.78, 0.22)" -1167,100,100,,1,1,[1],1.1,1,7,"(0.78, 0.24)" -1168,100,100,,1,1,[1],1.1,1,8,"(0.7, 0.32)" -1169,100,100,,1,1,[1],1.1,1,9,"(0.68, 0.33)" -1170,100,100,,1,1,[1],1.1,2,0,"(0.9, 0.09)" -1171,100,100,,1,1,[1],1.1,2,1,"(0.85, 0.145)" -1172,100,100,,1,1,[1],1.1,2,2,"(0.83, 0.125)" -1173,100,100,,1,1,[1],1.1,2,3,"(0.83, 0.145)" -1174,100,100,,1,1,[1],1.1,2,4,"(0.92, 0.06)" -1175,100,100,,1,1,[1],1.1,2,5,"(0.84, 0.12)" -1176,100,100,,1,1,[1],1.1,2,6,"(0.85, 0.125)" -1177,100,100,,1,1,[1],1.1,2,7,"(0.85, 0.125)" -1178,100,100,,1,1,[1],1.1,2,8,"(0.88, 0.12)" -1179,100,100,,1,1,[1],1.1,2,9,"(0.88, 0.13)" -1180,100,100,,1,1,[1],1.1,3,0,"(0.95, 0.035)" -1181,100,100,,1,1,[1],1.1,3,1,"(0.89, 0.055)" -1182,100,100,,1,1,[1],1.1,3,2,"(0.9, 0.06)" -1183,100,100,,1,1,[1],1.1,3,3,"(0.97, 0.035)" -1184,100,100,,1,1,[1],1.1,3,4,"(0.95, 0.035)" -1185,100,100,,1,1,[1],1.1,3,5,"(0.96, 0.03)" -1186,100,100,,1,1,[1],1.1,3,6,"(0.94, 0.04)" -1187,100,100,,1,1,[1],1.1,3,7,"(0.91, 0.045)" -1188,100,100,,1,1,[1],1.1,3,8,"(0.98, 0.02)" -1189,100,100,,1,1,[1],1.1,3,9,"(0.96, 0.04)" -1190,100,100,,1,1,[1],1.1,4,0,"(1.0, 0.0)" -1191,100,100,,1,1,[1],1.1,4,1,"(0.99, 0.015)" -1192,100,100,,1,1,[1],1.1,4,2,"(0.98, 0.01)" -1193,100,100,,1,1,[1],1.1,4,3,"(0.98, 0.01)" -1194,100,100,,1,1,[1],1.1,4,4,"(0.98, 0.02)" -1195,100,100,,1,1,[1],1.1,4,5,"(0.96, 0.02)" -1196,100,100,,1,1,[1],1.1,4,6,"(0.95, 0.025)" -1197,100,100,,1,1,[1],1.1,4,7,"(0.96, 0.03)" -1198,100,100,,1,1,[1],1.1,4,8,"(0.95, 0.035)" -1199,100,100,,1,1,[1],1.1,4,9,"(0.98, 0.01)" -1200,100,100,,1,1,[1],1.2000000000000002,-5,0,"(0.99, 0.995)" -1201,100,100,,1,1,[1],1.2000000000000002,-5,1,"(1.0, 1.0)" -1202,100,100,,1,1,[1],1.2000000000000002,-5,2,"(1.0, 1.0)" -1203,100,100,,1,1,[1],1.2000000000000002,-5,3,"(1.0, 1.0)" -1204,100,100,,1,1,[1],1.2000000000000002,-5,4,"(1.0, 1.0)" -1205,100,100,,1,1,[1],1.2000000000000002,-5,5,"(1.0, 1.0)" -1206,100,100,,1,1,[1],1.2000000000000002,-5,6,"(0.98, 0.99)" -1207,100,100,,1,1,[1],1.2000000000000002,-5,7,"(0.98, 0.99)" -1208,100,100,,1,1,[1],1.2000000000000002,-5,8,"(0.99, 0.995)" -1209,100,100,,1,1,[1],1.2000000000000002,-5,9,"(1.0, 1.0)" -1210,100,100,,1,1,[1],1.2000000000000002,-4,0,"(0.98, 0.99)" -1211,100,100,,1,1,[1],1.2000000000000002,-4,1,"(0.97, 0.985)" -1212,100,100,,1,1,[1],1.2000000000000002,-4,2,"(0.97, 0.985)" -1213,100,100,,1,1,[1],1.2000000000000002,-4,3,"(0.97, 0.985)" -1214,100,100,,1,1,[1],1.2000000000000002,-4,4,"(0.99, 0.995)" -1215,100,100,,1,1,[1],1.2000000000000002,-4,5,"(0.97, 0.985)" -1216,100,100,,1,1,[1],1.2000000000000002,-4,6,"(0.98, 0.98)" -1217,100,100,,1,1,[1],1.2000000000000002,-4,7,"(0.99, 0.995)" -1218,100,100,,1,1,[1],1.2000000000000002,-4,8,"(0.97, 0.985)" -1219,100,100,,1,1,[1],1.2000000000000002,-4,9,"(0.93, 0.955)" -1220,100,100,,1,1,[1],1.2000000000000002,-3,0,"(0.89, 0.935)" -1221,100,100,,1,1,[1],1.2000000000000002,-3,1,"(0.89, 0.925)" -1222,100,100,,1,1,[1],1.2000000000000002,-3,2,"(0.96, 0.97)" -1223,100,100,,1,1,[1],1.2000000000000002,-3,3,"(0.95, 0.955)" -1224,100,100,,1,1,[1],1.2000000000000002,-3,4,"(0.95, 0.945)" -1225,100,100,,1,1,[1],1.2000000000000002,-3,5,"(0.92, 0.96)" -1226,100,100,,1,1,[1],1.2000000000000002,-3,6,"(0.89, 0.925)" -1227,100,100,,1,1,[1],1.2000000000000002,-3,7,"(0.98, 0.98)" -1228,100,100,,1,1,[1],1.2000000000000002,-3,8,"(0.93, 0.935)" -1229,100,100,,1,1,[1],1.2000000000000002,-3,9,"(0.94, 0.97)" -1230,100,100,,1,1,[1],1.2000000000000002,-2,0,"(0.83, 0.845)" -1231,100,100,,1,1,[1],1.2000000000000002,-2,1,"(0.76, 0.81)" -1232,100,100,,1,1,[1],1.2000000000000002,-2,2,"(0.85, 0.875)" -1233,100,100,,1,1,[1],1.2000000000000002,-2,3,"(0.86, 0.87)" -1234,100,100,,1,1,[1],1.2000000000000002,-2,4,"(0.85, 0.885)" -1235,100,100,,1,1,[1],1.2000000000000002,-2,5,"(0.88, 0.86)" -1236,100,100,,1,1,[1],1.2000000000000002,-2,6,"(0.85, 0.835)" -1237,100,100,,1,1,[1],1.2000000000000002,-2,7,"(0.81, 0.865)" -1238,100,100,,1,1,[1],1.2000000000000002,-2,8,"(0.82, 0.85)" -1239,100,100,,1,1,[1],1.2000000000000002,-2,9,"(0.8, 0.83)" -1240,100,100,,1,1,[1],1.2000000000000002,-1,0,"(0.68, 0.67)" -1241,100,100,,1,1,[1],1.2000000000000002,-1,1,"(0.79, 0.615)" -1242,100,100,,1,1,[1],1.2000000000000002,-1,2,"(0.72, 0.76)" -1243,100,100,,1,1,[1],1.2000000000000002,-1,3,"(0.67, 0.695)" -1244,100,100,,1,1,[1],1.2000000000000002,-1,4,"(0.68, 0.66)" -1245,100,100,,1,1,[1],1.2000000000000002,-1,5,"(0.68, 0.72)" -1246,100,100,,1,1,[1],1.2000000000000002,-1,6,"(0.66, 0.75)" -1247,100,100,,1,1,[1],1.2000000000000002,-1,7,"(0.74, 0.7)" -1248,100,100,,1,1,[1],1.2000000000000002,-1,8,"(0.71, 0.675)" -1249,100,100,,1,1,[1],1.2000000000000002,-1,9,"(0.77, 0.685)" -1250,100,100,,1,1,[1],1.2000000000000002,0,0,"(0.69, 0.545)" -1251,100,100,,1,1,[1],1.2000000000000002,0,1,"(0.74, 0.46)" -1252,100,100,,1,1,[1],1.2000000000000002,0,2,"(0.84, 0.52)" -1253,100,100,,1,1,[1],1.2000000000000002,0,3,"(0.65, 0.475)" -1254,100,100,,1,1,[1],1.2000000000000002,0,4,"(0.79, 0.465)" -1255,100,100,,1,1,[1],1.2000000000000002,0,5,"(0.72, 0.51)" -1256,100,100,,1,1,[1],1.2000000000000002,0,6,"(0.65, 0.505)" -1257,100,100,,1,1,[1],1.2000000000000002,0,7,"(0.59, 0.525)" -1258,100,100,,1,1,[1],1.2000000000000002,0,8,"(0.67, 0.465)" -1259,100,100,,1,1,[1],1.2000000000000002,0,9,"(0.74, 0.57)" -1260,100,100,,1,1,[1],1.2000000000000002,1,0,"(0.77, 0.225)" -1261,100,100,,1,1,[1],1.2000000000000002,1,1,"(0.78, 0.28)" -1262,100,100,,1,1,[1],1.2000000000000002,1,2,"(0.8, 0.34)" -1263,100,100,,1,1,[1],1.2000000000000002,1,3,"(0.74, 0.27)" -1264,100,100,,1,1,[1],1.2000000000000002,1,4,"(0.74, 0.31)" -1265,100,100,,1,1,[1],1.2000000000000002,1,5,"(0.74, 0.27)" -1266,100,100,,1,1,[1],1.2000000000000002,1,6,"(0.76, 0.26)" -1267,100,100,,1,1,[1],1.2000000000000002,1,7,"(0.7, 0.33)" -1268,100,100,,1,1,[1],1.2000000000000002,1,8,"(0.72, 0.31)" -1269,100,100,,1,1,[1],1.2000000000000002,1,9,"(0.84, 0.22)" -1270,100,100,,1,1,[1],1.2000000000000002,2,0,"(0.85, 0.105)" -1271,100,100,,1,1,[1],1.2000000000000002,2,1,"(0.84, 0.14)" -1272,100,100,,1,1,[1],1.2000000000000002,2,2,"(0.86, 0.13)" -1273,100,100,,1,1,[1],1.2000000000000002,2,3,"(0.82, 0.13)" -1274,100,100,,1,1,[1],1.2000000000000002,2,4,"(0.82, 0.15)" -1275,100,100,,1,1,[1],1.2000000000000002,2,5,"(0.78, 0.13)" -1276,100,100,,1,1,[1],1.2000000000000002,2,6,"(0.85, 0.165)" -1277,100,100,,1,1,[1],1.2000000000000002,2,7,"(0.83, 0.105)" -1278,100,100,,1,1,[1],1.2000000000000002,2,8,"(0.81, 0.135)" -1279,100,100,,1,1,[1],1.2000000000000002,2,9,"(0.88, 0.12)" -1280,100,100,,1,1,[1],1.2000000000000002,3,0,"(0.93, 0.075)" -1281,100,100,,1,1,[1],1.2000000000000002,3,1,"(0.91, 0.055)" -1282,100,100,,1,1,[1],1.2000000000000002,3,2,"(0.97, 0.015)" -1283,100,100,,1,1,[1],1.2000000000000002,3,3,"(0.95, 0.025)" -1284,100,100,,1,1,[1],1.2000000000000002,3,4,"(0.89, 0.055)" -1285,100,100,,1,1,[1],1.2000000000000002,3,5,"(0.89, 0.095)" -1286,100,100,,1,1,[1],1.2000000000000002,3,6,"(0.91, 0.065)" -1287,100,100,,1,1,[1],1.2000000000000002,3,7,"(0.93, 0.045)" -1288,100,100,,1,1,[1],1.2000000000000002,3,8,"(0.93, 0.075)" -1289,100,100,,1,1,[1],1.2000000000000002,3,9,"(0.9, 0.05)" -1290,100,100,,1,1,[1],1.2000000000000002,4,0,"(1.0, 0.01)" -1291,100,100,,1,1,[1],1.2000000000000002,4,1,"(0.99, 0.005)" -1292,100,100,,1,1,[1],1.2000000000000002,4,2,"(0.97, 0.045)" -1293,100,100,,1,1,[1],1.2000000000000002,4,3,"(0.99, 0.015)" -1294,100,100,,1,1,[1],1.2000000000000002,4,4,"(1.0, 0.0)" -1295,100,100,,1,1,[1],1.2000000000000002,4,5,"(0.97, 0.025)" -1296,100,100,,1,1,[1],1.2000000000000002,4,6,"(0.98, 0.01)" -1297,100,100,,1,1,[1],1.2000000000000002,4,7,"(0.98, 0.01)" -1298,100,100,,1,1,[1],1.2000000000000002,4,8,"(0.99, 0.005)" -1299,100,100,,1,1,[1],1.2000000000000002,4,9,"(0.99, 0.005)" -1300,100,100,,1,1,[1],1.3,-5,0,"(1.0, 1.0)" -1301,100,100,,1,1,[1],1.3,-5,1,"(1.0, 1.0)" -1302,100,100,,1,1,[1],1.3,-5,2,"(0.99, 0.995)" -1303,100,100,,1,1,[1],1.3,-5,3,"(0.99, 0.995)" -1304,100,100,,1,1,[1],1.3,-5,4,"(0.99, 0.995)" -1305,100,100,,1,1,[1],1.3,-5,5,"(0.99, 0.995)" -1306,100,100,,1,1,[1],1.3,-5,6,"(0.98, 0.99)" -1307,100,100,,1,1,[1],1.3,-5,7,"(0.99, 0.995)" -1308,100,100,,1,1,[1],1.3,-5,8,"(0.99, 0.995)" -1309,100,100,,1,1,[1],1.3,-5,9,"(0.98, 0.99)" -1310,100,100,,1,1,[1],1.3,-4,0,"(0.94, 0.97)" -1311,100,100,,1,1,[1],1.3,-4,1,"(0.98, 0.99)" -1312,100,100,,1,1,[1],1.3,-4,2,"(0.98, 0.99)" -1313,100,100,,1,1,[1],1.3,-4,3,"(0.94, 0.95)" -1314,100,100,,1,1,[1],1.3,-4,4,"(1.0, 1.0)" -1315,100,100,,1,1,[1],1.3,-4,5,"(0.97, 0.975)" -1316,100,100,,1,1,[1],1.3,-4,6,"(0.98, 0.98)" -1317,100,100,,1,1,[1],1.3,-4,7,"(0.95, 0.975)" -1318,100,100,,1,1,[1],1.3,-4,8,"(0.98, 0.99)" -1319,100,100,,1,1,[1],1.3,-4,9,"(0.99, 0.995)" -1320,100,100,,1,1,[1],1.3,-3,0,"(0.88, 0.94)" -1321,100,100,,1,1,[1],1.3,-3,1,"(0.98, 0.98)" -1322,100,100,,1,1,[1],1.3,-3,2,"(0.93, 0.945)" -1323,100,100,,1,1,[1],1.3,-3,3,"(0.88, 0.93)" -1324,100,100,,1,1,[1],1.3,-3,4,"(0.92, 0.96)" -1325,100,100,,1,1,[1],1.3,-3,5,"(0.91, 0.935)" -1326,100,100,,1,1,[1],1.3,-3,6,"(0.9, 0.93)" -1327,100,100,,1,1,[1],1.3,-3,7,"(0.93, 0.955)" -1328,100,100,,1,1,[1],1.3,-3,8,"(0.89, 0.925)" -1329,100,100,,1,1,[1],1.3,-3,9,"(0.91, 0.935)" -1330,100,100,,1,1,[1],1.3,-2,0,"(0.86, 0.87)" -1331,100,100,,1,1,[1],1.3,-2,1,"(0.8, 0.83)" -1332,100,100,,1,1,[1],1.3,-2,2,"(0.81, 0.865)" -1333,100,100,,1,1,[1],1.3,-2,3,"(0.9, 0.87)" -1334,100,100,,1,1,[1],1.3,-2,4,"(0.74, 0.82)" -1335,100,100,,1,1,[1],1.3,-2,5,"(0.84, 0.87)" -1336,100,100,,1,1,[1],1.3,-2,6,"(0.88, 0.9)" -1337,100,100,,1,1,[1],1.3,-2,7,"(0.85, 0.845)" -1338,100,100,,1,1,[1],1.3,-2,8,"(0.81, 0.895)" -1339,100,100,,1,1,[1],1.3,-2,9,"(0.85, 0.815)" -1340,100,100,,1,1,[1],1.3,-1,0,"(0.69, 0.715)" -1341,100,100,,1,1,[1],1.3,-1,1,"(0.64, 0.71)" -1342,100,100,,1,1,[1],1.3,-1,2,"(0.73, 0.635)" -1343,100,100,,1,1,[1],1.3,-1,3,"(0.75, 0.665)" -1344,100,100,,1,1,[1],1.3,-1,4,"(0.7, 0.68)" -1345,100,100,,1,1,[1],1.3,-1,5,"(0.75, 0.735)" -1346,100,100,,1,1,[1],1.3,-1,6,"(0.8, 0.69)" -1347,100,100,,1,1,[1],1.3,-1,7,"(0.76, 0.69)" -1348,100,100,,1,1,[1],1.3,-1,8,"(0.7, 0.68)" -1349,100,100,,1,1,[1],1.3,-1,9,"(0.73, 0.695)" -1350,100,100,,1,1,[1],1.3,0,0,"(0.58, 0.5)" -1351,100,100,,1,1,[1],1.3,0,1,"(0.74, 0.54)" -1352,100,100,,1,1,[1],1.3,0,2,"(0.71, 0.465)" -1353,100,100,,1,1,[1],1.3,0,3,"(0.72, 0.52)" -1354,100,100,,1,1,[1],1.3,0,4,"(0.69, 0.485)" -1355,100,100,,1,1,[1],1.3,0,5,"(0.66, 0.46)" -1356,100,100,,1,1,[1],1.3,0,6,"(0.65, 0.525)" -1357,100,100,,1,1,[1],1.3,0,7,"(0.63, 0.475)" -1358,100,100,,1,1,[1],1.3,0,8,"(0.74, 0.55)" -1359,100,100,,1,1,[1],1.3,0,9,"(0.76, 0.52)" -1360,100,100,,1,1,[1],1.3,1,0,"(0.83, 0.255)" -1361,100,100,,1,1,[1],1.3,1,1,"(0.73, 0.235)" -1362,100,100,,1,1,[1],1.3,1,2,"(0.61, 0.285)" -1363,100,100,,1,1,[1],1.3,1,3,"(0.73, 0.275)" -1364,100,100,,1,1,[1],1.3,1,4,"(0.73, 0.255)" -1365,100,100,,1,1,[1],1.3,1,5,"(0.66, 0.27)" -1366,100,100,,1,1,[1],1.3,1,6,"(0.72, 0.25)" -1367,100,100,,1,1,[1],1.3,1,7,"(0.78, 0.31)" -1368,100,100,,1,1,[1],1.3,1,8,"(0.74, 0.34)" -1369,100,100,,1,1,[1],1.3,1,9,"(0.71, 0.305)" -1370,100,100,,1,1,[1],1.3,2,0,"(0.85, 0.125)" -1371,100,100,,1,1,[1],1.3,2,1,"(0.76, 0.18)" -1372,100,100,,1,1,[1],1.3,2,2,"(0.82, 0.15)" -1373,100,100,,1,1,[1],1.3,2,3,"(0.72, 0.23)" -1374,100,100,,1,1,[1],1.3,2,4,"(0.75, 0.165)" -1375,100,100,,1,1,[1],1.3,2,5,"(0.85, 0.125)" -1376,100,100,,1,1,[1],1.3,2,6,"(0.82, 0.19)" -1377,100,100,,1,1,[1],1.3,2,7,"(0.86, 0.12)" -1378,100,100,,1,1,[1],1.3,2,8,"(0.82, 0.15)" -1379,100,100,,1,1,[1],1.3,2,9,"(0.84, 0.13)" -1380,100,100,,1,1,[1],1.3,3,0,"(0.92, 0.05)" -1381,100,100,,1,1,[1],1.3,3,1,"(0.91, 0.045)" -1382,100,100,,1,1,[1],1.3,3,2,"(0.92, 0.04)" -1383,100,100,,1,1,[1],1.3,3,3,"(0.9, 0.05)" -1384,100,100,,1,1,[1],1.3,3,4,"(0.88, 0.06)" -1385,100,100,,1,1,[1],1.3,3,5,"(0.94, 0.05)" -1386,100,100,,1,1,[1],1.3,3,6,"(0.86, 0.09)" -1387,100,100,,1,1,[1],1.3,3,7,"(0.92, 0.06)" -1388,100,100,,1,1,[1],1.3,3,8,"(0.93, 0.045)" -1389,100,100,,1,1,[1],1.3,3,9,"(0.84, 0.08)" -1390,100,100,,1,1,[1],1.3,4,0,"(0.99, 0.015)" -1391,100,100,,1,1,[1],1.3,4,1,"(0.99, 0.005)" -1392,100,100,,1,1,[1],1.3,4,2,"(0.98, 0.01)" -1393,100,100,,1,1,[1],1.3,4,3,"(0.97, 0.015)" -1394,100,100,,1,1,[1],1.3,4,4,"(0.91, 0.045)" -1395,100,100,,1,1,[1],1.3,4,5,"(0.98, 0.01)" -1396,100,100,,1,1,[1],1.3,4,6,"(0.98, 0.01)" -1397,100,100,,1,1,[1],1.3,4,7,"(0.96, 0.02)" -1398,100,100,,1,1,[1],1.3,4,8,"(0.94, 0.04)" -1399,100,100,,1,1,[1],1.3,4,9,"(0.97, 0.025)" -1400,100,100,,1,1,[1],1.4000000000000001,-5,0,"(0.99, 0.995)" -1401,100,100,,1,1,[1],1.4000000000000001,-5,1,"(0.99, 0.995)" -1402,100,100,,1,1,[1],1.4000000000000001,-5,2,"(0.98, 0.99)" -1403,100,100,,1,1,[1],1.4000000000000001,-5,3,"(0.98, 0.99)" -1404,100,100,,1,1,[1],1.4000000000000001,-5,4,"(0.99, 0.995)" -1405,100,100,,1,1,[1],1.4000000000000001,-5,5,"(0.99, 0.995)" -1406,100,100,,1,1,[1],1.4000000000000001,-5,6,"(0.99, 0.995)" -1407,100,100,,1,1,[1],1.4000000000000001,-5,7,"(1.0, 1.0)" -1408,100,100,,1,1,[1],1.4000000000000001,-5,8,"(1.0, 1.0)" -1409,100,100,,1,1,[1],1.4000000000000001,-5,9,"(0.99, 0.995)" -1410,100,100,,1,1,[1],1.4000000000000001,-4,0,"(0.98, 0.98)" -1411,100,100,,1,1,[1],1.4000000000000001,-4,1,"(0.95, 0.975)" -1412,100,100,,1,1,[1],1.4000000000000001,-4,2,"(0.93, 0.955)" -1413,100,100,,1,1,[1],1.4000000000000001,-4,3,"(0.95, 0.955)" -1414,100,100,,1,1,[1],1.4000000000000001,-4,4,"(0.99, 0.985)" -1415,100,100,,1,1,[1],1.4000000000000001,-4,5,"(0.93, 0.955)" -1416,100,100,,1,1,[1],1.4000000000000001,-4,6,"(0.96, 0.98)" -1417,100,100,,1,1,[1],1.4000000000000001,-4,7,"(0.93, 0.965)" -1418,100,100,,1,1,[1],1.4000000000000001,-4,8,"(0.97, 0.985)" -1419,100,100,,1,1,[1],1.4000000000000001,-4,9,"(0.96, 0.98)" -1420,100,100,,1,1,[1],1.4000000000000001,-3,0,"(0.9, 0.92)" -1421,100,100,,1,1,[1],1.4000000000000001,-3,1,"(0.94, 0.96)" -1422,100,100,,1,1,[1],1.4000000000000001,-3,2,"(0.86, 0.92)" -1423,100,100,,1,1,[1],1.4000000000000001,-3,3,"(0.86, 0.92)" -1424,100,100,,1,1,[1],1.4000000000000001,-3,4,"(0.9, 0.95)" -1425,100,100,,1,1,[1],1.4000000000000001,-3,5,"(0.95, 0.955)" -1426,100,100,,1,1,[1],1.4000000000000001,-3,6,"(0.92, 0.94)" -1427,100,100,,1,1,[1],1.4000000000000001,-3,7,"(0.92, 0.95)" -1428,100,100,,1,1,[1],1.4000000000000001,-3,8,"(0.9, 0.92)" -1429,100,100,,1,1,[1],1.4000000000000001,-3,9,"(0.87, 0.925)" -1430,100,100,,1,1,[1],1.4000000000000001,-2,0,"(0.8, 0.87)" -1431,100,100,,1,1,[1],1.4000000000000001,-2,1,"(0.73, 0.795)" -1432,100,100,,1,1,[1],1.4000000000000001,-2,2,"(0.77, 0.825)" -1433,100,100,,1,1,[1],1.4000000000000001,-2,3,"(0.81, 0.885)" -1434,100,100,,1,1,[1],1.4000000000000001,-2,4,"(0.88, 0.85)" -1435,100,100,,1,1,[1],1.4000000000000001,-2,5,"(0.85, 0.845)" -1436,100,100,,1,1,[1],1.4000000000000001,-2,6,"(0.84, 0.83)" -1437,100,100,,1,1,[1],1.4000000000000001,-2,7,"(0.77, 0.845)" -1438,100,100,,1,1,[1],1.4000000000000001,-2,8,"(0.78, 0.79)" -1439,100,100,,1,1,[1],1.4000000000000001,-2,9,"(0.8, 0.87)" -1440,100,100,,1,1,[1],1.4000000000000001,-1,0,"(0.71, 0.715)" -1441,100,100,,1,1,[1],1.4000000000000001,-1,1,"(0.7, 0.76)" -1442,100,100,,1,1,[1],1.4000000000000001,-1,2,"(0.69, 0.655)" -1443,100,100,,1,1,[1],1.4000000000000001,-1,3,"(0.69, 0.675)" -1444,100,100,,1,1,[1],1.4000000000000001,-1,4,"(0.59, 0.665)" -1445,100,100,,1,1,[1],1.4000000000000001,-1,5,"(0.64, 0.68)" -1446,100,100,,1,1,[1],1.4000000000000001,-1,6,"(0.7, 0.61)" -1447,100,100,,1,1,[1],1.4000000000000001,-1,7,"(0.71, 0.655)" -1448,100,100,,1,1,[1],1.4000000000000001,-1,8,"(0.76, 0.73)" -1449,100,100,,1,1,[1],1.4000000000000001,-1,9,"(0.76, 0.74)" -1450,100,100,,1,1,[1],1.4000000000000001,0,0,"(0.8, 0.48)" -1451,100,100,,1,1,[1],1.4000000000000001,0,1,"(0.63, 0.505)" -1452,100,100,,1,1,[1],1.4000000000000001,0,2,"(0.7, 0.47)" -1453,100,100,,1,1,[1],1.4000000000000001,0,3,"(0.66, 0.54)" -1454,100,100,,1,1,[1],1.4000000000000001,0,4,"(0.7, 0.56)" -1455,100,100,,1,1,[1],1.4000000000000001,0,5,"(0.65, 0.485)" -1456,100,100,,1,1,[1],1.4000000000000001,0,6,"(0.61, 0.555)" -1457,100,100,,1,1,[1],1.4000000000000001,0,7,"(0.67, 0.455)" -1458,100,100,,1,1,[1],1.4000000000000001,0,8,"(0.7, 0.49)" -1459,100,100,,1,1,[1],1.4000000000000001,0,9,"(0.64, 0.52)" -1460,100,100,,1,1,[1],1.4000000000000001,1,0,"(0.68, 0.36)" -1461,100,100,,1,1,[1],1.4000000000000001,1,1,"(0.76, 0.27)" -1462,100,100,,1,1,[1],1.4000000000000001,1,2,"(0.65, 0.295)" -1463,100,100,,1,1,[1],1.4000000000000001,1,3,"(0.68, 0.26)" -1464,100,100,,1,1,[1],1.4000000000000001,1,4,"(0.7, 0.29)" -1465,100,100,,1,1,[1],1.4000000000000001,1,5,"(0.67, 0.325)" -1466,100,100,,1,1,[1],1.4000000000000001,1,6,"(0.72, 0.33)" -1467,100,100,,1,1,[1],1.4000000000000001,1,7,"(0.71, 0.365)" -1468,100,100,,1,1,[1],1.4000000000000001,1,8,"(0.7, 0.35)" -1469,100,100,,1,1,[1],1.4000000000000001,1,9,"(0.69, 0.255)" -1470,100,100,,1,1,[1],1.4000000000000001,2,0,"(0.85, 0.095)" -1471,100,100,,1,1,[1],1.4000000000000001,2,1,"(0.84, 0.12)" -1472,100,100,,1,1,[1],1.4000000000000001,2,2,"(0.81, 0.145)" -1473,100,100,,1,1,[1],1.4000000000000001,2,3,"(0.81, 0.135)" -1474,100,100,,1,1,[1],1.4000000000000001,2,4,"(0.91, 0.115)" -1475,100,100,,1,1,[1],1.4000000000000001,2,5,"(0.83, 0.155)" -1476,100,100,,1,1,[1],1.4000000000000001,2,6,"(0.77, 0.155)" -1477,100,100,,1,1,[1],1.4000000000000001,2,7,"(0.83, 0.125)" -1478,100,100,,1,1,[1],1.4000000000000001,2,8,"(0.81, 0.195)" -1479,100,100,,1,1,[1],1.4000000000000001,2,9,"(0.84, 0.12)" -1480,100,100,,1,1,[1],1.4000000000000001,3,0,"(0.94, 0.05)" -1481,100,100,,1,1,[1],1.4000000000000001,3,1,"(0.85, 0.075)" -1482,100,100,,1,1,[1],1.4000000000000001,3,2,"(0.9, 0.07)" -1483,100,100,,1,1,[1],1.4000000000000001,3,3,"(0.89, 0.085)" -1484,100,100,,1,1,[1],1.4000000000000001,3,4,"(0.88, 0.09)" -1485,100,100,,1,1,[1],1.4000000000000001,3,5,"(0.91, 0.065)" -1486,100,100,,1,1,[1],1.4000000000000001,3,6,"(0.92, 0.05)" -1487,100,100,,1,1,[1],1.4000000000000001,3,7,"(0.92, 0.05)" -1488,100,100,,1,1,[1],1.4000000000000001,3,8,"(0.91, 0.045)" -1489,100,100,,1,1,[1],1.4000000000000001,3,9,"(0.95, 0.035)" -1490,100,100,,1,1,[1],1.4000000000000001,4,0,"(0.98, 0.01)" -1491,100,100,,1,1,[1],1.4000000000000001,4,1,"(0.98, 0.01)" -1492,100,100,,1,1,[1],1.4000000000000001,4,2,"(0.94, 0.03)" -1493,100,100,,1,1,[1],1.4000000000000001,4,3,"(0.98, 0.02)" -1494,100,100,,1,1,[1],1.4000000000000001,4,4,"(0.97, 0.015)" -1495,100,100,,1,1,[1],1.4000000000000001,4,5,"(0.98, 0.01)" -1496,100,100,,1,1,[1],1.4000000000000001,4,6,"(0.94, 0.03)" -1497,100,100,,1,1,[1],1.4000000000000001,4,7,"(0.98, 0.01)" -1498,100,100,,1,1,[1],1.4000000000000001,4,8,"(0.99, 0.015)" -1499,100,100,,1,1,[1],1.4000000000000001,4,9,"(0.97, 0.015)" -1500,100,100,,1,1,[1],1.5,-5,0,"(0.99, 0.995)" -1501,100,100,,1,1,[1],1.5,-5,1,"(0.97, 0.985)" -1502,100,100,,1,1,[1],1.5,-5,2,"(0.98, 0.99)" -1503,100,100,,1,1,[1],1.5,-5,3,"(0.99, 0.995)" -1504,100,100,,1,1,[1],1.5,-5,4,"(1.0, 1.0)" -1505,100,100,,1,1,[1],1.5,-5,5,"(0.99, 0.995)" -1506,100,100,,1,1,[1],1.5,-5,6,"(0.97, 0.985)" -1507,100,100,,1,1,[1],1.5,-5,7,"(0.97, 0.985)" -1508,100,100,,1,1,[1],1.5,-5,8,"(0.99, 0.995)" -1509,100,100,,1,1,[1],1.5,-5,9,"(0.99, 0.995)" -1510,100,100,,1,1,[1],1.5,-4,0,"(0.96, 0.98)" -1511,100,100,,1,1,[1],1.5,-4,1,"(0.98, 0.99)" -1512,100,100,,1,1,[1],1.5,-4,2,"(0.96, 0.98)" -1513,100,100,,1,1,[1],1.5,-4,3,"(0.92, 0.96)" -1514,100,100,,1,1,[1],1.5,-4,4,"(0.96, 0.98)" -1515,100,100,,1,1,[1],1.5,-4,5,"(0.96, 0.98)" -1516,100,100,,1,1,[1],1.5,-4,6,"(0.97, 0.985)" -1517,100,100,,1,1,[1],1.5,-4,7,"(0.95, 0.975)" -1518,100,100,,1,1,[1],1.5,-4,8,"(0.94, 0.97)" -1519,100,100,,1,1,[1],1.5,-4,9,"(0.95, 0.975)" -1520,100,100,,1,1,[1],1.5,-3,0,"(0.84, 0.92)" -1521,100,100,,1,1,[1],1.5,-3,1,"(0.93, 0.945)" -1522,100,100,,1,1,[1],1.5,-3,2,"(0.88, 0.94)" -1523,100,100,,1,1,[1],1.5,-3,3,"(0.87, 0.925)" -1524,100,100,,1,1,[1],1.5,-3,4,"(0.91, 0.925)" -1525,100,100,,1,1,[1],1.5,-3,5,"(0.92, 0.95)" -1526,100,100,,1,1,[1],1.5,-3,6,"(0.9, 0.94)" -1527,100,100,,1,1,[1],1.5,-3,7,"(0.9, 0.88)" -1528,100,100,,1,1,[1],1.5,-3,8,"(0.9, 0.9)" -1529,100,100,,1,1,[1],1.5,-3,9,"(0.82, 0.88)" -1530,100,100,,1,1,[1],1.5,-2,0,"(0.81, 0.855)" -1531,100,100,,1,1,[1],1.5,-2,1,"(0.72, 0.81)" -1532,100,100,,1,1,[1],1.5,-2,2,"(0.84, 0.86)" -1533,100,100,,1,1,[1],1.5,-2,3,"(0.84, 0.76)" -1534,100,100,,1,1,[1],1.5,-2,4,"(0.78, 0.82)" -1535,100,100,,1,1,[1],1.5,-2,5,"(0.85, 0.895)" -1536,100,100,,1,1,[1],1.5,-2,6,"(0.75, 0.785)" -1537,100,100,,1,1,[1],1.5,-2,7,"(0.82, 0.89)" -1538,100,100,,1,1,[1],1.5,-2,8,"(0.79, 0.835)" -1539,100,100,,1,1,[1],1.5,-2,9,"(0.82, 0.84)" -1540,100,100,,1,1,[1],1.5,-1,0,"(0.76, 0.73)" -1541,100,100,,1,1,[1],1.5,-1,1,"(0.67, 0.625)" -1542,100,100,,1,1,[1],1.5,-1,2,"(0.64, 0.69)" -1543,100,100,,1,1,[1],1.5,-1,3,"(0.72, 0.72)" -1544,100,100,,1,1,[1],1.5,-1,4,"(0.68, 0.6)" -1545,100,100,,1,1,[1],1.5,-1,5,"(0.71, 0.685)" -1546,100,100,,1,1,[1],1.5,-1,6,"(0.74, 0.66)" -1547,100,100,,1,1,[1],1.5,-1,7,"(0.7, 0.62)" -1548,100,100,,1,1,[1],1.5,-1,8,"(0.6, 0.73)" -1549,100,100,,1,1,[1],1.5,-1,9,"(0.65, 0.735)" -1550,100,100,,1,1,[1],1.5,0,0,"(0.58, 0.56)" -1551,100,100,,1,1,[1],1.5,0,1,"(0.54, 0.53)" -1552,100,100,,1,1,[1],1.5,0,2,"(0.71, 0.505)" -1553,100,100,,1,1,[1],1.5,0,3,"(0.66, 0.52)" -1554,100,100,,1,1,[1],1.5,0,4,"(0.64, 0.5)" -1555,100,100,,1,1,[1],1.5,0,5,"(0.64, 0.49)" -1556,100,100,,1,1,[1],1.5,0,6,"(0.66, 0.53)" -1557,100,100,,1,1,[1],1.5,0,7,"(0.64, 0.45)" -1558,100,100,,1,1,[1],1.5,0,8,"(0.67, 0.535)" -1559,100,100,,1,1,[1],1.5,0,9,"(0.64, 0.49)" -1560,100,100,,1,1,[1],1.5,1,0,"(0.72, 0.3)" -1561,100,100,,1,1,[1],1.5,1,1,"(0.65, 0.295)" -1562,100,100,,1,1,[1],1.5,1,2,"(0.71, 0.345)" -1563,100,100,,1,1,[1],1.5,1,3,"(0.72, 0.32)" -1564,100,100,,1,1,[1],1.5,1,4,"(0.77, 0.315)" -1565,100,100,,1,1,[1],1.5,1,5,"(0.6, 0.31)" -1566,100,100,,1,1,[1],1.5,1,6,"(0.65, 0.305)" -1567,100,100,,1,1,[1],1.5,1,7,"(0.71, 0.365)" -1568,100,100,,1,1,[1],1.5,1,8,"(0.71, 0.305)" -1569,100,100,,1,1,[1],1.5,1,9,"(0.69, 0.345)" -1570,100,100,,1,1,[1],1.5,2,0,"(0.83, 0.165)" -1571,100,100,,1,1,[1],1.5,2,1,"(0.75, 0.225)" -1572,100,100,,1,1,[1],1.5,2,2,"(0.85, 0.155)" -1573,100,100,,1,1,[1],1.5,2,3,"(0.75, 0.175)" -1574,100,100,,1,1,[1],1.5,2,4,"(0.8, 0.13)" -1575,100,100,,1,1,[1],1.5,2,5,"(0.75, 0.185)" -1576,100,100,,1,1,[1],1.5,2,6,"(0.81, 0.165)" -1577,100,100,,1,1,[1],1.5,2,7,"(0.85, 0.145)" -1578,100,100,,1,1,[1],1.5,2,8,"(0.8, 0.18)" -1579,100,100,,1,1,[1],1.5,2,9,"(0.81, 0.135)" -1580,100,100,,1,1,[1],1.5,3,0,"(0.93, 0.065)" -1581,100,100,,1,1,[1],1.5,3,1,"(0.9, 0.05)" -1582,100,100,,1,1,[1],1.5,3,2,"(0.88, 0.08)" -1583,100,100,,1,1,[1],1.5,3,3,"(0.86, 0.1)" -1584,100,100,,1,1,[1],1.5,3,4,"(0.87, 0.105)" -1585,100,100,,1,1,[1],1.5,3,5,"(0.86, 0.09)" -1586,100,100,,1,1,[1],1.5,3,6,"(0.88, 0.06)" -1587,100,100,,1,1,[1],1.5,3,7,"(0.86, 0.09)" -1588,100,100,,1,1,[1],1.5,3,8,"(0.9, 0.06)" -1589,100,100,,1,1,[1],1.5,3,9,"(0.9, 0.07)" -1590,100,100,,1,1,[1],1.5,4,0,"(0.96, 0.03)" -1591,100,100,,1,1,[1],1.5,4,1,"(0.96, 0.02)" -1592,100,100,,1,1,[1],1.5,4,2,"(0.91, 0.055)" -1593,100,100,,1,1,[1],1.5,4,3,"(0.98, 0.01)" -1594,100,100,,1,1,[1],1.5,4,4,"(0.93, 0.045)" -1595,100,100,,1,1,[1],1.5,4,5,"(0.94, 0.03)" -1596,100,100,,1,1,[1],1.5,4,6,"(0.96, 0.02)" -1597,100,100,,1,1,[1],1.5,4,7,"(0.97, 0.015)" -1598,100,100,,1,1,[1],1.5,4,8,"(0.95, 0.035)" -1599,100,100,,1,1,[1],1.5,4,9,"(0.95, 0.025)" -1600,100,100,,1,1,[1],1.6,-5,0,"(0.98, 0.99)" -1601,100,100,,1,1,[1],1.6,-5,1,"(0.98, 0.97)" -1602,100,100,,1,1,[1],1.6,-5,2,"(0.98, 0.99)" -1603,100,100,,1,1,[1],1.6,-5,3,"(0.96, 0.98)" -1604,100,100,,1,1,[1],1.6,-5,4,"(0.99, 0.995)" -1605,100,100,,1,1,[1],1.6,-5,5,"(1.0, 1.0)" -1606,100,100,,1,1,[1],1.6,-5,6,"(0.95, 0.975)" -1607,100,100,,1,1,[1],1.6,-5,7,"(0.99, 0.995)" -1608,100,100,,1,1,[1],1.6,-5,8,"(0.98, 0.99)" -1609,100,100,,1,1,[1],1.6,-5,9,"(1.0, 1.0)" -1610,100,100,,1,1,[1],1.6,-4,0,"(0.93, 0.965)" -1611,100,100,,1,1,[1],1.6,-4,1,"(0.97, 0.975)" -1612,100,100,,1,1,[1],1.6,-4,2,"(0.94, 0.97)" -1613,100,100,,1,1,[1],1.6,-4,3,"(0.97, 0.985)" -1614,100,100,,1,1,[1],1.6,-4,4,"(0.96, 0.98)" -1615,100,100,,1,1,[1],1.6,-4,5,"(0.98, 0.99)" -1616,100,100,,1,1,[1],1.6,-4,6,"(0.97, 0.985)" -1617,100,100,,1,1,[1],1.6,-4,7,"(0.89, 0.935)" -1618,100,100,,1,1,[1],1.6,-4,8,"(0.88, 0.94)" -1619,100,100,,1,1,[1],1.6,-4,9,"(0.96, 0.98)" -1620,100,100,,1,1,[1],1.6,-3,0,"(0.97, 0.955)" -1621,100,100,,1,1,[1],1.6,-3,1,"(0.89, 0.935)" -1622,100,100,,1,1,[1],1.6,-3,2,"(0.93, 0.945)" -1623,100,100,,1,1,[1],1.6,-3,3,"(0.85, 0.905)" -1624,100,100,,1,1,[1],1.6,-3,4,"(0.86, 0.93)" -1625,100,100,,1,1,[1],1.6,-3,5,"(0.86, 0.91)" -1626,100,100,,1,1,[1],1.6,-3,6,"(0.85, 0.885)" -1627,100,100,,1,1,[1],1.6,-3,7,"(0.94, 0.92)" -1628,100,100,,1,1,[1],1.6,-3,8,"(0.85, 0.925)" -1629,100,100,,1,1,[1],1.6,-3,9,"(0.93, 0.945)" -1630,100,100,,1,1,[1],1.6,-2,0,"(0.8, 0.83)" -1631,100,100,,1,1,[1],1.6,-2,1,"(0.78, 0.81)" -1632,100,100,,1,1,[1],1.6,-2,2,"(0.73, 0.825)" -1633,100,100,,1,1,[1],1.6,-2,3,"(0.76, 0.77)" -1634,100,100,,1,1,[1],1.6,-2,4,"(0.78, 0.88)" -1635,100,100,,1,1,[1],1.6,-2,5,"(0.76, 0.78)" -1636,100,100,,1,1,[1],1.6,-2,6,"(0.84, 0.85)" -1637,100,100,,1,1,[1],1.6,-2,7,"(0.74, 0.8)" -1638,100,100,,1,1,[1],1.6,-2,8,"(0.77, 0.815)" -1639,100,100,,1,1,[1],1.6,-2,9,"(0.79, 0.815)" -1640,100,100,,1,1,[1],1.6,-1,0,"(0.71, 0.645)" -1641,100,100,,1,1,[1],1.6,-1,1,"(0.69, 0.685)" -1642,100,100,,1,1,[1],1.6,-1,2,"(0.76, 0.69)" -1643,100,100,,1,1,[1],1.6,-1,3,"(0.63, 0.615)" -1644,100,100,,1,1,[1],1.6,-1,4,"(0.66, 0.69)" -1645,100,100,,1,1,[1],1.6,-1,5,"(0.66, 0.63)" -1646,100,100,,1,1,[1],1.6,-1,6,"(0.73, 0.685)" -1647,100,100,,1,1,[1],1.6,-1,7,"(0.75, 0.645)" -1648,100,100,,1,1,[1],1.6,-1,8,"(0.69, 0.705)" -1649,100,100,,1,1,[1],1.6,-1,9,"(0.75, 0.645)" -1650,100,100,,1,1,[1],1.6,0,0,"(0.56, 0.52)" -1651,100,100,,1,1,[1],1.6,0,1,"(0.69, 0.555)" -1652,100,100,,1,1,[1],1.6,0,2,"(0.59, 0.545)" -1653,100,100,,1,1,[1],1.6,0,3,"(0.72, 0.52)" -1654,100,100,,1,1,[1],1.6,0,4,"(0.65, 0.455)" -1655,100,100,,1,1,[1],1.6,0,5,"(0.62, 0.51)" -1656,100,100,,1,1,[1],1.6,0,6,"(0.64, 0.54)" -1657,100,100,,1,1,[1],1.6,0,7,"(0.54, 0.5)" -1658,100,100,,1,1,[1],1.6,0,8,"(0.57, 0.485)" -1659,100,100,,1,1,[1],1.6,0,9,"(0.63, 0.495)" -1660,100,100,,1,1,[1],1.6,1,0,"(0.69, 0.245)" -1661,100,100,,1,1,[1],1.6,1,1,"(0.67, 0.295)" -1662,100,100,,1,1,[1],1.6,1,2,"(0.71, 0.315)" -1663,100,100,,1,1,[1],1.6,1,3,"(0.65, 0.355)" -1664,100,100,,1,1,[1],1.6,1,4,"(0.66, 0.33)" -1665,100,100,,1,1,[1],1.6,1,5,"(0.69, 0.335)" -1666,100,100,,1,1,[1],1.6,1,6,"(0.7, 0.31)" -1667,100,100,,1,1,[1],1.6,1,7,"(0.74, 0.3)" -1668,100,100,,1,1,[1],1.6,1,8,"(0.72, 0.37)" -1669,100,100,,1,1,[1],1.6,1,9,"(0.68, 0.35)" -1670,100,100,,1,1,[1],1.6,2,0,"(0.78, 0.18)" -1671,100,100,,1,1,[1],1.6,2,1,"(0.83, 0.155)" -1672,100,100,,1,1,[1],1.6,2,2,"(0.8, 0.21)" -1673,100,100,,1,1,[1],1.6,2,3,"(0.83, 0.135)" -1674,100,100,,1,1,[1],1.6,2,4,"(0.74, 0.19)" -1675,100,100,,1,1,[1],1.6,2,5,"(0.82, 0.19)" -1676,100,100,,1,1,[1],1.6,2,6,"(0.81, 0.135)" -1677,100,100,,1,1,[1],1.6,2,7,"(0.79, 0.165)" -1678,100,100,,1,1,[1],1.6,2,8,"(0.8, 0.16)" -1679,100,100,,1,1,[1],1.6,2,9,"(0.76, 0.13)" -1680,100,100,,1,1,[1],1.6,3,0,"(0.9, 0.07)" -1681,100,100,,1,1,[1],1.6,3,1,"(0.91, 0.085)" -1682,100,100,,1,1,[1],1.6,3,2,"(0.89, 0.075)" -1683,100,100,,1,1,[1],1.6,3,3,"(0.86, 0.08)" -1684,100,100,,1,1,[1],1.6,3,4,"(0.91, 0.045)" -1685,100,100,,1,1,[1],1.6,3,5,"(0.83, 0.105)" -1686,100,100,,1,1,[1],1.6,3,6,"(0.85, 0.075)" -1687,100,100,,1,1,[1],1.6,3,7,"(0.89, 0.095)" -1688,100,100,,1,1,[1],1.6,3,8,"(0.87, 0.075)" -1689,100,100,,1,1,[1],1.6,3,9,"(0.84, 0.09)" -1690,100,100,,1,1,[1],1.6,4,0,"(0.96, 0.04)" -1691,100,100,,1,1,[1],1.6,4,1,"(0.92, 0.04)" -1692,100,100,,1,1,[1],1.6,4,2,"(0.94, 0.04)" -1693,100,100,,1,1,[1],1.6,4,3,"(0.95, 0.025)" -1694,100,100,,1,1,[1],1.6,4,4,"(0.97, 0.025)" -1695,100,100,,1,1,[1],1.6,4,5,"(0.93, 0.035)" -1696,100,100,,1,1,[1],1.6,4,6,"(0.95, 0.035)" -1697,100,100,,1,1,[1],1.6,4,7,"(0.97, 0.025)" -1698,100,100,,1,1,[1],1.6,4,8,"(0.94, 0.03)" -1699,100,100,,1,1,[1],1.6,4,9,"(0.91, 0.045)" -1700,100,100,,1,1,[1],1.7000000000000002,-5,0,"(0.98, 0.99)" -1701,100,100,,1,1,[1],1.7000000000000002,-5,1,"(0.96, 0.98)" -1702,100,100,,1,1,[1],1.7000000000000002,-5,2,"(1.0, 1.0)" -1703,100,100,,1,1,[1],1.7000000000000002,-5,3,"(0.97, 0.985)" -1704,100,100,,1,1,[1],1.7000000000000002,-5,4,"(0.98, 0.99)" -1705,100,100,,1,1,[1],1.7000000000000002,-5,5,"(0.98, 0.99)" -1706,100,100,,1,1,[1],1.7000000000000002,-5,6,"(0.98, 0.98)" -1707,100,100,,1,1,[1],1.7000000000000002,-5,7,"(0.96, 0.98)" -1708,100,100,,1,1,[1],1.7000000000000002,-5,8,"(1.0, 1.0)" -1709,100,100,,1,1,[1],1.7000000000000002,-5,9,"(1.0, 1.0)" -1710,100,100,,1,1,[1],1.7000000000000002,-4,0,"(0.94, 0.96)" -1711,100,100,,1,1,[1],1.7000000000000002,-4,1,"(0.96, 0.97)" -1712,100,100,,1,1,[1],1.7000000000000002,-4,2,"(0.95, 0.975)" -1713,100,100,,1,1,[1],1.7000000000000002,-4,3,"(0.92, 0.95)" -1714,100,100,,1,1,[1],1.7000000000000002,-4,4,"(0.96, 0.98)" -1715,100,100,,1,1,[1],1.7000000000000002,-4,5,"(0.91, 0.915)" -1716,100,100,,1,1,[1],1.7000000000000002,-4,6,"(0.97, 0.985)" -1717,100,100,,1,1,[1],1.7000000000000002,-4,7,"(0.92, 0.94)" -1718,100,100,,1,1,[1],1.7000000000000002,-4,8,"(0.95, 0.975)" -1719,100,100,,1,1,[1],1.7000000000000002,-4,9,"(0.93, 0.945)" -1720,100,100,,1,1,[1],1.7000000000000002,-3,0,"(0.84, 0.89)" -1721,100,100,,1,1,[1],1.7000000000000002,-3,1,"(0.87, 0.915)" -1722,100,100,,1,1,[1],1.7000000000000002,-3,2,"(0.9, 0.95)" -1723,100,100,,1,1,[1],1.7000000000000002,-3,3,"(0.88, 0.9)" -1724,100,100,,1,1,[1],1.7000000000000002,-3,4,"(0.88, 0.91)" -1725,100,100,,1,1,[1],1.7000000000000002,-3,5,"(0.88, 0.92)" -1726,100,100,,1,1,[1],1.7000000000000002,-3,6,"(0.85, 0.875)" -1727,100,100,,1,1,[1],1.7000000000000002,-3,7,"(0.88, 0.92)" -1728,100,100,,1,1,[1],1.7000000000000002,-3,8,"(0.87, 0.905)" -1729,100,100,,1,1,[1],1.7000000000000002,-3,9,"(0.88, 0.92)" -1730,100,100,,1,1,[1],1.7000000000000002,-2,0,"(0.7, 0.74)" -1731,100,100,,1,1,[1],1.7000000000000002,-2,1,"(0.74, 0.84)" -1732,100,100,,1,1,[1],1.7000000000000002,-2,2,"(0.76, 0.82)" -1733,100,100,,1,1,[1],1.7000000000000002,-2,3,"(0.76, 0.81)" -1734,100,100,,1,1,[1],1.7000000000000002,-2,4,"(0.8, 0.86)" -1735,100,100,,1,1,[1],1.7000000000000002,-2,5,"(0.82, 0.84)" -1736,100,100,,1,1,[1],1.7000000000000002,-2,6,"(0.73, 0.785)" -1737,100,100,,1,1,[1],1.7000000000000002,-2,7,"(0.7, 0.76)" -1738,100,100,,1,1,[1],1.7000000000000002,-2,8,"(0.81, 0.835)" -1739,100,100,,1,1,[1],1.7000000000000002,-2,9,"(0.82, 0.86)" -1740,100,100,,1,1,[1],1.7000000000000002,-1,0,"(0.74, 0.69)" -1741,100,100,,1,1,[1],1.7000000000000002,-1,1,"(0.59, 0.635)" -1742,100,100,,1,1,[1],1.7000000000000002,-1,2,"(0.64, 0.62)" -1743,100,100,,1,1,[1],1.7000000000000002,-1,3,"(0.6, 0.63)" -1744,100,100,,1,1,[1],1.7000000000000002,-1,4,"(0.64, 0.64)" -1745,100,100,,1,1,[1],1.7000000000000002,-1,5,"(0.7, 0.71)" -1746,100,100,,1,1,[1],1.7000000000000002,-1,6,"(0.69, 0.705)" -1747,100,100,,1,1,[1],1.7000000000000002,-1,7,"(0.74, 0.75)" -1748,100,100,,1,1,[1],1.7000000000000002,-1,8,"(0.73, 0.765)" -1749,100,100,,1,1,[1],1.7000000000000002,-1,9,"(0.66, 0.65)" -1750,100,100,,1,1,[1],1.7000000000000002,0,0,"(0.5, 0.48)" -1751,100,100,,1,1,[1],1.7000000000000002,0,1,"(0.67, 0.495)" -1752,100,100,,1,1,[1],1.7000000000000002,0,2,"(0.57, 0.565)" -1753,100,100,,1,1,[1],1.7000000000000002,0,3,"(0.58, 0.46)" -1754,100,100,,1,1,[1],1.7000000000000002,0,4,"(0.63, 0.505)" -1755,100,100,,1,1,[1],1.7000000000000002,0,5,"(0.63, 0.525)" -1756,100,100,,1,1,[1],1.7000000000000002,0,6,"(0.55, 0.435)" -1757,100,100,,1,1,[1],1.7000000000000002,0,7,"(0.64, 0.41)" -1758,100,100,,1,1,[1],1.7000000000000002,0,8,"(0.62, 0.49)" -1759,100,100,,1,1,[1],1.7000000000000002,0,9,"(0.63, 0.505)" -1760,100,100,,1,1,[1],1.7000000000000002,1,0,"(0.7, 0.4)" -1761,100,100,,1,1,[1],1.7000000000000002,1,1,"(0.68, 0.38)" -1762,100,100,,1,1,[1],1.7000000000000002,1,2,"(0.65, 0.375)" -1763,100,100,,1,1,[1],1.7000000000000002,1,3,"(0.6, 0.36)" -1764,100,100,,1,1,[1],1.7000000000000002,1,4,"(0.61, 0.335)" -1765,100,100,,1,1,[1],1.7000000000000002,1,5,"(0.61, 0.305)" -1766,100,100,,1,1,[1],1.7000000000000002,1,6,"(0.64, 0.32)" -1767,100,100,,1,1,[1],1.7000000000000002,1,7,"(0.76, 0.31)" -1768,100,100,,1,1,[1],1.7000000000000002,1,8,"(0.68, 0.24)" -1769,100,100,,1,1,[1],1.7000000000000002,1,9,"(0.71, 0.335)" -1770,100,100,,1,1,[1],1.7000000000000002,2,0,"(0.86, 0.13)" -1771,100,100,,1,1,[1],1.7000000000000002,2,1,"(0.76, 0.19)" -1772,100,100,,1,1,[1],1.7000000000000002,2,2,"(0.79, 0.145)" -1773,100,100,,1,1,[1],1.7000000000000002,2,3,"(0.78, 0.17)" -1774,100,100,,1,1,[1],1.7000000000000002,2,4,"(0.77, 0.175)" -1775,100,100,,1,1,[1],1.7000000000000002,2,5,"(0.84, 0.16)" -1776,100,100,,1,1,[1],1.7000000000000002,2,6,"(0.71, 0.185)" -1777,100,100,,1,1,[1],1.7000000000000002,2,7,"(0.86, 0.1)" -1778,100,100,,1,1,[1],1.7000000000000002,2,8,"(0.77, 0.215)" -1779,100,100,,1,1,[1],1.7000000000000002,2,9,"(0.83, 0.155)" -1780,100,100,,1,1,[1],1.7000000000000002,3,0,"(0.9, 0.08)" -1781,100,100,,1,1,[1],1.7000000000000002,3,1,"(0.91, 0.055)" -1782,100,100,,1,1,[1],1.7000000000000002,3,2,"(0.87, 0.075)" -1783,100,100,,1,1,[1],1.7000000000000002,3,3,"(0.9, 0.08)" -1784,100,100,,1,1,[1],1.7000000000000002,3,4,"(0.82, 0.13)" -1785,100,100,,1,1,[1],1.7000000000000002,3,5,"(0.89, 0.075)" -1786,100,100,,1,1,[1],1.7000000000000002,3,6,"(0.94, 0.08)" -1787,100,100,,1,1,[1],1.7000000000000002,3,7,"(0.76, 0.16)" -1788,100,100,,1,1,[1],1.7000000000000002,3,8,"(0.92, 0.07)" -1789,100,100,,1,1,[1],1.7000000000000002,3,9,"(0.9, 0.06)" -1790,100,100,,1,1,[1],1.7000000000000002,4,0,"(0.95, 0.025)" -1791,100,100,,1,1,[1],1.7000000000000002,4,1,"(0.96, 0.03)" -1792,100,100,,1,1,[1],1.7000000000000002,4,2,"(0.9, 0.05)" -1793,100,100,,1,1,[1],1.7000000000000002,4,3,"(0.95, 0.035)" -1794,100,100,,1,1,[1],1.7000000000000002,4,4,"(0.92, 0.04)" -1795,100,100,,1,1,[1],1.7000000000000002,4,5,"(0.96, 0.03)" -1796,100,100,,1,1,[1],1.7000000000000002,4,6,"(0.94, 0.04)" -1797,100,100,,1,1,[1],1.7000000000000002,4,7,"(0.95, 0.045)" -1798,100,100,,1,1,[1],1.7000000000000002,4,8,"(0.95, 0.035)" -1799,100,100,,1,1,[1],1.7000000000000002,4,9,"(0.94, 0.04)" -1800,100,100,,1,1,[1],1.8,-5,0,"(0.98, 0.99)" -1801,100,100,,1,1,[1],1.8,-5,1,"(0.97, 0.985)" -1802,100,100,,1,1,[1],1.8,-5,2,"(0.98, 0.99)" -1803,100,100,,1,1,[1],1.8,-5,3,"(0.97, 0.985)" -1804,100,100,,1,1,[1],1.8,-5,4,"(0.98, 0.99)" -1805,100,100,,1,1,[1],1.8,-5,5,"(0.98, 0.99)" -1806,100,100,,1,1,[1],1.8,-5,6,"(0.95, 0.975)" -1807,100,100,,1,1,[1],1.8,-5,7,"(0.98, 0.99)" -1808,100,100,,1,1,[1],1.8,-5,8,"(0.97, 0.985)" -1809,100,100,,1,1,[1],1.8,-5,9,"(0.99, 0.995)" -1810,100,100,,1,1,[1],1.8,-4,0,"(0.97, 0.985)" -1811,100,100,,1,1,[1],1.8,-4,1,"(0.91, 0.955)" -1812,100,100,,1,1,[1],1.8,-4,2,"(0.89, 0.945)" -1813,100,100,,1,1,[1],1.8,-4,3,"(0.92, 0.96)" -1814,100,100,,1,1,[1],1.8,-4,4,"(0.93, 0.955)" -1815,100,100,,1,1,[1],1.8,-4,5,"(0.96, 0.95)" -1816,100,100,,1,1,[1],1.8,-4,6,"(0.95, 0.975)" -1817,100,100,,1,1,[1],1.8,-4,7,"(0.95, 0.965)" -1818,100,100,,1,1,[1],1.8,-4,8,"(0.94, 0.96)" -1819,100,100,,1,1,[1],1.8,-4,9,"(0.92, 0.96)" -1820,100,100,,1,1,[1],1.8,-3,0,"(0.88, 0.93)" -1821,100,100,,1,1,[1],1.8,-3,1,"(0.87, 0.895)" -1822,100,100,,1,1,[1],1.8,-3,2,"(0.89, 0.895)" -1823,100,100,,1,1,[1],1.8,-3,3,"(0.85, 0.895)" -1824,100,100,,1,1,[1],1.8,-3,4,"(0.86, 0.92)" -1825,100,100,,1,1,[1],1.8,-3,5,"(0.87, 0.925)" -1826,100,100,,1,1,[1],1.8,-3,6,"(0.88, 0.93)" -1827,100,100,,1,1,[1],1.8,-3,7,"(0.91, 0.925)" -1828,100,100,,1,1,[1],1.8,-3,8,"(0.81, 0.895)" -1829,100,100,,1,1,[1],1.8,-3,9,"(0.8, 0.88)" -1830,100,100,,1,1,[1],1.8,-2,0,"(0.86, 0.85)" -1831,100,100,,1,1,[1],1.8,-2,1,"(0.66, 0.78)" -1832,100,100,,1,1,[1],1.8,-2,2,"(0.73, 0.785)" -1833,100,100,,1,1,[1],1.8,-2,3,"(0.71, 0.765)" -1834,100,100,,1,1,[1],1.8,-2,4,"(0.79, 0.805)" -1835,100,100,,1,1,[1],1.8,-2,5,"(0.82, 0.78)" -1836,100,100,,1,1,[1],1.8,-2,6,"(0.72, 0.82)" -1837,100,100,,1,1,[1],1.8,-2,7,"(0.75, 0.815)" -1838,100,100,,1,1,[1],1.8,-2,8,"(0.78, 0.87)" -1839,100,100,,1,1,[1],1.8,-2,9,"(0.77, 0.815)" -1840,100,100,,1,1,[1],1.8,-1,0,"(0.63, 0.675)" -1841,100,100,,1,1,[1],1.8,-1,1,"(0.7, 0.69)" -1842,100,100,,1,1,[1],1.8,-1,2,"(0.69, 0.615)" -1843,100,100,,1,1,[1],1.8,-1,3,"(0.7, 0.68)" -1844,100,100,,1,1,[1],1.8,-1,4,"(0.65, 0.705)" -1845,100,100,,1,1,[1],1.8,-1,5,"(0.7, 0.72)" -1846,100,100,,1,1,[1],1.8,-1,6,"(0.64, 0.62)" -1847,100,100,,1,1,[1],1.8,-1,7,"(0.66, 0.68)" -1848,100,100,,1,1,[1],1.8,-1,8,"(0.6, 0.68)" -1849,100,100,,1,1,[1],1.8,-1,9,"(0.64, 0.65)" -1850,100,100,,1,1,[1],1.8,0,0,"(0.65, 0.595)" -1851,100,100,,1,1,[1],1.8,0,1,"(0.63, 0.585)" -1852,100,100,,1,1,[1],1.8,0,2,"(0.65, 0.515)" -1853,100,100,,1,1,[1],1.8,0,3,"(0.66, 0.5)" -1854,100,100,,1,1,[1],1.8,0,4,"(0.72, 0.53)" -1855,100,100,,1,1,[1],1.8,0,5,"(0.65, 0.505)" -1856,100,100,,1,1,[1],1.8,0,6,"(0.7, 0.52)" -1857,100,100,,1,1,[1],1.8,0,7,"(0.64, 0.53)" -1858,100,100,,1,1,[1],1.8,0,8,"(0.59, 0.465)" -1859,100,100,,1,1,[1],1.8,0,9,"(0.62, 0.47)" -1860,100,100,,1,1,[1],1.8,1,0,"(0.72, 0.33)" -1861,100,100,,1,1,[1],1.8,1,1,"(0.75, 0.335)" -1862,100,100,,1,1,[1],1.8,1,2,"(0.67, 0.355)" -1863,100,100,,1,1,[1],1.8,1,3,"(0.63, 0.355)" -1864,100,100,,1,1,[1],1.8,1,4,"(0.61, 0.375)" -1865,100,100,,1,1,[1],1.8,1,5,"(0.64, 0.36)" -1866,100,100,,1,1,[1],1.8,1,6,"(0.63, 0.295)" -1867,100,100,,1,1,[1],1.8,1,7,"(0.64, 0.33)" -1868,100,100,,1,1,[1],1.8,1,8,"(0.7, 0.37)" -1869,100,100,,1,1,[1],1.8,1,9,"(0.64, 0.39)" -1870,100,100,,1,1,[1],1.8,2,0,"(0.73, 0.225)" -1871,100,100,,1,1,[1],1.8,2,1,"(0.77, 0.185)" -1872,100,100,,1,1,[1],1.8,2,2,"(0.75, 0.245)" -1873,100,100,,1,1,[1],1.8,2,3,"(0.75, 0.165)" -1874,100,100,,1,1,[1],1.8,2,4,"(0.71, 0.215)" -1875,100,100,,1,1,[1],1.8,2,5,"(0.78, 0.24)" -1876,100,100,,1,1,[1],1.8,2,6,"(0.73, 0.235)" -1877,100,100,,1,1,[1],1.8,2,7,"(0.72, 0.22)" -1878,100,100,,1,1,[1],1.8,2,8,"(0.74, 0.19)" -1879,100,100,,1,1,[1],1.8,2,9,"(0.75, 0.135)" -1880,100,100,,1,1,[1],1.8,3,0,"(0.86, 0.09)" -1881,100,100,,1,1,[1],1.8,3,1,"(0.8, 0.13)" -1882,100,100,,1,1,[1],1.8,3,2,"(0.82, 0.13)" -1883,100,100,,1,1,[1],1.8,3,3,"(0.89, 0.095)" -1884,100,100,,1,1,[1],1.8,3,4,"(0.86, 0.09)" -1885,100,100,,1,1,[1],1.8,3,5,"(0.79, 0.135)" -1886,100,100,,1,1,[1],1.8,3,6,"(0.89, 0.075)" -1887,100,100,,1,1,[1],1.8,3,7,"(0.87, 0.065)" -1888,100,100,,1,1,[1],1.8,3,8,"(0.82, 0.12)" -1889,100,100,,1,1,[1],1.8,3,9,"(0.84, 0.1)" -1890,100,100,,1,1,[1],1.8,4,0,"(0.92, 0.04)" -1891,100,100,,1,1,[1],1.8,4,1,"(0.89, 0.055)" -1892,100,100,,1,1,[1],1.8,4,2,"(0.91, 0.055)" -1893,100,100,,1,1,[1],1.8,4,3,"(0.93, 0.035)" -1894,100,100,,1,1,[1],1.8,4,4,"(0.95, 0.025)" -1895,100,100,,1,1,[1],1.8,4,5,"(0.95, 0.035)" -1896,100,100,,1,1,[1],1.8,4,6,"(0.92, 0.06)" -1897,100,100,,1,1,[1],1.8,4,7,"(0.91, 0.045)" -1898,100,100,,1,1,[1],1.8,4,8,"(0.9, 0.05)" -1899,100,100,,1,1,[1],1.8,4,9,"(0.94, 0.03)" -1900,100,100,,1,1,[1],1.9000000000000001,-5,0,"(0.96, 0.98)" -1901,100,100,,1,1,[1],1.9000000000000001,-5,1,"(0.98, 0.99)" -1902,100,100,,1,1,[1],1.9000000000000001,-5,2,"(0.98, 0.99)" -1903,100,100,,1,1,[1],1.9000000000000001,-5,3,"(0.98, 0.98)" -1904,100,100,,1,1,[1],1.9000000000000001,-5,4,"(0.94, 0.97)" -1905,100,100,,1,1,[1],1.9000000000000001,-5,5,"(0.96, 0.98)" -1906,100,100,,1,1,[1],1.9000000000000001,-5,6,"(0.98, 0.99)" -1907,100,100,,1,1,[1],1.9000000000000001,-5,7,"(0.96, 0.98)" -1908,100,100,,1,1,[1],1.9000000000000001,-5,8,"(0.98, 0.99)" -1909,100,100,,1,1,[1],1.9000000000000001,-5,9,"(0.96, 0.98)" -1910,100,100,,1,1,[1],1.9000000000000001,-4,0,"(0.92, 0.96)" -1911,100,100,,1,1,[1],1.9000000000000001,-4,1,"(0.95, 0.955)" -1912,100,100,,1,1,[1],1.9000000000000001,-4,2,"(0.91, 0.955)" -1913,100,100,,1,1,[1],1.9000000000000001,-4,3,"(0.92, 0.94)" -1914,100,100,,1,1,[1],1.9000000000000001,-4,4,"(0.9, 0.95)" -1915,100,100,,1,1,[1],1.9000000000000001,-4,5,"(0.93, 0.955)" -1916,100,100,,1,1,[1],1.9000000000000001,-4,6,"(0.95, 0.955)" -1917,100,100,,1,1,[1],1.9000000000000001,-4,7,"(0.92, 0.95)" -1918,100,100,,1,1,[1],1.9000000000000001,-4,8,"(0.95, 0.945)" -1919,100,100,,1,1,[1],1.9000000000000001,-4,9,"(0.95, 0.965)" -1920,100,100,,1,1,[1],1.9000000000000001,-3,0,"(0.91, 0.945)" -1921,100,100,,1,1,[1],1.9000000000000001,-3,1,"(0.83, 0.895)" -1922,100,100,,1,1,[1],1.9000000000000001,-3,2,"(0.84, 0.86)" -1923,100,100,,1,1,[1],1.9000000000000001,-3,3,"(0.85, 0.925)" -1924,100,100,,1,1,[1],1.9000000000000001,-3,4,"(0.85, 0.895)" -1925,100,100,,1,1,[1],1.9000000000000001,-3,5,"(0.81, 0.865)" -1926,100,100,,1,1,[1],1.9000000000000001,-3,6,"(0.82, 0.88)" -1927,100,100,,1,1,[1],1.9000000000000001,-3,7,"(0.83, 0.895)" -1928,100,100,,1,1,[1],1.9000000000000001,-3,8,"(0.83, 0.885)" -1929,100,100,,1,1,[1],1.9000000000000001,-3,9,"(0.8, 0.89)" -1930,100,100,,1,1,[1],1.9000000000000001,-2,0,"(0.77, 0.845)" -1931,100,100,,1,1,[1],1.9000000000000001,-2,1,"(0.78, 0.85)" -1932,100,100,,1,1,[1],1.9000000000000001,-2,2,"(0.73, 0.775)" -1933,100,100,,1,1,[1],1.9000000000000001,-2,3,"(0.79, 0.835)" -1934,100,100,,1,1,[1],1.9000000000000001,-2,4,"(0.75, 0.845)" -1935,100,100,,1,1,[1],1.9000000000000001,-2,5,"(0.71, 0.795)" -1936,100,100,,1,1,[1],1.9000000000000001,-2,6,"(0.71, 0.805)" -1937,100,100,,1,1,[1],1.9000000000000001,-2,7,"(0.8, 0.77)" -1938,100,100,,1,1,[1],1.9000000000000001,-2,8,"(0.81, 0.805)" -1939,100,100,,1,1,[1],1.9000000000000001,-2,9,"(0.76, 0.82)" -1940,100,100,,1,1,[1],1.9000000000000001,-1,0,"(0.59, 0.645)" -1941,100,100,,1,1,[1],1.9000000000000001,-1,1,"(0.62, 0.67)" -1942,100,100,,1,1,[1],1.9000000000000001,-1,2,"(0.6, 0.66)" -1943,100,100,,1,1,[1],1.9000000000000001,-1,3,"(0.63, 0.675)" -1944,100,100,,1,1,[1],1.9000000000000001,-1,4,"(0.66, 0.66)" -1945,100,100,,1,1,[1],1.9000000000000001,-1,5,"(0.7, 0.64)" -1946,100,100,,1,1,[1],1.9000000000000001,-1,6,"(0.68, 0.66)" -1947,100,100,,1,1,[1],1.9000000000000001,-1,7,"(0.68, 0.71)" -1948,100,100,,1,1,[1],1.9000000000000001,-1,8,"(0.7, 0.64)" -1949,100,100,,1,1,[1],1.9000000000000001,-1,9,"(0.65, 0.715)" -1950,100,100,,1,1,[1],1.9000000000000001,0,0,"(0.64, 0.51)" -1951,100,100,,1,1,[1],1.9000000000000001,0,1,"(0.57, 0.515)" -1952,100,100,,1,1,[1],1.9000000000000001,0,2,"(0.56, 0.55)" -1953,100,100,,1,1,[1],1.9000000000000001,0,3,"(0.55, 0.495)" -1954,100,100,,1,1,[1],1.9000000000000001,0,4,"(0.62, 0.45)" -1955,100,100,,1,1,[1],1.9000000000000001,0,5,"(0.63, 0.445)" -1956,100,100,,1,1,[1],1.9000000000000001,0,6,"(0.64, 0.47)" -1957,100,100,,1,1,[1],1.9000000000000001,0,7,"(0.51, 0.455)" -1958,100,100,,1,1,[1],1.9000000000000001,0,8,"(0.62, 0.54)" -1959,100,100,,1,1,[1],1.9000000000000001,0,9,"(0.66, 0.57)" -1960,100,100,,1,1,[1],1.9000000000000001,1,0,"(0.64, 0.28)" -1961,100,100,,1,1,[1],1.9000000000000001,1,1,"(0.67, 0.335)" -1962,100,100,,1,1,[1],1.9000000000000001,1,2,"(0.63, 0.325)" -1963,100,100,,1,1,[1],1.9000000000000001,1,3,"(0.61, 0.395)" -1964,100,100,,1,1,[1],1.9000000000000001,1,4,"(0.58, 0.35)" -1965,100,100,,1,1,[1],1.9000000000000001,1,5,"(0.74, 0.35)" -1966,100,100,,1,1,[1],1.9000000000000001,1,6,"(0.65, 0.355)" -1967,100,100,,1,1,[1],1.9000000000000001,1,7,"(0.67, 0.325)" -1968,100,100,,1,1,[1],1.9000000000000001,1,8,"(0.73, 0.365)" -1969,100,100,,1,1,[1],1.9000000000000001,1,9,"(0.65, 0.355)" -1970,100,100,,1,1,[1],1.9000000000000001,2,0,"(0.76, 0.16)" -1971,100,100,,1,1,[1],1.9000000000000001,2,1,"(0.7, 0.21)" -1972,100,100,,1,1,[1],1.9000000000000001,2,2,"(0.83, 0.135)" -1973,100,100,,1,1,[1],1.9000000000000001,2,3,"(0.68, 0.2)" -1974,100,100,,1,1,[1],1.9000000000000001,2,4,"(0.71, 0.215)" -1975,100,100,,1,1,[1],1.9000000000000001,2,5,"(0.74, 0.19)" -1976,100,100,,1,1,[1],1.9000000000000001,2,6,"(0.8, 0.22)" -1977,100,100,,1,1,[1],1.9000000000000001,2,7,"(0.75, 0.215)" -1978,100,100,,1,1,[1],1.9000000000000001,2,8,"(0.71, 0.215)" -1979,100,100,,1,1,[1],1.9000000000000001,2,9,"(0.79, 0.205)" -1980,100,100,,1,1,[1],1.9000000000000001,3,0,"(0.82, 0.1)" -1981,100,100,,1,1,[1],1.9000000000000001,3,1,"(0.75, 0.145)" -1982,100,100,,1,1,[1],1.9000000000000001,3,2,"(0.9, 0.08)" -1983,100,100,,1,1,[1],1.9000000000000001,3,3,"(0.83, 0.125)" -1984,100,100,,1,1,[1],1.9000000000000001,3,4,"(0.88, 0.1)" -1985,100,100,,1,1,[1],1.9000000000000001,3,5,"(0.84, 0.09)" -1986,100,100,,1,1,[1],1.9000000000000001,3,6,"(0.92, 0.09)" -1987,100,100,,1,1,[1],1.9000000000000001,3,7,"(0.83, 0.115)" -1988,100,100,,1,1,[1],1.9000000000000001,3,8,"(0.88, 0.1)" -1989,100,100,,1,1,[1],1.9000000000000001,3,9,"(0.81, 0.145)" -1990,100,100,,1,1,[1],1.9000000000000001,4,0,"(0.9, 0.05)" -1991,100,100,,1,1,[1],1.9000000000000001,4,1,"(0.92, 0.04)" -1992,100,100,,1,1,[1],1.9000000000000001,4,2,"(0.86, 0.07)" -1993,100,100,,1,1,[1],1.9000000000000001,4,3,"(0.93, 0.035)" -1994,100,100,,1,1,[1],1.9000000000000001,4,4,"(0.94, 0.05)" -1995,100,100,,1,1,[1],1.9000000000000001,4,5,"(0.91, 0.055)" -1996,100,100,,1,1,[1],1.9000000000000001,4,6,"(0.96, 0.03)" -1997,100,100,,1,1,[1],1.9000000000000001,4,7,"(0.89, 0.055)" -1998,100,100,,1,1,[1],1.9000000000000001,4,8,"(0.96, 0.03)" -1999,100,100,,1,1,[1],1.9000000000000001,4,9,"(0.97, 0.015)" -2000,100,100,,1,1,[1],2.0,-5,0,"(0.99, 0.995)" -2001,100,100,,1,1,[1],2.0,-5,1,"(0.97, 0.985)" -2002,100,100,,1,1,[1],2.0,-5,2,"(1.0, 1.0)" -2003,100,100,,1,1,[1],2.0,-5,3,"(0.95, 0.975)" -2004,100,100,,1,1,[1],2.0,-5,4,"(0.97, 0.985)" -2005,100,100,,1,1,[1],2.0,-5,5,"(0.95, 0.975)" -2006,100,100,,1,1,[1],2.0,-5,6,"(0.92, 0.96)" -2007,100,100,,1,1,[1],2.0,-5,7,"(0.97, 0.985)" -2008,100,100,,1,1,[1],2.0,-5,8,"(0.96, 0.98)" -2009,100,100,,1,1,[1],2.0,-5,9,"(0.95, 0.975)" -2010,100,100,,1,1,[1],2.0,-4,0,"(0.82, 0.91)" -2011,100,100,,1,1,[1],2.0,-4,1,"(0.92, 0.96)" -2012,100,100,,1,1,[1],2.0,-4,2,"(0.9, 0.93)" -2013,100,100,,1,1,[1],2.0,-4,3,"(0.91, 0.955)" -2014,100,100,,1,1,[1],2.0,-4,4,"(0.88, 0.91)" -2015,100,100,,1,1,[1],2.0,-4,5,"(0.94, 0.95)" -2016,100,100,,1,1,[1],2.0,-4,6,"(0.91, 0.935)" -2017,100,100,,1,1,[1],2.0,-4,7,"(0.95, 0.975)" -2018,100,100,,1,1,[1],2.0,-4,8,"(0.91, 0.955)" -2019,100,100,,1,1,[1],2.0,-4,9,"(0.94, 0.97)" -2020,100,100,,1,1,[1],2.0,-3,0,"(0.84, 0.89)" -2021,100,100,,1,1,[1],2.0,-3,1,"(0.86, 0.91)" -2022,100,100,,1,1,[1],2.0,-3,2,"(0.91, 0.935)" -2023,100,100,,1,1,[1],2.0,-3,3,"(0.84, 0.89)" -2024,100,100,,1,1,[1],2.0,-3,4,"(0.87, 0.925)" -2025,100,100,,1,1,[1],2.0,-3,5,"(0.87, 0.915)" -2026,100,100,,1,1,[1],2.0,-3,6,"(0.86, 0.88)" -2027,100,100,,1,1,[1],2.0,-3,7,"(0.78, 0.88)" -2028,100,100,,1,1,[1],2.0,-3,8,"(0.7, 0.84)" -2029,100,100,,1,1,[1],2.0,-3,9,"(0.84, 0.88)" -2030,100,100,,1,1,[1],2.0,-2,0,"(0.81, 0.825)" -2031,100,100,,1,1,[1],2.0,-2,1,"(0.75, 0.815)" -2032,100,100,,1,1,[1],2.0,-2,2,"(0.75, 0.825)" -2033,100,100,,1,1,[1],2.0,-2,3,"(0.74, 0.8)" -2034,100,100,,1,1,[1],2.0,-2,4,"(0.72, 0.77)" -2035,100,100,,1,1,[1],2.0,-2,5,"(0.68, 0.78)" -2036,100,100,,1,1,[1],2.0,-2,6,"(0.69, 0.795)" -2037,100,100,,1,1,[1],2.0,-2,7,"(0.71, 0.785)" -2038,100,100,,1,1,[1],2.0,-2,8,"(0.75, 0.785)" -2039,100,100,,1,1,[1],2.0,-2,9,"(0.66, 0.78)" -2040,100,100,,1,1,[1],2.0,-1,0,"(0.72, 0.64)" -2041,100,100,,1,1,[1],2.0,-1,1,"(0.62, 0.65)" -2042,100,100,,1,1,[1],2.0,-1,2,"(0.63, 0.665)" -2043,100,100,,1,1,[1],2.0,-1,3,"(0.67, 0.685)" -2044,100,100,,1,1,[1],2.0,-1,4,"(0.56, 0.67)" -2045,100,100,,1,1,[1],2.0,-1,5,"(0.65, 0.625)" -2046,100,100,,1,1,[1],2.0,-1,6,"(0.67, 0.665)" -2047,100,100,,1,1,[1],2.0,-1,7,"(0.7, 0.66)" -2048,100,100,,1,1,[1],2.0,-1,8,"(0.65, 0.665)" -2049,100,100,,1,1,[1],2.0,-1,9,"(0.63, 0.665)" -2050,100,100,,1,1,[1],2.0,0,0,"(0.66, 0.47)" -2051,100,100,,1,1,[1],2.0,0,1,"(0.73, 0.555)" -2052,100,100,,1,1,[1],2.0,0,2,"(0.52, 0.5)" -2053,100,100,,1,1,[1],2.0,0,3,"(0.61, 0.525)" -2054,100,100,,1,1,[1],2.0,0,4,"(0.62, 0.48)" -2055,100,100,,1,1,[1],2.0,0,5,"(0.67, 0.475)" -2056,100,100,,1,1,[1],2.0,0,6,"(0.72, 0.48)" -2057,100,100,,1,1,[1],2.0,0,7,"(0.62, 0.52)" -2058,100,100,,1,1,[1],2.0,0,8,"(0.59, 0.475)" -2059,100,100,,1,1,[1],2.0,0,9,"(0.59, 0.495)" -2060,100,100,,1,1,[1],2.0,1,0,"(0.68, 0.36)" -2061,100,100,,1,1,[1],2.0,1,1,"(0.7, 0.34)" -2062,100,100,,1,1,[1],2.0,1,2,"(0.63, 0.335)" -2063,100,100,,1,1,[1],2.0,1,3,"(0.62, 0.35)" -2064,100,100,,1,1,[1],2.0,1,4,"(0.59, 0.345)" -2065,100,100,,1,1,[1],2.0,1,5,"(0.67, 0.425)" -2066,100,100,,1,1,[1],2.0,1,6,"(0.6, 0.35)" -2067,100,100,,1,1,[1],2.0,1,7,"(0.66, 0.36)" -2068,100,100,,1,1,[1],2.0,1,8,"(0.63, 0.365)" -2069,100,100,,1,1,[1],2.0,1,9,"(0.63, 0.305)" -2070,100,100,,1,1,[1],2.0,2,0,"(0.67, 0.235)" -2071,100,100,,1,1,[1],2.0,2,1,"(0.76, 0.28)" -2072,100,100,,1,1,[1],2.0,2,2,"(0.78, 0.16)" -2073,100,100,,1,1,[1],2.0,2,3,"(0.76, 0.19)" -2074,100,100,,1,1,[1],2.0,2,4,"(0.78, 0.18)" -2075,100,100,,1,1,[1],2.0,2,5,"(0.73, 0.295)" -2076,100,100,,1,1,[1],2.0,2,6,"(0.75, 0.185)" -2077,100,100,,1,1,[1],2.0,2,7,"(0.74, 0.22)" -2078,100,100,,1,1,[1],2.0,2,8,"(0.71, 0.195)" -2079,100,100,,1,1,[1],2.0,2,9,"(0.75, 0.215)" -2080,100,100,,1,1,[1],2.0,3,0,"(0.86, 0.12)" -2081,100,100,,1,1,[1],2.0,3,1,"(0.87, 0.105)" -2082,100,100,,1,1,[1],2.0,3,2,"(0.8, 0.15)" -2083,100,100,,1,1,[1],2.0,3,3,"(0.83, 0.085)" -2084,100,100,,1,1,[1],2.0,3,4,"(0.82, 0.13)" -2085,100,100,,1,1,[1],2.0,3,5,"(0.87, 0.075)" -2086,100,100,,1,1,[1],2.0,3,6,"(0.88, 0.12)" -2087,100,100,,1,1,[1],2.0,3,7,"(0.82, 0.16)" -2088,100,100,,1,1,[1],2.0,3,8,"(0.82, 0.13)" -2089,100,100,,1,1,[1],2.0,3,9,"(0.86, 0.1)" -2090,100,100,,1,1,[1],2.0,4,0,"(0.89, 0.065)" -2091,100,100,,1,1,[1],2.0,4,1,"(0.92, 0.06)" -2092,100,100,,1,1,[1],2.0,4,2,"(0.89, 0.055)" -2093,100,100,,1,1,[1],2.0,4,3,"(0.94, 0.03)" -2094,100,100,,1,1,[1],2.0,4,4,"(0.94, 0.04)" -2095,100,100,,1,1,[1],2.0,4,5,"(0.96, 0.02)" -2096,100,100,,1,1,[1],2.0,4,6,"(0.88, 0.07)" -2097,100,100,,1,1,[1],2.0,4,7,"(0.96, 0.04)" -2098,100,100,,1,1,[1],2.0,4,8,"(0.95, 0.025)" -2099,100,100,,1,1,[1],2.0,4,9,"(0.91, 0.055)" -2100,100,100,,1,1,[1],2.1,-5,0,"(0.94, 0.97)" -2101,100,100,,1,1,[1],2.1,-5,1,"(0.94, 0.96)" -2102,100,100,,1,1,[1],2.1,-5,2,"(0.93, 0.965)" -2103,100,100,,1,1,[1],2.1,-5,3,"(0.96, 0.98)" -2104,100,100,,1,1,[1],2.1,-5,4,"(0.96, 0.98)" -2105,100,100,,1,1,[1],2.1,-5,5,"(0.98, 0.99)" -2106,100,100,,1,1,[1],2.1,-5,6,"(0.96, 0.98)" -2107,100,100,,1,1,[1],2.1,-5,7,"(0.94, 0.97)" -2108,100,100,,1,1,[1],2.1,-5,8,"(0.99, 0.995)" -2109,100,100,,1,1,[1],2.1,-5,9,"(0.96, 0.98)" -2110,100,100,,1,1,[1],2.1,-4,0,"(0.9, 0.94)" -2111,100,100,,1,1,[1],2.1,-4,1,"(0.9, 0.94)" -2112,100,100,,1,1,[1],2.1,-4,2,"(0.95, 0.975)" -2113,100,100,,1,1,[1],2.1,-4,3,"(0.91, 0.945)" -2114,100,100,,1,1,[1],2.1,-4,4,"(0.9, 0.94)" -2115,100,100,,1,1,[1],2.1,-4,5,"(0.92, 0.94)" -2116,100,100,,1,1,[1],2.1,-4,6,"(0.92, 0.96)" -2117,100,100,,1,1,[1],2.1,-4,7,"(0.83, 0.915)" -2118,100,100,,1,1,[1],2.1,-4,8,"(0.92, 0.96)" -2119,100,100,,1,1,[1],2.1,-4,9,"(0.92, 0.95)" -2120,100,100,,1,1,[1],2.1,-3,0,"(0.78, 0.88)" -2121,100,100,,1,1,[1],2.1,-3,1,"(0.73, 0.835)" -2122,100,100,,1,1,[1],2.1,-3,2,"(0.88, 0.91)" -2123,100,100,,1,1,[1],2.1,-3,3,"(0.8, 0.87)" -2124,100,100,,1,1,[1],2.1,-3,4,"(0.79, 0.845)" -2125,100,100,,1,1,[1],2.1,-3,5,"(0.86, 0.93)" -2126,100,100,,1,1,[1],2.1,-3,6,"(0.78, 0.88)" -2127,100,100,,1,1,[1],2.1,-3,7,"(0.82, 0.88)" -2128,100,100,,1,1,[1],2.1,-3,8,"(0.82, 0.89)" -2129,100,100,,1,1,[1],2.1,-3,9,"(0.77, 0.865)" -2130,100,100,,1,1,[1],2.1,-2,0,"(0.72, 0.8)" -2131,100,100,,1,1,[1],2.1,-2,1,"(0.73, 0.765)" -2132,100,100,,1,1,[1],2.1,-2,2,"(0.72, 0.81)" -2133,100,100,,1,1,[1],2.1,-2,3,"(0.74, 0.75)" -2134,100,100,,1,1,[1],2.1,-2,4,"(0.77, 0.785)" -2135,100,100,,1,1,[1],2.1,-2,5,"(0.76, 0.83)" -2136,100,100,,1,1,[1],2.1,-2,6,"(0.75, 0.805)" -2137,100,100,,1,1,[1],2.1,-2,7,"(0.72, 0.81)" -2138,100,100,,1,1,[1],2.1,-2,8,"(0.76, 0.76)" -2139,100,100,,1,1,[1],2.1,-2,9,"(0.73, 0.825)" -2140,100,100,,1,1,[1],2.1,-1,0,"(0.57, 0.685)" -2141,100,100,,1,1,[1],2.1,-1,1,"(0.61, 0.695)" -2142,100,100,,1,1,[1],2.1,-1,2,"(0.57, 0.695)" -2143,100,100,,1,1,[1],2.1,-1,3,"(0.52, 0.65)" -2144,100,100,,1,1,[1],2.1,-1,4,"(0.69, 0.645)" -2145,100,100,,1,1,[1],2.1,-1,5,"(0.54, 0.68)" -2146,100,100,,1,1,[1],2.1,-1,6,"(0.72, 0.7)" -2147,100,100,,1,1,[1],2.1,-1,7,"(0.7, 0.64)" -2148,100,100,,1,1,[1],2.1,-1,8,"(0.64, 0.71)" -2149,100,100,,1,1,[1],2.1,-1,9,"(0.71, 0.675)" -2150,100,100,,1,1,[1],2.1,0,0,"(0.54, 0.53)" -2151,100,100,,1,1,[1],2.1,0,1,"(0.65, 0.515)" -2152,100,100,,1,1,[1],2.1,0,2,"(0.6, 0.55)" -2153,100,100,,1,1,[1],2.1,0,3,"(0.63, 0.475)" -2154,100,100,,1,1,[1],2.1,0,4,"(0.61, 0.455)" -2155,100,100,,1,1,[1],2.1,0,5,"(0.59, 0.535)" -2156,100,100,,1,1,[1],2.1,0,6,"(0.55, 0.435)" -2157,100,100,,1,1,[1],2.1,0,7,"(0.61, 0.485)" -2158,100,100,,1,1,[1],2.1,0,8,"(0.6, 0.5)" -2159,100,100,,1,1,[1],2.1,0,9,"(0.57, 0.485)" -2160,100,100,,1,1,[1],2.1,1,0,"(0.71, 0.355)" -2161,100,100,,1,1,[1],2.1,1,1,"(0.72, 0.33)" -2162,100,100,,1,1,[1],2.1,1,2,"(0.66, 0.33)" -2163,100,100,,1,1,[1],2.1,1,3,"(0.61, 0.355)" -2164,100,100,,1,1,[1],2.1,1,4,"(0.65, 0.365)" -2165,100,100,,1,1,[1],2.1,1,5,"(0.64, 0.32)" -2166,100,100,,1,1,[1],2.1,1,6,"(0.66, 0.34)" -2167,100,100,,1,1,[1],2.1,1,7,"(0.65, 0.355)" -2168,100,100,,1,1,[1],2.1,1,8,"(0.58, 0.42)" -2169,100,100,,1,1,[1],2.1,1,9,"(0.62, 0.32)" -2170,100,100,,1,1,[1],2.1,2,0,"(0.71, 0.225)" -2171,100,100,,1,1,[1],2.1,2,1,"(0.78, 0.19)" -2172,100,100,,1,1,[1],2.1,2,2,"(0.69, 0.215)" -2173,100,100,,1,1,[1],2.1,2,3,"(0.68, 0.25)" -2174,100,100,,1,1,[1],2.1,2,4,"(0.75, 0.145)" -2175,100,100,,1,1,[1],2.1,2,5,"(0.76, 0.17)" -2176,100,100,,1,1,[1],2.1,2,6,"(0.7, 0.21)" -2177,100,100,,1,1,[1],2.1,2,7,"(0.75, 0.235)" -2178,100,100,,1,1,[1],2.1,2,8,"(0.76, 0.22)" -2179,100,100,,1,1,[1],2.1,2,9,"(0.65, 0.205)" -2180,100,100,,1,1,[1],2.1,3,0,"(0.84, 0.14)" -2181,100,100,,1,1,[1],2.1,3,1,"(0.89, 0.095)" -2182,100,100,,1,1,[1],2.1,3,2,"(0.81, 0.115)" -2183,100,100,,1,1,[1],2.1,3,3,"(0.81, 0.125)" -2184,100,100,,1,1,[1],2.1,3,4,"(0.81, 0.105)" -2185,100,100,,1,1,[1],2.1,3,5,"(0.82, 0.14)" -2186,100,100,,1,1,[1],2.1,3,6,"(0.83, 0.095)" -2187,100,100,,1,1,[1],2.1,3,7,"(0.84, 0.1)" -2188,100,100,,1,1,[1],2.1,3,8,"(0.89, 0.075)" -2189,100,100,,1,1,[1],2.1,3,9,"(0.82, 0.19)" -2190,100,100,,1,1,[1],2.1,4,0,"(0.92, 0.05)" -2191,100,100,,1,1,[1],2.1,4,1,"(0.93, 0.035)" -2192,100,100,,1,1,[1],2.1,4,2,"(0.89, 0.065)" -2193,100,100,,1,1,[1],2.1,4,3,"(0.87, 0.085)" -2194,100,100,,1,1,[1],2.1,4,4,"(0.91, 0.045)" -2195,100,100,,1,1,[1],2.1,4,5,"(0.93, 0.065)" -2196,100,100,,1,1,[1],2.1,4,6,"(0.92, 0.05)" -2197,100,100,,1,1,[1],2.1,4,7,"(0.94, 0.05)" -2198,100,100,,1,1,[1],2.1,4,8,"(0.9, 0.05)" -2199,100,100,,1,1,[1],2.1,4,9,"(0.9, 0.07)" -2200,100,100,,1,1,[1],2.2,-5,0,"(0.93, 0.965)" -2201,100,100,,1,1,[1],2.2,-5,1,"(0.92, 0.96)" -2202,100,100,,1,1,[1],2.2,-5,2,"(0.9, 0.94)" -2203,100,100,,1,1,[1],2.2,-5,3,"(0.99, 0.995)" -2204,100,100,,1,1,[1],2.2,-5,4,"(0.97, 0.985)" -2205,100,100,,1,1,[1],2.2,-5,5,"(0.93, 0.965)" -2206,100,100,,1,1,[1],2.2,-5,6,"(0.92, 0.96)" -2207,100,100,,1,1,[1],2.2,-5,7,"(0.96, 0.98)" -2208,100,100,,1,1,[1],2.2,-5,8,"(0.96, 0.98)" -2209,100,100,,1,1,[1],2.2,-5,9,"(0.93, 0.965)" -2210,100,100,,1,1,[1],2.2,-4,0,"(0.88, 0.94)" -2211,100,100,,1,1,[1],2.2,-4,1,"(0.88, 0.93)" -2212,100,100,,1,1,[1],2.2,-4,2,"(0.91, 0.945)" -2213,100,100,,1,1,[1],2.2,-4,3,"(0.92, 0.94)" -2214,100,100,,1,1,[1],2.2,-4,4,"(0.88, 0.93)" -2215,100,100,,1,1,[1],2.2,-4,5,"(0.87, 0.925)" -2216,100,100,,1,1,[1],2.2,-4,6,"(0.91, 0.935)" -2217,100,100,,1,1,[1],2.2,-4,7,"(0.91, 0.935)" -2218,100,100,,1,1,[1],2.2,-4,8,"(0.9, 0.94)" -2219,100,100,,1,1,[1],2.2,-4,9,"(0.89, 0.925)" -2220,100,100,,1,1,[1],2.2,-3,0,"(0.82, 0.88)" -2221,100,100,,1,1,[1],2.2,-3,1,"(0.85, 0.915)" -2222,100,100,,1,1,[1],2.2,-3,2,"(0.82, 0.91)" -2223,100,100,,1,1,[1],2.2,-3,3,"(0.81, 0.875)" -2224,100,100,,1,1,[1],2.2,-3,4,"(0.82, 0.9)" -2225,100,100,,1,1,[1],2.2,-3,5,"(0.79, 0.875)" -2226,100,100,,1,1,[1],2.2,-3,6,"(0.81, 0.865)" -2227,100,100,,1,1,[1],2.2,-3,7,"(0.75, 0.835)" -2228,100,100,,1,1,[1],2.2,-3,8,"(0.8, 0.84)" -2229,100,100,,1,1,[1],2.2,-3,9,"(0.86, 0.9)" -2230,100,100,,1,1,[1],2.2,-2,0,"(0.73, 0.795)" -2231,100,100,,1,1,[1],2.2,-2,1,"(0.6, 0.69)" -2232,100,100,,1,1,[1],2.2,-2,2,"(0.68, 0.78)" -2233,100,100,,1,1,[1],2.2,-2,3,"(0.67, 0.725)" -2234,100,100,,1,1,[1],2.2,-2,4,"(0.75, 0.775)" -2235,100,100,,1,1,[1],2.2,-2,5,"(0.76, 0.8)" -2236,100,100,,1,1,[1],2.2,-2,6,"(0.68, 0.79)" -2237,100,100,,1,1,[1],2.2,-2,7,"(0.69, 0.795)" -2238,100,100,,1,1,[1],2.2,-2,8,"(0.68, 0.73)" -2239,100,100,,1,1,[1],2.2,-2,9,"(0.63, 0.715)" -2240,100,100,,1,1,[1],2.2,-1,0,"(0.62, 0.66)" -2241,100,100,,1,1,[1],2.2,-1,1,"(0.67, 0.655)" -2242,100,100,,1,1,[1],2.2,-1,2,"(0.62, 0.64)" -2243,100,100,,1,1,[1],2.2,-1,3,"(0.59, 0.675)" -2244,100,100,,1,1,[1],2.2,-1,4,"(0.63, 0.695)" -2245,100,100,,1,1,[1],2.2,-1,5,"(0.68, 0.63)" -2246,100,100,,1,1,[1],2.2,-1,6,"(0.61, 0.635)" -2247,100,100,,1,1,[1],2.2,-1,7,"(0.66, 0.72)" -2248,100,100,,1,1,[1],2.2,-1,8,"(0.62, 0.61)" -2249,100,100,,1,1,[1],2.2,-1,9,"(0.71, 0.675)" -2250,100,100,,1,1,[1],2.2,0,0,"(0.58, 0.6)" -2251,100,100,,1,1,[1],2.2,0,1,"(0.52, 0.56)" -2252,100,100,,1,1,[1],2.2,0,2,"(0.56, 0.49)" -2253,100,100,,1,1,[1],2.2,0,3,"(0.59, 0.475)" -2254,100,100,,1,1,[1],2.2,0,4,"(0.64, 0.46)" -2255,100,100,,1,1,[1],2.2,0,5,"(0.49, 0.515)" -2256,100,100,,1,1,[1],2.2,0,6,"(0.65, 0.475)" -2257,100,100,,1,1,[1],2.2,0,7,"(0.6, 0.46)" -2258,100,100,,1,1,[1],2.2,0,8,"(0.61, 0.535)" -2259,100,100,,1,1,[1],2.2,0,9,"(0.69, 0.475)" -2260,100,100,,1,1,[1],2.2,1,0,"(0.63, 0.335)" -2261,100,100,,1,1,[1],2.2,1,1,"(0.64, 0.32)" -2262,100,100,,1,1,[1],2.2,1,2,"(0.64, 0.37)" -2263,100,100,,1,1,[1],2.2,1,3,"(0.67, 0.385)" -2264,100,100,,1,1,[1],2.2,1,4,"(0.64, 0.35)" -2265,100,100,,1,1,[1],2.2,1,5,"(0.68, 0.28)" -2266,100,100,,1,1,[1],2.2,1,6,"(0.55, 0.425)" -2267,100,100,,1,1,[1],2.2,1,7,"(0.62, 0.38)" -2268,100,100,,1,1,[1],2.2,1,8,"(0.61, 0.385)" -2269,100,100,,1,1,[1],2.2,1,9,"(0.7, 0.31)" -2270,100,100,,1,1,[1],2.2,2,0,"(0.64, 0.25)" -2271,100,100,,1,1,[1],2.2,2,1,"(0.74, 0.18)" -2272,100,100,,1,1,[1],2.2,2,2,"(0.8, 0.22)" -2273,100,100,,1,1,[1],2.2,2,3,"(0.72, 0.21)" -2274,100,100,,1,1,[1],2.2,2,4,"(0.71, 0.245)" -2275,100,100,,1,1,[1],2.2,2,5,"(0.74, 0.2)" -2276,100,100,,1,1,[1],2.2,2,6,"(0.71, 0.215)" -2277,100,100,,1,1,[1],2.2,2,7,"(0.66, 0.23)" -2278,100,100,,1,1,[1],2.2,2,8,"(0.71, 0.215)" -2279,100,100,,1,1,[1],2.2,2,9,"(0.72, 0.24)" -2280,100,100,,1,1,[1],2.2,3,0,"(0.83, 0.155)" -2281,100,100,,1,1,[1],2.2,3,1,"(0.84, 0.09)" -2282,100,100,,1,1,[1],2.2,3,2,"(0.81, 0.155)" -2283,100,100,,1,1,[1],2.2,3,3,"(0.82, 0.11)" -2284,100,100,,1,1,[1],2.2,3,4,"(0.8, 0.15)" -2285,100,100,,1,1,[1],2.2,3,5,"(0.77, 0.155)" -2286,100,100,,1,1,[1],2.2,3,6,"(0.83, 0.115)" -2287,100,100,,1,1,[1],2.2,3,7,"(0.85, 0.095)" -2288,100,100,,1,1,[1],2.2,3,8,"(0.89, 0.095)" -2289,100,100,,1,1,[1],2.2,3,9,"(0.84, 0.09)" -2290,100,100,,1,1,[1],2.2,4,0,"(0.89, 0.075)" -2291,100,100,,1,1,[1],2.2,4,1,"(0.9, 0.08)" -2292,100,100,,1,1,[1],2.2,4,2,"(0.9, 0.07)" -2293,100,100,,1,1,[1],2.2,4,3,"(0.87, 0.075)" -2294,100,100,,1,1,[1],2.2,4,4,"(0.89, 0.085)" -2295,100,100,,1,1,[1],2.2,4,5,"(0.93, 0.045)" -2296,100,100,,1,1,[1],2.2,4,6,"(0.96, 0.02)" -2297,100,100,,1,1,[1],2.2,4,7,"(0.89, 0.065)" -2298,100,100,,1,1,[1],2.2,4,8,"(0.92, 0.04)" -2299,100,100,,1,1,[1],2.2,4,9,"(0.88, 0.06)" -2300,100,100,,1,1,[1],2.3000000000000003,-5,0,"(0.92, 0.95)" -2301,100,100,,1,1,[1],2.3000000000000003,-5,1,"(0.93, 0.955)" -2302,100,100,,1,1,[1],2.3000000000000003,-5,2,"(0.94, 0.97)" -2303,100,100,,1,1,[1],2.3000000000000003,-5,3,"(0.95, 0.965)" -2304,100,100,,1,1,[1],2.3000000000000003,-5,4,"(0.98, 0.99)" -2305,100,100,,1,1,[1],2.3000000000000003,-5,5,"(0.97, 0.985)" -2306,100,100,,1,1,[1],2.3000000000000003,-5,6,"(0.94, 0.96)" -2307,100,100,,1,1,[1],2.3000000000000003,-5,7,"(0.94, 0.96)" -2308,100,100,,1,1,[1],2.3000000000000003,-5,8,"(0.93, 0.955)" -2309,100,100,,1,1,[1],2.3000000000000003,-5,9,"(0.94, 0.97)" -2310,100,100,,1,1,[1],2.3000000000000003,-4,0,"(0.88, 0.93)" -2311,100,100,,1,1,[1],2.3000000000000003,-4,1,"(0.85, 0.925)" -2312,100,100,,1,1,[1],2.3000000000000003,-4,2,"(0.88, 0.92)" -2313,100,100,,1,1,[1],2.3000000000000003,-4,3,"(0.88, 0.92)" -2314,100,100,,1,1,[1],2.3000000000000003,-4,4,"(0.89, 0.935)" -2315,100,100,,1,1,[1],2.3000000000000003,-4,5,"(0.91, 0.955)" -2316,100,100,,1,1,[1],2.3000000000000003,-4,6,"(0.86, 0.9)" -2317,100,100,,1,1,[1],2.3000000000000003,-4,7,"(0.86, 0.91)" -2318,100,100,,1,1,[1],2.3000000000000003,-4,8,"(0.88, 0.89)" -2319,100,100,,1,1,[1],2.3000000000000003,-4,9,"(0.83, 0.915)" -2320,100,100,,1,1,[1],2.3000000000000003,-3,0,"(0.76, 0.84)" -2321,100,100,,1,1,[1],2.3000000000000003,-3,1,"(0.73, 0.845)" -2322,100,100,,1,1,[1],2.3000000000000003,-3,2,"(0.77, 0.875)" -2323,100,100,,1,1,[1],2.3000000000000003,-3,3,"(0.9, 0.88)" -2324,100,100,,1,1,[1],2.3000000000000003,-3,4,"(0.84, 0.89)" -2325,100,100,,1,1,[1],2.3000000000000003,-3,5,"(0.79, 0.845)" -2326,100,100,,1,1,[1],2.3000000000000003,-3,6,"(0.8, 0.85)" -2327,100,100,,1,1,[1],2.3000000000000003,-3,7,"(0.73, 0.845)" -2328,100,100,,1,1,[1],2.3000000000000003,-3,8,"(0.79, 0.855)" -2329,100,100,,1,1,[1],2.3000000000000003,-3,9,"(0.87, 0.895)" -2330,100,100,,1,1,[1],2.3000000000000003,-2,0,"(0.69, 0.785)" -2331,100,100,,1,1,[1],2.3000000000000003,-2,1,"(0.74, 0.8)" -2332,100,100,,1,1,[1],2.3000000000000003,-2,2,"(0.65, 0.735)" -2333,100,100,,1,1,[1],2.3000000000000003,-2,3,"(0.7, 0.73)" -2334,100,100,,1,1,[1],2.3000000000000003,-2,4,"(0.71, 0.725)" -2335,100,100,,1,1,[1],2.3000000000000003,-2,5,"(0.74, 0.78)" -2336,100,100,,1,1,[1],2.3000000000000003,-2,6,"(0.72, 0.8)" -2337,100,100,,1,1,[1],2.3000000000000003,-2,7,"(0.71, 0.725)" -2338,100,100,,1,1,[1],2.3000000000000003,-2,8,"(0.77, 0.835)" -2339,100,100,,1,1,[1],2.3000000000000003,-2,9,"(0.61, 0.765)" -2340,100,100,,1,1,[1],2.3000000000000003,-1,0,"(0.61, 0.675)" -2341,100,100,,1,1,[1],2.3000000000000003,-1,1,"(0.68, 0.66)" -2342,100,100,,1,1,[1],2.3000000000000003,-1,2,"(0.68, 0.68)" -2343,100,100,,1,1,[1],2.3000000000000003,-1,3,"(0.68, 0.61)" -2344,100,100,,1,1,[1],2.3000000000000003,-1,4,"(0.68, 0.67)" -2345,100,100,,1,1,[1],2.3000000000000003,-1,5,"(0.67, 0.725)" -2346,100,100,,1,1,[1],2.3000000000000003,-1,6,"(0.61, 0.605)" -2347,100,100,,1,1,[1],2.3000000000000003,-1,7,"(0.57, 0.605)" -2348,100,100,,1,1,[1],2.3000000000000003,-1,8,"(0.58, 0.59)" -2349,100,100,,1,1,[1],2.3000000000000003,-1,9,"(0.57, 0.605)" -2350,100,100,,1,1,[1],2.3000000000000003,0,0,"(0.65, 0.535)" -2351,100,100,,1,1,[1],2.3000000000000003,0,1,"(0.59, 0.485)" -2352,100,100,,1,1,[1],2.3000000000000003,0,2,"(0.59, 0.515)" -2353,100,100,,1,1,[1],2.3000000000000003,0,3,"(0.51, 0.505)" -2354,100,100,,1,1,[1],2.3000000000000003,0,4,"(0.58, 0.4)" -2355,100,100,,1,1,[1],2.3000000000000003,0,5,"(0.63, 0.495)" -2356,100,100,,1,1,[1],2.3000000000000003,0,6,"(0.5, 0.49)" -2357,100,100,,1,1,[1],2.3000000000000003,0,7,"(0.57, 0.465)" -2358,100,100,,1,1,[1],2.3000000000000003,0,8,"(0.61, 0.505)" -2359,100,100,,1,1,[1],2.3000000000000003,0,9,"(0.6, 0.43)" -2360,100,100,,1,1,[1],2.3000000000000003,1,0,"(0.64, 0.3)" -2361,100,100,,1,1,[1],2.3000000000000003,1,1,"(0.65, 0.365)" -2362,100,100,,1,1,[1],2.3000000000000003,1,2,"(0.66, 0.36)" -2363,100,100,,1,1,[1],2.3000000000000003,1,3,"(0.72, 0.38)" -2364,100,100,,1,1,[1],2.3000000000000003,1,4,"(0.62, 0.31)" -2365,100,100,,1,1,[1],2.3000000000000003,1,5,"(0.56, 0.37)" -2366,100,100,,1,1,[1],2.3000000000000003,1,6,"(0.58, 0.39)" -2367,100,100,,1,1,[1],2.3000000000000003,1,7,"(0.61, 0.345)" -2368,100,100,,1,1,[1],2.3000000000000003,1,8,"(0.6, 0.29)" -2369,100,100,,1,1,[1],2.3000000000000003,1,9,"(0.68, 0.31)" -2370,100,100,,1,1,[1],2.3000000000000003,2,0,"(0.69, 0.235)" -2371,100,100,,1,1,[1],2.3000000000000003,2,1,"(0.71, 0.235)" -2372,100,100,,1,1,[1],2.3000000000000003,2,2,"(0.77, 0.275)" -2373,100,100,,1,1,[1],2.3000000000000003,2,3,"(0.75, 0.205)" -2374,100,100,,1,1,[1],2.3000000000000003,2,4,"(0.74, 0.24)" -2375,100,100,,1,1,[1],2.3000000000000003,2,5,"(0.62, 0.24)" -2376,100,100,,1,1,[1],2.3000000000000003,2,6,"(0.69, 0.215)" -2377,100,100,,1,1,[1],2.3000000000000003,2,7,"(0.75, 0.225)" -2378,100,100,,1,1,[1],2.3000000000000003,2,8,"(0.67, 0.215)" -2379,100,100,,1,1,[1],2.3000000000000003,2,9,"(0.72, 0.23)" -2380,100,100,,1,1,[1],2.3000000000000003,3,0,"(0.81, 0.105)" -2381,100,100,,1,1,[1],2.3000000000000003,3,1,"(0.84, 0.08)" -2382,100,100,,1,1,[1],2.3000000000000003,3,2,"(0.82, 0.12)" -2383,100,100,,1,1,[1],2.3000000000000003,3,3,"(0.79, 0.145)" -2384,100,100,,1,1,[1],2.3000000000000003,3,4,"(0.79, 0.125)" -2385,100,100,,1,1,[1],2.3000000000000003,3,5,"(0.76, 0.15)" -2386,100,100,,1,1,[1],2.3000000000000003,3,6,"(0.77, 0.135)" -2387,100,100,,1,1,[1],2.3000000000000003,3,7,"(0.71, 0.155)" -2388,100,100,,1,1,[1],2.3000000000000003,3,8,"(0.74, 0.19)" -2389,100,100,,1,1,[1],2.3000000000000003,3,9,"(0.83, 0.125)" -2390,100,100,,1,1,[1],2.3000000000000003,4,0,"(0.87, 0.075)" -2391,100,100,,1,1,[1],2.3000000000000003,4,1,"(0.87, 0.085)" -2392,100,100,,1,1,[1],2.3000000000000003,4,2,"(0.85, 0.105)" -2393,100,100,,1,1,[1],2.3000000000000003,4,3,"(0.86, 0.08)" -2394,100,100,,1,1,[1],2.3000000000000003,4,4,"(0.89, 0.055)" -2395,100,100,,1,1,[1],2.3000000000000003,4,5,"(0.9, 0.05)" -2396,100,100,,1,1,[1],2.3000000000000003,4,6,"(0.86, 0.09)" -2397,100,100,,1,1,[1],2.3000000000000003,4,7,"(0.85, 0.095)" -2398,100,100,,1,1,[1],2.3000000000000003,4,8,"(0.89, 0.055)" -2399,100,100,,1,1,[1],2.3000000000000003,4,9,"(0.88, 0.09)" -2400,100,100,,1,1,[1],2.4000000000000004,-5,0,"(0.94, 0.97)" -2401,100,100,,1,1,[1],2.4000000000000004,-5,1,"(0.93, 0.955)" -2402,100,100,,1,1,[1],2.4000000000000004,-5,2,"(0.96, 0.98)" -2403,100,100,,1,1,[1],2.4000000000000004,-5,3,"(0.95, 0.975)" -2404,100,100,,1,1,[1],2.4000000000000004,-5,4,"(0.93, 0.965)" -2405,100,100,,1,1,[1],2.4000000000000004,-5,5,"(0.93, 0.965)" -2406,100,100,,1,1,[1],2.4000000000000004,-5,6,"(0.92, 0.96)" -2407,100,100,,1,1,[1],2.4000000000000004,-5,7,"(0.93, 0.965)" -2408,100,100,,1,1,[1],2.4000000000000004,-5,8,"(0.89, 0.935)" -2409,100,100,,1,1,[1],2.4000000000000004,-5,9,"(0.95, 0.965)" -2410,100,100,,1,1,[1],2.4000000000000004,-4,0,"(0.94, 0.95)" -2411,100,100,,1,1,[1],2.4000000000000004,-4,1,"(0.91, 0.935)" -2412,100,100,,1,1,[1],2.4000000000000004,-4,2,"(0.85, 0.925)" -2413,100,100,,1,1,[1],2.4000000000000004,-4,3,"(0.84, 0.92)" -2414,100,100,,1,1,[1],2.4000000000000004,-4,4,"(0.86, 0.92)" -2415,100,100,,1,1,[1],2.4000000000000004,-4,5,"(0.93, 0.965)" -2416,100,100,,1,1,[1],2.4000000000000004,-4,6,"(0.85, 0.925)" -2417,100,100,,1,1,[1],2.4000000000000004,-4,7,"(0.91, 0.935)" -2418,100,100,,1,1,[1],2.4000000000000004,-4,8,"(0.88, 0.92)" -2419,100,100,,1,1,[1],2.4000000000000004,-4,9,"(0.82, 0.89)" -2420,100,100,,1,1,[1],2.4000000000000004,-3,0,"(0.8, 0.87)" -2421,100,100,,1,1,[1],2.4000000000000004,-3,1,"(0.8, 0.86)" -2422,100,100,,1,1,[1],2.4000000000000004,-3,2,"(0.85, 0.875)" -2423,100,100,,1,1,[1],2.4000000000000004,-3,3,"(0.72, 0.84)" -2424,100,100,,1,1,[1],2.4000000000000004,-3,4,"(0.8, 0.86)" -2425,100,100,,1,1,[1],2.4000000000000004,-3,5,"(0.74, 0.81)" -2426,100,100,,1,1,[1],2.4000000000000004,-3,6,"(0.82, 0.89)" -2427,100,100,,1,1,[1],2.4000000000000004,-3,7,"(0.74, 0.85)" -2428,100,100,,1,1,[1],2.4000000000000004,-3,8,"(0.8, 0.89)" -2429,100,100,,1,1,[1],2.4000000000000004,-3,9,"(0.84, 0.85)" -2430,100,100,,1,1,[1],2.4000000000000004,-2,0,"(0.68, 0.7)" -2431,100,100,,1,1,[1],2.4000000000000004,-2,1,"(0.67, 0.775)" -2432,100,100,,1,1,[1],2.4000000000000004,-2,2,"(0.76, 0.82)" -2433,100,100,,1,1,[1],2.4000000000000004,-2,3,"(0.73, 0.805)" -2434,100,100,,1,1,[1],2.4000000000000004,-2,4,"(0.75, 0.785)" -2435,100,100,,1,1,[1],2.4000000000000004,-2,5,"(0.68, 0.77)" -2436,100,100,,1,1,[1],2.4000000000000004,-2,6,"(0.67, 0.725)" -2437,100,100,,1,1,[1],2.4000000000000004,-2,7,"(0.7, 0.75)" -2438,100,100,,1,1,[1],2.4000000000000004,-2,8,"(0.74, 0.81)" -2439,100,100,,1,1,[1],2.4000000000000004,-2,9,"(0.73, 0.775)" -2440,100,100,,1,1,[1],2.4000000000000004,-1,0,"(0.58, 0.67)" -2441,100,100,,1,1,[1],2.4000000000000004,-1,1,"(0.55, 0.605)" -2442,100,100,,1,1,[1],2.4000000000000004,-1,2,"(0.48, 0.6)" -2443,100,100,,1,1,[1],2.4000000000000004,-1,3,"(0.56, 0.61)" -2444,100,100,,1,1,[1],2.4000000000000004,-1,4,"(0.6, 0.6)" -2445,100,100,,1,1,[1],2.4000000000000004,-1,5,"(0.63, 0.635)" -2446,100,100,,1,1,[1],2.4000000000000004,-1,6,"(0.63, 0.675)" -2447,100,100,,1,1,[1],2.4000000000000004,-1,7,"(0.62, 0.65)" -2448,100,100,,1,1,[1],2.4000000000000004,-1,8,"(0.59, 0.595)" -2449,100,100,,1,1,[1],2.4000000000000004,-1,9,"(0.65, 0.605)" -2450,100,100,,1,1,[1],2.4000000000000004,0,0,"(0.65, 0.515)" -2451,100,100,,1,1,[1],2.4000000000000004,0,1,"(0.7, 0.46)" -2452,100,100,,1,1,[1],2.4000000000000004,0,2,"(0.54, 0.59)" -2453,100,100,,1,1,[1],2.4000000000000004,0,3,"(0.58, 0.54)" -2454,100,100,,1,1,[1],2.4000000000000004,0,4,"(0.41, 0.485)" -2455,100,100,,1,1,[1],2.4000000000000004,0,5,"(0.57, 0.475)" -2456,100,100,,1,1,[1],2.4000000000000004,0,6,"(0.6, 0.48)" -2457,100,100,,1,1,[1],2.4000000000000004,0,7,"(0.57, 0.565)" -2458,100,100,,1,1,[1],2.4000000000000004,0,8,"(0.55, 0.535)" -2459,100,100,,1,1,[1],2.4000000000000004,0,9,"(0.58, 0.49)" -2460,100,100,,1,1,[1],2.4000000000000004,1,0,"(0.6, 0.39)" -2461,100,100,,1,1,[1],2.4000000000000004,1,1,"(0.62, 0.33)" -2462,100,100,,1,1,[1],2.4000000000000004,1,2,"(0.64, 0.4)" -2463,100,100,,1,1,[1],2.4000000000000004,1,3,"(0.63, 0.315)" -2464,100,100,,1,1,[1],2.4000000000000004,1,4,"(0.55, 0.405)" -2465,100,100,,1,1,[1],2.4000000000000004,1,5,"(0.51, 0.355)" -2466,100,100,,1,1,[1],2.4000000000000004,1,6,"(0.64, 0.29)" -2467,100,100,,1,1,[1],2.4000000000000004,1,7,"(0.65, 0.345)" -2468,100,100,,1,1,[1],2.4000000000000004,1,8,"(0.55, 0.355)" -2469,100,100,,1,1,[1],2.4000000000000004,1,9,"(0.59, 0.365)" -2470,100,100,,1,1,[1],2.4000000000000004,2,0,"(0.68, 0.2)" -2471,100,100,,1,1,[1],2.4000000000000004,2,1,"(0.82, 0.21)" -2472,100,100,,1,1,[1],2.4000000000000004,2,2,"(0.77, 0.215)" -2473,100,100,,1,1,[1],2.4000000000000004,2,3,"(0.6, 0.25)" -2474,100,100,,1,1,[1],2.4000000000000004,2,4,"(0.7, 0.23)" -2475,100,100,,1,1,[1],2.4000000000000004,2,5,"(0.78, 0.22)" -2476,100,100,,1,1,[1],2.4000000000000004,2,6,"(0.71, 0.205)" -2477,100,100,,1,1,[1],2.4000000000000004,2,7,"(0.77, 0.235)" -2478,100,100,,1,1,[1],2.4000000000000004,2,8,"(0.66, 0.2)" -2479,100,100,,1,1,[1],2.4000000000000004,2,9,"(0.74, 0.19)" -2480,100,100,,1,1,[1],2.4000000000000004,3,0,"(0.84, 0.11)" -2481,100,100,,1,1,[1],2.4000000000000004,3,1,"(0.81, 0.155)" -2482,100,100,,1,1,[1],2.4000000000000004,3,2,"(0.8, 0.11)" -2483,100,100,,1,1,[1],2.4000000000000004,3,3,"(0.8, 0.13)" -2484,100,100,,1,1,[1],2.4000000000000004,3,4,"(0.76, 0.14)" -2485,100,100,,1,1,[1],2.4000000000000004,3,5,"(0.84, 0.14)" -2486,100,100,,1,1,[1],2.4000000000000004,3,6,"(0.72, 0.18)" -2487,100,100,,1,1,[1],2.4000000000000004,3,7,"(0.79, 0.115)" -2488,100,100,,1,1,[1],2.4000000000000004,3,8,"(0.84, 0.12)" -2489,100,100,,1,1,[1],2.4000000000000004,3,9,"(0.75, 0.155)" -2490,100,100,,1,1,[1],2.4000000000000004,4,0,"(0.86, 0.11)" -2491,100,100,,1,1,[1],2.4000000000000004,4,1,"(0.95, 0.025)" -2492,100,100,,1,1,[1],2.4000000000000004,4,2,"(0.9, 0.07)" -2493,100,100,,1,1,[1],2.4000000000000004,4,3,"(0.86, 0.08)" -2494,100,100,,1,1,[1],2.4000000000000004,4,4,"(0.89, 0.075)" -2495,100,100,,1,1,[1],2.4000000000000004,4,5,"(0.92, 0.07)" -2496,100,100,,1,1,[1],2.4000000000000004,4,6,"(0.87, 0.075)" -2497,100,100,,1,1,[1],2.4000000000000004,4,7,"(0.92, 0.06)" -2498,100,100,,1,1,[1],2.4000000000000004,4,8,"(0.85, 0.105)" -2499,100,100,,1,1,[1],2.4000000000000004,4,9,"(0.86, 0.09)" -2500,100,100,,1,1,[1],2.5,-5,0,"(0.97, 0.985)" -2501,100,100,,1,1,[1],2.5,-5,1,"(0.91, 0.955)" -2502,100,100,,1,1,[1],2.5,-5,2,"(0.91, 0.955)" -2503,100,100,,1,1,[1],2.5,-5,3,"(0.94, 0.96)" -2504,100,100,,1,1,[1],2.5,-5,4,"(0.95, 0.975)" -2505,100,100,,1,1,[1],2.5,-5,5,"(0.92, 0.95)" -2506,100,100,,1,1,[1],2.5,-5,6,"(0.86, 0.93)" -2507,100,100,,1,1,[1],2.5,-5,7,"(0.95, 0.975)" -2508,100,100,,1,1,[1],2.5,-5,8,"(0.89, 0.945)" -2509,100,100,,1,1,[1],2.5,-5,9,"(0.94, 0.97)" -2510,100,100,,1,1,[1],2.5,-4,0,"(0.79, 0.885)" -2511,100,100,,1,1,[1],2.5,-4,1,"(0.9, 0.94)" -2512,100,100,,1,1,[1],2.5,-4,2,"(0.89, 0.925)" -2513,100,100,,1,1,[1],2.5,-4,3,"(0.92, 0.96)" -2514,100,100,,1,1,[1],2.5,-4,4,"(0.84, 0.9)" -2515,100,100,,1,1,[1],2.5,-4,5,"(0.77, 0.875)" -2516,100,100,,1,1,[1],2.5,-4,6,"(0.84, 0.91)" -2517,100,100,,1,1,[1],2.5,-4,7,"(0.82, 0.91)" -2518,100,100,,1,1,[1],2.5,-4,8,"(0.87, 0.905)" -2519,100,100,,1,1,[1],2.5,-4,9,"(0.84, 0.9)" -2520,100,100,,1,1,[1],2.5,-3,0,"(0.82, 0.88)" -2521,100,100,,1,1,[1],2.5,-3,1,"(0.8, 0.87)" -2522,100,100,,1,1,[1],2.5,-3,2,"(0.75, 0.835)" -2523,100,100,,1,1,[1],2.5,-3,3,"(0.81, 0.865)" -2524,100,100,,1,1,[1],2.5,-3,4,"(0.76, 0.85)" -2525,100,100,,1,1,[1],2.5,-3,5,"(0.79, 0.845)" -2526,100,100,,1,1,[1],2.5,-3,6,"(0.8, 0.86)" -2527,100,100,,1,1,[1],2.5,-3,7,"(0.76, 0.81)" -2528,100,100,,1,1,[1],2.5,-3,8,"(0.8, 0.87)" -2529,100,100,,1,1,[1],2.5,-3,9,"(0.87, 0.925)" -2530,100,100,,1,1,[1],2.5,-2,0,"(0.64, 0.69)" -2531,100,100,,1,1,[1],2.5,-2,1,"(0.67, 0.745)" -2532,100,100,,1,1,[1],2.5,-2,2,"(0.74, 0.8)" -2533,100,100,,1,1,[1],2.5,-2,3,"(0.79, 0.795)" -2534,100,100,,1,1,[1],2.5,-2,4,"(0.76, 0.76)" -2535,100,100,,1,1,[1],2.5,-2,5,"(0.68, 0.78)" -2536,100,100,,1,1,[1],2.5,-2,6,"(0.76, 0.82)" -2537,100,100,,1,1,[1],2.5,-2,7,"(0.65, 0.745)" -2538,100,100,,1,1,[1],2.5,-2,8,"(0.56, 0.73)" -2539,100,100,,1,1,[1],2.5,-2,9,"(0.7, 0.79)" -2540,100,100,,1,1,[1],2.5,-1,0,"(0.64, 0.7)" -2541,100,100,,1,1,[1],2.5,-1,1,"(0.68, 0.67)" -2542,100,100,,1,1,[1],2.5,-1,2,"(0.64, 0.66)" -2543,100,100,,1,1,[1],2.5,-1,3,"(0.5, 0.61)" -2544,100,100,,1,1,[1],2.5,-1,4,"(0.54, 0.66)" -2545,100,100,,1,1,[1],2.5,-1,5,"(0.54, 0.57)" -2546,100,100,,1,1,[1],2.5,-1,6,"(0.71, 0.615)" -2547,100,100,,1,1,[1],2.5,-1,7,"(0.63, 0.615)" -2548,100,100,,1,1,[1],2.5,-1,8,"(0.56, 0.65)" -2549,100,100,,1,1,[1],2.5,-1,9,"(0.59, 0.645)" -2550,100,100,,1,1,[1],2.5,0,0,"(0.67, 0.535)" -2551,100,100,,1,1,[1],2.5,0,1,"(0.53, 0.455)" -2552,100,100,,1,1,[1],2.5,0,2,"(0.61, 0.515)" -2553,100,100,,1,1,[1],2.5,0,3,"(0.56, 0.53)" -2554,100,100,,1,1,[1],2.5,0,4,"(0.52, 0.5)" -2555,100,100,,1,1,[1],2.5,0,5,"(0.6, 0.56)" -2556,100,100,,1,1,[1],2.5,0,6,"(0.53, 0.545)" -2557,100,100,,1,1,[1],2.5,0,7,"(0.59, 0.505)" -2558,100,100,,1,1,[1],2.5,0,8,"(0.53, 0.465)" -2559,100,100,,1,1,[1],2.5,0,9,"(0.59, 0.475)" -2560,100,100,,1,1,[1],2.5,1,0,"(0.58, 0.31)" -2561,100,100,,1,1,[1],2.5,1,1,"(0.65, 0.335)" -2562,100,100,,1,1,[1],2.5,1,2,"(0.55, 0.395)" -2563,100,100,,1,1,[1],2.5,1,3,"(0.55, 0.405)" -2564,100,100,,1,1,[1],2.5,1,4,"(0.58, 0.33)" -2565,100,100,,1,1,[1],2.5,1,5,"(0.65, 0.425)" -2566,100,100,,1,1,[1],2.5,1,6,"(0.68, 0.36)" -2567,100,100,,1,1,[1],2.5,1,7,"(0.62, 0.36)" -2568,100,100,,1,1,[1],2.5,1,8,"(0.62, 0.36)" -2569,100,100,,1,1,[1],2.5,1,9,"(0.54, 0.41)" -2570,100,100,,1,1,[1],2.5,2,0,"(0.62, 0.27)" -2571,100,100,,1,1,[1],2.5,2,1,"(0.67, 0.255)" -2572,100,100,,1,1,[1],2.5,2,2,"(0.65, 0.265)" -2573,100,100,,1,1,[1],2.5,2,3,"(0.73, 0.245)" -2574,100,100,,1,1,[1],2.5,2,4,"(0.68, 0.24)" -2575,100,100,,1,1,[1],2.5,2,5,"(0.77, 0.185)" -2576,100,100,,1,1,[1],2.5,2,6,"(0.7, 0.25)" -2577,100,100,,1,1,[1],2.5,2,7,"(0.74, 0.26)" -2578,100,100,,1,1,[1],2.5,2,8,"(0.69, 0.215)" -2579,100,100,,1,1,[1],2.5,2,9,"(0.82, 0.2)" -2580,100,100,,1,1,[1],2.5,3,0,"(0.79, 0.155)" -2581,100,100,,1,1,[1],2.5,3,1,"(0.74, 0.17)" -2582,100,100,,1,1,[1],2.5,3,2,"(0.72, 0.19)" -2583,100,100,,1,1,[1],2.5,3,3,"(0.84, 0.14)" -2584,100,100,,1,1,[1],2.5,3,4,"(0.76, 0.14)" -2585,100,100,,1,1,[1],2.5,3,5,"(0.82, 0.14)" -2586,100,100,,1,1,[1],2.5,3,6,"(0.68, 0.17)" -2587,100,100,,1,1,[1],2.5,3,7,"(0.74, 0.15)" -2588,100,100,,1,1,[1],2.5,3,8,"(0.75, 0.175)" -2589,100,100,,1,1,[1],2.5,3,9,"(0.72, 0.16)" -2590,100,100,,1,1,[1],2.5,4,0,"(0.86, 0.08)" -2591,100,100,,1,1,[1],2.5,4,1,"(0.91, 0.055)" -2592,100,100,,1,1,[1],2.5,4,2,"(0.87, 0.075)" -2593,100,100,,1,1,[1],2.5,4,3,"(0.85, 0.095)" -2594,100,100,,1,1,[1],2.5,4,4,"(0.88, 0.07)" -2595,100,100,,1,1,[1],2.5,4,5,"(0.88, 0.1)" -2596,100,100,,1,1,[1],2.5,4,6,"(0.93, 0.035)" -2597,100,100,,1,1,[1],2.5,4,7,"(0.87, 0.075)" -2598,100,100,,1,1,[1],2.5,4,8,"(0.85, 0.085)" -2599,100,100,,1,1,[1],2.5,4,9,"(0.91, 0.055)" -2600,100,100,,1,1,[1],2.6,-5,0,"(0.9, 0.94)" -2601,100,100,,1,1,[1],2.6,-5,1,"(0.93, 0.965)" -2602,100,100,,1,1,[1],2.6,-5,2,"(0.91, 0.945)" -2603,100,100,,1,1,[1],2.6,-5,3,"(0.96, 0.98)" -2604,100,100,,1,1,[1],2.6,-5,4,"(0.88, 0.94)" -2605,100,100,,1,1,[1],2.6,-5,5,"(0.92, 0.95)" -2606,100,100,,1,1,[1],2.6,-5,6,"(0.95, 0.965)" -2607,100,100,,1,1,[1],2.6,-5,7,"(0.95, 0.975)" -2608,100,100,,1,1,[1],2.6,-5,8,"(0.96, 0.98)" -2609,100,100,,1,1,[1],2.6,-5,9,"(0.94, 0.96)" -2610,100,100,,1,1,[1],2.6,-4,0,"(0.85, 0.925)" -2611,100,100,,1,1,[1],2.6,-4,1,"(0.89, 0.945)" -2612,100,100,,1,1,[1],2.6,-4,2,"(0.82, 0.9)" -2613,100,100,,1,1,[1],2.6,-4,3,"(0.79, 0.875)" -2614,100,100,,1,1,[1],2.6,-4,4,"(0.78, 0.85)" -2615,100,100,,1,1,[1],2.6,-4,5,"(0.81, 0.895)" -2616,100,100,,1,1,[1],2.6,-4,6,"(0.88, 0.93)" -2617,100,100,,1,1,[1],2.6,-4,7,"(0.89, 0.925)" -2618,100,100,,1,1,[1],2.6,-4,8,"(0.85, 0.915)" -2619,100,100,,1,1,[1],2.6,-4,9,"(0.84, 0.89)" -2620,100,100,,1,1,[1],2.6,-3,0,"(0.7, 0.84)" -2621,100,100,,1,1,[1],2.6,-3,1,"(0.75, 0.815)" -2622,100,100,,1,1,[1],2.6,-3,2,"(0.78, 0.86)" -2623,100,100,,1,1,[1],2.6,-3,3,"(0.69, 0.815)" -2624,100,100,,1,1,[1],2.6,-3,4,"(0.81, 0.855)" -2625,100,100,,1,1,[1],2.6,-3,5,"(0.8, 0.89)" -2626,100,100,,1,1,[1],2.6,-3,6,"(0.82, 0.89)" -2627,100,100,,1,1,[1],2.6,-3,7,"(0.78, 0.86)" -2628,100,100,,1,1,[1],2.6,-3,8,"(0.76, 0.85)" -2629,100,100,,1,1,[1],2.6,-3,9,"(0.73, 0.835)" -2630,100,100,,1,1,[1],2.6,-2,0,"(0.8, 0.79)" -2631,100,100,,1,1,[1],2.6,-2,1,"(0.68, 0.74)" -2632,100,100,,1,1,[1],2.6,-2,2,"(0.67, 0.795)" -2633,100,100,,1,1,[1],2.6,-2,3,"(0.59, 0.715)" -2634,100,100,,1,1,[1],2.6,-2,4,"(0.66, 0.72)" -2635,100,100,,1,1,[1],2.6,-2,5,"(0.71, 0.765)" -2636,100,100,,1,1,[1],2.6,-2,6,"(0.64, 0.74)" -2637,100,100,,1,1,[1],2.6,-2,7,"(0.64, 0.77)" -2638,100,100,,1,1,[1],2.6,-2,8,"(0.7, 0.72)" -2639,100,100,,1,1,[1],2.6,-2,9,"(0.64, 0.75)" -2640,100,100,,1,1,[1],2.6,-1,0,"(0.63, 0.625)" -2641,100,100,,1,1,[1],2.6,-1,1,"(0.63, 0.665)" -2642,100,100,,1,1,[1],2.6,-1,2,"(0.54, 0.58)" -2643,100,100,,1,1,[1],2.6,-1,3,"(0.59, 0.625)" -2644,100,100,,1,1,[1],2.6,-1,4,"(0.54, 0.6)" -2645,100,100,,1,1,[1],2.6,-1,5,"(0.64, 0.61)" -2646,100,100,,1,1,[1],2.6,-1,6,"(0.54, 0.61)" -2647,100,100,,1,1,[1],2.6,-1,7,"(0.64, 0.67)" -2648,100,100,,1,1,[1],2.6,-1,8,"(0.63, 0.615)" -2649,100,100,,1,1,[1],2.6,-1,9,"(0.59, 0.655)" -2650,100,100,,1,1,[1],2.6,0,0,"(0.49, 0.535)" -2651,100,100,,1,1,[1],2.6,0,1,"(0.65, 0.465)" -2652,100,100,,1,1,[1],2.6,0,2,"(0.54, 0.55)" -2653,100,100,,1,1,[1],2.6,0,3,"(0.56, 0.5)" -2654,100,100,,1,1,[1],2.6,0,4,"(0.57, 0.535)" -2655,100,100,,1,1,[1],2.6,0,5,"(0.49, 0.515)" -2656,100,100,,1,1,[1],2.6,0,6,"(0.59, 0.525)" -2657,100,100,,1,1,[1],2.6,0,7,"(0.54, 0.45)" -2658,100,100,,1,1,[1],2.6,0,8,"(0.62, 0.54)" -2659,100,100,,1,1,[1],2.6,0,9,"(0.54, 0.56)" -2660,100,100,,1,1,[1],2.6,1,0,"(0.59, 0.345)" -2661,100,100,,1,1,[1],2.6,1,1,"(0.65, 0.355)" -2662,100,100,,1,1,[1],2.6,1,2,"(0.57, 0.395)" -2663,100,100,,1,1,[1],2.6,1,3,"(0.57, 0.385)" -2664,100,100,,1,1,[1],2.6,1,4,"(0.64, 0.35)" -2665,100,100,,1,1,[1],2.6,1,5,"(0.57, 0.385)" -2666,100,100,,1,1,[1],2.6,1,6,"(0.61, 0.355)" -2667,100,100,,1,1,[1],2.6,1,7,"(0.6, 0.41)" -2668,100,100,,1,1,[1],2.6,1,8,"(0.61, 0.325)" -2669,100,100,,1,1,[1],2.6,1,9,"(0.62, 0.32)" -2670,100,100,,1,1,[1],2.6,2,0,"(0.67, 0.195)" -2671,100,100,,1,1,[1],2.6,2,1,"(0.69, 0.245)" -2672,100,100,,1,1,[1],2.6,2,2,"(0.59, 0.245)" -2673,100,100,,1,1,[1],2.6,2,3,"(0.72, 0.18)" -2674,100,100,,1,1,[1],2.6,2,4,"(0.69, 0.285)" -2675,100,100,,1,1,[1],2.6,2,5,"(0.64, 0.33)" -2676,100,100,,1,1,[1],2.6,2,6,"(0.74, 0.2)" -2677,100,100,,1,1,[1],2.6,2,7,"(0.72, 0.26)" -2678,100,100,,1,1,[1],2.6,2,8,"(0.67, 0.275)" -2679,100,100,,1,1,[1],2.6,2,9,"(0.61, 0.265)" -2680,100,100,,1,1,[1],2.6,3,0,"(0.77, 0.135)" -2681,100,100,,1,1,[1],2.6,3,1,"(0.72, 0.19)" -2682,100,100,,1,1,[1],2.6,3,2,"(0.73, 0.185)" -2683,100,100,,1,1,[1],2.6,3,3,"(0.81, 0.145)" -2684,100,100,,1,1,[1],2.6,3,4,"(0.86, 0.13)" -2685,100,100,,1,1,[1],2.6,3,5,"(0.79, 0.135)" -2686,100,100,,1,1,[1],2.6,3,6,"(0.75, 0.165)" -2687,100,100,,1,1,[1],2.6,3,7,"(0.7, 0.2)" -2688,100,100,,1,1,[1],2.6,3,8,"(0.74, 0.14)" -2689,100,100,,1,1,[1],2.6,3,9,"(0.8, 0.16)" -2690,100,100,,1,1,[1],2.6,4,0,"(0.9, 0.05)" -2691,100,100,,1,1,[1],2.6,4,1,"(0.89, 0.055)" -2692,100,100,,1,1,[1],2.6,4,2,"(0.82, 0.09)" -2693,100,100,,1,1,[1],2.6,4,3,"(0.81, 0.115)" -2694,100,100,,1,1,[1],2.6,4,4,"(0.9, 0.05)" -2695,100,100,,1,1,[1],2.6,4,5,"(0.84, 0.08)" -2696,100,100,,1,1,[1],2.6,4,6,"(0.81, 0.105)" -2697,100,100,,1,1,[1],2.6,4,7,"(0.89, 0.065)" -2698,100,100,,1,1,[1],2.6,4,8,"(0.89, 0.055)" -2699,100,100,,1,1,[1],2.6,4,9,"(0.88, 0.09)" -2700,100,100,,1,1,[1],2.7,-5,0,"(0.94, 0.97)" -2701,100,100,,1,1,[1],2.7,-5,1,"(0.88, 0.94)" -2702,100,100,,1,1,[1],2.7,-5,2,"(0.93, 0.965)" -2703,100,100,,1,1,[1],2.7,-5,3,"(0.91, 0.955)" -2704,100,100,,1,1,[1],2.7,-5,4,"(0.88, 0.93)" -2705,100,100,,1,1,[1],2.7,-5,5,"(0.93, 0.955)" -2706,100,100,,1,1,[1],2.7,-5,6,"(0.89, 0.945)" -2707,100,100,,1,1,[1],2.7,-5,7,"(0.91, 0.955)" -2708,100,100,,1,1,[1],2.7,-5,8,"(0.96, 0.98)" -2709,100,100,,1,1,[1],2.7,-5,9,"(0.87, 0.935)" -2710,100,100,,1,1,[1],2.7,-4,0,"(0.8, 0.88)" -2711,100,100,,1,1,[1],2.7,-4,1,"(0.83, 0.895)" -2712,100,100,,1,1,[1],2.7,-4,2,"(0.86, 0.9)" -2713,100,100,,1,1,[1],2.7,-4,3,"(0.83, 0.905)" -2714,100,100,,1,1,[1],2.7,-4,4,"(0.78, 0.88)" -2715,100,100,,1,1,[1],2.7,-4,5,"(0.84, 0.91)" -2716,100,100,,1,1,[1],2.7,-4,6,"(0.87, 0.905)" -2717,100,100,,1,1,[1],2.7,-4,7,"(0.77, 0.855)" -2718,100,100,,1,1,[1],2.7,-4,8,"(0.82, 0.89)" -2719,100,100,,1,1,[1],2.7,-4,9,"(0.85, 0.905)" -2720,100,100,,1,1,[1],2.7,-3,0,"(0.87, 0.875)" -2721,100,100,,1,1,[1],2.7,-3,1,"(0.74, 0.79)" -2722,100,100,,1,1,[1],2.7,-3,2,"(0.76, 0.83)" -2723,100,100,,1,1,[1],2.7,-3,3,"(0.78, 0.86)" -2724,100,100,,1,1,[1],2.7,-3,4,"(0.77, 0.855)" -2725,100,100,,1,1,[1],2.7,-3,5,"(0.77, 0.835)" -2726,100,100,,1,1,[1],2.7,-3,6,"(0.76, 0.82)" -2727,100,100,,1,1,[1],2.7,-3,7,"(0.82, 0.85)" -2728,100,100,,1,1,[1],2.7,-3,8,"(0.76, 0.87)" -2729,100,100,,1,1,[1],2.7,-3,9,"(0.74, 0.8)" -2730,100,100,,1,1,[1],2.7,-2,0,"(0.63, 0.695)" -2731,100,100,,1,1,[1],2.7,-2,1,"(0.69, 0.735)" -2732,100,100,,1,1,[1],2.7,-2,2,"(0.59, 0.725)" -2733,100,100,,1,1,[1],2.7,-2,3,"(0.71, 0.675)" -2734,100,100,,1,1,[1],2.7,-2,4,"(0.67, 0.725)" -2735,100,100,,1,1,[1],2.7,-2,5,"(0.71, 0.765)" -2736,100,100,,1,1,[1],2.7,-2,6,"(0.54, 0.7)" -2737,100,100,,1,1,[1],2.7,-2,7,"(0.71, 0.765)" -2738,100,100,,1,1,[1],2.7,-2,8,"(0.66, 0.72)" -2739,100,100,,1,1,[1],2.7,-2,9,"(0.65, 0.785)" -2740,100,100,,1,1,[1],2.7,-1,0,"(0.64, 0.69)" -2741,100,100,,1,1,[1],2.7,-1,1,"(0.59, 0.615)" -2742,100,100,,1,1,[1],2.7,-1,2,"(0.5, 0.61)" -2743,100,100,,1,1,[1],2.7,-1,3,"(0.56, 0.59)" -2744,100,100,,1,1,[1],2.7,-1,4,"(0.6, 0.66)" -2745,100,100,,1,1,[1],2.7,-1,5,"(0.69, 0.625)" -2746,100,100,,1,1,[1],2.7,-1,6,"(0.56, 0.62)" -2747,100,100,,1,1,[1],2.7,-1,7,"(0.62, 0.66)" -2748,100,100,,1,1,[1],2.7,-1,8,"(0.57, 0.715)" -2749,100,100,,1,1,[1],2.7,-1,9,"(0.63, 0.625)" -2750,100,100,,1,1,[1],2.7,0,0,"(0.51, 0.485)" -2751,100,100,,1,1,[1],2.7,0,1,"(0.54, 0.44)" -2752,100,100,,1,1,[1],2.7,0,2,"(0.57, 0.495)" -2753,100,100,,1,1,[1],2.7,0,3,"(0.63, 0.525)" -2754,100,100,,1,1,[1],2.7,0,4,"(0.5, 0.49)" -2755,100,100,,1,1,[1],2.7,0,5,"(0.57, 0.545)" -2756,100,100,,1,1,[1],2.7,0,6,"(0.57, 0.465)" -2757,100,100,,1,1,[1],2.7,0,7,"(0.56, 0.51)" -2758,100,100,,1,1,[1],2.7,0,8,"(0.58, 0.47)" -2759,100,100,,1,1,[1],2.7,0,9,"(0.58, 0.53)" -2760,100,100,,1,1,[1],2.7,1,0,"(0.6, 0.35)" -2761,100,100,,1,1,[1],2.7,1,1,"(0.57, 0.425)" -2762,100,100,,1,1,[1],2.7,1,2,"(0.6, 0.37)" -2763,100,100,,1,1,[1],2.7,1,3,"(0.51, 0.395)" -2764,100,100,,1,1,[1],2.7,1,4,"(0.52, 0.37)" -2765,100,100,,1,1,[1],2.7,1,5,"(0.57, 0.405)" -2766,100,100,,1,1,[1],2.7,1,6,"(0.64, 0.36)" -2767,100,100,,1,1,[1],2.7,1,7,"(0.55, 0.365)" -2768,100,100,,1,1,[1],2.7,1,8,"(0.65, 0.405)" -2769,100,100,,1,1,[1],2.7,1,9,"(0.66, 0.31)" -2770,100,100,,1,1,[1],2.7,2,0,"(0.7, 0.31)" -2771,100,100,,1,1,[1],2.7,2,1,"(0.67, 0.275)" -2772,100,100,,1,1,[1],2.7,2,2,"(0.61, 0.305)" -2773,100,100,,1,1,[1],2.7,2,3,"(0.64, 0.26)" -2774,100,100,,1,1,[1],2.7,2,4,"(0.59, 0.235)" -2775,100,100,,1,1,[1],2.7,2,5,"(0.66, 0.3)" -2776,100,100,,1,1,[1],2.7,2,6,"(0.63, 0.275)" -2777,100,100,,1,1,[1],2.7,2,7,"(0.63, 0.255)" -2778,100,100,,1,1,[1],2.7,2,8,"(0.75, 0.295)" -2779,100,100,,1,1,[1],2.7,2,9,"(0.67, 0.245)" -2780,100,100,,1,1,[1],2.7,3,0,"(0.72, 0.21)" -2781,100,100,,1,1,[1],2.7,3,1,"(0.75, 0.135)" -2782,100,100,,1,1,[1],2.7,3,2,"(0.75, 0.135)" -2783,100,100,,1,1,[1],2.7,3,3,"(0.71, 0.185)" -2784,100,100,,1,1,[1],2.7,3,4,"(0.73, 0.185)" -2785,100,100,,1,1,[1],2.7,3,5,"(0.69, 0.205)" -2786,100,100,,1,1,[1],2.7,3,6,"(0.74, 0.15)" -2787,100,100,,1,1,[1],2.7,3,7,"(0.72, 0.22)" -2788,100,100,,1,1,[1],2.7,3,8,"(0.76, 0.14)" -2789,100,100,,1,1,[1],2.7,3,9,"(0.75, 0.205)" -2790,100,100,,1,1,[1],2.7,4,0,"(0.87, 0.095)" -2791,100,100,,1,1,[1],2.7,4,1,"(0.79, 0.125)" -2792,100,100,,1,1,[1],2.7,4,2,"(0.85, 0.085)" -2793,100,100,,1,1,[1],2.7,4,3,"(0.87, 0.075)" -2794,100,100,,1,1,[1],2.7,4,4,"(0.84, 0.08)" -2795,100,100,,1,1,[1],2.7,4,5,"(0.86, 0.07)" -2796,100,100,,1,1,[1],2.7,4,6,"(0.8, 0.11)" -2797,100,100,,1,1,[1],2.7,4,7,"(0.87, 0.075)" -2798,100,100,,1,1,[1],2.7,4,8,"(0.85, 0.075)" -2799,100,100,,1,1,[1],2.7,4,9,"(0.86, 0.08)" -2800,100,100,,1,1,[1],2.8000000000000003,-5,0,"(0.88, 0.94)" -2801,100,100,,1,1,[1],2.8000000000000003,-5,1,"(0.88, 0.93)" -2802,100,100,,1,1,[1],2.8000000000000003,-5,2,"(0.91, 0.945)" -2803,100,100,,1,1,[1],2.8000000000000003,-5,3,"(0.93, 0.955)" -2804,100,100,,1,1,[1],2.8000000000000003,-5,4,"(0.91, 0.945)" -2805,100,100,,1,1,[1],2.8000000000000003,-5,5,"(0.9, 0.93)" -2806,100,100,,1,1,[1],2.8000000000000003,-5,6,"(0.95, 0.965)" -2807,100,100,,1,1,[1],2.8000000000000003,-5,7,"(0.93, 0.965)" -2808,100,100,,1,1,[1],2.8000000000000003,-5,8,"(0.91, 0.935)" -2809,100,100,,1,1,[1],2.8000000000000003,-5,9,"(0.93, 0.955)" -2810,100,100,,1,1,[1],2.8000000000000003,-4,0,"(0.82, 0.89)" -2811,100,100,,1,1,[1],2.8000000000000003,-4,1,"(0.81, 0.905)" -2812,100,100,,1,1,[1],2.8000000000000003,-4,2,"(0.84, 0.9)" -2813,100,100,,1,1,[1],2.8000000000000003,-4,3,"(0.85, 0.895)" -2814,100,100,,1,1,[1],2.8000000000000003,-4,4,"(0.91, 0.925)" -2815,100,100,,1,1,[1],2.8000000000000003,-4,5,"(0.84, 0.9)" -2816,100,100,,1,1,[1],2.8000000000000003,-4,6,"(0.82, 0.88)" -2817,100,100,,1,1,[1],2.8000000000000003,-4,7,"(0.79, 0.895)" -2818,100,100,,1,1,[1],2.8000000000000003,-4,8,"(0.86, 0.91)" -2819,100,100,,1,1,[1],2.8000000000000003,-4,9,"(0.85, 0.905)" -2820,100,100,,1,1,[1],2.8000000000000003,-3,0,"(0.77, 0.835)" -2821,100,100,,1,1,[1],2.8000000000000003,-3,1,"(0.73, 0.845)" -2822,100,100,,1,1,[1],2.8000000000000003,-3,2,"(0.77, 0.845)" -2823,100,100,,1,1,[1],2.8000000000000003,-3,3,"(0.78, 0.84)" -2824,100,100,,1,1,[1],2.8000000000000003,-3,4,"(0.77, 0.855)" -2825,100,100,,1,1,[1],2.8000000000000003,-3,5,"(0.77, 0.855)" -2826,100,100,,1,1,[1],2.8000000000000003,-3,6,"(0.75, 0.865)" -2827,100,100,,1,1,[1],2.8000000000000003,-3,7,"(0.69, 0.835)" -2828,100,100,,1,1,[1],2.8000000000000003,-3,8,"(0.74, 0.83)" -2829,100,100,,1,1,[1],2.8000000000000003,-3,9,"(0.82, 0.85)" -2830,100,100,,1,1,[1],2.8000000000000003,-2,0,"(0.68, 0.74)" -2831,100,100,,1,1,[1],2.8000000000000003,-2,1,"(0.61, 0.775)" -2832,100,100,,1,1,[1],2.8000000000000003,-2,2,"(0.7, 0.8)" -2833,100,100,,1,1,[1],2.8000000000000003,-2,3,"(0.67, 0.735)" -2834,100,100,,1,1,[1],2.8000000000000003,-2,4,"(0.66, 0.75)" -2835,100,100,,1,1,[1],2.8000000000000003,-2,5,"(0.52, 0.68)" -2836,100,100,,1,1,[1],2.8000000000000003,-2,6,"(0.75, 0.795)" -2837,100,100,,1,1,[1],2.8000000000000003,-2,7,"(0.72, 0.74)" -2838,100,100,,1,1,[1],2.8000000000000003,-2,8,"(0.7, 0.75)" -2839,100,100,,1,1,[1],2.8000000000000003,-2,9,"(0.69, 0.775)" -2840,100,100,,1,1,[1],2.8000000000000003,-1,0,"(0.63, 0.615)" -2841,100,100,,1,1,[1],2.8000000000000003,-1,1,"(0.55, 0.565)" -2842,100,100,,1,1,[1],2.8000000000000003,-1,2,"(0.6, 0.69)" -2843,100,100,,1,1,[1],2.8000000000000003,-1,3,"(0.54, 0.59)" -2844,100,100,,1,1,[1],2.8000000000000003,-1,4,"(0.46, 0.64)" -2845,100,100,,1,1,[1],2.8000000000000003,-1,5,"(0.62, 0.6)" -2846,100,100,,1,1,[1],2.8000000000000003,-1,6,"(0.55, 0.605)" -2847,100,100,,1,1,[1],2.8000000000000003,-1,7,"(0.55, 0.605)" -2848,100,100,,1,1,[1],2.8000000000000003,-1,8,"(0.53, 0.645)" -2849,100,100,,1,1,[1],2.8000000000000003,-1,9,"(0.63, 0.625)" -2850,100,100,,1,1,[1],2.8000000000000003,0,0,"(0.62, 0.54)" -2851,100,100,,1,1,[1],2.8000000000000003,0,1,"(0.52, 0.54)" -2852,100,100,,1,1,[1],2.8000000000000003,0,2,"(0.64, 0.58)" -2853,100,100,,1,1,[1],2.8000000000000003,0,3,"(0.65, 0.525)" -2854,100,100,,1,1,[1],2.8000000000000003,0,4,"(0.61, 0.495)" -2855,100,100,,1,1,[1],2.8000000000000003,0,5,"(0.6, 0.52)" -2856,100,100,,1,1,[1],2.8000000000000003,0,6,"(0.62, 0.59)" -2857,100,100,,1,1,[1],2.8000000000000003,0,7,"(0.53, 0.515)" -2858,100,100,,1,1,[1],2.8000000000000003,0,8,"(0.61, 0.535)" -2859,100,100,,1,1,[1],2.8000000000000003,0,9,"(0.56, 0.45)" -2860,100,100,,1,1,[1],2.8000000000000003,1,0,"(0.64, 0.33)" -2861,100,100,,1,1,[1],2.8000000000000003,1,1,"(0.64, 0.41)" -2862,100,100,,1,1,[1],2.8000000000000003,1,2,"(0.62, 0.34)" -2863,100,100,,1,1,[1],2.8000000000000003,1,3,"(0.5, 0.39)" -2864,100,100,,1,1,[1],2.8000000000000003,1,4,"(0.52, 0.37)" -2865,100,100,,1,1,[1],2.8000000000000003,1,5,"(0.61, 0.365)" -2866,100,100,,1,1,[1],2.8000000000000003,1,6,"(0.63, 0.335)" -2867,100,100,,1,1,[1],2.8000000000000003,1,7,"(0.55, 0.385)" -2868,100,100,,1,1,[1],2.8000000000000003,1,8,"(0.56, 0.39)" -2869,100,100,,1,1,[1],2.8000000000000003,1,9,"(0.71, 0.345)" -2870,100,100,,1,1,[1],2.8000000000000003,2,0,"(0.65, 0.265)" -2871,100,100,,1,1,[1],2.8000000000000003,2,1,"(0.62, 0.24)" -2872,100,100,,1,1,[1],2.8000000000000003,2,2,"(0.78, 0.2)" -2873,100,100,,1,1,[1],2.8000000000000003,2,3,"(0.71, 0.225)" -2874,100,100,,1,1,[1],2.8000000000000003,2,4,"(0.65, 0.245)" -2875,100,100,,1,1,[1],2.8000000000000003,2,5,"(0.64, 0.29)" -2876,100,100,,1,1,[1],2.8000000000000003,2,6,"(0.64, 0.29)" -2877,100,100,,1,1,[1],2.8000000000000003,2,7,"(0.71, 0.315)" -2878,100,100,,1,1,[1],2.8000000000000003,2,8,"(0.61, 0.255)" -2879,100,100,,1,1,[1],2.8000000000000003,2,9,"(0.7, 0.27)" -2880,100,100,,1,1,[1],2.8000000000000003,3,0,"(0.73, 0.155)" -2881,100,100,,1,1,[1],2.8000000000000003,3,1,"(0.79, 0.115)" -2882,100,100,,1,1,[1],2.8000000000000003,3,2,"(0.74, 0.16)" -2883,100,100,,1,1,[1],2.8000000000000003,3,3,"(0.75, 0.185)" -2884,100,100,,1,1,[1],2.8000000000000003,3,4,"(0.8, 0.16)" -2885,100,100,,1,1,[1],2.8000000000000003,3,5,"(0.77, 0.155)" -2886,100,100,,1,1,[1],2.8000000000000003,3,6,"(0.78, 0.15)" -2887,100,100,,1,1,[1],2.8000000000000003,3,7,"(0.75, 0.135)" -2888,100,100,,1,1,[1],2.8000000000000003,3,8,"(0.73, 0.175)" -2889,100,100,,1,1,[1],2.8000000000000003,3,9,"(0.7, 0.17)" -2890,100,100,,1,1,[1],2.8000000000000003,4,0,"(0.8, 0.16)" -2891,100,100,,1,1,[1],2.8000000000000003,4,1,"(0.86, 0.09)" -2892,100,100,,1,1,[1],2.8000000000000003,4,2,"(0.87, 0.075)" -2893,100,100,,1,1,[1],2.8000000000000003,4,3,"(0.83, 0.085)" -2894,100,100,,1,1,[1],2.8000000000000003,4,4,"(0.8, 0.11)" -2895,100,100,,1,1,[1],2.8000000000000003,4,5,"(0.83, 0.095)" -2896,100,100,,1,1,[1],2.8000000000000003,4,6,"(0.9, 0.05)" -2897,100,100,,1,1,[1],2.8000000000000003,4,7,"(0.82, 0.09)" -2898,100,100,,1,1,[1],2.8000000000000003,4,8,"(0.87, 0.065)" -2899,100,100,,1,1,[1],2.8000000000000003,4,9,"(0.81, 0.105)" -2900,100,100,,1,1,[1],2.9000000000000004,-5,0,"(0.85, 0.915)" -2901,100,100,,1,1,[1],2.9000000000000004,-5,1,"(0.86, 0.93)" -2902,100,100,,1,1,[1],2.9000000000000004,-5,2,"(0.85, 0.905)" -2903,100,100,,1,1,[1],2.9000000000000004,-5,3,"(0.9, 0.95)" -2904,100,100,,1,1,[1],2.9000000000000004,-5,4,"(0.88, 0.93)" -2905,100,100,,1,1,[1],2.9000000000000004,-5,5,"(0.92, 0.93)" -2906,100,100,,1,1,[1],2.9000000000000004,-5,6,"(0.9, 0.93)" -2907,100,100,,1,1,[1],2.9000000000000004,-5,7,"(0.77, 0.875)" -2908,100,100,,1,1,[1],2.9000000000000004,-5,8,"(0.84, 0.92)" -2909,100,100,,1,1,[1],2.9000000000000004,-5,9,"(0.88, 0.93)" -2910,100,100,,1,1,[1],2.9000000000000004,-4,0,"(0.88, 0.91)" -2911,100,100,,1,1,[1],2.9000000000000004,-4,1,"(0.79, 0.865)" -2912,100,100,,1,1,[1],2.9000000000000004,-4,2,"(0.82, 0.89)" -2913,100,100,,1,1,[1],2.9000000000000004,-4,3,"(0.89, 0.945)" -2914,100,100,,1,1,[1],2.9000000000000004,-4,4,"(0.83, 0.885)" -2915,100,100,,1,1,[1],2.9000000000000004,-4,5,"(0.8, 0.87)" -2916,100,100,,1,1,[1],2.9000000000000004,-4,6,"(0.8, 0.88)" -2917,100,100,,1,1,[1],2.9000000000000004,-4,7,"(0.89, 0.915)" -2918,100,100,,1,1,[1],2.9000000000000004,-4,8,"(0.84, 0.91)" -2919,100,100,,1,1,[1],2.9000000000000004,-4,9,"(0.84, 0.89)" -2920,100,100,,1,1,[1],2.9000000000000004,-3,0,"(0.75, 0.815)" -2921,100,100,,1,1,[1],2.9000000000000004,-3,1,"(0.73, 0.805)" -2922,100,100,,1,1,[1],2.9000000000000004,-3,2,"(0.76, 0.82)" -2923,100,100,,1,1,[1],2.9000000000000004,-3,3,"(0.6, 0.77)" -2924,100,100,,1,1,[1],2.9000000000000004,-3,4,"(0.78, 0.86)" -2925,100,100,,1,1,[1],2.9000000000000004,-3,5,"(0.65, 0.775)" -2926,100,100,,1,1,[1],2.9000000000000004,-3,6,"(0.75, 0.855)" -2927,100,100,,1,1,[1],2.9000000000000004,-3,7,"(0.78, 0.84)" -2928,100,100,,1,1,[1],2.9000000000000004,-3,8,"(0.73, 0.805)" -2929,100,100,,1,1,[1],2.9000000000000004,-3,9,"(0.75, 0.835)" -2930,100,100,,1,1,[1],2.9000000000000004,-2,0,"(0.66, 0.73)" -2931,100,100,,1,1,[1],2.9000000000000004,-2,1,"(0.58, 0.73)" -2932,100,100,,1,1,[1],2.9000000000000004,-2,2,"(0.68, 0.75)" -2933,100,100,,1,1,[1],2.9000000000000004,-2,3,"(0.69, 0.755)" -2934,100,100,,1,1,[1],2.9000000000000004,-2,4,"(0.63, 0.735)" -2935,100,100,,1,1,[1],2.9000000000000004,-2,5,"(0.67, 0.735)" -2936,100,100,,1,1,[1],2.9000000000000004,-2,6,"(0.63, 0.695)" -2937,100,100,,1,1,[1],2.9000000000000004,-2,7,"(0.64, 0.75)" -2938,100,100,,1,1,[1],2.9000000000000004,-2,8,"(0.69, 0.745)" -2939,100,100,,1,1,[1],2.9000000000000004,-2,9,"(0.71, 0.785)" -2940,100,100,,1,1,[1],2.9000000000000004,-1,0,"(0.6, 0.64)" -2941,100,100,,1,1,[1],2.9000000000000004,-1,1,"(0.55, 0.635)" -2942,100,100,,1,1,[1],2.9000000000000004,-1,2,"(0.58, 0.64)" -2943,100,100,,1,1,[1],2.9000000000000004,-1,3,"(0.55, 0.655)" -2944,100,100,,1,1,[1],2.9000000000000004,-1,4,"(0.64, 0.66)" -2945,100,100,,1,1,[1],2.9000000000000004,-1,5,"(0.59, 0.605)" -2946,100,100,,1,1,[1],2.9000000000000004,-1,6,"(0.6, 0.59)" -2947,100,100,,1,1,[1],2.9000000000000004,-1,7,"(0.6, 0.67)" -2948,100,100,,1,1,[1],2.9000000000000004,-1,8,"(0.53, 0.595)" -2949,100,100,,1,1,[1],2.9000000000000004,-1,9,"(0.53, 0.595)" -2950,100,100,,1,1,[1],2.9000000000000004,0,0,"(0.58, 0.44)" -2951,100,100,,1,1,[1],2.9000000000000004,0,1,"(0.66, 0.5)" -2952,100,100,,1,1,[1],2.9000000000000004,0,2,"(0.61, 0.475)" -2953,100,100,,1,1,[1],2.9000000000000004,0,3,"(0.62, 0.5)" -2954,100,100,,1,1,[1],2.9000000000000004,0,4,"(0.58, 0.48)" -2955,100,100,,1,1,[1],2.9000000000000004,0,5,"(0.6, 0.49)" -2956,100,100,,1,1,[1],2.9000000000000004,0,6,"(0.5, 0.49)" -2957,100,100,,1,1,[1],2.9000000000000004,0,7,"(0.51, 0.485)" -2958,100,100,,1,1,[1],2.9000000000000004,0,8,"(0.52, 0.48)" -2959,100,100,,1,1,[1],2.9000000000000004,0,9,"(0.62, 0.56)" -2960,100,100,,1,1,[1],2.9000000000000004,1,0,"(0.62, 0.35)" -2961,100,100,,1,1,[1],2.9000000000000004,1,1,"(0.61, 0.395)" -2962,100,100,,1,1,[1],2.9000000000000004,1,2,"(0.63, 0.425)" -2963,100,100,,1,1,[1],2.9000000000000004,1,3,"(0.63, 0.415)" -2964,100,100,,1,1,[1],2.9000000000000004,1,4,"(0.64, 0.36)" -2965,100,100,,1,1,[1],2.9000000000000004,1,5,"(0.53, 0.335)" -2966,100,100,,1,1,[1],2.9000000000000004,1,6,"(0.69, 0.285)" -2967,100,100,,1,1,[1],2.9000000000000004,1,7,"(0.6, 0.43)" -2968,100,100,,1,1,[1],2.9000000000000004,1,8,"(0.67, 0.335)" -2969,100,100,,1,1,[1],2.9000000000000004,1,9,"(0.49, 0.395)" -2970,100,100,,1,1,[1],2.9000000000000004,2,0,"(0.65, 0.255)" -2971,100,100,,1,1,[1],2.9000000000000004,2,1,"(0.67, 0.235)" -2972,100,100,,1,1,[1],2.9000000000000004,2,2,"(0.65, 0.275)" -2973,100,100,,1,1,[1],2.9000000000000004,2,3,"(0.71, 0.265)" -2974,100,100,,1,1,[1],2.9000000000000004,2,4,"(0.64, 0.28)" -2975,100,100,,1,1,[1],2.9000000000000004,2,5,"(0.71, 0.265)" -2976,100,100,,1,1,[1],2.9000000000000004,2,6,"(0.66, 0.22)" -2977,100,100,,1,1,[1],2.9000000000000004,2,7,"(0.68, 0.23)" -2978,100,100,,1,1,[1],2.9000000000000004,2,8,"(0.64, 0.26)" -2979,100,100,,1,1,[1],2.9000000000000004,2,9,"(0.71, 0.255)" -2980,100,100,,1,1,[1],2.9000000000000004,3,0,"(0.78, 0.13)" -2981,100,100,,1,1,[1],2.9000000000000004,3,1,"(0.7, 0.21)" -2982,100,100,,1,1,[1],2.9000000000000004,3,2,"(0.8, 0.15)" -2983,100,100,,1,1,[1],2.9000000000000004,3,3,"(0.74, 0.21)" -2984,100,100,,1,1,[1],2.9000000000000004,3,4,"(0.7, 0.17)" -2985,100,100,,1,1,[1],2.9000000000000004,3,5,"(0.78, 0.13)" -2986,100,100,,1,1,[1],2.9000000000000004,3,6,"(0.78, 0.16)" -2987,100,100,,1,1,[1],2.9000000000000004,3,7,"(0.72, 0.19)" -2988,100,100,,1,1,[1],2.9000000000000004,3,8,"(0.71, 0.225)" -2989,100,100,,1,1,[1],2.9000000000000004,3,9,"(0.72, 0.16)" -2990,100,100,,1,1,[1],2.9000000000000004,4,0,"(0.8, 0.11)" -2991,100,100,,1,1,[1],2.9000000000000004,4,1,"(0.88, 0.1)" -2992,100,100,,1,1,[1],2.9000000000000004,4,2,"(0.84, 0.09)" -2993,100,100,,1,1,[1],2.9000000000000004,4,3,"(0.91, 0.075)" -2994,100,100,,1,1,[1],2.9000000000000004,4,4,"(0.8, 0.14)" -2995,100,100,,1,1,[1],2.9000000000000004,4,5,"(0.9, 0.08)" -2996,100,100,,1,1,[1],2.9000000000000004,4,6,"(0.84, 0.08)" -2997,100,100,,1,1,[1],2.9000000000000004,4,7,"(0.86, 0.08)" -2998,100,100,,1,1,[1],2.9000000000000004,4,8,"(0.83, 0.125)" -2999,100,100,,1,1,[1],2.9000000000000004,4,9,"(0.81, 0.125)" -3000,100,100,,1,1,[1],3.0,-5,0,"(0.91, 0.945)" -3001,100,100,,1,1,[1],3.0,-5,1,"(0.9, 0.93)" -3002,100,100,,1,1,[1],3.0,-5,2,"(0.9, 0.95)" -3003,100,100,,1,1,[1],3.0,-5,3,"(0.89, 0.935)" -3004,100,100,,1,1,[1],3.0,-5,4,"(0.9, 0.93)" -3005,100,100,,1,1,[1],3.0,-5,5,"(0.91, 0.935)" -3006,100,100,,1,1,[1],3.0,-5,6,"(0.91, 0.955)" -3007,100,100,,1,1,[1],3.0,-5,7,"(0.88, 0.94)" -3008,100,100,,1,1,[1],3.0,-5,8,"(0.87, 0.925)" -3009,100,100,,1,1,[1],3.0,-5,9,"(0.85, 0.915)" -3010,100,100,,1,1,[1],3.0,-4,0,"(0.83, 0.905)" -3011,100,100,,1,1,[1],3.0,-4,1,"(0.85, 0.915)" -3012,100,100,,1,1,[1],3.0,-4,2,"(0.8, 0.86)" -3013,100,100,,1,1,[1],3.0,-4,3,"(0.83, 0.905)" -3014,100,100,,1,1,[1],3.0,-4,4,"(0.83, 0.885)" -3015,100,100,,1,1,[1],3.0,-4,5,"(0.85, 0.905)" -3016,100,100,,1,1,[1],3.0,-4,6,"(0.75, 0.835)" -3017,100,100,,1,1,[1],3.0,-4,7,"(0.79, 0.895)" -3018,100,100,,1,1,[1],3.0,-4,8,"(0.79, 0.895)" -3019,100,100,,1,1,[1],3.0,-4,9,"(0.83, 0.885)" -3020,100,100,,1,1,[1],3.0,-3,0,"(0.7, 0.82)" -3021,100,100,,1,1,[1],3.0,-3,1,"(0.74, 0.78)" -3022,100,100,,1,1,[1],3.0,-3,2,"(0.72, 0.77)" -3023,100,100,,1,1,[1],3.0,-3,3,"(0.83, 0.855)" -3024,100,100,,1,1,[1],3.0,-3,4,"(0.71, 0.785)" -3025,100,100,,1,1,[1],3.0,-3,5,"(0.71, 0.805)" -3026,100,100,,1,1,[1],3.0,-3,6,"(0.65, 0.815)" -3027,100,100,,1,1,[1],3.0,-3,7,"(0.74, 0.83)" -3028,100,100,,1,1,[1],3.0,-3,8,"(0.73, 0.825)" -3029,100,100,,1,1,[1],3.0,-3,9,"(0.73, 0.815)" -3030,100,100,,1,1,[1],3.0,-2,0,"(0.57, 0.685)" -3031,100,100,,1,1,[1],3.0,-2,1,"(0.64, 0.73)" -3032,100,100,,1,1,[1],3.0,-2,2,"(0.73, 0.715)" -3033,100,100,,1,1,[1],3.0,-2,3,"(0.66, 0.72)" -3034,100,100,,1,1,[1],3.0,-2,4,"(0.74, 0.8)" -3035,100,100,,1,1,[1],3.0,-2,5,"(0.63, 0.675)" -3036,100,100,,1,1,[1],3.0,-2,6,"(0.77, 0.765)" -3037,100,100,,1,1,[1],3.0,-2,7,"(0.65, 0.695)" -3038,100,100,,1,1,[1],3.0,-2,8,"(0.66, 0.75)" -3039,100,100,,1,1,[1],3.0,-2,9,"(0.55, 0.725)" -3040,100,100,,1,1,[1],3.0,-1,0,"(0.6, 0.58)" -3041,100,100,,1,1,[1],3.0,-1,1,"(0.56, 0.58)" -3042,100,100,,1,1,[1],3.0,-1,2,"(0.53, 0.535)" -3043,100,100,,1,1,[1],3.0,-1,3,"(0.52, 0.6)" -3044,100,100,,1,1,[1],3.0,-1,4,"(0.6, 0.69)" -3045,100,100,,1,1,[1],3.0,-1,5,"(0.6, 0.6)" -3046,100,100,,1,1,[1],3.0,-1,6,"(0.5, 0.62)" -3047,100,100,,1,1,[1],3.0,-1,7,"(0.51, 0.655)" -3048,100,100,,1,1,[1],3.0,-1,8,"(0.63, 0.635)" -3049,100,100,,1,1,[1],3.0,-1,9,"(0.58, 0.57)" -3050,100,100,,1,1,[1],3.0,0,0,"(0.46, 0.54)" -3051,100,100,,1,1,[1],3.0,0,1,"(0.54, 0.52)" -3052,100,100,,1,1,[1],3.0,0,2,"(0.56, 0.54)" -3053,100,100,,1,1,[1],3.0,0,3,"(0.53, 0.535)" -3054,100,100,,1,1,[1],3.0,0,4,"(0.51, 0.525)" -3055,100,100,,1,1,[1],3.0,0,5,"(0.59, 0.485)" -3056,100,100,,1,1,[1],3.0,0,6,"(0.5, 0.59)" -3057,100,100,,1,1,[1],3.0,0,7,"(0.51, 0.465)" -3058,100,100,,1,1,[1],3.0,0,8,"(0.55, 0.495)" -3059,100,100,,1,1,[1],3.0,0,9,"(0.59, 0.455)" -3060,100,100,,1,1,[1],3.0,1,0,"(0.6, 0.36)" -3061,100,100,,1,1,[1],3.0,1,1,"(0.58, 0.46)" -3062,100,100,,1,1,[1],3.0,1,2,"(0.6, 0.39)" -3063,100,100,,1,1,[1],3.0,1,3,"(0.59, 0.465)" -3064,100,100,,1,1,[1],3.0,1,4,"(0.56, 0.39)" -3065,100,100,,1,1,[1],3.0,1,5,"(0.51, 0.365)" -3066,100,100,,1,1,[1],3.0,1,6,"(0.57, 0.355)" -3067,100,100,,1,1,[1],3.0,1,7,"(0.59, 0.365)" -3068,100,100,,1,1,[1],3.0,1,8,"(0.59, 0.395)" -3069,100,100,,1,1,[1],3.0,1,9,"(0.58, 0.3)" -3070,100,100,,1,1,[1],3.0,2,0,"(0.62, 0.31)" -3071,100,100,,1,1,[1],3.0,2,1,"(0.78, 0.27)" -3072,100,100,,1,1,[1],3.0,2,2,"(0.66, 0.31)" -3073,100,100,,1,1,[1],3.0,2,3,"(0.68, 0.22)" -3074,100,100,,1,1,[1],3.0,2,4,"(0.69, 0.315)" -3075,100,100,,1,1,[1],3.0,2,5,"(0.72, 0.27)" -3076,100,100,,1,1,[1],3.0,2,6,"(0.64, 0.28)" -3077,100,100,,1,1,[1],3.0,2,7,"(0.69, 0.255)" -3078,100,100,,1,1,[1],3.0,2,8,"(0.6, 0.28)" -3079,100,100,,1,1,[1],3.0,2,9,"(0.63, 0.245)" -3080,100,100,,1,1,[1],3.0,3,0,"(0.75, 0.225)" -3081,100,100,,1,1,[1],3.0,3,1,"(0.76, 0.19)" -3082,100,100,,1,1,[1],3.0,3,2,"(0.69, 0.155)" -3083,100,100,,1,1,[1],3.0,3,3,"(0.69, 0.205)" -3084,100,100,,1,1,[1],3.0,3,4,"(0.67, 0.215)" -3085,100,100,,1,1,[1],3.0,3,5,"(0.73, 0.165)" -3086,100,100,,1,1,[1],3.0,3,6,"(0.67, 0.195)" -3087,100,100,,1,1,[1],3.0,3,7,"(0.67, 0.205)" -3088,100,100,,1,1,[1],3.0,3,8,"(0.75, 0.225)" -3089,100,100,,1,1,[1],3.0,3,9,"(0.72, 0.2)" -3090,100,100,,1,1,[1],3.0,4,0,"(0.86, 0.09)" -3091,100,100,,1,1,[1],3.0,4,1,"(0.73, 0.145)" -3092,100,100,,1,1,[1],3.0,4,2,"(0.73, 0.135)" -3093,100,100,,1,1,[1],3.0,4,3,"(0.84, 0.13)" -3094,100,100,,1,1,[1],3.0,4,4,"(0.79, 0.145)" -3095,100,100,,1,1,[1],3.0,4,5,"(0.86, 0.1)" -3096,100,100,,1,1,[1],3.0,4,6,"(0.85, 0.085)" -3097,100,100,,1,1,[1],3.0,4,7,"(0.87, 0.075)" -3098,100,100,,1,1,[1],3.0,4,8,"(0.85, 0.095)" -3099,100,100,,1,1,[1],3.0,4,9,"(0.74, 0.14)" -3100,100,100,,1,1,[1],3.1,-5,0,"(0.8, 0.9)" -3101,100,100,,1,1,[1],3.1,-5,1,"(0.93, 0.955)" -3102,100,100,,1,1,[1],3.1,-5,2,"(0.91, 0.955)" -3103,100,100,,1,1,[1],3.1,-5,3,"(0.86, 0.9)" -3104,100,100,,1,1,[1],3.1,-5,4,"(0.88, 0.92)" -3105,100,100,,1,1,[1],3.1,-5,5,"(0.89, 0.935)" -3106,100,100,,1,1,[1],3.1,-5,6,"(0.91, 0.955)" -3107,100,100,,1,1,[1],3.1,-5,7,"(0.88, 0.93)" -3108,100,100,,1,1,[1],3.1,-5,8,"(0.81, 0.905)" -3109,100,100,,1,1,[1],3.1,-5,9,"(0.9, 0.95)" -3110,100,100,,1,1,[1],3.1,-4,0,"(0.81, 0.905)" -3111,100,100,,1,1,[1],3.1,-4,1,"(0.79, 0.845)" -3112,100,100,,1,1,[1],3.1,-4,2,"(0.89, 0.925)" -3113,100,100,,1,1,[1],3.1,-4,3,"(0.83, 0.885)" -3114,100,100,,1,1,[1],3.1,-4,4,"(0.83, 0.895)" -3115,100,100,,1,1,[1],3.1,-4,5,"(0.85, 0.855)" -3116,100,100,,1,1,[1],3.1,-4,6,"(0.79, 0.825)" -3117,100,100,,1,1,[1],3.1,-4,7,"(0.8, 0.89)" -3118,100,100,,1,1,[1],3.1,-4,8,"(0.82, 0.9)" -3119,100,100,,1,1,[1],3.1,-4,9,"(0.82, 0.86)" -3120,100,100,,1,1,[1],3.1,-3,0,"(0.76, 0.82)" -3121,100,100,,1,1,[1],3.1,-3,1,"(0.66, 0.8)" -3122,100,100,,1,1,[1],3.1,-3,2,"(0.63, 0.785)" -3123,100,100,,1,1,[1],3.1,-3,3,"(0.76, 0.81)" -3124,100,100,,1,1,[1],3.1,-3,4,"(0.7, 0.78)" -3125,100,100,,1,1,[1],3.1,-3,5,"(0.69, 0.825)" -3126,100,100,,1,1,[1],3.1,-3,6,"(0.72, 0.8)" -3127,100,100,,1,1,[1],3.1,-3,7,"(0.74, 0.84)" -3128,100,100,,1,1,[1],3.1,-3,8,"(0.71, 0.825)" -3129,100,100,,1,1,[1],3.1,-3,9,"(0.68, 0.81)" -3130,100,100,,1,1,[1],3.1,-2,0,"(0.66, 0.71)" -3131,100,100,,1,1,[1],3.1,-2,1,"(0.58, 0.7)" -3132,100,100,,1,1,[1],3.1,-2,2,"(0.68, 0.77)" -3133,100,100,,1,1,[1],3.1,-2,3,"(0.56, 0.72)" -3134,100,100,,1,1,[1],3.1,-2,4,"(0.51, 0.655)" -3135,100,100,,1,1,[1],3.1,-2,5,"(0.6, 0.73)" -3136,100,100,,1,1,[1],3.1,-2,6,"(0.61, 0.735)" -3137,100,100,,1,1,[1],3.1,-2,7,"(0.74, 0.76)" -3138,100,100,,1,1,[1],3.1,-2,8,"(0.66, 0.7)" -3139,100,100,,1,1,[1],3.1,-2,9,"(0.66, 0.73)" -3140,100,100,,1,1,[1],3.1,-1,0,"(0.6, 0.63)" -3141,100,100,,1,1,[1],3.1,-1,1,"(0.63, 0.605)" -3142,100,100,,1,1,[1],3.1,-1,2,"(0.64, 0.66)" -3143,100,100,,1,1,[1],3.1,-1,3,"(0.56, 0.63)" -3144,100,100,,1,1,[1],3.1,-1,4,"(0.53, 0.575)" -3145,100,100,,1,1,[1],3.1,-1,5,"(0.59, 0.635)" -3146,100,100,,1,1,[1],3.1,-1,6,"(0.48, 0.58)" -3147,100,100,,1,1,[1],3.1,-1,7,"(0.57, 0.595)" -3148,100,100,,1,1,[1],3.1,-1,8,"(0.58, 0.6)" -3149,100,100,,1,1,[1],3.1,-1,9,"(0.47, 0.605)" -3150,100,100,,1,1,[1],3.1,0,0,"(0.54, 0.49)" -3151,100,100,,1,1,[1],3.1,0,1,"(0.55, 0.445)" -3152,100,100,,1,1,[1],3.1,0,2,"(0.5, 0.5)" -3153,100,100,,1,1,[1],3.1,0,3,"(0.55, 0.455)" -3154,100,100,,1,1,[1],3.1,0,4,"(0.55, 0.535)" -3155,100,100,,1,1,[1],3.1,0,5,"(0.58, 0.52)" -3156,100,100,,1,1,[1],3.1,0,6,"(0.53, 0.485)" -3157,100,100,,1,1,[1],3.1,0,7,"(0.45, 0.505)" -3158,100,100,,1,1,[1],3.1,0,8,"(0.57, 0.495)" -3159,100,100,,1,1,[1],3.1,0,9,"(0.55, 0.475)" -3160,100,100,,1,1,[1],3.1,1,0,"(0.65, 0.355)" -3161,100,100,,1,1,[1],3.1,1,1,"(0.63, 0.395)" -3162,100,100,,1,1,[1],3.1,1,2,"(0.55, 0.395)" -3163,100,100,,1,1,[1],3.1,1,3,"(0.51, 0.405)" -3164,100,100,,1,1,[1],3.1,1,4,"(0.67, 0.425)" -3165,100,100,,1,1,[1],3.1,1,5,"(0.61, 0.325)" -3166,100,100,,1,1,[1],3.1,1,6,"(0.53, 0.385)" -3167,100,100,,1,1,[1],3.1,1,7,"(0.58, 0.33)" -3168,100,100,,1,1,[1],3.1,1,8,"(0.61, 0.405)" -3169,100,100,,1,1,[1],3.1,1,9,"(0.59, 0.335)" -3170,100,100,,1,1,[1],3.1,2,0,"(0.72, 0.2)" -3171,100,100,,1,1,[1],3.1,2,1,"(0.74, 0.22)" -3172,100,100,,1,1,[1],3.1,2,2,"(0.67, 0.245)" -3173,100,100,,1,1,[1],3.1,2,3,"(0.67, 0.295)" -3174,100,100,,1,1,[1],3.1,2,4,"(0.69, 0.315)" -3175,100,100,,1,1,[1],3.1,2,5,"(0.67, 0.245)" -3176,100,100,,1,1,[1],3.1,2,6,"(0.63, 0.325)" -3177,100,100,,1,1,[1],3.1,2,7,"(0.63, 0.315)" -3178,100,100,,1,1,[1],3.1,2,8,"(0.65, 0.245)" -3179,100,100,,1,1,[1],3.1,2,9,"(0.66, 0.27)" -3180,100,100,,1,1,[1],3.1,3,0,"(0.79, 0.185)" -3181,100,100,,1,1,[1],3.1,3,1,"(0.71, 0.195)" -3182,100,100,,1,1,[1],3.1,3,2,"(0.76, 0.16)" -3183,100,100,,1,1,[1],3.1,3,3,"(0.77, 0.195)" -3184,100,100,,1,1,[1],3.1,3,4,"(0.69, 0.235)" -3185,100,100,,1,1,[1],3.1,3,5,"(0.81, 0.135)" -3186,100,100,,1,1,[1],3.1,3,6,"(0.64, 0.24)" -3187,100,100,,1,1,[1],3.1,3,7,"(0.7, 0.23)" -3188,100,100,,1,1,[1],3.1,3,8,"(0.69, 0.215)" -3189,100,100,,1,1,[1],3.1,3,9,"(0.75, 0.185)" -3190,100,100,,1,1,[1],3.1,4,0,"(0.85, 0.085)" -3191,100,100,,1,1,[1],3.1,4,1,"(0.8, 0.14)" -3192,100,100,,1,1,[1],3.1,4,2,"(0.86, 0.1)" -3193,100,100,,1,1,[1],3.1,4,3,"(0.79, 0.125)" -3194,100,100,,1,1,[1],3.1,4,4,"(0.83, 0.115)" -3195,100,100,,1,1,[1],3.1,4,5,"(0.81, 0.105)" -3196,100,100,,1,1,[1],3.1,4,6,"(0.78, 0.12)" -3197,100,100,,1,1,[1],3.1,4,7,"(0.81, 0.095)" -3198,100,100,,1,1,[1],3.1,4,8,"(0.75, 0.145)" -3199,100,100,,1,1,[1],3.1,4,9,"(0.78, 0.12)" -3200,100,100,,1,1,[1],3.2,-5,0,"(0.81, 0.885)" -3201,100,100,,1,1,[1],3.2,-5,1,"(0.81, 0.875)" -3202,100,100,,1,1,[1],3.2,-5,2,"(0.78, 0.89)" -3203,100,100,,1,1,[1],3.2,-5,3,"(0.87, 0.915)" -3204,100,100,,1,1,[1],3.2,-5,4,"(0.85, 0.915)" -3205,100,100,,1,1,[1],3.2,-5,5,"(0.88, 0.92)" -3206,100,100,,1,1,[1],3.2,-5,6,"(0.84, 0.92)" -3207,100,100,,1,1,[1],3.2,-5,7,"(0.84, 0.91)" -3208,100,100,,1,1,[1],3.2,-5,8,"(0.94, 0.96)" -3209,100,100,,1,1,[1],3.2,-5,9,"(0.87, 0.935)" -3210,100,100,,1,1,[1],3.2,-4,0,"(0.82, 0.9)" -3211,100,100,,1,1,[1],3.2,-4,1,"(0.81, 0.895)" -3212,100,100,,1,1,[1],3.2,-4,2,"(0.77, 0.855)" -3213,100,100,,1,1,[1],3.2,-4,3,"(0.77, 0.855)" -3214,100,100,,1,1,[1],3.2,-4,4,"(0.81, 0.895)" -3215,100,100,,1,1,[1],3.2,-4,5,"(0.77, 0.865)" -3216,100,100,,1,1,[1],3.2,-4,6,"(0.7, 0.85)" -3217,100,100,,1,1,[1],3.2,-4,7,"(0.77, 0.855)" -3218,100,100,,1,1,[1],3.2,-4,8,"(0.78, 0.87)" -3219,100,100,,1,1,[1],3.2,-4,9,"(0.83, 0.895)" -3220,100,100,,1,1,[1],3.2,-3,0,"(0.7, 0.85)" -3221,100,100,,1,1,[1],3.2,-3,1,"(0.7, 0.83)" -3222,100,100,,1,1,[1],3.2,-3,2,"(0.64, 0.77)" -3223,100,100,,1,1,[1],3.2,-3,3,"(0.72, 0.76)" -3224,100,100,,1,1,[1],3.2,-3,4,"(0.77, 0.805)" -3225,100,100,,1,1,[1],3.2,-3,5,"(0.76, 0.83)" -3226,100,100,,1,1,[1],3.2,-3,6,"(0.72, 0.83)" -3227,100,100,,1,1,[1],3.2,-3,7,"(0.65, 0.785)" -3228,100,100,,1,1,[1],3.2,-3,8,"(0.67, 0.805)" -3229,100,100,,1,1,[1],3.2,-3,9,"(0.75, 0.805)" -3230,100,100,,1,1,[1],3.2,-2,0,"(0.65, 0.745)" -3231,100,100,,1,1,[1],3.2,-2,1,"(0.66, 0.72)" -3232,100,100,,1,1,[1],3.2,-2,2,"(0.58, 0.67)" -3233,100,100,,1,1,[1],3.2,-2,3,"(0.66, 0.77)" -3234,100,100,,1,1,[1],3.2,-2,4,"(0.75, 0.715)" -3235,100,100,,1,1,[1],3.2,-2,5,"(0.65, 0.735)" -3236,100,100,,1,1,[1],3.2,-2,6,"(0.65, 0.735)" -3237,100,100,,1,1,[1],3.2,-2,7,"(0.55, 0.575)" -3238,100,100,,1,1,[1],3.2,-2,8,"(0.67, 0.755)" -3239,100,100,,1,1,[1],3.2,-2,9,"(0.65, 0.675)" -3240,100,100,,1,1,[1],3.2,-1,0,"(0.66, 0.64)" -3241,100,100,,1,1,[1],3.2,-1,1,"(0.58, 0.63)" -3242,100,100,,1,1,[1],3.2,-1,2,"(0.58, 0.58)" -3243,100,100,,1,1,[1],3.2,-1,3,"(0.59, 0.625)" -3244,100,100,,1,1,[1],3.2,-1,4,"(0.6, 0.56)" -3245,100,100,,1,1,[1],3.2,-1,5,"(0.64, 0.65)" -3246,100,100,,1,1,[1],3.2,-1,6,"(0.56, 0.66)" -3247,100,100,,1,1,[1],3.2,-1,7,"(0.55, 0.595)" -3248,100,100,,1,1,[1],3.2,-1,8,"(0.57, 0.615)" -3249,100,100,,1,1,[1],3.2,-1,9,"(0.5, 0.58)" -3250,100,100,,1,1,[1],3.2,0,0,"(0.6, 0.47)" -3251,100,100,,1,1,[1],3.2,0,1,"(0.58, 0.53)" -3252,100,100,,1,1,[1],3.2,0,2,"(0.58, 0.53)" -3253,100,100,,1,1,[1],3.2,0,3,"(0.55, 0.545)" -3254,100,100,,1,1,[1],3.2,0,4,"(0.61, 0.455)" -3255,100,100,,1,1,[1],3.2,0,5,"(0.55, 0.515)" -3256,100,100,,1,1,[1],3.2,0,6,"(0.55, 0.505)" -3257,100,100,,1,1,[1],3.2,0,7,"(0.58, 0.5)" -3258,100,100,,1,1,[1],3.2,0,8,"(0.59, 0.535)" -3259,100,100,,1,1,[1],3.2,0,9,"(0.49, 0.515)" -3260,100,100,,1,1,[1],3.2,1,0,"(0.56, 0.38)" -3261,100,100,,1,1,[1],3.2,1,1,"(0.58, 0.4)" -3262,100,100,,1,1,[1],3.2,1,2,"(0.63, 0.395)" -3263,100,100,,1,1,[1],3.2,1,3,"(0.55, 0.375)" -3264,100,100,,1,1,[1],3.2,1,4,"(0.54, 0.44)" -3265,100,100,,1,1,[1],3.2,1,5,"(0.65, 0.365)" -3266,100,100,,1,1,[1],3.2,1,6,"(0.68, 0.37)" -3267,100,100,,1,1,[1],3.2,1,7,"(0.55, 0.415)" -3268,100,100,,1,1,[1],3.2,1,8,"(0.62, 0.43)" -3269,100,100,,1,1,[1],3.2,1,9,"(0.59, 0.325)" -3270,100,100,,1,1,[1],3.2,2,0,"(0.64, 0.28)" -3271,100,100,,1,1,[1],3.2,2,1,"(0.62, 0.28)" -3272,100,100,,1,1,[1],3.2,2,2,"(0.49, 0.345)" -3273,100,100,,1,1,[1],3.2,2,3,"(0.59, 0.285)" -3274,100,100,,1,1,[1],3.2,2,4,"(0.57, 0.285)" -3275,100,100,,1,1,[1],3.2,2,5,"(0.65, 0.335)" -3276,100,100,,1,1,[1],3.2,2,6,"(0.61, 0.285)" -3277,100,100,,1,1,[1],3.2,2,7,"(0.65, 0.235)" -3278,100,100,,1,1,[1],3.2,2,8,"(0.7, 0.28)" -3279,100,100,,1,1,[1],3.2,2,9,"(0.65, 0.255)" -3280,100,100,,1,1,[1],3.2,3,0,"(0.71, 0.165)" -3281,100,100,,1,1,[1],3.2,3,1,"(0.71, 0.185)" -3282,100,100,,1,1,[1],3.2,3,2,"(0.71, 0.195)" -3283,100,100,,1,1,[1],3.2,3,3,"(0.78, 0.16)" -3284,100,100,,1,1,[1],3.2,3,4,"(0.73, 0.205)" -3285,100,100,,1,1,[1],3.2,3,5,"(0.62, 0.22)" -3286,100,100,,1,1,[1],3.2,3,6,"(0.76, 0.19)" -3287,100,100,,1,1,[1],3.2,3,7,"(0.74, 0.17)" -3288,100,100,,1,1,[1],3.2,3,8,"(0.7, 0.16)" -3289,100,100,,1,1,[1],3.2,3,9,"(0.76, 0.18)" -3290,100,100,,1,1,[1],3.2,4,0,"(0.79, 0.115)" -3291,100,100,,1,1,[1],3.2,4,1,"(0.77, 0.155)" -3292,100,100,,1,1,[1],3.2,4,2,"(0.81, 0.105)" -3293,100,100,,1,1,[1],3.2,4,3,"(0.8, 0.1)" -3294,100,100,,1,1,[1],3.2,4,4,"(0.83, 0.145)" -3295,100,100,,1,1,[1],3.2,4,5,"(0.77, 0.145)" -3296,100,100,,1,1,[1],3.2,4,6,"(0.87, 0.095)" -3297,100,100,,1,1,[1],3.2,4,7,"(0.81, 0.105)" -3298,100,100,,1,1,[1],3.2,4,8,"(0.86, 0.08)" -3299,100,100,,1,1,[1],3.2,4,9,"(0.8, 0.14)" -3300,100,100,,1,1,[1],3.3000000000000003,-5,0,"(0.81, 0.865)" -3301,100,100,,1,1,[1],3.3000000000000003,-5,1,"(0.89, 0.915)" -3302,100,100,,1,1,[1],3.3000000000000003,-5,2,"(0.87, 0.935)" -3303,100,100,,1,1,[1],3.3000000000000003,-5,3,"(0.87, 0.915)" -3304,100,100,,1,1,[1],3.3000000000000003,-5,4,"(0.85, 0.915)" -3305,100,100,,1,1,[1],3.3000000000000003,-5,5,"(0.79, 0.885)" -3306,100,100,,1,1,[1],3.3000000000000003,-5,6,"(0.87, 0.935)" -3307,100,100,,1,1,[1],3.3000000000000003,-5,7,"(0.89, 0.935)" -3308,100,100,,1,1,[1],3.3000000000000003,-5,8,"(0.85, 0.925)" -3309,100,100,,1,1,[1],3.3000000000000003,-5,9,"(0.86, 0.93)" -3310,100,100,,1,1,[1],3.3000000000000003,-4,0,"(0.73, 0.855)" -3311,100,100,,1,1,[1],3.3000000000000003,-4,1,"(0.8, 0.88)" -3312,100,100,,1,1,[1],3.3000000000000003,-4,2,"(0.89, 0.915)" -3313,100,100,,1,1,[1],3.3000000000000003,-4,3,"(0.83, 0.855)" -3314,100,100,,1,1,[1],3.3000000000000003,-4,4,"(0.77, 0.865)" -3315,100,100,,1,1,[1],3.3000000000000003,-4,5,"(0.74, 0.85)" -3316,100,100,,1,1,[1],3.3000000000000003,-4,6,"(0.77, 0.875)" -3317,100,100,,1,1,[1],3.3000000000000003,-4,7,"(0.79, 0.865)" -3318,100,100,,1,1,[1],3.3000000000000003,-4,8,"(0.75, 0.865)" -3319,100,100,,1,1,[1],3.3000000000000003,-4,9,"(0.82, 0.89)" -3320,100,100,,1,1,[1],3.3000000000000003,-3,0,"(0.69, 0.815)" -3321,100,100,,1,1,[1],3.3000000000000003,-3,1,"(0.72, 0.72)" -3322,100,100,,1,1,[1],3.3000000000000003,-3,2,"(0.69, 0.795)" -3323,100,100,,1,1,[1],3.3000000000000003,-3,3,"(0.76, 0.83)" -3324,100,100,,1,1,[1],3.3000000000000003,-3,4,"(0.73, 0.815)" -3325,100,100,,1,1,[1],3.3000000000000003,-3,5,"(0.63, 0.765)" -3326,100,100,,1,1,[1],3.3000000000000003,-3,6,"(0.76, 0.84)" -3327,100,100,,1,1,[1],3.3000000000000003,-3,7,"(0.78, 0.79)" -3328,100,100,,1,1,[1],3.3000000000000003,-3,8,"(0.7, 0.8)" -3329,100,100,,1,1,[1],3.3000000000000003,-3,9,"(0.71, 0.805)" -3330,100,100,,1,1,[1],3.3000000000000003,-2,0,"(0.64, 0.72)" -3331,100,100,,1,1,[1],3.3000000000000003,-2,1,"(0.56, 0.68)" -3332,100,100,,1,1,[1],3.3000000000000003,-2,2,"(0.65, 0.705)" -3333,100,100,,1,1,[1],3.3000000000000003,-2,3,"(0.58, 0.69)" -3334,100,100,,1,1,[1],3.3000000000000003,-2,4,"(0.6, 0.68)" -3335,100,100,,1,1,[1],3.3000000000000003,-2,5,"(0.72, 0.76)" -3336,100,100,,1,1,[1],3.3000000000000003,-2,6,"(0.68, 0.7)" -3337,100,100,,1,1,[1],3.3000000000000003,-2,7,"(0.72, 0.78)" -3338,100,100,,1,1,[1],3.3000000000000003,-2,8,"(0.6, 0.65)" -3339,100,100,,1,1,[1],3.3000000000000003,-2,9,"(0.64, 0.71)" -3340,100,100,,1,1,[1],3.3000000000000003,-1,0,"(0.5, 0.59)" -3341,100,100,,1,1,[1],3.3000000000000003,-1,1,"(0.55, 0.545)" -3342,100,100,,1,1,[1],3.3000000000000003,-1,2,"(0.55, 0.645)" -3343,100,100,,1,1,[1],3.3000000000000003,-1,3,"(0.73, 0.665)" -3344,100,100,,1,1,[1],3.3000000000000003,-1,4,"(0.53, 0.565)" -3345,100,100,,1,1,[1],3.3000000000000003,-1,5,"(0.59, 0.645)" -3346,100,100,,1,1,[1],3.3000000000000003,-1,6,"(0.57, 0.635)" -3347,100,100,,1,1,[1],3.3000000000000003,-1,7,"(0.6, 0.62)" -3348,100,100,,1,1,[1],3.3000000000000003,-1,8,"(0.6, 0.65)" -3349,100,100,,1,1,[1],3.3000000000000003,-1,9,"(0.53, 0.645)" -3350,100,100,,1,1,[1],3.3000000000000003,0,0,"(0.52, 0.5)" -3351,100,100,,1,1,[1],3.3000000000000003,0,1,"(0.51, 0.475)" -3352,100,100,,1,1,[1],3.3000000000000003,0,2,"(0.53, 0.515)" -3353,100,100,,1,1,[1],3.3000000000000003,0,3,"(0.56, 0.54)" -3354,100,100,,1,1,[1],3.3000000000000003,0,4,"(0.48, 0.48)" -3355,100,100,,1,1,[1],3.3000000000000003,0,5,"(0.56, 0.5)" -3356,100,100,,1,1,[1],3.3000000000000003,0,6,"(0.4, 0.56)" -3357,100,100,,1,1,[1],3.3000000000000003,0,7,"(0.53, 0.495)" -3358,100,100,,1,1,[1],3.3000000000000003,0,8,"(0.5, 0.47)" -3359,100,100,,1,1,[1],3.3000000000000003,0,9,"(0.58, 0.52)" -3360,100,100,,1,1,[1],3.3000000000000003,1,0,"(0.56, 0.35)" -3361,100,100,,1,1,[1],3.3000000000000003,1,1,"(0.65, 0.325)" -3362,100,100,,1,1,[1],3.3000000000000003,1,2,"(0.67, 0.355)" -3363,100,100,,1,1,[1],3.3000000000000003,1,3,"(0.66, 0.41)" -3364,100,100,,1,1,[1],3.3000000000000003,1,4,"(0.54, 0.4)" -3365,100,100,,1,1,[1],3.3000000000000003,1,5,"(0.55, 0.415)" -3366,100,100,,1,1,[1],3.3000000000000003,1,6,"(0.56, 0.32)" -3367,100,100,,1,1,[1],3.3000000000000003,1,7,"(0.49, 0.405)" -3368,100,100,,1,1,[1],3.3000000000000003,1,8,"(0.66, 0.34)" -3369,100,100,,1,1,[1],3.3000000000000003,1,9,"(0.59, 0.435)" -3370,100,100,,1,1,[1],3.3000000000000003,2,0,"(0.66, 0.25)" -3371,100,100,,1,1,[1],3.3000000000000003,2,1,"(0.66, 0.27)" -3372,100,100,,1,1,[1],3.3000000000000003,2,2,"(0.63, 0.295)" -3373,100,100,,1,1,[1],3.3000000000000003,2,3,"(0.66, 0.28)" -3374,100,100,,1,1,[1],3.3000000000000003,2,4,"(0.65, 0.215)" -3375,100,100,,1,1,[1],3.3000000000000003,2,5,"(0.56, 0.35)" -3376,100,100,,1,1,[1],3.3000000000000003,2,6,"(0.62, 0.29)" -3377,100,100,,1,1,[1],3.3000000000000003,2,7,"(0.68, 0.27)" -3378,100,100,,1,1,[1],3.3000000000000003,2,8,"(0.61, 0.305)" -3379,100,100,,1,1,[1],3.3000000000000003,2,9,"(0.58, 0.27)" -3380,100,100,,1,1,[1],3.3000000000000003,3,0,"(0.7, 0.22)" -3381,100,100,,1,1,[1],3.3000000000000003,3,1,"(0.7, 0.21)" -3382,100,100,,1,1,[1],3.3000000000000003,3,2,"(0.75, 0.195)" -3383,100,100,,1,1,[1],3.3000000000000003,3,3,"(0.67, 0.205)" -3384,100,100,,1,1,[1],3.3000000000000003,3,4,"(0.68, 0.21)" -3385,100,100,,1,1,[1],3.3000000000000003,3,5,"(0.77, 0.145)" -3386,100,100,,1,1,[1],3.3000000000000003,3,6,"(0.68, 0.23)" -3387,100,100,,1,1,[1],3.3000000000000003,3,7,"(0.69, 0.245)" -3388,100,100,,1,1,[1],3.3000000000000003,3,8,"(0.75, 0.155)" -3389,100,100,,1,1,[1],3.3000000000000003,3,9,"(0.69, 0.265)" -3390,100,100,,1,1,[1],3.3000000000000003,4,0,"(0.79, 0.145)" -3391,100,100,,1,1,[1],3.3000000000000003,4,1,"(0.78, 0.15)" -3392,100,100,,1,1,[1],3.3000000000000003,4,2,"(0.77, 0.145)" -3393,100,100,,1,1,[1],3.3000000000000003,4,3,"(0.82, 0.13)" -3394,100,100,,1,1,[1],3.3000000000000003,4,4,"(0.81, 0.115)" -3395,100,100,,1,1,[1],3.3000000000000003,4,5,"(0.8, 0.11)" -3396,100,100,,1,1,[1],3.3000000000000003,4,6,"(0.77, 0.145)" -3397,100,100,,1,1,[1],3.3000000000000003,4,7,"(0.8, 0.11)" -3398,100,100,,1,1,[1],3.3000000000000003,4,8,"(0.78, 0.14)" -3399,100,100,,1,1,[1],3.3000000000000003,4,9,"(0.74, 0.15)" -3400,100,100,,1,1,[1],3.4000000000000004,-5,0,"(0.85, 0.895)" -3401,100,100,,1,1,[1],3.4000000000000004,-5,1,"(0.8, 0.89)" -3402,100,100,,1,1,[1],3.4000000000000004,-5,2,"(0.83, 0.915)" -3403,100,100,,1,1,[1],3.4000000000000004,-5,3,"(0.81, 0.905)" -3404,100,100,,1,1,[1],3.4000000000000004,-5,4,"(0.87, 0.925)" -3405,100,100,,1,1,[1],3.4000000000000004,-5,5,"(0.87, 0.915)" -3406,100,100,,1,1,[1],3.4000000000000004,-5,6,"(0.8, 0.89)" -3407,100,100,,1,1,[1],3.4000000000000004,-5,7,"(0.85, 0.905)" -3408,100,100,,1,1,[1],3.4000000000000004,-5,8,"(0.85, 0.905)" -3409,100,100,,1,1,[1],3.4000000000000004,-5,9,"(0.92, 0.91)" -3410,100,100,,1,1,[1],3.4000000000000004,-4,0,"(0.83, 0.875)" -3411,100,100,,1,1,[1],3.4000000000000004,-4,1,"(0.73, 0.845)" -3412,100,100,,1,1,[1],3.4000000000000004,-4,2,"(0.82, 0.89)" -3413,100,100,,1,1,[1],3.4000000000000004,-4,3,"(0.82, 0.88)" -3414,100,100,,1,1,[1],3.4000000000000004,-4,4,"(0.81, 0.875)" -3415,100,100,,1,1,[1],3.4000000000000004,-4,5,"(0.74, 0.85)" -3416,100,100,,1,1,[1],3.4000000000000004,-4,6,"(0.78, 0.89)" -3417,100,100,,1,1,[1],3.4000000000000004,-4,7,"(0.85, 0.855)" -3418,100,100,,1,1,[1],3.4000000000000004,-4,8,"(0.78, 0.86)" -3419,100,100,,1,1,[1],3.4000000000000004,-4,9,"(0.75, 0.845)" -3420,100,100,,1,1,[1],3.4000000000000004,-3,0,"(0.79, 0.825)" -3421,100,100,,1,1,[1],3.4000000000000004,-3,1,"(0.64, 0.74)" -3422,100,100,,1,1,[1],3.4000000000000004,-3,2,"(0.71, 0.805)" -3423,100,100,,1,1,[1],3.4000000000000004,-3,3,"(0.66, 0.79)" -3424,100,100,,1,1,[1],3.4000000000000004,-3,4,"(0.71, 0.775)" -3425,100,100,,1,1,[1],3.4000000000000004,-3,5,"(0.71, 0.805)" -3426,100,100,,1,1,[1],3.4000000000000004,-3,6,"(0.71, 0.775)" -3427,100,100,,1,1,[1],3.4000000000000004,-3,7,"(0.68, 0.75)" -3428,100,100,,1,1,[1],3.4000000000000004,-3,8,"(0.69, 0.805)" -3429,100,100,,1,1,[1],3.4000000000000004,-3,9,"(0.67, 0.765)" -3430,100,100,,1,1,[1],3.4000000000000004,-2,0,"(0.6, 0.68)" -3431,100,100,,1,1,[1],3.4000000000000004,-2,1,"(0.66, 0.71)" -3432,100,100,,1,1,[1],3.4000000000000004,-2,2,"(0.67, 0.715)" -3433,100,100,,1,1,[1],3.4000000000000004,-2,3,"(0.65, 0.735)" -3434,100,100,,1,1,[1],3.4000000000000004,-2,4,"(0.61, 0.675)" -3435,100,100,,1,1,[1],3.4000000000000004,-2,5,"(0.64, 0.72)" -3436,100,100,,1,1,[1],3.4000000000000004,-2,6,"(0.61, 0.685)" -3437,100,100,,1,1,[1],3.4000000000000004,-2,7,"(0.66, 0.72)" -3438,100,100,,1,1,[1],3.4000000000000004,-2,8,"(0.65, 0.675)" -3439,100,100,,1,1,[1],3.4000000000000004,-2,9,"(0.63, 0.685)" -3440,100,100,,1,1,[1],3.4000000000000004,-1,0,"(0.55, 0.605)" -3441,100,100,,1,1,[1],3.4000000000000004,-1,1,"(0.45, 0.595)" -3442,100,100,,1,1,[1],3.4000000000000004,-1,2,"(0.63, 0.635)" -3443,100,100,,1,1,[1],3.4000000000000004,-1,3,"(0.57, 0.525)" -3444,100,100,,1,1,[1],3.4000000000000004,-1,4,"(0.62, 0.59)" -3445,100,100,,1,1,[1],3.4000000000000004,-1,5,"(0.68, 0.64)" -3446,100,100,,1,1,[1],3.4000000000000004,-1,6,"(0.65, 0.685)" -3447,100,100,,1,1,[1],3.4000000000000004,-1,7,"(0.61, 0.585)" -3448,100,100,,1,1,[1],3.4000000000000004,-1,8,"(0.59, 0.655)" -3449,100,100,,1,1,[1],3.4000000000000004,-1,9,"(0.57, 0.625)" -3450,100,100,,1,1,[1],3.4000000000000004,0,0,"(0.6, 0.44)" -3451,100,100,,1,1,[1],3.4000000000000004,0,1,"(0.63, 0.475)" -3452,100,100,,1,1,[1],3.4000000000000004,0,2,"(0.54, 0.51)" -3453,100,100,,1,1,[1],3.4000000000000004,0,3,"(0.57, 0.515)" -3454,100,100,,1,1,[1],3.4000000000000004,0,4,"(0.54, 0.54)" -3455,100,100,,1,1,[1],3.4000000000000004,0,5,"(0.51, 0.505)" -3456,100,100,,1,1,[1],3.4000000000000004,0,6,"(0.51, 0.485)" -3457,100,100,,1,1,[1],3.4000000000000004,0,7,"(0.49, 0.515)" -3458,100,100,,1,1,[1],3.4000000000000004,0,8,"(0.53, 0.455)" -3459,100,100,,1,1,[1],3.4000000000000004,0,9,"(0.55, 0.465)" -3460,100,100,,1,1,[1],3.4000000000000004,1,0,"(0.58, 0.38)" -3461,100,100,,1,1,[1],3.4000000000000004,1,1,"(0.53, 0.395)" -3462,100,100,,1,1,[1],3.4000000000000004,1,2,"(0.55, 0.425)" -3463,100,100,,1,1,[1],3.4000000000000004,1,3,"(0.53, 0.405)" -3464,100,100,,1,1,[1],3.4000000000000004,1,4,"(0.53, 0.325)" -3465,100,100,,1,1,[1],3.4000000000000004,1,5,"(0.6, 0.37)" -3466,100,100,,1,1,[1],3.4000000000000004,1,6,"(0.53, 0.435)" -3467,100,100,,1,1,[1],3.4000000000000004,1,7,"(0.55, 0.415)" -3468,100,100,,1,1,[1],3.4000000000000004,1,8,"(0.55, 0.395)" -3469,100,100,,1,1,[1],3.4000000000000004,1,9,"(0.54, 0.46)" -3470,100,100,,1,1,[1],3.4000000000000004,2,0,"(0.55, 0.265)" -3471,100,100,,1,1,[1],3.4000000000000004,2,1,"(0.6, 0.27)" -3472,100,100,,1,1,[1],3.4000000000000004,2,2,"(0.6, 0.3)" -3473,100,100,,1,1,[1],3.4000000000000004,2,3,"(0.57, 0.305)" -3474,100,100,,1,1,[1],3.4000000000000004,2,4,"(0.64, 0.33)" -3475,100,100,,1,1,[1],3.4000000000000004,2,5,"(0.62, 0.27)" -3476,100,100,,1,1,[1],3.4000000000000004,2,6,"(0.6, 0.4)" -3477,100,100,,1,1,[1],3.4000000000000004,2,7,"(0.75, 0.225)" -3478,100,100,,1,1,[1],3.4000000000000004,2,8,"(0.63, 0.295)" -3479,100,100,,1,1,[1],3.4000000000000004,2,9,"(0.69, 0.325)" -3480,100,100,,1,1,[1],3.4000000000000004,3,0,"(0.67, 0.235)" -3481,100,100,,1,1,[1],3.4000000000000004,3,1,"(0.6, 0.29)" -3482,100,100,,1,1,[1],3.4000000000000004,3,2,"(0.71, 0.205)" -3483,100,100,,1,1,[1],3.4000000000000004,3,3,"(0.7, 0.21)" -3484,100,100,,1,1,[1],3.4000000000000004,3,4,"(0.68, 0.18)" -3485,100,100,,1,1,[1],3.4000000000000004,3,5,"(0.71, 0.265)" -3486,100,100,,1,1,[1],3.4000000000000004,3,6,"(0.73, 0.255)" -3487,100,100,,1,1,[1],3.4000000000000004,3,7,"(0.7, 0.19)" -3488,100,100,,1,1,[1],3.4000000000000004,3,8,"(0.77, 0.155)" -3489,100,100,,1,1,[1],3.4000000000000004,3,9,"(0.69, 0.215)" -3490,100,100,,1,1,[1],3.4000000000000004,4,0,"(0.83, 0.085)" -3491,100,100,,1,1,[1],3.4000000000000004,4,1,"(0.79, 0.125)" -3492,100,100,,1,1,[1],3.4000000000000004,4,2,"(0.76, 0.16)" -3493,100,100,,1,1,[1],3.4000000000000004,4,3,"(0.74, 0.15)" -3494,100,100,,1,1,[1],3.4000000000000004,4,4,"(0.82, 0.11)" -3495,100,100,,1,1,[1],3.4000000000000004,4,5,"(0.79, 0.145)" -3496,100,100,,1,1,[1],3.4000000000000004,4,6,"(0.73, 0.175)" -3497,100,100,,1,1,[1],3.4000000000000004,4,7,"(0.77, 0.165)" -3498,100,100,,1,1,[1],3.4000000000000004,4,8,"(0.69, 0.185)" -3499,100,100,,1,1,[1],3.4000000000000004,4,9,"(0.68, 0.19)" -3500,100,100,,1,1,[1],3.5,-5,0,"(0.85, 0.915)" -3501,100,100,,1,1,[1],3.5,-5,1,"(0.82, 0.91)" -3502,100,100,,1,1,[1],3.5,-5,2,"(0.87, 0.935)" -3503,100,100,,1,1,[1],3.5,-5,3,"(0.81, 0.875)" -3504,100,100,,1,1,[1],3.5,-5,4,"(0.91, 0.955)" -3505,100,100,,1,1,[1],3.5,-5,5,"(0.86, 0.93)" -3506,100,100,,1,1,[1],3.5,-5,6,"(0.87, 0.915)" -3507,100,100,,1,1,[1],3.5,-5,7,"(0.79, 0.895)" -3508,100,100,,1,1,[1],3.5,-5,8,"(0.87, 0.925)" -3509,100,100,,1,1,[1],3.5,-5,9,"(0.79, 0.895)" -3510,100,100,,1,1,[1],3.5,-4,0,"(0.79, 0.875)" -3511,100,100,,1,1,[1],3.5,-4,1,"(0.74, 0.83)" -3512,100,100,,1,1,[1],3.5,-4,2,"(0.82, 0.85)" -3513,100,100,,1,1,[1],3.5,-4,3,"(0.75, 0.845)" -3514,100,100,,1,1,[1],3.5,-4,4,"(0.8, 0.86)" -3515,100,100,,1,1,[1],3.5,-4,5,"(0.72, 0.85)" -3516,100,100,,1,1,[1],3.5,-4,6,"(0.75, 0.865)" -3517,100,100,,1,1,[1],3.5,-4,7,"(0.72, 0.85)" -3518,100,100,,1,1,[1],3.5,-4,8,"(0.74, 0.85)" -3519,100,100,,1,1,[1],3.5,-4,9,"(0.71, 0.815)" -3520,100,100,,1,1,[1],3.5,-3,0,"(0.74, 0.78)" -3521,100,100,,1,1,[1],3.5,-3,1,"(0.68, 0.78)" -3522,100,100,,1,1,[1],3.5,-3,2,"(0.67, 0.775)" -3523,100,100,,1,1,[1],3.5,-3,3,"(0.7, 0.79)" -3524,100,100,,1,1,[1],3.5,-3,4,"(0.76, 0.78)" -3525,100,100,,1,1,[1],3.5,-3,5,"(0.74, 0.82)" -3526,100,100,,1,1,[1],3.5,-3,6,"(0.68, 0.8)" -3527,100,100,,1,1,[1],3.5,-3,7,"(0.57, 0.735)" -3528,100,100,,1,1,[1],3.5,-3,8,"(0.61, 0.745)" -3529,100,100,,1,1,[1],3.5,-3,9,"(0.64, 0.73)" -3530,100,100,,1,1,[1],3.5,-2,0,"(0.55, 0.635)" -3531,100,100,,1,1,[1],3.5,-2,1,"(0.55, 0.725)" -3532,100,100,,1,1,[1],3.5,-2,2,"(0.59, 0.725)" -3533,100,100,,1,1,[1],3.5,-2,3,"(0.53, 0.715)" -3534,100,100,,1,1,[1],3.5,-2,4,"(0.52, 0.65)" -3535,100,100,,1,1,[1],3.5,-2,5,"(0.49, 0.675)" -3536,100,100,,1,1,[1],3.5,-2,6,"(0.6, 0.71)" -3537,100,100,,1,1,[1],3.5,-2,7,"(0.61, 0.685)" -3538,100,100,,1,1,[1],3.5,-2,8,"(0.66, 0.71)" -3539,100,100,,1,1,[1],3.5,-2,9,"(0.63, 0.755)" -3540,100,100,,1,1,[1],3.5,-1,0,"(0.61, 0.595)" -3541,100,100,,1,1,[1],3.5,-1,1,"(0.59, 0.595)" -3542,100,100,,1,1,[1],3.5,-1,2,"(0.62, 0.63)" -3543,100,100,,1,1,[1],3.5,-1,3,"(0.57, 0.565)" -3544,100,100,,1,1,[1],3.5,-1,4,"(0.6, 0.6)" -3545,100,100,,1,1,[1],3.5,-1,5,"(0.52, 0.62)" -3546,100,100,,1,1,[1],3.5,-1,6,"(0.59, 0.625)" -3547,100,100,,1,1,[1],3.5,-1,7,"(0.61, 0.635)" -3548,100,100,,1,1,[1],3.5,-1,8,"(0.55, 0.605)" -3549,100,100,,1,1,[1],3.5,-1,9,"(0.58, 0.62)" -3550,100,100,,1,1,[1],3.5,0,0,"(0.59, 0.515)" -3551,100,100,,1,1,[1],3.5,0,1,"(0.64, 0.44)" -3552,100,100,,1,1,[1],3.5,0,2,"(0.58, 0.47)" -3553,100,100,,1,1,[1],3.5,0,3,"(0.51, 0.545)" -3554,100,100,,1,1,[1],3.5,0,4,"(0.5, 0.46)" -3555,100,100,,1,1,[1],3.5,0,5,"(0.53, 0.485)" -3556,100,100,,1,1,[1],3.5,0,6,"(0.55, 0.535)" -3557,100,100,,1,1,[1],3.5,0,7,"(0.52, 0.49)" -3558,100,100,,1,1,[1],3.5,0,8,"(0.49, 0.455)" -3559,100,100,,1,1,[1],3.5,0,9,"(0.54, 0.5)" -3560,100,100,,1,1,[1],3.5,1,0,"(0.48, 0.44)" -3561,100,100,,1,1,[1],3.5,1,1,"(0.5, 0.43)" -3562,100,100,,1,1,[1],3.5,1,2,"(0.6, 0.31)" -3563,100,100,,1,1,[1],3.5,1,3,"(0.65, 0.375)" -3564,100,100,,1,1,[1],3.5,1,4,"(0.54, 0.4)" -3565,100,100,,1,1,[1],3.5,1,5,"(0.66, 0.35)" -3566,100,100,,1,1,[1],3.5,1,6,"(0.53, 0.385)" -3567,100,100,,1,1,[1],3.5,1,7,"(0.56, 0.36)" -3568,100,100,,1,1,[1],3.5,1,8,"(0.6, 0.38)" -3569,100,100,,1,1,[1],3.5,1,9,"(0.5, 0.38)" -3570,100,100,,1,1,[1],3.5,2,0,"(0.65, 0.265)" -3571,100,100,,1,1,[1],3.5,2,1,"(0.57, 0.275)" -3572,100,100,,1,1,[1],3.5,2,2,"(0.6, 0.28)" -3573,100,100,,1,1,[1],3.5,2,3,"(0.55, 0.335)" -3574,100,100,,1,1,[1],3.5,2,4,"(0.63, 0.275)" -3575,100,100,,1,1,[1],3.5,2,5,"(0.64, 0.28)" -3576,100,100,,1,1,[1],3.5,2,6,"(0.61, 0.305)" -3577,100,100,,1,1,[1],3.5,2,7,"(0.61, 0.335)" -3578,100,100,,1,1,[1],3.5,2,8,"(0.58, 0.32)" -3579,100,100,,1,1,[1],3.5,2,9,"(0.59, 0.305)" -3580,100,100,,1,1,[1],3.5,3,0,"(0.65, 0.225)" -3581,100,100,,1,1,[1],3.5,3,1,"(0.71, 0.215)" -3582,100,100,,1,1,[1],3.5,3,2,"(0.7, 0.23)" -3583,100,100,,1,1,[1],3.5,3,3,"(0.75, 0.195)" -3584,100,100,,1,1,[1],3.5,3,4,"(0.67, 0.235)" -3585,100,100,,1,1,[1],3.5,3,5,"(0.7, 0.2)" -3586,100,100,,1,1,[1],3.5,3,6,"(0.63, 0.235)" -3587,100,100,,1,1,[1],3.5,3,7,"(0.6, 0.26)" -3588,100,100,,1,1,[1],3.5,3,8,"(0.66, 0.21)" -3589,100,100,,1,1,[1],3.5,3,9,"(0.69, 0.205)" -3590,100,100,,1,1,[1],3.5,4,0,"(0.73, 0.145)" -3591,100,100,,1,1,[1],3.5,4,1,"(0.79, 0.145)" -3592,100,100,,1,1,[1],3.5,4,2,"(0.78, 0.15)" -3593,100,100,,1,1,[1],3.5,4,3,"(0.76, 0.13)" -3594,100,100,,1,1,[1],3.5,4,4,"(0.76, 0.15)" -3595,100,100,,1,1,[1],3.5,4,5,"(0.8, 0.12)" -3596,100,100,,1,1,[1],3.5,4,6,"(0.72, 0.19)" -3597,100,100,,1,1,[1],3.5,4,7,"(0.73, 0.145)" -3598,100,100,,1,1,[1],3.5,4,8,"(0.7, 0.17)" -3599,100,100,,1,1,[1],3.5,4,9,"(0.79, 0.135)" -3600,100,100,,1,1,[1],3.6,-5,0,"(0.79, 0.895)" -3601,100,100,,1,1,[1],3.6,-5,1,"(0.81, 0.905)" -3602,100,100,,1,1,[1],3.6,-5,2,"(0.83, 0.915)" -3603,100,100,,1,1,[1],3.6,-5,3,"(0.87, 0.915)" -3604,100,100,,1,1,[1],3.6,-5,4,"(0.83, 0.915)" -3605,100,100,,1,1,[1],3.6,-5,5,"(0.88, 0.92)" -3606,100,100,,1,1,[1],3.6,-5,6,"(0.81, 0.895)" -3607,100,100,,1,1,[1],3.6,-5,7,"(0.9, 0.94)" -3608,100,100,,1,1,[1],3.6,-5,8,"(0.77, 0.855)" -3609,100,100,,1,1,[1],3.6,-5,9,"(0.84, 0.9)" -3610,100,100,,1,1,[1],3.6,-4,0,"(0.68, 0.83)" -3611,100,100,,1,1,[1],3.6,-4,1,"(0.81, 0.875)" -3612,100,100,,1,1,[1],3.6,-4,2,"(0.72, 0.83)" -3613,100,100,,1,1,[1],3.6,-4,3,"(0.84, 0.91)" -3614,100,100,,1,1,[1],3.6,-4,4,"(0.78, 0.81)" -3615,100,100,,1,1,[1],3.6,-4,5,"(0.71, 0.815)" -3616,100,100,,1,1,[1],3.6,-4,6,"(0.83, 0.865)" -3617,100,100,,1,1,[1],3.6,-4,7,"(0.73, 0.845)" -3618,100,100,,1,1,[1],3.6,-4,8,"(0.82, 0.86)" -3619,100,100,,1,1,[1],3.6,-4,9,"(0.78, 0.85)" -3620,100,100,,1,1,[1],3.6,-3,0,"(0.65, 0.775)" -3621,100,100,,1,1,[1],3.6,-3,1,"(0.71, 0.795)" -3622,100,100,,1,1,[1],3.6,-3,2,"(0.72, 0.79)" -3623,100,100,,1,1,[1],3.6,-3,3,"(0.75, 0.805)" -3624,100,100,,1,1,[1],3.6,-3,4,"(0.67, 0.785)" -3625,100,100,,1,1,[1],3.6,-3,5,"(0.7, 0.77)" -3626,100,100,,1,1,[1],3.6,-3,6,"(0.7, 0.81)" -3627,100,100,,1,1,[1],3.6,-3,7,"(0.76, 0.82)" -3628,100,100,,1,1,[1],3.6,-3,8,"(0.62, 0.78)" -3629,100,100,,1,1,[1],3.6,-3,9,"(0.75, 0.805)" -3630,100,100,,1,1,[1],3.6,-2,0,"(0.51, 0.695)" -3631,100,100,,1,1,[1],3.6,-2,1,"(0.68, 0.7)" -3632,100,100,,1,1,[1],3.6,-2,2,"(0.6, 0.64)" -3633,100,100,,1,1,[1],3.6,-2,3,"(0.62, 0.69)" -3634,100,100,,1,1,[1],3.6,-2,4,"(0.64, 0.76)" -3635,100,100,,1,1,[1],3.6,-2,5,"(0.54, 0.68)" -3636,100,100,,1,1,[1],3.6,-2,6,"(0.6, 0.72)" -3637,100,100,,1,1,[1],3.6,-2,7,"(0.67, 0.735)" -3638,100,100,,1,1,[1],3.6,-2,8,"(0.62, 0.71)" -3639,100,100,,1,1,[1],3.6,-2,9,"(0.63, 0.725)" -3640,100,100,,1,1,[1],3.6,-1,0,"(0.57, 0.595)" -3641,100,100,,1,1,[1],3.6,-1,1,"(0.62, 0.58)" -3642,100,100,,1,1,[1],3.6,-1,2,"(0.59, 0.645)" -3643,100,100,,1,1,[1],3.6,-1,3,"(0.57, 0.595)" -3644,100,100,,1,1,[1],3.6,-1,4,"(0.58, 0.57)" -3645,100,100,,1,1,[1],3.6,-1,5,"(0.54, 0.66)" -3646,100,100,,1,1,[1],3.6,-1,6,"(0.5, 0.64)" -3647,100,100,,1,1,[1],3.6,-1,7,"(0.49, 0.595)" -3648,100,100,,1,1,[1],3.6,-1,8,"(0.5, 0.59)" -3649,100,100,,1,1,[1],3.6,-1,9,"(0.6, 0.59)" -3650,100,100,,1,1,[1],3.6,0,0,"(0.53, 0.545)" -3651,100,100,,1,1,[1],3.6,0,1,"(0.52, 0.54)" -3652,100,100,,1,1,[1],3.6,0,2,"(0.5, 0.5)" -3653,100,100,,1,1,[1],3.6,0,3,"(0.57, 0.485)" -3654,100,100,,1,1,[1],3.6,0,4,"(0.61, 0.505)" -3655,100,100,,1,1,[1],3.6,0,5,"(0.57, 0.445)" -3656,100,100,,1,1,[1],3.6,0,6,"(0.53, 0.435)" -3657,100,100,,1,1,[1],3.6,0,7,"(0.58, 0.52)" -3658,100,100,,1,1,[1],3.6,0,8,"(0.58, 0.45)" -3659,100,100,,1,1,[1],3.6,0,9,"(0.55, 0.515)" -3660,100,100,,1,1,[1],3.6,1,0,"(0.5, 0.44)" -3661,100,100,,1,1,[1],3.6,1,1,"(0.58, 0.35)" -3662,100,100,,1,1,[1],3.6,1,2,"(0.51, 0.405)" -3663,100,100,,1,1,[1],3.6,1,3,"(0.62, 0.39)" -3664,100,100,,1,1,[1],3.6,1,4,"(0.59, 0.345)" -3665,100,100,,1,1,[1],3.6,1,5,"(0.57, 0.355)" -3666,100,100,,1,1,[1],3.6,1,6,"(0.61, 0.395)" -3667,100,100,,1,1,[1],3.6,1,7,"(0.64, 0.29)" -3668,100,100,,1,1,[1],3.6,1,8,"(0.52, 0.42)" -3669,100,100,,1,1,[1],3.6,1,9,"(0.51, 0.385)" -3670,100,100,,1,1,[1],3.6,2,0,"(0.62, 0.31)" -3671,100,100,,1,1,[1],3.6,2,1,"(0.59, 0.315)" -3672,100,100,,1,1,[1],3.6,2,2,"(0.68, 0.27)" -3673,100,100,,1,1,[1],3.6,2,3,"(0.66, 0.24)" -3674,100,100,,1,1,[1],3.6,2,4,"(0.57, 0.345)" -3675,100,100,,1,1,[1],3.6,2,5,"(0.71, 0.285)" -3676,100,100,,1,1,[1],3.6,2,6,"(0.58, 0.34)" -3677,100,100,,1,1,[1],3.6,2,7,"(0.72, 0.31)" -3678,100,100,,1,1,[1],3.6,2,8,"(0.6, 0.36)" -3679,100,100,,1,1,[1],3.6,2,9,"(0.61, 0.345)" -3680,100,100,,1,1,[1],3.6,3,0,"(0.7, 0.21)" -3681,100,100,,1,1,[1],3.6,3,1,"(0.66, 0.22)" -3682,100,100,,1,1,[1],3.6,3,2,"(0.74, 0.17)" -3683,100,100,,1,1,[1],3.6,3,3,"(0.69, 0.185)" -3684,100,100,,1,1,[1],3.6,3,4,"(0.7, 0.21)" -3685,100,100,,1,1,[1],3.6,3,5,"(0.64, 0.25)" -3686,100,100,,1,1,[1],3.6,3,6,"(0.7, 0.18)" -3687,100,100,,1,1,[1],3.6,3,7,"(0.69, 0.235)" -3688,100,100,,1,1,[1],3.6,3,8,"(0.75, 0.225)" -3689,100,100,,1,1,[1],3.6,3,9,"(0.77, 0.175)" -3690,100,100,,1,1,[1],3.6,4,0,"(0.79, 0.115)" -3691,100,100,,1,1,[1],3.6,4,1,"(0.75, 0.155)" -3692,100,100,,1,1,[1],3.6,4,2,"(0.85, 0.115)" -3693,100,100,,1,1,[1],3.6,4,3,"(0.74, 0.18)" -3694,100,100,,1,1,[1],3.6,4,4,"(0.76, 0.17)" -3695,100,100,,1,1,[1],3.6,4,5,"(0.7, 0.18)" -3696,100,100,,1,1,[1],3.6,4,6,"(0.78, 0.14)" -3697,100,100,,1,1,[1],3.6,4,7,"(0.83, 0.135)" -3698,100,100,,1,1,[1],3.6,4,8,"(0.8, 0.12)" -3699,100,100,,1,1,[1],3.6,4,9,"(0.83, 0.105)" -3700,100,100,,1,1,[1],3.7,-5,0,"(0.85, 0.895)" -3701,100,100,,1,1,[1],3.7,-5,1,"(0.85, 0.915)" -3702,100,100,,1,1,[1],3.7,-5,2,"(0.84, 0.87)" -3703,100,100,,1,1,[1],3.7,-5,3,"(0.8, 0.88)" -3704,100,100,,1,1,[1],3.7,-5,4,"(0.79, 0.875)" -3705,100,100,,1,1,[1],3.7,-5,5,"(0.82, 0.89)" -3706,100,100,,1,1,[1],3.7,-5,6,"(0.78, 0.89)" -3707,100,100,,1,1,[1],3.7,-5,7,"(0.84, 0.89)" -3708,100,100,,1,1,[1],3.7,-5,8,"(0.89, 0.945)" -3709,100,100,,1,1,[1],3.7,-5,9,"(0.75, 0.865)" -3710,100,100,,1,1,[1],3.7,-4,0,"(0.69, 0.805)" -3711,100,100,,1,1,[1],3.7,-4,1,"(0.73, 0.855)" -3712,100,100,,1,1,[1],3.7,-4,2,"(0.69, 0.815)" -3713,100,100,,1,1,[1],3.7,-4,3,"(0.78, 0.84)" -3714,100,100,,1,1,[1],3.7,-4,4,"(0.8, 0.86)" -3715,100,100,,1,1,[1],3.7,-4,5,"(0.76, 0.84)" -3716,100,100,,1,1,[1],3.7,-4,6,"(0.8, 0.88)" -3717,100,100,,1,1,[1],3.7,-4,7,"(0.78, 0.87)" -3718,100,100,,1,1,[1],3.7,-4,8,"(0.79, 0.875)" -3719,100,100,,1,1,[1],3.7,-4,9,"(0.79, 0.845)" -3720,100,100,,1,1,[1],3.7,-3,0,"(0.65, 0.755)" -3721,100,100,,1,1,[1],3.7,-3,1,"(0.71, 0.785)" -3722,100,100,,1,1,[1],3.7,-3,2,"(0.74, 0.82)" -3723,100,100,,1,1,[1],3.7,-3,3,"(0.61, 0.735)" -3724,100,100,,1,1,[1],3.7,-3,4,"(0.71, 0.785)" -3725,100,100,,1,1,[1],3.7,-3,5,"(0.71, 0.815)" -3726,100,100,,1,1,[1],3.7,-3,6,"(0.66, 0.81)" -3727,100,100,,1,1,[1],3.7,-3,7,"(0.63, 0.735)" -3728,100,100,,1,1,[1],3.7,-3,8,"(0.65, 0.775)" -3729,100,100,,1,1,[1],3.7,-3,9,"(0.73, 0.745)" -3730,100,100,,1,1,[1],3.7,-2,0,"(0.61, 0.695)" -3731,100,100,,1,1,[1],3.7,-2,1,"(0.58, 0.63)" -3732,100,100,,1,1,[1],3.7,-2,2,"(0.53, 0.665)" -3733,100,100,,1,1,[1],3.7,-2,3,"(0.67, 0.715)" -3734,100,100,,1,1,[1],3.7,-2,4,"(0.49, 0.665)" -3735,100,100,,1,1,[1],3.7,-2,5,"(0.61, 0.685)" -3736,100,100,,1,1,[1],3.7,-2,6,"(0.51, 0.685)" -3737,100,100,,1,1,[1],3.7,-2,7,"(0.46, 0.66)" -3738,100,100,,1,1,[1],3.7,-2,8,"(0.67, 0.745)" -3739,100,100,,1,1,[1],3.7,-2,9,"(0.59, 0.705)" -3740,100,100,,1,1,[1],3.7,-1,0,"(0.58, 0.57)" -3741,100,100,,1,1,[1],3.7,-1,1,"(0.61, 0.675)" -3742,100,100,,1,1,[1],3.7,-1,2,"(0.44, 0.6)" -3743,100,100,,1,1,[1],3.7,-1,3,"(0.62, 0.6)" -3744,100,100,,1,1,[1],3.7,-1,4,"(0.49, 0.595)" -3745,100,100,,1,1,[1],3.7,-1,5,"(0.44, 0.59)" -3746,100,100,,1,1,[1],3.7,-1,6,"(0.55, 0.605)" -3747,100,100,,1,1,[1],3.7,-1,7,"(0.46, 0.59)" -3748,100,100,,1,1,[1],3.7,-1,8,"(0.6, 0.67)" -3749,100,100,,1,1,[1],3.7,-1,9,"(0.46, 0.55)" -3750,100,100,,1,1,[1],3.7,0,0,"(0.6, 0.45)" -3751,100,100,,1,1,[1],3.7,0,1,"(0.54, 0.51)" -3752,100,100,,1,1,[1],3.7,0,2,"(0.51, 0.415)" -3753,100,100,,1,1,[1],3.7,0,3,"(0.54, 0.52)" -3754,100,100,,1,1,[1],3.7,0,4,"(0.57, 0.525)" -3755,100,100,,1,1,[1],3.7,0,5,"(0.49, 0.565)" -3756,100,100,,1,1,[1],3.7,0,6,"(0.55, 0.455)" -3757,100,100,,1,1,[1],3.7,0,7,"(0.53, 0.485)" -3758,100,100,,1,1,[1],3.7,0,8,"(0.59, 0.395)" -3759,100,100,,1,1,[1],3.7,0,9,"(0.51, 0.465)" -3760,100,100,,1,1,[1],3.7,1,0,"(0.61, 0.375)" -3761,100,100,,1,1,[1],3.7,1,1,"(0.55, 0.415)" -3762,100,100,,1,1,[1],3.7,1,2,"(0.54, 0.39)" -3763,100,100,,1,1,[1],3.7,1,3,"(0.59, 0.455)" -3764,100,100,,1,1,[1],3.7,1,4,"(0.58, 0.42)" -3765,100,100,,1,1,[1],3.7,1,5,"(0.54, 0.39)" -3766,100,100,,1,1,[1],3.7,1,6,"(0.55, 0.415)" -3767,100,100,,1,1,[1],3.7,1,7,"(0.58, 0.44)" -3768,100,100,,1,1,[1],3.7,1,8,"(0.6, 0.41)" -3769,100,100,,1,1,[1],3.7,1,9,"(0.51, 0.405)" -3770,100,100,,1,1,[1],3.7,2,0,"(0.59, 0.285)" -3771,100,100,,1,1,[1],3.7,2,1,"(0.51, 0.315)" -3772,100,100,,1,1,[1],3.7,2,2,"(0.61, 0.315)" -3773,100,100,,1,1,[1],3.7,2,3,"(0.54, 0.29)" -3774,100,100,,1,1,[1],3.7,2,4,"(0.71, 0.245)" -3775,100,100,,1,1,[1],3.7,2,5,"(0.61, 0.245)" -3776,100,100,,1,1,[1],3.7,2,6,"(0.66, 0.35)" -3777,100,100,,1,1,[1],3.7,2,7,"(0.54, 0.34)" -3778,100,100,,1,1,[1],3.7,2,8,"(0.57, 0.315)" -3779,100,100,,1,1,[1],3.7,2,9,"(0.62, 0.32)" -3780,100,100,,1,1,[1],3.7,3,0,"(0.64, 0.28)" -3781,100,100,,1,1,[1],3.7,3,1,"(0.69, 0.255)" -3782,100,100,,1,1,[1],3.7,3,2,"(0.65, 0.255)" -3783,100,100,,1,1,[1],3.7,3,3,"(0.66, 0.26)" -3784,100,100,,1,1,[1],3.7,3,4,"(0.65, 0.225)" -3785,100,100,,1,1,[1],3.7,3,5,"(0.72, 0.19)" -3786,100,100,,1,1,[1],3.7,3,6,"(0.73, 0.215)" -3787,100,100,,1,1,[1],3.7,3,7,"(0.67, 0.215)" -3788,100,100,,1,1,[1],3.7,3,8,"(0.7, 0.21)" -3789,100,100,,1,1,[1],3.7,3,9,"(0.75, 0.235)" -3790,100,100,,1,1,[1],3.7,4,0,"(0.75, 0.145)" -3791,100,100,,1,1,[1],3.7,4,1,"(0.73, 0.185)" -3792,100,100,,1,1,[1],3.7,4,2,"(0.75, 0.145)" -3793,100,100,,1,1,[1],3.7,4,3,"(0.77, 0.145)" -3794,100,100,,1,1,[1],3.7,4,4,"(0.7, 0.18)" -3795,100,100,,1,1,[1],3.7,4,5,"(0.73, 0.145)" -3796,100,100,,1,1,[1],3.7,4,6,"(0.78, 0.16)" -3797,100,100,,1,1,[1],3.7,4,7,"(0.81, 0.115)" -3798,100,100,,1,1,[1],3.7,4,8,"(0.75, 0.155)" -3799,100,100,,1,1,[1],3.7,4,9,"(0.76, 0.14)" -3800,100,100,,1,1,[1],3.8000000000000003,-5,0,"(0.75, 0.865)" -3801,100,100,,1,1,[1],3.8000000000000003,-5,1,"(0.88, 0.93)" -3802,100,100,,1,1,[1],3.8000000000000003,-5,2,"(0.8, 0.9)" -3803,100,100,,1,1,[1],3.8000000000000003,-5,3,"(0.79, 0.885)" -3804,100,100,,1,1,[1],3.8000000000000003,-5,4,"(0.77, 0.865)" -3805,100,100,,1,1,[1],3.8000000000000003,-5,5,"(0.77, 0.875)" -3806,100,100,,1,1,[1],3.8000000000000003,-5,6,"(0.85, 0.895)" -3807,100,100,,1,1,[1],3.8000000000000003,-5,7,"(0.86, 0.92)" -3808,100,100,,1,1,[1],3.8000000000000003,-5,8,"(0.86, 0.91)" -3809,100,100,,1,1,[1],3.8000000000000003,-5,9,"(0.77, 0.875)" -3810,100,100,,1,1,[1],3.8000000000000003,-4,0,"(0.74, 0.85)" -3811,100,100,,1,1,[1],3.8000000000000003,-4,1,"(0.81, 0.885)" -3812,100,100,,1,1,[1],3.8000000000000003,-4,2,"(0.72, 0.82)" -3813,100,100,,1,1,[1],3.8000000000000003,-4,3,"(0.69, 0.795)" -3814,100,100,,1,1,[1],3.8000000000000003,-4,4,"(0.74, 0.82)" -3815,100,100,,1,1,[1],3.8000000000000003,-4,5,"(0.8, 0.86)" -3816,100,100,,1,1,[1],3.8000000000000003,-4,6,"(0.74, 0.86)" -3817,100,100,,1,1,[1],3.8000000000000003,-4,7,"(0.72, 0.84)" -3818,100,100,,1,1,[1],3.8000000000000003,-4,8,"(0.76, 0.84)" -3819,100,100,,1,1,[1],3.8000000000000003,-4,9,"(0.77, 0.835)" -3820,100,100,,1,1,[1],3.8000000000000003,-3,0,"(0.68, 0.81)" -3821,100,100,,1,1,[1],3.8000000000000003,-3,1,"(0.66, 0.79)" -3822,100,100,,1,1,[1],3.8000000000000003,-3,2,"(0.65, 0.725)" -3823,100,100,,1,1,[1],3.8000000000000003,-3,3,"(0.67, 0.765)" -3824,100,100,,1,1,[1],3.8000000000000003,-3,4,"(0.65, 0.795)" -3825,100,100,,1,1,[1],3.8000000000000003,-3,5,"(0.7, 0.8)" -3826,100,100,,1,1,[1],3.8000000000000003,-3,6,"(0.6, 0.72)" -3827,100,100,,1,1,[1],3.8000000000000003,-3,7,"(0.64, 0.75)" -3828,100,100,,1,1,[1],3.8000000000000003,-3,8,"(0.64, 0.76)" -3829,100,100,,1,1,[1],3.8000000000000003,-3,9,"(0.77, 0.805)" -3830,100,100,,1,1,[1],3.8000000000000003,-2,0,"(0.58, 0.67)" -3831,100,100,,1,1,[1],3.8000000000000003,-2,1,"(0.59, 0.665)" -3832,100,100,,1,1,[1],3.8000000000000003,-2,2,"(0.53, 0.625)" -3833,100,100,,1,1,[1],3.8000000000000003,-2,3,"(0.62, 0.66)" -3834,100,100,,1,1,[1],3.8000000000000003,-2,4,"(0.54, 0.61)" -3835,100,100,,1,1,[1],3.8000000000000003,-2,5,"(0.44, 0.63)" -3836,100,100,,1,1,[1],3.8000000000000003,-2,6,"(0.54, 0.65)" -3837,100,100,,1,1,[1],3.8000000000000003,-2,7,"(0.64, 0.74)" -3838,100,100,,1,1,[1],3.8000000000000003,-2,8,"(0.58, 0.69)" -3839,100,100,,1,1,[1],3.8000000000000003,-2,9,"(0.66, 0.7)" -3840,100,100,,1,1,[1],3.8000000000000003,-1,0,"(0.58, 0.62)" -3841,100,100,,1,1,[1],3.8000000000000003,-1,1,"(0.71, 0.595)" -3842,100,100,,1,1,[1],3.8000000000000003,-1,2,"(0.54, 0.6)" -3843,100,100,,1,1,[1],3.8000000000000003,-1,3,"(0.58, 0.62)" -3844,100,100,,1,1,[1],3.8000000000000003,-1,4,"(0.56, 0.57)" -3845,100,100,,1,1,[1],3.8000000000000003,-1,5,"(0.59, 0.575)" -3846,100,100,,1,1,[1],3.8000000000000003,-1,6,"(0.52, 0.58)" -3847,100,100,,1,1,[1],3.8000000000000003,-1,7,"(0.51, 0.615)" -3848,100,100,,1,1,[1],3.8000000000000003,-1,8,"(0.52, 0.6)" -3849,100,100,,1,1,[1],3.8000000000000003,-1,9,"(0.5, 0.59)" -3850,100,100,,1,1,[1],3.8000000000000003,0,0,"(0.54, 0.53)" -3851,100,100,,1,1,[1],3.8000000000000003,0,1,"(0.64, 0.51)" -3852,100,100,,1,1,[1],3.8000000000000003,0,2,"(0.56, 0.54)" -3853,100,100,,1,1,[1],3.8000000000000003,0,3,"(0.54, 0.52)" -3854,100,100,,1,1,[1],3.8000000000000003,0,4,"(0.51, 0.465)" -3855,100,100,,1,1,[1],3.8000000000000003,0,5,"(0.5, 0.46)" -3856,100,100,,1,1,[1],3.8000000000000003,0,6,"(0.53, 0.495)" -3857,100,100,,1,1,[1],3.8000000000000003,0,7,"(0.59, 0.445)" -3858,100,100,,1,1,[1],3.8000000000000003,0,8,"(0.56, 0.51)" -3859,100,100,,1,1,[1],3.8000000000000003,0,9,"(0.54, 0.58)" -3860,100,100,,1,1,[1],3.8000000000000003,1,0,"(0.58, 0.39)" -3861,100,100,,1,1,[1],3.8000000000000003,1,1,"(0.59, 0.435)" -3862,100,100,,1,1,[1],3.8000000000000003,1,2,"(0.51, 0.385)" -3863,100,100,,1,1,[1],3.8000000000000003,1,3,"(0.57, 0.325)" -3864,100,100,,1,1,[1],3.8000000000000003,1,4,"(0.6, 0.33)" -3865,100,100,,1,1,[1],3.8000000000000003,1,5,"(0.59, 0.445)" -3866,100,100,,1,1,[1],3.8000000000000003,1,6,"(0.52, 0.36)" -3867,100,100,,1,1,[1],3.8000000000000003,1,7,"(0.47, 0.375)" -3868,100,100,,1,1,[1],3.8000000000000003,1,8,"(0.5, 0.42)" -3869,100,100,,1,1,[1],3.8000000000000003,1,9,"(0.61, 0.355)" -3870,100,100,,1,1,[1],3.8000000000000003,2,0,"(0.61, 0.345)" -3871,100,100,,1,1,[1],3.8000000000000003,2,1,"(0.6, 0.31)" -3872,100,100,,1,1,[1],3.8000000000000003,2,2,"(0.59, 0.355)" -3873,100,100,,1,1,[1],3.8000000000000003,2,3,"(0.6, 0.34)" -3874,100,100,,1,1,[1],3.8000000000000003,2,4,"(0.64, 0.32)" -3875,100,100,,1,1,[1],3.8000000000000003,2,5,"(0.63, 0.295)" -3876,100,100,,1,1,[1],3.8000000000000003,2,6,"(0.65, 0.355)" -3877,100,100,,1,1,[1],3.8000000000000003,2,7,"(0.62, 0.36)" -3878,100,100,,1,1,[1],3.8000000000000003,2,8,"(0.65, 0.315)" -3879,100,100,,1,1,[1],3.8000000000000003,2,9,"(0.63, 0.295)" -3880,100,100,,1,1,[1],3.8000000000000003,3,0,"(0.72, 0.22)" -3881,100,100,,1,1,[1],3.8000000000000003,3,1,"(0.6, 0.23)" -3882,100,100,,1,1,[1],3.8000000000000003,3,2,"(0.61, 0.275)" -3883,100,100,,1,1,[1],3.8000000000000003,3,3,"(0.7, 0.2)" -3884,100,100,,1,1,[1],3.8000000000000003,3,4,"(0.7, 0.21)" -3885,100,100,,1,1,[1],3.8000000000000003,3,5,"(0.57, 0.265)" -3886,100,100,,1,1,[1],3.8000000000000003,3,6,"(0.67, 0.225)" -3887,100,100,,1,1,[1],3.8000000000000003,3,7,"(0.65, 0.225)" -3888,100,100,,1,1,[1],3.8000000000000003,3,8,"(0.69, 0.245)" -3889,100,100,,1,1,[1],3.8000000000000003,3,9,"(0.71, 0.225)" -3890,100,100,,1,1,[1],3.8000000000000003,4,0,"(0.74, 0.14)" -3891,100,100,,1,1,[1],3.8000000000000003,4,1,"(0.7, 0.2)" -3892,100,100,,1,1,[1],3.8000000000000003,4,2,"(0.69, 0.185)" -3893,100,100,,1,1,[1],3.8000000000000003,4,3,"(0.78, 0.12)" -3894,100,100,,1,1,[1],3.8000000000000003,4,4,"(0.71, 0.165)" -3895,100,100,,1,1,[1],3.8000000000000003,4,5,"(0.77, 0.185)" -3896,100,100,,1,1,[1],3.8000000000000003,4,6,"(0.78, 0.14)" -3897,100,100,,1,1,[1],3.8000000000000003,4,7,"(0.74, 0.19)" -3898,100,100,,1,1,[1],3.8000000000000003,4,8,"(0.73, 0.195)" -3899,100,100,,1,1,[1],3.8000000000000003,4,9,"(0.65, 0.215)" -3900,100,100,,1,1,[1],3.9000000000000004,-5,0,"(0.84, 0.9)" -3901,100,100,,1,1,[1],3.9000000000000004,-5,1,"(0.84, 0.9)" -3902,100,100,,1,1,[1],3.9000000000000004,-5,2,"(0.83, 0.905)" -3903,100,100,,1,1,[1],3.9000000000000004,-5,3,"(0.81, 0.905)" -3904,100,100,,1,1,[1],3.9000000000000004,-5,4,"(0.81, 0.885)" -3905,100,100,,1,1,[1],3.9000000000000004,-5,5,"(0.83, 0.915)" -3906,100,100,,1,1,[1],3.9000000000000004,-5,6,"(0.82, 0.88)" -3907,100,100,,1,1,[1],3.9000000000000004,-5,7,"(0.78, 0.88)" -3908,100,100,,1,1,[1],3.9000000000000004,-5,8,"(0.78, 0.87)" -3909,100,100,,1,1,[1],3.9000000000000004,-5,9,"(0.8, 0.89)" -3910,100,100,,1,1,[1],3.9000000000000004,-4,0,"(0.75, 0.845)" -3911,100,100,,1,1,[1],3.9000000000000004,-4,1,"(0.73, 0.825)" -3912,100,100,,1,1,[1],3.9000000000000004,-4,2,"(0.79, 0.835)" -3913,100,100,,1,1,[1],3.9000000000000004,-4,3,"(0.71, 0.815)" -3914,100,100,,1,1,[1],3.9000000000000004,-4,4,"(0.68, 0.81)" -3915,100,100,,1,1,[1],3.9000000000000004,-4,5,"(0.74, 0.8)" -3916,100,100,,1,1,[1],3.9000000000000004,-4,6,"(0.75, 0.815)" -3917,100,100,,1,1,[1],3.9000000000000004,-4,7,"(0.77, 0.845)" -3918,100,100,,1,1,[1],3.9000000000000004,-4,8,"(0.75, 0.855)" -3919,100,100,,1,1,[1],3.9000000000000004,-4,9,"(0.81, 0.875)" -3920,100,100,,1,1,[1],3.9000000000000004,-3,0,"(0.55, 0.715)" -3921,100,100,,1,1,[1],3.9000000000000004,-3,1,"(0.67, 0.805)" -3922,100,100,,1,1,[1],3.9000000000000004,-3,2,"(0.71, 0.825)" -3923,100,100,,1,1,[1],3.9000000000000004,-3,3,"(0.73, 0.815)" -3924,100,100,,1,1,[1],3.9000000000000004,-3,4,"(0.67, 0.765)" -3925,100,100,,1,1,[1],3.9000000000000004,-3,5,"(0.7, 0.76)" -3926,100,100,,1,1,[1],3.9000000000000004,-3,6,"(0.69, 0.745)" -3927,100,100,,1,1,[1],3.9000000000000004,-3,7,"(0.64, 0.79)" -3928,100,100,,1,1,[1],3.9000000000000004,-3,8,"(0.72, 0.76)" -3929,100,100,,1,1,[1],3.9000000000000004,-3,9,"(0.71, 0.785)" -3930,100,100,,1,1,[1],3.9000000000000004,-2,0,"(0.59, 0.725)" -3931,100,100,,1,1,[1],3.9000000000000004,-2,1,"(0.61, 0.645)" -3932,100,100,,1,1,[1],3.9000000000000004,-2,2,"(0.61, 0.655)" -3933,100,100,,1,1,[1],3.9000000000000004,-2,3,"(0.57, 0.715)" -3934,100,100,,1,1,[1],3.9000000000000004,-2,4,"(0.6, 0.73)" -3935,100,100,,1,1,[1],3.9000000000000004,-2,5,"(0.63, 0.685)" -3936,100,100,,1,1,[1],3.9000000000000004,-2,6,"(0.64, 0.72)" -3937,100,100,,1,1,[1],3.9000000000000004,-2,7,"(0.67, 0.745)" -3938,100,100,,1,1,[1],3.9000000000000004,-2,8,"(0.56, 0.68)" -3939,100,100,,1,1,[1],3.9000000000000004,-2,9,"(0.59, 0.715)" -3940,100,100,,1,1,[1],3.9000000000000004,-1,0,"(0.6, 0.56)" -3941,100,100,,1,1,[1],3.9000000000000004,-1,1,"(0.53, 0.615)" -3942,100,100,,1,1,[1],3.9000000000000004,-1,2,"(0.58, 0.62)" -3943,100,100,,1,1,[1],3.9000000000000004,-1,3,"(0.55, 0.605)" -3944,100,100,,1,1,[1],3.9000000000000004,-1,4,"(0.54, 0.59)" -3945,100,100,,1,1,[1],3.9000000000000004,-1,5,"(0.54, 0.61)" -3946,100,100,,1,1,[1],3.9000000000000004,-1,6,"(0.53, 0.585)" -3947,100,100,,1,1,[1],3.9000000000000004,-1,7,"(0.55, 0.635)" -3948,100,100,,1,1,[1],3.9000000000000004,-1,8,"(0.52, 0.58)" -3949,100,100,,1,1,[1],3.9000000000000004,-1,9,"(0.51, 0.575)" -3950,100,100,,1,1,[1],3.9000000000000004,0,0,"(0.58, 0.49)" -3951,100,100,,1,1,[1],3.9000000000000004,0,1,"(0.51, 0.565)" -3952,100,100,,1,1,[1],3.9000000000000004,0,2,"(0.56, 0.53)" -3953,100,100,,1,1,[1],3.9000000000000004,0,3,"(0.56, 0.44)" -3954,100,100,,1,1,[1],3.9000000000000004,0,4,"(0.54, 0.47)" -3955,100,100,,1,1,[1],3.9000000000000004,0,5,"(0.45, 0.495)" -3956,100,100,,1,1,[1],3.9000000000000004,0,6,"(0.51, 0.445)" -3957,100,100,,1,1,[1],3.9000000000000004,0,7,"(0.52, 0.49)" -3958,100,100,,1,1,[1],3.9000000000000004,0,8,"(0.5, 0.47)" -3959,100,100,,1,1,[1],3.9000000000000004,0,9,"(0.57, 0.485)" -3960,100,100,,1,1,[1],3.9000000000000004,1,0,"(0.55, 0.415)" -3961,100,100,,1,1,[1],3.9000000000000004,1,1,"(0.52, 0.38)" -3962,100,100,,1,1,[1],3.9000000000000004,1,2,"(0.56, 0.38)" -3963,100,100,,1,1,[1],3.9000000000000004,1,3,"(0.57, 0.435)" -3964,100,100,,1,1,[1],3.9000000000000004,1,4,"(0.52, 0.45)" -3965,100,100,,1,1,[1],3.9000000000000004,1,5,"(0.5, 0.4)" -3966,100,100,,1,1,[1],3.9000000000000004,1,6,"(0.58, 0.38)" -3967,100,100,,1,1,[1],3.9000000000000004,1,7,"(0.56, 0.36)" -3968,100,100,,1,1,[1],3.9000000000000004,1,8,"(0.53, 0.425)" -3969,100,100,,1,1,[1],3.9000000000000004,1,9,"(0.53, 0.515)" -3970,100,100,,1,1,[1],3.9000000000000004,2,0,"(0.61, 0.345)" -3971,100,100,,1,1,[1],3.9000000000000004,2,1,"(0.63, 0.255)" -3972,100,100,,1,1,[1],3.9000000000000004,2,2,"(0.64, 0.28)" -3973,100,100,,1,1,[1],3.9000000000000004,2,3,"(0.61, 0.295)" -3974,100,100,,1,1,[1],3.9000000000000004,2,4,"(0.62, 0.35)" -3975,100,100,,1,1,[1],3.9000000000000004,2,5,"(0.63, 0.305)" -3976,100,100,,1,1,[1],3.9000000000000004,2,6,"(0.63, 0.315)" -3977,100,100,,1,1,[1],3.9000000000000004,2,7,"(0.61, 0.385)" -3978,100,100,,1,1,[1],3.9000000000000004,2,8,"(0.6, 0.29)" -3979,100,100,,1,1,[1],3.9000000000000004,2,9,"(0.64, 0.27)" -3980,100,100,,1,1,[1],3.9000000000000004,3,0,"(0.61, 0.275)" -3981,100,100,,1,1,[1],3.9000000000000004,3,1,"(0.7, 0.23)" -3982,100,100,,1,1,[1],3.9000000000000004,3,2,"(0.67, 0.255)" -3983,100,100,,1,1,[1],3.9000000000000004,3,3,"(0.64, 0.2)" -3984,100,100,,1,1,[1],3.9000000000000004,3,4,"(0.68, 0.24)" -3985,100,100,,1,1,[1],3.9000000000000004,3,5,"(0.68, 0.24)" -3986,100,100,,1,1,[1],3.9000000000000004,3,6,"(0.7, 0.19)" -3987,100,100,,1,1,[1],3.9000000000000004,3,7,"(0.52, 0.28)" -3988,100,100,,1,1,[1],3.9000000000000004,3,8,"(0.62, 0.27)" -3989,100,100,,1,1,[1],3.9000000000000004,3,9,"(0.71, 0.175)" -3990,100,100,,1,1,[1],3.9000000000000004,4,0,"(0.73, 0.185)" -3991,100,100,,1,1,[1],3.9000000000000004,4,1,"(0.78, 0.15)" -3992,100,100,,1,1,[1],3.9000000000000004,4,2,"(0.72, 0.16)" -3993,100,100,,1,1,[1],3.9000000000000004,4,3,"(0.73, 0.175)" -3994,100,100,,1,1,[1],3.9000000000000004,4,4,"(0.76, 0.15)" -3995,100,100,,1,1,[1],3.9000000000000004,4,5,"(0.78, 0.15)" -3996,100,100,,1,1,[1],3.9000000000000004,4,6,"(0.75, 0.155)" -3997,100,100,,1,1,[1],3.9000000000000004,4,7,"(0.73, 0.155)" -3998,100,100,,1,1,[1],3.9000000000000004,4,8,"(0.68, 0.19)" -3999,100,100,,1,1,[1],3.9000000000000004,4,9,"(0.8, 0.13)" -4000,100,100,,1,1,[1],4.0,-5,0,"(0.8, 0.89)" -4001,100,100,,1,1,[1],4.0,-5,1,"(0.84, 0.89)" -4002,100,100,,1,1,[1],4.0,-5,2,"(0.79, 0.885)" -4003,100,100,,1,1,[1],4.0,-5,3,"(0.81, 0.895)" -4004,100,100,,1,1,[1],4.0,-5,4,"(0.8, 0.9)" -4005,100,100,,1,1,[1],4.0,-5,5,"(0.75, 0.855)" -4006,100,100,,1,1,[1],4.0,-5,6,"(0.86, 0.9)" -4007,100,100,,1,1,[1],4.0,-5,7,"(0.81, 0.885)" -4008,100,100,,1,1,[1],4.0,-5,8,"(0.73, 0.845)" -4009,100,100,,1,1,[1],4.0,-5,9,"(0.86, 0.91)" -4010,100,100,,1,1,[1],4.0,-4,0,"(0.79, 0.855)" -4011,100,100,,1,1,[1],4.0,-4,1,"(0.73, 0.815)" -4012,100,100,,1,1,[1],4.0,-4,2,"(0.67, 0.805)" -4013,100,100,,1,1,[1],4.0,-4,3,"(0.75, 0.855)" -4014,100,100,,1,1,[1],4.0,-4,4,"(0.68, 0.79)" -4015,100,100,,1,1,[1],4.0,-4,5,"(0.71, 0.835)" -4016,100,100,,1,1,[1],4.0,-4,6,"(0.65, 0.785)" -4017,100,100,,1,1,[1],4.0,-4,7,"(0.75, 0.815)" -4018,100,100,,1,1,[1],4.0,-4,8,"(0.77, 0.835)" -4019,100,100,,1,1,[1],4.0,-4,9,"(0.74, 0.82)" -4020,100,100,,1,1,[1],4.0,-3,0,"(0.64, 0.75)" -4021,100,100,,1,1,[1],4.0,-3,1,"(0.67, 0.735)" -4022,100,100,,1,1,[1],4.0,-3,2,"(0.68, 0.76)" -4023,100,100,,1,1,[1],4.0,-3,3,"(0.67, 0.805)" -4024,100,100,,1,1,[1],4.0,-3,4,"(0.64, 0.73)" -4025,100,100,,1,1,[1],4.0,-3,5,"(0.69, 0.735)" -4026,100,100,,1,1,[1],4.0,-3,6,"(0.57, 0.725)" -4027,100,100,,1,1,[1],4.0,-3,7,"(0.65, 0.665)" -4028,100,100,,1,1,[1],4.0,-3,8,"(0.74, 0.8)" -4029,100,100,,1,1,[1],4.0,-3,9,"(0.61, 0.755)" -4030,100,100,,1,1,[1],4.0,-2,0,"(0.48, 0.63)" -4031,100,100,,1,1,[1],4.0,-2,1,"(0.54, 0.63)" -4032,100,100,,1,1,[1],4.0,-2,2,"(0.55, 0.685)" -4033,100,100,,1,1,[1],4.0,-2,3,"(0.62, 0.66)" -4034,100,100,,1,1,[1],4.0,-2,4,"(0.58, 0.74)" -4035,100,100,,1,1,[1],4.0,-2,5,"(0.55, 0.645)" -4036,100,100,,1,1,[1],4.0,-2,6,"(0.62, 0.73)" -4037,100,100,,1,1,[1],4.0,-2,7,"(0.6, 0.65)" -4038,100,100,,1,1,[1],4.0,-2,8,"(0.6, 0.69)" -4039,100,100,,1,1,[1],4.0,-2,9,"(0.66, 0.7)" -4040,100,100,,1,1,[1],4.0,-1,0,"(0.64, 0.6)" -4041,100,100,,1,1,[1],4.0,-1,1,"(0.64, 0.67)" -4042,100,100,,1,1,[1],4.0,-1,2,"(0.57, 0.515)" -4043,100,100,,1,1,[1],4.0,-1,3,"(0.62, 0.61)" -4044,100,100,,1,1,[1],4.0,-1,4,"(0.48, 0.57)" -4045,100,100,,1,1,[1],4.0,-1,5,"(0.5, 0.57)" -4046,100,100,,1,1,[1],4.0,-1,6,"(0.55, 0.585)" -4047,100,100,,1,1,[1],4.0,-1,7,"(0.62, 0.66)" -4048,100,100,,1,1,[1],4.0,-1,8,"(0.48, 0.58)" -4049,100,100,,1,1,[1],4.0,-1,9,"(0.67, 0.595)" -4050,100,100,,1,1,[1],4.0,0,0,"(0.54, 0.54)" -4051,100,100,,1,1,[1],4.0,0,1,"(0.53, 0.535)" -4052,100,100,,1,1,[1],4.0,0,2,"(0.53, 0.555)" -4053,100,100,,1,1,[1],4.0,0,3,"(0.53, 0.545)" -4054,100,100,,1,1,[1],4.0,0,4,"(0.54, 0.48)" -4055,100,100,,1,1,[1],4.0,0,5,"(0.63, 0.575)" -4056,100,100,,1,1,[1],4.0,0,6,"(0.5, 0.47)" -4057,100,100,,1,1,[1],4.0,0,7,"(0.54, 0.52)" -4058,100,100,,1,1,[1],4.0,0,8,"(0.54, 0.53)" -4059,100,100,,1,1,[1],4.0,0,9,"(0.54, 0.42)" -4060,100,100,,1,1,[1],4.0,1,0,"(0.49, 0.445)" -4061,100,100,,1,1,[1],4.0,1,1,"(0.51, 0.425)" -4062,100,100,,1,1,[1],4.0,1,2,"(0.57, 0.395)" -4063,100,100,,1,1,[1],4.0,1,3,"(0.49, 0.405)" -4064,100,100,,1,1,[1],4.0,1,4,"(0.55, 0.405)" -4065,100,100,,1,1,[1],4.0,1,5,"(0.61, 0.375)" -4066,100,100,,1,1,[1],4.0,1,6,"(0.56, 0.38)" -4067,100,100,,1,1,[1],4.0,1,7,"(0.63, 0.375)" -4068,100,100,,1,1,[1],4.0,1,8,"(0.54, 0.35)" -4069,100,100,,1,1,[1],4.0,1,9,"(0.58, 0.36)" -4070,100,100,,1,1,[1],4.0,2,0,"(0.62, 0.32)" -4071,100,100,,1,1,[1],4.0,2,1,"(0.56, 0.34)" -4072,100,100,,1,1,[1],4.0,2,2,"(0.47, 0.345)" -4073,100,100,,1,1,[1],4.0,2,3,"(0.51, 0.325)" -4074,100,100,,1,1,[1],4.0,2,4,"(0.64, 0.32)" -4075,100,100,,1,1,[1],4.0,2,5,"(0.57, 0.295)" -4076,100,100,,1,1,[1],4.0,2,6,"(0.64, 0.3)" -4077,100,100,,1,1,[1],4.0,2,7,"(0.59, 0.295)" -4078,100,100,,1,1,[1],4.0,2,8,"(0.52, 0.39)" -4079,100,100,,1,1,[1],4.0,2,9,"(0.55, 0.365)" -4080,100,100,,1,1,[1],4.0,3,0,"(0.6, 0.27)" -4081,100,100,,1,1,[1],4.0,3,1,"(0.62, 0.23)" -4082,100,100,,1,1,[1],4.0,3,2,"(0.62, 0.24)" -4083,100,100,,1,1,[1],4.0,3,3,"(0.71, 0.235)" -4084,100,100,,1,1,[1],4.0,3,4,"(0.68, 0.23)" -4085,100,100,,1,1,[1],4.0,3,5,"(0.68, 0.23)" -4086,100,100,,1,1,[1],4.0,3,6,"(0.64, 0.23)" -4087,100,100,,1,1,[1],4.0,3,7,"(0.7, 0.24)" -4088,100,100,,1,1,[1],4.0,3,8,"(0.64, 0.23)" -4089,100,100,,1,1,[1],4.0,3,9,"(0.66, 0.24)" -4090,100,100,,1,1,[1],4.0,4,0,"(0.67, 0.205)" -4091,100,100,,1,1,[1],4.0,4,1,"(0.74, 0.17)" -4092,100,100,,1,1,[1],4.0,4,2,"(0.8, 0.14)" -4093,100,100,,1,1,[1],4.0,4,3,"(0.73, 0.165)" -4094,100,100,,1,1,[1],4.0,4,4,"(0.76, 0.13)" -4095,100,100,,1,1,[1],4.0,4,5,"(0.7, 0.21)" -4096,100,100,,1,1,[1],4.0,4,6,"(0.73, 0.145)" -4097,100,100,,1,1,[1],4.0,4,7,"(0.66, 0.22)" -4098,100,100,,1,1,[1],4.0,4,8,"(0.78, 0.16)" -4099,100,100,,1,1,[1],4.0,4,9,"(0.64, 0.19)" -4100,100,100,,1,1,[1],4.1000000000000005,-5,0,"(0.8, 0.88)" -4101,100,100,,1,1,[1],4.1000000000000005,-5,1,"(0.8, 0.9)" -4102,100,100,,1,1,[1],4.1000000000000005,-5,2,"(0.86, 0.9)" -4103,100,100,,1,1,[1],4.1000000000000005,-5,3,"(0.78, 0.86)" -4104,100,100,,1,1,[1],4.1000000000000005,-5,4,"(0.75, 0.845)" -4105,100,100,,1,1,[1],4.1000000000000005,-5,5,"(0.77, 0.855)" -4106,100,100,,1,1,[1],4.1000000000000005,-5,6,"(0.76, 0.87)" -4107,100,100,,1,1,[1],4.1000000000000005,-5,7,"(0.84, 0.88)" -4108,100,100,,1,1,[1],4.1000000000000005,-5,8,"(0.83, 0.915)" -4109,100,100,,1,1,[1],4.1000000000000005,-5,9,"(0.74, 0.86)" -4110,100,100,,1,1,[1],4.1000000000000005,-4,0,"(0.77, 0.825)" -4111,100,100,,1,1,[1],4.1000000000000005,-4,1,"(0.77, 0.875)" -4112,100,100,,1,1,[1],4.1000000000000005,-4,2,"(0.76, 0.85)" -4113,100,100,,1,1,[1],4.1000000000000005,-4,3,"(0.7, 0.82)" -4114,100,100,,1,1,[1],4.1000000000000005,-4,4,"(0.68, 0.77)" -4115,100,100,,1,1,[1],4.1000000000000005,-4,5,"(0.74, 0.84)" -4116,100,100,,1,1,[1],4.1000000000000005,-4,6,"(0.62, 0.79)" -4117,100,100,,1,1,[1],4.1000000000000005,-4,7,"(0.71, 0.845)" -4118,100,100,,1,1,[1],4.1000000000000005,-4,8,"(0.78, 0.85)" -4119,100,100,,1,1,[1],4.1000000000000005,-4,9,"(0.63, 0.795)" -4120,100,100,,1,1,[1],4.1000000000000005,-3,0,"(0.6, 0.74)" -4121,100,100,,1,1,[1],4.1000000000000005,-3,1,"(0.68, 0.79)" -4122,100,100,,1,1,[1],4.1000000000000005,-3,2,"(0.61, 0.745)" -4123,100,100,,1,1,[1],4.1000000000000005,-3,3,"(0.66, 0.74)" -4124,100,100,,1,1,[1],4.1000000000000005,-3,4,"(0.73, 0.765)" -4125,100,100,,1,1,[1],4.1000000000000005,-3,5,"(0.7, 0.79)" -4126,100,100,,1,1,[1],4.1000000000000005,-3,6,"(0.63, 0.735)" -4127,100,100,,1,1,[1],4.1000000000000005,-3,7,"(0.66, 0.8)" -4128,100,100,,1,1,[1],4.1000000000000005,-3,8,"(0.68, 0.78)" -4129,100,100,,1,1,[1],4.1000000000000005,-3,9,"(0.61, 0.745)" -4130,100,100,,1,1,[1],4.1000000000000005,-2,0,"(0.69, 0.705)" -4131,100,100,,1,1,[1],4.1000000000000005,-2,1,"(0.57, 0.665)" -4132,100,100,,1,1,[1],4.1000000000000005,-2,2,"(0.62, 0.71)" -4133,100,100,,1,1,[1],4.1000000000000005,-2,3,"(0.46, 0.62)" -4134,100,100,,1,1,[1],4.1000000000000005,-2,4,"(0.58, 0.69)" -4135,100,100,,1,1,[1],4.1000000000000005,-2,5,"(0.64, 0.71)" -4136,100,100,,1,1,[1],4.1000000000000005,-2,6,"(0.48, 0.67)" -4137,100,100,,1,1,[1],4.1000000000000005,-2,7,"(0.57, 0.625)" -4138,100,100,,1,1,[1],4.1000000000000005,-2,8,"(0.52, 0.63)" -4139,100,100,,1,1,[1],4.1000000000000005,-2,9,"(0.58, 0.69)" -4140,100,100,,1,1,[1],4.1000000000000005,-1,0,"(0.61, 0.635)" -4141,100,100,,1,1,[1],4.1000000000000005,-1,1,"(0.6, 0.62)" -4142,100,100,,1,1,[1],4.1000000000000005,-1,2,"(0.53, 0.635)" -4143,100,100,,1,1,[1],4.1000000000000005,-1,3,"(0.45, 0.615)" -4144,100,100,,1,1,[1],4.1000000000000005,-1,4,"(0.61, 0.665)" -4145,100,100,,1,1,[1],4.1000000000000005,-1,5,"(0.49, 0.585)" -4146,100,100,,1,1,[1],4.1000000000000005,-1,6,"(0.58, 0.61)" -4147,100,100,,1,1,[1],4.1000000000000005,-1,7,"(0.52, 0.62)" -4148,100,100,,1,1,[1],4.1000000000000005,-1,8,"(0.55, 0.615)" -4149,100,100,,1,1,[1],4.1000000000000005,-1,9,"(0.53, 0.585)" -4150,100,100,,1,1,[1],4.1000000000000005,0,0,"(0.49, 0.545)" -4151,100,100,,1,1,[1],4.1000000000000005,0,1,"(0.62, 0.47)" -4152,100,100,,1,1,[1],4.1000000000000005,0,2,"(0.52, 0.51)" -4153,100,100,,1,1,[1],4.1000000000000005,0,3,"(0.65, 0.595)" -4154,100,100,,1,1,[1],4.1000000000000005,0,4,"(0.49, 0.505)" -4155,100,100,,1,1,[1],4.1000000000000005,0,5,"(0.49, 0.525)" -4156,100,100,,1,1,[1],4.1000000000000005,0,6,"(0.49, 0.475)" -4157,100,100,,1,1,[1],4.1000000000000005,0,7,"(0.41, 0.555)" -4158,100,100,,1,1,[1],4.1000000000000005,0,8,"(0.49, 0.495)" -4159,100,100,,1,1,[1],4.1000000000000005,0,9,"(0.6, 0.55)" -4160,100,100,,1,1,[1],4.1000000000000005,1,0,"(0.54, 0.37)" -4161,100,100,,1,1,[1],4.1000000000000005,1,1,"(0.48, 0.34)" -4162,100,100,,1,1,[1],4.1000000000000005,1,2,"(0.53, 0.445)" -4163,100,100,,1,1,[1],4.1000000000000005,1,3,"(0.55, 0.395)" -4164,100,100,,1,1,[1],4.1000000000000005,1,4,"(0.59, 0.375)" -4165,100,100,,1,1,[1],4.1000000000000005,1,5,"(0.62, 0.4)" -4166,100,100,,1,1,[1],4.1000000000000005,1,6,"(0.54, 0.41)" -4167,100,100,,1,1,[1],4.1000000000000005,1,7,"(0.53, 0.455)" -4168,100,100,,1,1,[1],4.1000000000000005,1,8,"(0.56, 0.49)" -4169,100,100,,1,1,[1],4.1000000000000005,1,9,"(0.5, 0.43)" -4170,100,100,,1,1,[1],4.1000000000000005,2,0,"(0.6, 0.34)" -4171,100,100,,1,1,[1],4.1000000000000005,2,1,"(0.54, 0.3)" -4172,100,100,,1,1,[1],4.1000000000000005,2,2,"(0.54, 0.36)" -4173,100,100,,1,1,[1],4.1000000000000005,2,3,"(0.58, 0.4)" -4174,100,100,,1,1,[1],4.1000000000000005,2,4,"(0.54, 0.3)" -4175,100,100,,1,1,[1],4.1000000000000005,2,5,"(0.6, 0.29)" -4176,100,100,,1,1,[1],4.1000000000000005,2,6,"(0.53, 0.365)" -4177,100,100,,1,1,[1],4.1000000000000005,2,7,"(0.6, 0.33)" -4178,100,100,,1,1,[1],4.1000000000000005,2,8,"(0.59, 0.315)" -4179,100,100,,1,1,[1],4.1000000000000005,2,9,"(0.6, 0.32)" -4180,100,100,,1,1,[1],4.1000000000000005,3,0,"(0.67, 0.255)" -4181,100,100,,1,1,[1],4.1000000000000005,3,1,"(0.69, 0.245)" -4182,100,100,,1,1,[1],4.1000000000000005,3,2,"(0.56, 0.32)" -4183,100,100,,1,1,[1],4.1000000000000005,3,3,"(0.64, 0.22)" -4184,100,100,,1,1,[1],4.1000000000000005,3,4,"(0.63, 0.225)" -4185,100,100,,1,1,[1],4.1000000000000005,3,5,"(0.75, 0.215)" -4186,100,100,,1,1,[1],4.1000000000000005,3,6,"(0.61, 0.265)" -4187,100,100,,1,1,[1],4.1000000000000005,3,7,"(0.63, 0.215)" -4188,100,100,,1,1,[1],4.1000000000000005,3,8,"(0.72, 0.16)" -4189,100,100,,1,1,[1],4.1000000000000005,3,9,"(0.66, 0.24)" -4190,100,100,,1,1,[1],4.1000000000000005,4,0,"(0.74, 0.19)" -4191,100,100,,1,1,[1],4.1000000000000005,4,1,"(0.74, 0.19)" -4192,100,100,,1,1,[1],4.1000000000000005,4,2,"(0.67, 0.205)" -4193,100,100,,1,1,[1],4.1000000000000005,4,3,"(0.73, 0.205)" -4194,100,100,,1,1,[1],4.1000000000000005,4,4,"(0.73, 0.205)" -4195,100,100,,1,1,[1],4.1000000000000005,4,5,"(0.71, 0.175)" -4196,100,100,,1,1,[1],4.1000000000000005,4,6,"(0.7, 0.18)" -4197,100,100,,1,1,[1],4.1000000000000005,4,7,"(0.78, 0.18)" -4198,100,100,,1,1,[1],4.1000000000000005,4,8,"(0.68, 0.21)" -4199,100,100,,1,1,[1],4.1000000000000005,4,9,"(0.7, 0.17)" -4200,100,100,,1,1,[1],4.2,-5,0,"(0.8, 0.89)" -4201,100,100,,1,1,[1],4.2,-5,1,"(0.82, 0.89)" -4202,100,100,,1,1,[1],4.2,-5,2,"(0.87, 0.895)" -4203,100,100,,1,1,[1],4.2,-5,3,"(0.85, 0.905)" -4204,100,100,,1,1,[1],4.2,-5,4,"(0.8, 0.89)" -4205,100,100,,1,1,[1],4.2,-5,5,"(0.73, 0.865)" -4206,100,100,,1,1,[1],4.2,-5,6,"(0.78, 0.89)" -4207,100,100,,1,1,[1],4.2,-5,7,"(0.82, 0.9)" -4208,100,100,,1,1,[1],4.2,-5,8,"(0.74, 0.86)" -4209,100,100,,1,1,[1],4.2,-5,9,"(0.81, 0.875)" -4210,100,100,,1,1,[1],4.2,-4,0,"(0.76, 0.85)" -4211,100,100,,1,1,[1],4.2,-4,1,"(0.64, 0.77)" -4212,100,100,,1,1,[1],4.2,-4,2,"(0.83, 0.895)" -4213,100,100,,1,1,[1],4.2,-4,3,"(0.69, 0.815)" -4214,100,100,,1,1,[1],4.2,-4,4,"(0.67, 0.825)" -4215,100,100,,1,1,[1],4.2,-4,5,"(0.72, 0.83)" -4216,100,100,,1,1,[1],4.2,-4,6,"(0.79, 0.865)" -4217,100,100,,1,1,[1],4.2,-4,7,"(0.75, 0.815)" -4218,100,100,,1,1,[1],4.2,-4,8,"(0.74, 0.82)" -4219,100,100,,1,1,[1],4.2,-4,9,"(0.76, 0.84)" -4220,100,100,,1,1,[1],4.2,-3,0,"(0.68, 0.76)" -4221,100,100,,1,1,[1],4.2,-3,1,"(0.56, 0.7)" -4222,100,100,,1,1,[1],4.2,-3,2,"(0.59, 0.715)" -4223,100,100,,1,1,[1],4.2,-3,3,"(0.62, 0.77)" -4224,100,100,,1,1,[1],4.2,-3,4,"(0.67, 0.765)" -4225,100,100,,1,1,[1],4.2,-3,5,"(0.6, 0.73)" -4226,100,100,,1,1,[1],4.2,-3,6,"(0.67, 0.795)" -4227,100,100,,1,1,[1],4.2,-3,7,"(0.59, 0.655)" -4228,100,100,,1,1,[1],4.2,-3,8,"(0.74, 0.8)" -4229,100,100,,1,1,[1],4.2,-3,9,"(0.66, 0.78)" -4230,100,100,,1,1,[1],4.2,-2,0,"(0.56, 0.65)" -4231,100,100,,1,1,[1],4.2,-2,1,"(0.59, 0.655)" -4232,100,100,,1,1,[1],4.2,-2,2,"(0.58, 0.62)" -4233,100,100,,1,1,[1],4.2,-2,3,"(0.56, 0.62)" -4234,100,100,,1,1,[1],4.2,-2,4,"(0.68, 0.73)" -4235,100,100,,1,1,[1],4.2,-2,5,"(0.65, 0.675)" -4236,100,100,,1,1,[1],4.2,-2,6,"(0.61, 0.685)" -4237,100,100,,1,1,[1],4.2,-2,7,"(0.52, 0.62)" -4238,100,100,,1,1,[1],4.2,-2,8,"(0.57, 0.625)" -4239,100,100,,1,1,[1],4.2,-2,9,"(0.63, 0.715)" -4240,100,100,,1,1,[1],4.2,-1,0,"(0.58, 0.57)" -4241,100,100,,1,1,[1],4.2,-1,1,"(0.55, 0.515)" -4242,100,100,,1,1,[1],4.2,-1,2,"(0.64, 0.56)" -4243,100,100,,1,1,[1],4.2,-1,3,"(0.46, 0.57)" -4244,100,100,,1,1,[1],4.2,-1,4,"(0.64, 0.56)" -4245,100,100,,1,1,[1],4.2,-1,5,"(0.52, 0.65)" -4246,100,100,,1,1,[1],4.2,-1,6,"(0.6, 0.64)" -4247,100,100,,1,1,[1],4.2,-1,7,"(0.55, 0.585)" -4248,100,100,,1,1,[1],4.2,-1,8,"(0.55, 0.565)" -4249,100,100,,1,1,[1],4.2,-1,9,"(0.6, 0.6)" -4250,100,100,,1,1,[1],4.2,0,0,"(0.59, 0.475)" -4251,100,100,,1,1,[1],4.2,0,1,"(0.53, 0.485)" -4252,100,100,,1,1,[1],4.2,0,2,"(0.55, 0.535)" -4253,100,100,,1,1,[1],4.2,0,3,"(0.51, 0.505)" -4254,100,100,,1,1,[1],4.2,0,4,"(0.53, 0.485)" -4255,100,100,,1,1,[1],4.2,0,5,"(0.6, 0.5)" -4256,100,100,,1,1,[1],4.2,0,6,"(0.58, 0.55)" -4257,100,100,,1,1,[1],4.2,0,7,"(0.49, 0.515)" -4258,100,100,,1,1,[1],4.2,0,8,"(0.53, 0.535)" -4259,100,100,,1,1,[1],4.2,0,9,"(0.53, 0.455)" -4260,100,100,,1,1,[1],4.2,1,0,"(0.55, 0.355)" -4261,100,100,,1,1,[1],4.2,1,1,"(0.58, 0.43)" -4262,100,100,,1,1,[1],4.2,1,2,"(0.56, 0.43)" -4263,100,100,,1,1,[1],4.2,1,3,"(0.64, 0.41)" -4264,100,100,,1,1,[1],4.2,1,4,"(0.6, 0.45)" -4265,100,100,,1,1,[1],4.2,1,5,"(0.54, 0.47)" -4266,100,100,,1,1,[1],4.2,1,6,"(0.57, 0.395)" -4267,100,100,,1,1,[1],4.2,1,7,"(0.63, 0.475)" -4268,100,100,,1,1,[1],4.2,1,8,"(0.57, 0.335)" -4269,100,100,,1,1,[1],4.2,1,9,"(0.53, 0.435)" -4270,100,100,,1,1,[1],4.2,2,0,"(0.55, 0.355)" -4271,100,100,,1,1,[1],4.2,2,1,"(0.57, 0.325)" -4272,100,100,,1,1,[1],4.2,2,2,"(0.68, 0.31)" -4273,100,100,,1,1,[1],4.2,2,3,"(0.61, 0.325)" -4274,100,100,,1,1,[1],4.2,2,4,"(0.69, 0.315)" -4275,100,100,,1,1,[1],4.2,2,5,"(0.67, 0.345)" -4276,100,100,,1,1,[1],4.2,2,6,"(0.56, 0.37)" -4277,100,100,,1,1,[1],4.2,2,7,"(0.64, 0.26)" -4278,100,100,,1,1,[1],4.2,2,8,"(0.56, 0.38)" -4279,100,100,,1,1,[1],4.2,2,9,"(0.52, 0.37)" -4280,100,100,,1,1,[1],4.2,3,0,"(0.66, 0.28)" -4281,100,100,,1,1,[1],4.2,3,1,"(0.68, 0.24)" -4282,100,100,,1,1,[1],4.2,3,2,"(0.67, 0.285)" -4283,100,100,,1,1,[1],4.2,3,3,"(0.63, 0.205)" -4284,100,100,,1,1,[1],4.2,3,4,"(0.61, 0.265)" -4285,100,100,,1,1,[1],4.2,3,5,"(0.67, 0.205)" -4286,100,100,,1,1,[1],4.2,3,6,"(0.71, 0.245)" -4287,100,100,,1,1,[1],4.2,3,7,"(0.63, 0.285)" -4288,100,100,,1,1,[1],4.2,3,8,"(0.69, 0.255)" -4289,100,100,,1,1,[1],4.2,3,9,"(0.74, 0.21)" -4290,100,100,,1,1,[1],4.2,4,0,"(0.65, 0.205)" -4291,100,100,,1,1,[1],4.2,4,1,"(0.65, 0.205)" -4292,100,100,,1,1,[1],4.2,4,2,"(0.63, 0.225)" -4293,100,100,,1,1,[1],4.2,4,3,"(0.77, 0.145)" -4294,100,100,,1,1,[1],4.2,4,4,"(0.75, 0.165)" -4295,100,100,,1,1,[1],4.2,4,5,"(0.71, 0.245)" -4296,100,100,,1,1,[1],4.2,4,6,"(0.78, 0.16)" -4297,100,100,,1,1,[1],4.2,4,7,"(0.76, 0.14)" -4298,100,100,,1,1,[1],4.2,4,8,"(0.75, 0.185)" -4299,100,100,,1,1,[1],4.2,4,9,"(0.69, 0.215)" -4300,100,100,,1,1,[1],4.3,-5,0,"(0.78, 0.87)" -4301,100,100,,1,1,[1],4.3,-5,1,"(0.74, 0.84)" -4302,100,100,,1,1,[1],4.3,-5,2,"(0.76, 0.88)" -4303,100,100,,1,1,[1],4.3,-5,3,"(0.74, 0.84)" -4304,100,100,,1,1,[1],4.3,-5,4,"(0.82, 0.87)" -4305,100,100,,1,1,[1],4.3,-5,5,"(0.72, 0.84)" -4306,100,100,,1,1,[1],4.3,-5,6,"(0.72, 0.83)" -4307,100,100,,1,1,[1],4.3,-5,7,"(0.77, 0.865)" -4308,100,100,,1,1,[1],4.3,-5,8,"(0.84, 0.9)" -4309,100,100,,1,1,[1],4.3,-5,9,"(0.74, 0.85)" -4310,100,100,,1,1,[1],4.3,-4,0,"(0.66, 0.78)" -4311,100,100,,1,1,[1],4.3,-4,1,"(0.71, 0.815)" -4312,100,100,,1,1,[1],4.3,-4,2,"(0.8, 0.87)" -4313,100,100,,1,1,[1],4.3,-4,3,"(0.69, 0.795)" -4314,100,100,,1,1,[1],4.3,-4,4,"(0.71, 0.815)" -4315,100,100,,1,1,[1],4.3,-4,5,"(0.65, 0.805)" -4316,100,100,,1,1,[1],4.3,-4,6,"(0.77, 0.845)" -4317,100,100,,1,1,[1],4.3,-4,7,"(0.72, 0.83)" -4318,100,100,,1,1,[1],4.3,-4,8,"(0.68, 0.82)" -4319,100,100,,1,1,[1],4.3,-4,9,"(0.62, 0.77)" -4320,100,100,,1,1,[1],4.3,-3,0,"(0.74, 0.82)" -4321,100,100,,1,1,[1],4.3,-3,1,"(0.59, 0.725)" -4322,100,100,,1,1,[1],4.3,-3,2,"(0.63, 0.725)" -4323,100,100,,1,1,[1],4.3,-3,3,"(0.65, 0.745)" -4324,100,100,,1,1,[1],4.3,-3,4,"(0.63, 0.745)" -4325,100,100,,1,1,[1],4.3,-3,5,"(0.61, 0.755)" -4326,100,100,,1,1,[1],4.3,-3,6,"(0.63, 0.795)" -4327,100,100,,1,1,[1],4.3,-3,7,"(0.64, 0.72)" -4328,100,100,,1,1,[1],4.3,-3,8,"(0.63, 0.735)" -4329,100,100,,1,1,[1],4.3,-3,9,"(0.72, 0.75)" -4330,100,100,,1,1,[1],4.3,-2,0,"(0.66, 0.69)" -4331,100,100,,1,1,[1],4.3,-2,1,"(0.61, 0.635)" -4332,100,100,,1,1,[1],4.3,-2,2,"(0.51, 0.665)" -4333,100,100,,1,1,[1],4.3,-2,3,"(0.59, 0.715)" -4334,100,100,,1,1,[1],4.3,-2,4,"(0.66, 0.7)" -4335,100,100,,1,1,[1],4.3,-2,5,"(0.58, 0.68)" -4336,100,100,,1,1,[1],4.3,-2,6,"(0.6, 0.67)" -4337,100,100,,1,1,[1],4.3,-2,7,"(0.6, 0.68)" -4338,100,100,,1,1,[1],4.3,-2,8,"(0.6, 0.63)" -4339,100,100,,1,1,[1],4.3,-2,9,"(0.55, 0.665)" -4340,100,100,,1,1,[1],4.3,-1,0,"(0.53, 0.605)" -4341,100,100,,1,1,[1],4.3,-1,1,"(0.58, 0.6)" -4342,100,100,,1,1,[1],4.3,-1,2,"(0.48, 0.57)" -4343,100,100,,1,1,[1],4.3,-1,3,"(0.62, 0.58)" -4344,100,100,,1,1,[1],4.3,-1,4,"(0.56, 0.58)" -4345,100,100,,1,1,[1],4.3,-1,5,"(0.51, 0.635)" -4346,100,100,,1,1,[1],4.3,-1,6,"(0.59, 0.595)" -4347,100,100,,1,1,[1],4.3,-1,7,"(0.62, 0.51)" -4348,100,100,,1,1,[1],4.3,-1,8,"(0.53, 0.565)" -4349,100,100,,1,1,[1],4.3,-1,9,"(0.63, 0.635)" -4350,100,100,,1,1,[1],4.3,0,0,"(0.56, 0.52)" -4351,100,100,,1,1,[1],4.3,0,1,"(0.57, 0.465)" -4352,100,100,,1,1,[1],4.3,0,2,"(0.56, 0.53)" -4353,100,100,,1,1,[1],4.3,0,3,"(0.46, 0.5)" -4354,100,100,,1,1,[1],4.3,0,4,"(0.48, 0.55)" -4355,100,100,,1,1,[1],4.3,0,5,"(0.53, 0.535)" -4356,100,100,,1,1,[1],4.3,0,6,"(0.57, 0.485)" -4357,100,100,,1,1,[1],4.3,0,7,"(0.58, 0.55)" -4358,100,100,,1,1,[1],4.3,0,8,"(0.57, 0.465)" -4359,100,100,,1,1,[1],4.3,0,9,"(0.54, 0.54)" -4360,100,100,,1,1,[1],4.3,1,0,"(0.51, 0.405)" -4361,100,100,,1,1,[1],4.3,1,1,"(0.52, 0.46)" -4362,100,100,,1,1,[1],4.3,1,2,"(0.55, 0.365)" -4363,100,100,,1,1,[1],4.3,1,3,"(0.54, 0.42)" -4364,100,100,,1,1,[1],4.3,1,4,"(0.45, 0.415)" -4365,100,100,,1,1,[1],4.3,1,5,"(0.58, 0.44)" -4366,100,100,,1,1,[1],4.3,1,6,"(0.57, 0.345)" -4367,100,100,,1,1,[1],4.3,1,7,"(0.58, 0.46)" -4368,100,100,,1,1,[1],4.3,1,8,"(0.59, 0.445)" -4369,100,100,,1,1,[1],4.3,1,9,"(0.52, 0.44)" -4370,100,100,,1,1,[1],4.3,2,0,"(0.62, 0.33)" -4371,100,100,,1,1,[1],4.3,2,1,"(0.61, 0.295)" -4372,100,100,,1,1,[1],4.3,2,2,"(0.51, 0.325)" -4373,100,100,,1,1,[1],4.3,2,3,"(0.59, 0.335)" -4374,100,100,,1,1,[1],4.3,2,4,"(0.53, 0.345)" -4375,100,100,,1,1,[1],4.3,2,5,"(0.65, 0.325)" -4376,100,100,,1,1,[1],4.3,2,6,"(0.55, 0.295)" -4377,100,100,,1,1,[1],4.3,2,7,"(0.61, 0.295)" -4378,100,100,,1,1,[1],4.3,2,8,"(0.58, 0.34)" -4379,100,100,,1,1,[1],4.3,2,9,"(0.59, 0.295)" -4380,100,100,,1,1,[1],4.3,3,0,"(0.64, 0.23)" -4381,100,100,,1,1,[1],4.3,3,1,"(0.64, 0.26)" -4382,100,100,,1,1,[1],4.3,3,2,"(0.59, 0.275)" -4383,100,100,,1,1,[1],4.3,3,3,"(0.62, 0.29)" -4384,100,100,,1,1,[1],4.3,3,4,"(0.64, 0.29)" -4385,100,100,,1,1,[1],4.3,3,5,"(0.66, 0.25)" -4386,100,100,,1,1,[1],4.3,3,6,"(0.67, 0.215)" -4387,100,100,,1,1,[1],4.3,3,7,"(0.72, 0.25)" -4388,100,100,,1,1,[1],4.3,3,8,"(0.65, 0.265)" -4389,100,100,,1,1,[1],4.3,3,9,"(0.6, 0.29)" -4390,100,100,,1,1,[1],4.3,4,0,"(0.73, 0.145)" -4391,100,100,,1,1,[1],4.3,4,1,"(0.67, 0.215)" -4392,100,100,,1,1,[1],4.3,4,2,"(0.71, 0.185)" -4393,100,100,,1,1,[1],4.3,4,3,"(0.74, 0.18)" -4394,100,100,,1,1,[1],4.3,4,4,"(0.66, 0.22)" -4395,100,100,,1,1,[1],4.3,4,5,"(0.75, 0.205)" -4396,100,100,,1,1,[1],4.3,4,6,"(0.66, 0.19)" -4397,100,100,,1,1,[1],4.3,4,7,"(0.69, 0.205)" -4398,100,100,,1,1,[1],4.3,4,8,"(0.71, 0.195)" -4399,100,100,,1,1,[1],4.3,4,9,"(0.66, 0.18)" -4400,100,100,,1,1,[1],4.4,-5,0,"(0.75, 0.845)" -4401,100,100,,1,1,[1],4.4,-5,1,"(0.81, 0.895)" -4402,100,100,,1,1,[1],4.4,-5,2,"(0.82, 0.87)" -4403,100,100,,1,1,[1],4.4,-5,3,"(0.77, 0.875)" -4404,100,100,,1,1,[1],4.4,-5,4,"(0.79, 0.885)" -4405,100,100,,1,1,[1],4.4,-5,5,"(0.73, 0.855)" -4406,100,100,,1,1,[1],4.4,-5,6,"(0.8, 0.87)" -4407,100,100,,1,1,[1],4.4,-5,7,"(0.75, 0.835)" -4408,100,100,,1,1,[1],4.4,-5,8,"(0.73, 0.845)" -4409,100,100,,1,1,[1],4.4,-5,9,"(0.73, 0.845)" -4410,100,100,,1,1,[1],4.4,-4,0,"(0.72, 0.84)" -4411,100,100,,1,1,[1],4.4,-4,1,"(0.74, 0.81)" -4412,100,100,,1,1,[1],4.4,-4,2,"(0.63, 0.795)" -4413,100,100,,1,1,[1],4.4,-4,3,"(0.75, 0.835)" -4414,100,100,,1,1,[1],4.4,-4,4,"(0.65, 0.765)" -4415,100,100,,1,1,[1],4.4,-4,5,"(0.7, 0.77)" -4416,100,100,,1,1,[1],4.4,-4,6,"(0.59, 0.785)" -4417,100,100,,1,1,[1],4.4,-4,7,"(0.75, 0.765)" -4418,100,100,,1,1,[1],4.4,-4,8,"(0.7, 0.8)" -4419,100,100,,1,1,[1],4.4,-4,9,"(0.73, 0.815)" -4420,100,100,,1,1,[1],4.4,-3,0,"(0.65, 0.765)" -4421,100,100,,1,1,[1],4.4,-3,1,"(0.73, 0.775)" -4422,100,100,,1,1,[1],4.4,-3,2,"(0.6, 0.7)" -4423,100,100,,1,1,[1],4.4,-3,3,"(0.64, 0.74)" -4424,100,100,,1,1,[1],4.4,-3,4,"(0.54, 0.7)" -4425,100,100,,1,1,[1],4.4,-3,5,"(0.65, 0.715)" -4426,100,100,,1,1,[1],4.4,-3,6,"(0.67, 0.715)" -4427,100,100,,1,1,[1],4.4,-3,7,"(0.66, 0.74)" -4428,100,100,,1,1,[1],4.4,-3,8,"(0.67, 0.715)" -4429,100,100,,1,1,[1],4.4,-3,9,"(0.65, 0.795)" -4430,100,100,,1,1,[1],4.4,-2,0,"(0.64, 0.66)" -4431,100,100,,1,1,[1],4.4,-2,1,"(0.59, 0.695)" -4432,100,100,,1,1,[1],4.4,-2,2,"(0.6, 0.68)" -4433,100,100,,1,1,[1],4.4,-2,3,"(0.58, 0.71)" -4434,100,100,,1,1,[1],4.4,-2,4,"(0.54, 0.67)" -4435,100,100,,1,1,[1],4.4,-2,5,"(0.52, 0.66)" -4436,100,100,,1,1,[1],4.4,-2,6,"(0.61, 0.655)" -4437,100,100,,1,1,[1],4.4,-2,7,"(0.64, 0.71)" -4438,100,100,,1,1,[1],4.4,-2,8,"(0.62, 0.67)" -4439,100,100,,1,1,[1],4.4,-2,9,"(0.62, 0.65)" -4440,100,100,,1,1,[1],4.4,-1,0,"(0.56, 0.62)" -4441,100,100,,1,1,[1],4.4,-1,1,"(0.55, 0.555)" -4442,100,100,,1,1,[1],4.4,-1,2,"(0.59, 0.575)" -4443,100,100,,1,1,[1],4.4,-1,3,"(0.55, 0.585)" -4444,100,100,,1,1,[1],4.4,-1,4,"(0.42, 0.51)" -4445,100,100,,1,1,[1],4.4,-1,5,"(0.55, 0.595)" -4446,100,100,,1,1,[1],4.4,-1,6,"(0.44, 0.56)" -4447,100,100,,1,1,[1],4.4,-1,7,"(0.47, 0.535)" -4448,100,100,,1,1,[1],4.4,-1,8,"(0.59, 0.635)" -4449,100,100,,1,1,[1],4.4,-1,9,"(0.56, 0.51)" -4450,100,100,,1,1,[1],4.4,0,0,"(0.52, 0.52)" -4451,100,100,,1,1,[1],4.4,0,1,"(0.57, 0.505)" -4452,100,100,,1,1,[1],4.4,0,2,"(0.53, 0.515)" -4453,100,100,,1,1,[1],4.4,0,3,"(0.47, 0.545)" -4454,100,100,,1,1,[1],4.4,0,4,"(0.52, 0.57)" -4455,100,100,,1,1,[1],4.4,0,5,"(0.52, 0.47)" -4456,100,100,,1,1,[1],4.4,0,6,"(0.57, 0.425)" -4457,100,100,,1,1,[1],4.4,0,7,"(0.67, 0.465)" -4458,100,100,,1,1,[1],4.4,0,8,"(0.53, 0.495)" -4459,100,100,,1,1,[1],4.4,0,9,"(0.49, 0.545)" -4460,100,100,,1,1,[1],4.4,1,0,"(0.44, 0.44)" -4461,100,100,,1,1,[1],4.4,1,1,"(0.56, 0.47)" -4462,100,100,,1,1,[1],4.4,1,2,"(0.59, 0.425)" -4463,100,100,,1,1,[1],4.4,1,3,"(0.45, 0.415)" -4464,100,100,,1,1,[1],4.4,1,4,"(0.54, 0.43)" -4465,100,100,,1,1,[1],4.4,1,5,"(0.56, 0.38)" -4466,100,100,,1,1,[1],4.4,1,6,"(0.65, 0.365)" -4467,100,100,,1,1,[1],4.4,1,7,"(0.6, 0.36)" -4468,100,100,,1,1,[1],4.4,1,8,"(0.53, 0.465)" -4469,100,100,,1,1,[1],4.4,1,9,"(0.54, 0.37)" -4470,100,100,,1,1,[1],4.4,2,0,"(0.56, 0.32)" -4471,100,100,,1,1,[1],4.4,2,1,"(0.57, 0.345)" -4472,100,100,,1,1,[1],4.4,2,2,"(0.56, 0.31)" -4473,100,100,,1,1,[1],4.4,2,3,"(0.64, 0.35)" -4474,100,100,,1,1,[1],4.4,2,4,"(0.58, 0.34)" -4475,100,100,,1,1,[1],4.4,2,5,"(0.56, 0.33)" -4476,100,100,,1,1,[1],4.4,2,6,"(0.56, 0.31)" -4477,100,100,,1,1,[1],4.4,2,7,"(0.52, 0.35)" -4478,100,100,,1,1,[1],4.4,2,8,"(0.63, 0.325)" -4479,100,100,,1,1,[1],4.4,2,9,"(0.58, 0.32)" -4480,100,100,,1,1,[1],4.4,3,0,"(0.62, 0.28)" -4481,100,100,,1,1,[1],4.4,3,1,"(0.65, 0.235)" -4482,100,100,,1,1,[1],4.4,3,2,"(0.65, 0.275)" -4483,100,100,,1,1,[1],4.4,3,3,"(0.7, 0.26)" -4484,100,100,,1,1,[1],4.4,3,4,"(0.6, 0.31)" -4485,100,100,,1,1,[1],4.4,3,5,"(0.57, 0.265)" -4486,100,100,,1,1,[1],4.4,3,6,"(0.65, 0.275)" -4487,100,100,,1,1,[1],4.4,3,7,"(0.55, 0.285)" -4488,100,100,,1,1,[1],4.4,3,8,"(0.63, 0.265)" -4489,100,100,,1,1,[1],4.4,3,9,"(0.69, 0.255)" -4490,100,100,,1,1,[1],4.4,4,0,"(0.73, 0.185)" -4491,100,100,,1,1,[1],4.4,4,1,"(0.68, 0.22)" -4492,100,100,,1,1,[1],4.4,4,2,"(0.75, 0.185)" -4493,100,100,,1,1,[1],4.4,4,3,"(0.72, 0.15)" -4494,100,100,,1,1,[1],4.4,4,4,"(0.59, 0.215)" -4495,100,100,,1,1,[1],4.4,4,5,"(0.67, 0.225)" -4496,100,100,,1,1,[1],4.4,4,6,"(0.71, 0.205)" -4497,100,100,,1,1,[1],4.4,4,7,"(0.73, 0.175)" -4498,100,100,,1,1,[1],4.4,4,8,"(0.8, 0.15)" -4499,100,100,,1,1,[1],4.4,4,9,"(0.74, 0.18)" -4500,100,100,,1,1,[1],4.5,-5,0,"(0.76, 0.85)" -4501,100,100,,1,1,[1],4.5,-5,1,"(0.74, 0.86)" -4502,100,100,,1,1,[1],4.5,-5,2,"(0.79, 0.855)" -4503,100,100,,1,1,[1],4.5,-5,3,"(0.81, 0.895)" -4504,100,100,,1,1,[1],4.5,-5,4,"(0.78, 0.83)" -4505,100,100,,1,1,[1],4.5,-5,5,"(0.74, 0.86)" -4506,100,100,,1,1,[1],4.5,-5,6,"(0.72, 0.86)" -4507,100,100,,1,1,[1],4.5,-5,7,"(0.69, 0.785)" -4508,100,100,,1,1,[1],4.5,-5,8,"(0.72, 0.84)" -4509,100,100,,1,1,[1],4.5,-5,9,"(0.78, 0.87)" -4510,100,100,,1,1,[1],4.5,-4,0,"(0.66, 0.73)" -4511,100,100,,1,1,[1],4.5,-4,1,"(0.61, 0.785)" -4512,100,100,,1,1,[1],4.5,-4,2,"(0.66, 0.75)" -4513,100,100,,1,1,[1],4.5,-4,3,"(0.73, 0.835)" -4514,100,100,,1,1,[1],4.5,-4,4,"(0.71, 0.775)" -4515,100,100,,1,1,[1],4.5,-4,5,"(0.69, 0.795)" -4516,100,100,,1,1,[1],4.5,-4,6,"(0.66, 0.77)" -4517,100,100,,1,1,[1],4.5,-4,7,"(0.73, 0.825)" -4518,100,100,,1,1,[1],4.5,-4,8,"(0.67, 0.765)" -4519,100,100,,1,1,[1],4.5,-4,9,"(0.61, 0.775)" -4520,100,100,,1,1,[1],4.5,-3,0,"(0.61, 0.705)" -4521,100,100,,1,1,[1],4.5,-3,1,"(0.66, 0.74)" -4522,100,100,,1,1,[1],4.5,-3,2,"(0.56, 0.73)" -4523,100,100,,1,1,[1],4.5,-3,3,"(0.66, 0.76)" -4524,100,100,,1,1,[1],4.5,-3,4,"(0.62, 0.65)" -4525,100,100,,1,1,[1],4.5,-3,5,"(0.64, 0.75)" -4526,100,100,,1,1,[1],4.5,-3,6,"(0.57, 0.725)" -4527,100,100,,1,1,[1],4.5,-3,7,"(0.66, 0.75)" -4528,100,100,,1,1,[1],4.5,-3,8,"(0.59, 0.675)" -4529,100,100,,1,1,[1],4.5,-3,9,"(0.59, 0.725)" -4530,100,100,,1,1,[1],4.5,-2,0,"(0.61, 0.705)" -4531,100,100,,1,1,[1],4.5,-2,1,"(0.59, 0.645)" -4532,100,100,,1,1,[1],4.5,-2,2,"(0.65, 0.675)" -4533,100,100,,1,1,[1],4.5,-2,3,"(0.56, 0.69)" -4534,100,100,,1,1,[1],4.5,-2,4,"(0.47, 0.645)" -4535,100,100,,1,1,[1],4.5,-2,5,"(0.56, 0.6)" -4536,100,100,,1,1,[1],4.5,-2,6,"(0.58, 0.63)" -4537,100,100,,1,1,[1],4.5,-2,7,"(0.55, 0.715)" -4538,100,100,,1,1,[1],4.5,-2,8,"(0.61, 0.665)" -4539,100,100,,1,1,[1],4.5,-2,9,"(0.55, 0.625)" -4540,100,100,,1,1,[1],4.5,-1,0,"(0.57, 0.565)" -4541,100,100,,1,1,[1],4.5,-1,1,"(0.49, 0.625)" -4542,100,100,,1,1,[1],4.5,-1,2,"(0.52, 0.57)" -4543,100,100,,1,1,[1],4.5,-1,3,"(0.57, 0.575)" -4544,100,100,,1,1,[1],4.5,-1,4,"(0.57, 0.555)" -4545,100,100,,1,1,[1],4.5,-1,5,"(0.5, 0.6)" -4546,100,100,,1,1,[1],4.5,-1,6,"(0.64, 0.57)" -4547,100,100,,1,1,[1],4.5,-1,7,"(0.53, 0.595)" -4548,100,100,,1,1,[1],4.5,-1,8,"(0.54, 0.53)" -4549,100,100,,1,1,[1],4.5,-1,9,"(0.55, 0.555)" -4550,100,100,,1,1,[1],4.5,0,0,"(0.48, 0.5)" -4551,100,100,,1,1,[1],4.5,0,1,"(0.58, 0.49)" -4552,100,100,,1,1,[1],4.5,0,2,"(0.53, 0.515)" -4553,100,100,,1,1,[1],4.5,0,3,"(0.53, 0.525)" -4554,100,100,,1,1,[1],4.5,0,4,"(0.52, 0.42)" -4555,100,100,,1,1,[1],4.5,0,5,"(0.58, 0.49)" -4556,100,100,,1,1,[1],4.5,0,6,"(0.45, 0.525)" -4557,100,100,,1,1,[1],4.5,0,7,"(0.51, 0.505)" -4558,100,100,,1,1,[1],4.5,0,8,"(0.54, 0.46)" -4559,100,100,,1,1,[1],4.5,0,9,"(0.5, 0.49)" -4560,100,100,,1,1,[1],4.5,1,0,"(0.61, 0.385)" -4561,100,100,,1,1,[1],4.5,1,1,"(0.57, 0.405)" -4562,100,100,,1,1,[1],4.5,1,2,"(0.48, 0.4)" -4563,100,100,,1,1,[1],4.5,1,3,"(0.49, 0.425)" -4564,100,100,,1,1,[1],4.5,1,4,"(0.53, 0.415)" -4565,100,100,,1,1,[1],4.5,1,5,"(0.58, 0.37)" -4566,100,100,,1,1,[1],4.5,1,6,"(0.48, 0.41)" -4567,100,100,,1,1,[1],4.5,1,7,"(0.49, 0.455)" -4568,100,100,,1,1,[1],4.5,1,8,"(0.54, 0.44)" -4569,100,100,,1,1,[1],4.5,1,9,"(0.53, 0.455)" -4570,100,100,,1,1,[1],4.5,2,0,"(0.49, 0.375)" -4571,100,100,,1,1,[1],4.5,2,1,"(0.59, 0.345)" -4572,100,100,,1,1,[1],4.5,2,2,"(0.55, 0.325)" -4573,100,100,,1,1,[1],4.5,2,3,"(0.46, 0.35)" -4574,100,100,,1,1,[1],4.5,2,4,"(0.55, 0.325)" -4575,100,100,,1,1,[1],4.5,2,5,"(0.48, 0.36)" -4576,100,100,,1,1,[1],4.5,2,6,"(0.51, 0.335)" -4577,100,100,,1,1,[1],4.5,2,7,"(0.62, 0.35)" -4578,100,100,,1,1,[1],4.5,2,8,"(0.55, 0.385)" -4579,100,100,,1,1,[1],4.5,2,9,"(0.59, 0.305)" -4580,100,100,,1,1,[1],4.5,3,0,"(0.65, 0.245)" -4581,100,100,,1,1,[1],4.5,3,1,"(0.66, 0.27)" -4582,100,100,,1,1,[1],4.5,3,2,"(0.55, 0.285)" -4583,100,100,,1,1,[1],4.5,3,3,"(0.67, 0.245)" -4584,100,100,,1,1,[1],4.5,3,4,"(0.64, 0.22)" -4585,100,100,,1,1,[1],4.5,3,5,"(0.66, 0.28)" -4586,100,100,,1,1,[1],4.5,3,6,"(0.62, 0.31)" -4587,100,100,,1,1,[1],4.5,3,7,"(0.59, 0.295)" -4588,100,100,,1,1,[1],4.5,3,8,"(0.59, 0.275)" -4589,100,100,,1,1,[1],4.5,3,9,"(0.65, 0.255)" -4590,100,100,,1,1,[1],4.5,4,0,"(0.64, 0.26)" -4591,100,100,,1,1,[1],4.5,4,1,"(0.64, 0.22)" -4592,100,100,,1,1,[1],4.5,4,2,"(0.71, 0.235)" -4593,100,100,,1,1,[1],4.5,4,3,"(0.71, 0.175)" -4594,100,100,,1,1,[1],4.5,4,4,"(0.66, 0.22)" -4595,100,100,,1,1,[1],4.5,4,5,"(0.7, 0.17)" -4596,100,100,,1,1,[1],4.5,4,6,"(0.69, 0.225)" -4597,100,100,,1,1,[1],4.5,4,7,"(0.69, 0.235)" -4598,100,100,,1,1,[1],4.5,4,8,"(0.73, 0.205)" -4599,100,100,,1,1,[1],4.5,4,9,"(0.7, 0.23)" -4600,100,100,,1,1,[1],4.6000000000000005,-5,0,"(0.75, 0.855)" -4601,100,100,,1,1,[1],4.6000000000000005,-5,1,"(0.79, 0.865)" -4602,100,100,,1,1,[1],4.6000000000000005,-5,2,"(0.76, 0.83)" -4603,100,100,,1,1,[1],4.6000000000000005,-5,3,"(0.71, 0.845)" -4604,100,100,,1,1,[1],4.6000000000000005,-5,4,"(0.74, 0.85)" -4605,100,100,,1,1,[1],4.6000000000000005,-5,5,"(0.78, 0.85)" -4606,100,100,,1,1,[1],4.6000000000000005,-5,6,"(0.76, 0.87)" -4607,100,100,,1,1,[1],4.6000000000000005,-5,7,"(0.71, 0.835)" -4608,100,100,,1,1,[1],4.6000000000000005,-5,8,"(0.69, 0.815)" -4609,100,100,,1,1,[1],4.6000000000000005,-5,9,"(0.81, 0.855)" -4610,100,100,,1,1,[1],4.6000000000000005,-4,0,"(0.63, 0.745)" -4611,100,100,,1,1,[1],4.6000000000000005,-4,1,"(0.62, 0.8)" -4612,100,100,,1,1,[1],4.6000000000000005,-4,2,"(0.68, 0.76)" -4613,100,100,,1,1,[1],4.6000000000000005,-4,3,"(0.68, 0.79)" -4614,100,100,,1,1,[1],4.6000000000000005,-4,4,"(0.78, 0.86)" -4615,100,100,,1,1,[1],4.6000000000000005,-4,5,"(0.71, 0.765)" -4616,100,100,,1,1,[1],4.6000000000000005,-4,6,"(0.72, 0.83)" -4617,100,100,,1,1,[1],4.6000000000000005,-4,7,"(0.68, 0.79)" -4618,100,100,,1,1,[1],4.6000000000000005,-4,8,"(0.73, 0.845)" -4619,100,100,,1,1,[1],4.6000000000000005,-4,9,"(0.7, 0.8)" -4620,100,100,,1,1,[1],4.6000000000000005,-3,0,"(0.71, 0.785)" -4621,100,100,,1,1,[1],4.6000000000000005,-3,1,"(0.64, 0.76)" -4622,100,100,,1,1,[1],4.6000000000000005,-3,2,"(0.66, 0.75)" -4623,100,100,,1,1,[1],4.6000000000000005,-3,3,"(0.63, 0.765)" -4624,100,100,,1,1,[1],4.6000000000000005,-3,4,"(0.59, 0.765)" -4625,100,100,,1,1,[1],4.6000000000000005,-3,5,"(0.67, 0.775)" -4626,100,100,,1,1,[1],4.6000000000000005,-3,6,"(0.63, 0.695)" -4627,100,100,,1,1,[1],4.6000000000000005,-3,7,"(0.66, 0.73)" -4628,100,100,,1,1,[1],4.6000000000000005,-3,8,"(0.55, 0.695)" -4629,100,100,,1,1,[1],4.6000000000000005,-3,9,"(0.66, 0.77)" -4630,100,100,,1,1,[1],4.6000000000000005,-2,0,"(0.62, 0.69)" -4631,100,100,,1,1,[1],4.6000000000000005,-2,1,"(0.61, 0.715)" -4632,100,100,,1,1,[1],4.6000000000000005,-2,2,"(0.67, 0.695)" -4633,100,100,,1,1,[1],4.6000000000000005,-2,3,"(0.58, 0.73)" -4634,100,100,,1,1,[1],4.6000000000000005,-2,4,"(0.61, 0.695)" -4635,100,100,,1,1,[1],4.6000000000000005,-2,5,"(0.59, 0.665)" -4636,100,100,,1,1,[1],4.6000000000000005,-2,6,"(0.51, 0.615)" -4637,100,100,,1,1,[1],4.6000000000000005,-2,7,"(0.56, 0.68)" -4638,100,100,,1,1,[1],4.6000000000000005,-2,8,"(0.56, 0.63)" -4639,100,100,,1,1,[1],4.6000000000000005,-2,9,"(0.57, 0.695)" -4640,100,100,,1,1,[1],4.6000000000000005,-1,0,"(0.57, 0.635)" -4641,100,100,,1,1,[1],4.6000000000000005,-1,1,"(0.51, 0.605)" -4642,100,100,,1,1,[1],4.6000000000000005,-1,2,"(0.58, 0.6)" -4643,100,100,,1,1,[1],4.6000000000000005,-1,3,"(0.46, 0.61)" -4644,100,100,,1,1,[1],4.6000000000000005,-1,4,"(0.58, 0.56)" -4645,100,100,,1,1,[1],4.6000000000000005,-1,5,"(0.53, 0.555)" -4646,100,100,,1,1,[1],4.6000000000000005,-1,6,"(0.46, 0.61)" -4647,100,100,,1,1,[1],4.6000000000000005,-1,7,"(0.54, 0.58)" -4648,100,100,,1,1,[1],4.6000000000000005,-1,8,"(0.63, 0.555)" -4649,100,100,,1,1,[1],4.6000000000000005,-1,9,"(0.65, 0.625)" -4650,100,100,,1,1,[1],4.6000000000000005,0,0,"(0.6, 0.47)" -4651,100,100,,1,1,[1],4.6000000000000005,0,1,"(0.54, 0.44)" -4652,100,100,,1,1,[1],4.6000000000000005,0,2,"(0.58, 0.47)" -4653,100,100,,1,1,[1],4.6000000000000005,0,3,"(0.63, 0.495)" -4654,100,100,,1,1,[1],4.6000000000000005,0,4,"(0.54, 0.45)" -4655,100,100,,1,1,[1],4.6000000000000005,0,5,"(0.53, 0.485)" -4656,100,100,,1,1,[1],4.6000000000000005,0,6,"(0.55, 0.505)" -4657,100,100,,1,1,[1],4.6000000000000005,0,7,"(0.49, 0.465)" -4658,100,100,,1,1,[1],4.6000000000000005,0,8,"(0.56, 0.54)" -4659,100,100,,1,1,[1],4.6000000000000005,0,9,"(0.56, 0.53)" -4660,100,100,,1,1,[1],4.6000000000000005,1,0,"(0.47, 0.405)" -4661,100,100,,1,1,[1],4.6000000000000005,1,1,"(0.54, 0.41)" -4662,100,100,,1,1,[1],4.6000000000000005,1,2,"(0.57, 0.415)" -4663,100,100,,1,1,[1],4.6000000000000005,1,3,"(0.46, 0.42)" -4664,100,100,,1,1,[1],4.6000000000000005,1,4,"(0.49, 0.435)" -4665,100,100,,1,1,[1],4.6000000000000005,1,5,"(0.5, 0.38)" -4666,100,100,,1,1,[1],4.6000000000000005,1,6,"(0.55, 0.455)" -4667,100,100,,1,1,[1],4.6000000000000005,1,7,"(0.53, 0.415)" -4668,100,100,,1,1,[1],4.6000000000000005,1,8,"(0.49, 0.425)" -4669,100,100,,1,1,[1],4.6000000000000005,1,9,"(0.55, 0.395)" -4670,100,100,,1,1,[1],4.6000000000000005,2,0,"(0.59, 0.335)" -4671,100,100,,1,1,[1],4.6000000000000005,2,1,"(0.49, 0.355)" -4672,100,100,,1,1,[1],4.6000000000000005,2,2,"(0.54, 0.4)" -4673,100,100,,1,1,[1],4.6000000000000005,2,3,"(0.64, 0.35)" -4674,100,100,,1,1,[1],4.6000000000000005,2,4,"(0.63, 0.285)" -4675,100,100,,1,1,[1],4.6000000000000005,2,5,"(0.55, 0.345)" -4676,100,100,,1,1,[1],4.6000000000000005,2,6,"(0.61, 0.345)" -4677,100,100,,1,1,[1],4.6000000000000005,2,7,"(0.61, 0.315)" -4678,100,100,,1,1,[1],4.6000000000000005,2,8,"(0.64, 0.3)" -4679,100,100,,1,1,[1],4.6000000000000005,2,9,"(0.54, 0.34)" -4680,100,100,,1,1,[1],4.6000000000000005,3,0,"(0.68, 0.27)" -4681,100,100,,1,1,[1],4.6000000000000005,3,1,"(0.58, 0.29)" -4682,100,100,,1,1,[1],4.6000000000000005,3,2,"(0.7, 0.25)" -4683,100,100,,1,1,[1],4.6000000000000005,3,3,"(0.64, 0.31)" -4684,100,100,,1,1,[1],4.6000000000000005,3,4,"(0.64, 0.24)" -4685,100,100,,1,1,[1],4.6000000000000005,3,5,"(0.59, 0.285)" -4686,100,100,,1,1,[1],4.6000000000000005,3,6,"(0.57, 0.315)" -4687,100,100,,1,1,[1],4.6000000000000005,3,7,"(0.68, 0.29)" -4688,100,100,,1,1,[1],4.6000000000000005,3,8,"(0.7, 0.28)" -4689,100,100,,1,1,[1],4.6000000000000005,3,9,"(0.74, 0.23)" -4690,100,100,,1,1,[1],4.6000000000000005,4,0,"(0.71, 0.165)" -4691,100,100,,1,1,[1],4.6000000000000005,4,1,"(0.68, 0.17)" -4692,100,100,,1,1,[1],4.6000000000000005,4,2,"(0.64, 0.24)" -4693,100,100,,1,1,[1],4.6000000000000005,4,3,"(0.62, 0.23)" -4694,100,100,,1,1,[1],4.6000000000000005,4,4,"(0.67, 0.205)" -4695,100,100,,1,1,[1],4.6000000000000005,4,5,"(0.72, 0.21)" -4696,100,100,,1,1,[1],4.6000000000000005,4,6,"(0.68, 0.24)" -4697,100,100,,1,1,[1],4.6000000000000005,4,7,"(0.72, 0.17)" -4698,100,100,,1,1,[1],4.6000000000000005,4,8,"(0.78, 0.16)" -4699,100,100,,1,1,[1],4.6000000000000005,4,9,"(0.66, 0.22)" -4700,100,100,,1,1,[1],4.7,-5,0,"(0.74, 0.84)" -4701,100,100,,1,1,[1],4.7,-5,1,"(0.78, 0.83)" -4702,100,100,,1,1,[1],4.7,-5,2,"(0.76, 0.86)" -4703,100,100,,1,1,[1],4.7,-5,3,"(0.77, 0.845)" -4704,100,100,,1,1,[1],4.7,-5,4,"(0.77, 0.815)" -4705,100,100,,1,1,[1],4.7,-5,5,"(0.65, 0.785)" -4706,100,100,,1,1,[1],4.7,-5,6,"(0.82, 0.88)" -4707,100,100,,1,1,[1],4.7,-5,7,"(0.83, 0.905)" -4708,100,100,,1,1,[1],4.7,-5,8,"(0.75, 0.825)" -4709,100,100,,1,1,[1],4.7,-5,9,"(0.78, 0.87)" -4710,100,100,,1,1,[1],4.7,-4,0,"(0.7, 0.82)" -4711,100,100,,1,1,[1],4.7,-4,1,"(0.7, 0.77)" -4712,100,100,,1,1,[1],4.7,-4,2,"(0.74, 0.82)" -4713,100,100,,1,1,[1],4.7,-4,3,"(0.65, 0.795)" -4714,100,100,,1,1,[1],4.7,-4,4,"(0.68, 0.78)" -4715,100,100,,1,1,[1],4.7,-4,5,"(0.67, 0.805)" -4716,100,100,,1,1,[1],4.7,-4,6,"(0.67, 0.765)" -4717,100,100,,1,1,[1],4.7,-4,7,"(0.73, 0.825)" -4718,100,100,,1,1,[1],4.7,-4,8,"(0.75, 0.845)" -4719,100,100,,1,1,[1],4.7,-4,9,"(0.67, 0.775)" -4720,100,100,,1,1,[1],4.7,-3,0,"(0.71, 0.795)" -4721,100,100,,1,1,[1],4.7,-3,1,"(0.6, 0.69)" -4722,100,100,,1,1,[1],4.7,-3,2,"(0.64, 0.74)" -4723,100,100,,1,1,[1],4.7,-3,3,"(0.67, 0.715)" -4724,100,100,,1,1,[1],4.7,-3,4,"(0.68, 0.75)" -4725,100,100,,1,1,[1],4.7,-3,5,"(0.58, 0.74)" -4726,100,100,,1,1,[1],4.7,-3,6,"(0.58, 0.75)" -4727,100,100,,1,1,[1],4.7,-3,7,"(0.59, 0.705)" -4728,100,100,,1,1,[1],4.7,-3,8,"(0.57, 0.695)" -4729,100,100,,1,1,[1],4.7,-3,9,"(0.61, 0.705)" -4730,100,100,,1,1,[1],4.7,-2,0,"(0.58, 0.67)" -4731,100,100,,1,1,[1],4.7,-2,1,"(0.64, 0.62)" -4732,100,100,,1,1,[1],4.7,-2,2,"(0.6, 0.68)" -4733,100,100,,1,1,[1],4.7,-2,3,"(0.56, 0.63)" -4734,100,100,,1,1,[1],4.7,-2,4,"(0.62, 0.64)" -4735,100,100,,1,1,[1],4.7,-2,5,"(0.58, 0.67)" -4736,100,100,,1,1,[1],4.7,-2,6,"(0.59, 0.625)" -4737,100,100,,1,1,[1],4.7,-2,7,"(0.66, 0.75)" -4738,100,100,,1,1,[1],4.7,-2,8,"(0.56, 0.66)" -4739,100,100,,1,1,[1],4.7,-2,9,"(0.5, 0.65)" -4740,100,100,,1,1,[1],4.7,-1,0,"(0.62, 0.59)" -4741,100,100,,1,1,[1],4.7,-1,1,"(0.56, 0.67)" -4742,100,100,,1,1,[1],4.7,-1,2,"(0.51, 0.605)" -4743,100,100,,1,1,[1],4.7,-1,3,"(0.55, 0.585)" -4744,100,100,,1,1,[1],4.7,-1,4,"(0.52, 0.52)" -4745,100,100,,1,1,[1],4.7,-1,5,"(0.56, 0.5)" -4746,100,100,,1,1,[1],4.7,-1,6,"(0.53, 0.485)" -4747,100,100,,1,1,[1],4.7,-1,7,"(0.54, 0.59)" -4748,100,100,,1,1,[1],4.7,-1,8,"(0.47, 0.545)" -4749,100,100,,1,1,[1],4.7,-1,9,"(0.51, 0.595)" -4750,100,100,,1,1,[1],4.7,0,0,"(0.44, 0.52)" -4751,100,100,,1,1,[1],4.7,0,1,"(0.56, 0.5)" -4752,100,100,,1,1,[1],4.7,0,2,"(0.53, 0.485)" -4753,100,100,,1,1,[1],4.7,0,3,"(0.57, 0.525)" -4754,100,100,,1,1,[1],4.7,0,4,"(0.49, 0.515)" -4755,100,100,,1,1,[1],4.7,0,5,"(0.59, 0.475)" -4756,100,100,,1,1,[1],4.7,0,6,"(0.61, 0.505)" -4757,100,100,,1,1,[1],4.7,0,7,"(0.57, 0.505)" -4758,100,100,,1,1,[1],4.7,0,8,"(0.54, 0.51)" -4759,100,100,,1,1,[1],4.7,0,9,"(0.5, 0.48)" -4760,100,100,,1,1,[1],4.7,1,0,"(0.63, 0.385)" -4761,100,100,,1,1,[1],4.7,1,1,"(0.58, 0.5)" -4762,100,100,,1,1,[1],4.7,1,2,"(0.47, 0.445)" -4763,100,100,,1,1,[1],4.7,1,3,"(0.5, 0.45)" -4764,100,100,,1,1,[1],4.7,1,4,"(0.54, 0.43)" -4765,100,100,,1,1,[1],4.7,1,5,"(0.58, 0.4)" -4766,100,100,,1,1,[1],4.7,1,6,"(0.54, 0.42)" -4767,100,100,,1,1,[1],4.7,1,7,"(0.54, 0.5)" -4768,100,100,,1,1,[1],4.7,1,8,"(0.53, 0.445)" -4769,100,100,,1,1,[1],4.7,1,9,"(0.49, 0.435)" -4770,100,100,,1,1,[1],4.7,2,0,"(0.62, 0.34)" -4771,100,100,,1,1,[1],4.7,2,1,"(0.6, 0.34)" -4772,100,100,,1,1,[1],4.7,2,2,"(0.6, 0.36)" -4773,100,100,,1,1,[1],4.7,2,3,"(0.52, 0.39)" -4774,100,100,,1,1,[1],4.7,2,4,"(0.58, 0.36)" -4775,100,100,,1,1,[1],4.7,2,5,"(0.54, 0.38)" -4776,100,100,,1,1,[1],4.7,2,6,"(0.57, 0.325)" -4777,100,100,,1,1,[1],4.7,2,7,"(0.63, 0.255)" -4778,100,100,,1,1,[1],4.7,2,8,"(0.57, 0.325)" -4779,100,100,,1,1,[1],4.7,2,9,"(0.61, 0.295)" -4780,100,100,,1,1,[1],4.7,3,0,"(0.65, 0.245)" -4781,100,100,,1,1,[1],4.7,3,1,"(0.62, 0.26)" -4782,100,100,,1,1,[1],4.7,3,2,"(0.57, 0.255)" -4783,100,100,,1,1,[1],4.7,3,3,"(0.64, 0.31)" -4784,100,100,,1,1,[1],4.7,3,4,"(0.66, 0.25)" -4785,100,100,,1,1,[1],4.7,3,5,"(0.62, 0.26)" -4786,100,100,,1,1,[1],4.7,3,6,"(0.66, 0.25)" -4787,100,100,,1,1,[1],4.7,3,7,"(0.57, 0.285)" -4788,100,100,,1,1,[1],4.7,3,8,"(0.63, 0.275)" -4789,100,100,,1,1,[1],4.7,3,9,"(0.64, 0.26)" -4790,100,100,,1,1,[1],4.7,4,0,"(0.61, 0.265)" -4791,100,100,,1,1,[1],4.7,4,1,"(0.61, 0.255)" -4792,100,100,,1,1,[1],4.7,4,2,"(0.75, 0.225)" -4793,100,100,,1,1,[1],4.7,4,3,"(0.67, 0.175)" -4794,100,100,,1,1,[1],4.7,4,4,"(0.7, 0.22)" -4795,100,100,,1,1,[1],4.7,4,5,"(0.68, 0.23)" -4796,100,100,,1,1,[1],4.7,4,6,"(0.7, 0.21)" -4797,100,100,,1,1,[1],4.7,4,7,"(0.7, 0.22)" -4798,100,100,,1,1,[1],4.7,4,8,"(0.67, 0.235)" -4799,100,100,,1,1,[1],4.7,4,9,"(0.66, 0.21)" -4800,100,100,,1,1,[1],4.800000000000001,-5,0,"(0.73, 0.825)" -4801,100,100,,1,1,[1],4.800000000000001,-5,1,"(0.81, 0.865)" -4802,100,100,,1,1,[1],4.800000000000001,-5,2,"(0.73, 0.825)" -4803,100,100,,1,1,[1],4.800000000000001,-5,3,"(0.8, 0.86)" -4804,100,100,,1,1,[1],4.800000000000001,-5,4,"(0.73, 0.835)" -4805,100,100,,1,1,[1],4.800000000000001,-5,5,"(0.78, 0.86)" -4806,100,100,,1,1,[1],4.800000000000001,-5,6,"(0.72, 0.84)" -4807,100,100,,1,1,[1],4.800000000000001,-5,7,"(0.74, 0.83)" -4808,100,100,,1,1,[1],4.800000000000001,-5,8,"(0.66, 0.79)" -4809,100,100,,1,1,[1],4.800000000000001,-5,9,"(0.77, 0.855)" -4810,100,100,,1,1,[1],4.800000000000001,-4,0,"(0.65, 0.785)" -4811,100,100,,1,1,[1],4.800000000000001,-4,1,"(0.67, 0.765)" -4812,100,100,,1,1,[1],4.800000000000001,-4,2,"(0.6, 0.78)" -4813,100,100,,1,1,[1],4.800000000000001,-4,3,"(0.56, 0.75)" -4814,100,100,,1,1,[1],4.800000000000001,-4,4,"(0.75, 0.825)" -4815,100,100,,1,1,[1],4.800000000000001,-4,5,"(0.67, 0.775)" -4816,100,100,,1,1,[1],4.800000000000001,-4,6,"(0.63, 0.755)" -4817,100,100,,1,1,[1],4.800000000000001,-4,7,"(0.65, 0.795)" -4818,100,100,,1,1,[1],4.800000000000001,-4,8,"(0.64, 0.78)" -4819,100,100,,1,1,[1],4.800000000000001,-4,9,"(0.74, 0.8)" -4820,100,100,,1,1,[1],4.800000000000001,-3,0,"(0.6, 0.75)" -4821,100,100,,1,1,[1],4.800000000000001,-3,1,"(0.57, 0.725)" -4822,100,100,,1,1,[1],4.800000000000001,-3,2,"(0.61, 0.755)" -4823,100,100,,1,1,[1],4.800000000000001,-3,3,"(0.55, 0.725)" -4824,100,100,,1,1,[1],4.800000000000001,-3,4,"(0.57, 0.725)" -4825,100,100,,1,1,[1],4.800000000000001,-3,5,"(0.61, 0.725)" -4826,100,100,,1,1,[1],4.800000000000001,-3,6,"(0.61, 0.715)" -4827,100,100,,1,1,[1],4.800000000000001,-3,7,"(0.67, 0.795)" -4828,100,100,,1,1,[1],4.800000000000001,-3,8,"(0.71, 0.825)" -4829,100,100,,1,1,[1],4.800000000000001,-3,9,"(0.6, 0.72)" -4830,100,100,,1,1,[1],4.800000000000001,-2,0,"(0.56, 0.62)" -4831,100,100,,1,1,[1],4.800000000000001,-2,1,"(0.49, 0.575)" -4832,100,100,,1,1,[1],4.800000000000001,-2,2,"(0.55, 0.665)" -4833,100,100,,1,1,[1],4.800000000000001,-2,3,"(0.59, 0.625)" -4834,100,100,,1,1,[1],4.800000000000001,-2,4,"(0.6, 0.71)" -4835,100,100,,1,1,[1],4.800000000000001,-2,5,"(0.57, 0.615)" -4836,100,100,,1,1,[1],4.800000000000001,-2,6,"(0.58, 0.67)" -4837,100,100,,1,1,[1],4.800000000000001,-2,7,"(0.53, 0.655)" -4838,100,100,,1,1,[1],4.800000000000001,-2,8,"(0.66, 0.7)" -4839,100,100,,1,1,[1],4.800000000000001,-2,9,"(0.62, 0.7)" -4840,100,100,,1,1,[1],4.800000000000001,-1,0,"(0.49, 0.575)" -4841,100,100,,1,1,[1],4.800000000000001,-1,1,"(0.57, 0.595)" -4842,100,100,,1,1,[1],4.800000000000001,-1,2,"(0.54, 0.58)" -4843,100,100,,1,1,[1],4.800000000000001,-1,3,"(0.6, 0.54)" -4844,100,100,,1,1,[1],4.800000000000001,-1,4,"(0.57, 0.575)" -4845,100,100,,1,1,[1],4.800000000000001,-1,5,"(0.6, 0.61)" -4846,100,100,,1,1,[1],4.800000000000001,-1,6,"(0.49, 0.595)" -4847,100,100,,1,1,[1],4.800000000000001,-1,7,"(0.51, 0.575)" -4848,100,100,,1,1,[1],4.800000000000001,-1,8,"(0.59, 0.575)" -4849,100,100,,1,1,[1],4.800000000000001,-1,9,"(0.48, 0.58)" -4850,100,100,,1,1,[1],4.800000000000001,0,0,"(0.54, 0.46)" -4851,100,100,,1,1,[1],4.800000000000001,0,1,"(0.41, 0.495)" -4852,100,100,,1,1,[1],4.800000000000001,0,2,"(0.51, 0.495)" -4853,100,100,,1,1,[1],4.800000000000001,0,3,"(0.67, 0.445)" -4854,100,100,,1,1,[1],4.800000000000001,0,4,"(0.6, 0.5)" -4855,100,100,,1,1,[1],4.800000000000001,0,5,"(0.53, 0.465)" -4856,100,100,,1,1,[1],4.800000000000001,0,6,"(0.58, 0.51)" -4857,100,100,,1,1,[1],4.800000000000001,0,7,"(0.51, 0.455)" -4858,100,100,,1,1,[1],4.800000000000001,0,8,"(0.57, 0.565)" -4859,100,100,,1,1,[1],4.800000000000001,0,9,"(0.47, 0.535)" -4860,100,100,,1,1,[1],4.800000000000001,1,0,"(0.55, 0.395)" -4861,100,100,,1,1,[1],4.800000000000001,1,1,"(0.61, 0.415)" -4862,100,100,,1,1,[1],4.800000000000001,1,2,"(0.47, 0.455)" -4863,100,100,,1,1,[1],4.800000000000001,1,3,"(0.5, 0.43)" -4864,100,100,,1,1,[1],4.800000000000001,1,4,"(0.5, 0.38)" -4865,100,100,,1,1,[1],4.800000000000001,1,5,"(0.53, 0.395)" -4866,100,100,,1,1,[1],4.800000000000001,1,6,"(0.51, 0.435)" -4867,100,100,,1,1,[1],4.800000000000001,1,7,"(0.54, 0.47)" -4868,100,100,,1,1,[1],4.800000000000001,1,8,"(0.61, 0.465)" -4869,100,100,,1,1,[1],4.800000000000001,1,9,"(0.5, 0.46)" -4870,100,100,,1,1,[1],4.800000000000001,2,0,"(0.57, 0.385)" -4871,100,100,,1,1,[1],4.800000000000001,2,1,"(0.56, 0.36)" -4872,100,100,,1,1,[1],4.800000000000001,2,2,"(0.65, 0.285)" -4873,100,100,,1,1,[1],4.800000000000001,2,3,"(0.49, 0.325)" -4874,100,100,,1,1,[1],4.800000000000001,2,4,"(0.51, 0.375)" -4875,100,100,,1,1,[1],4.800000000000001,2,5,"(0.61, 0.365)" -4876,100,100,,1,1,[1],4.800000000000001,2,6,"(0.56, 0.35)" -4877,100,100,,1,1,[1],4.800000000000001,2,7,"(0.59, 0.365)" -4878,100,100,,1,1,[1],4.800000000000001,2,8,"(0.5, 0.38)" -4879,100,100,,1,1,[1],4.800000000000001,2,9,"(0.63, 0.315)" -4880,100,100,,1,1,[1],4.800000000000001,3,0,"(0.63, 0.225)" -4881,100,100,,1,1,[1],4.800000000000001,3,1,"(0.69, 0.275)" -4882,100,100,,1,1,[1],4.800000000000001,3,2,"(0.62, 0.27)" -4883,100,100,,1,1,[1],4.800000000000001,3,3,"(0.62, 0.27)" -4884,100,100,,1,1,[1],4.800000000000001,3,4,"(0.56, 0.29)" -4885,100,100,,1,1,[1],4.800000000000001,3,5,"(0.61, 0.265)" -4886,100,100,,1,1,[1],4.800000000000001,3,6,"(0.54, 0.29)" -4887,100,100,,1,1,[1],4.800000000000001,3,7,"(0.69, 0.205)" -4888,100,100,,1,1,[1],4.800000000000001,3,8,"(0.63, 0.275)" -4889,100,100,,1,1,[1],4.800000000000001,3,9,"(0.65, 0.285)" -4890,100,100,,1,1,[1],4.800000000000001,4,0,"(0.67, 0.255)" -4891,100,100,,1,1,[1],4.800000000000001,4,1,"(0.76, 0.18)" -4892,100,100,,1,1,[1],4.800000000000001,4,2,"(0.63, 0.215)" -4893,100,100,,1,1,[1],4.800000000000001,4,3,"(0.7, 0.19)" -4894,100,100,,1,1,[1],4.800000000000001,4,4,"(0.72, 0.19)" -4895,100,100,,1,1,[1],4.800000000000001,4,5,"(0.7, 0.18)" -4896,100,100,,1,1,[1],4.800000000000001,4,6,"(0.62, 0.24)" -4897,100,100,,1,1,[1],4.800000000000001,4,7,"(0.67, 0.225)" -4898,100,100,,1,1,[1],4.800000000000001,4,8,"(0.61, 0.235)" -4899,100,100,,1,1,[1],4.800000000000001,4,9,"(0.71, 0.215)" -4900,100,100,,1,1,[1],4.9,-5,0,"(0.72, 0.82)" -4901,100,100,,1,1,[1],4.9,-5,1,"(0.7, 0.82)" -4902,100,100,,1,1,[1],4.9,-5,2,"(0.71, 0.825)" -4903,100,100,,1,1,[1],4.9,-5,3,"(0.73, 0.825)" -4904,100,100,,1,1,[1],4.9,-5,4,"(0.75, 0.855)" -4905,100,100,,1,1,[1],4.9,-5,5,"(0.74, 0.84)" -4906,100,100,,1,1,[1],4.9,-5,6,"(0.7, 0.81)" -4907,100,100,,1,1,[1],4.9,-5,7,"(0.8, 0.82)" -4908,100,100,,1,1,[1],4.9,-5,8,"(0.8, 0.82)" -4909,100,100,,1,1,[1],4.9,-5,9,"(0.78, 0.86)" -4910,100,100,,1,1,[1],4.9,-4,0,"(0.73, 0.795)" -4911,100,100,,1,1,[1],4.9,-4,1,"(0.68, 0.77)" -4912,100,100,,1,1,[1],4.9,-4,2,"(0.63, 0.775)" -4913,100,100,,1,1,[1],4.9,-4,3,"(0.69, 0.795)" -4914,100,100,,1,1,[1],4.9,-4,4,"(0.75, 0.815)" -4915,100,100,,1,1,[1],4.9,-4,5,"(0.65, 0.735)" -4916,100,100,,1,1,[1],4.9,-4,6,"(0.73, 0.825)" -4917,100,100,,1,1,[1],4.9,-4,7,"(0.69, 0.785)" -4918,100,100,,1,1,[1],4.9,-4,8,"(0.78, 0.85)" -4919,100,100,,1,1,[1],4.9,-4,9,"(0.66, 0.74)" -4920,100,100,,1,1,[1],4.9,-3,0,"(0.72, 0.77)" -4921,100,100,,1,1,[1],4.9,-3,1,"(0.62, 0.73)" -4922,100,100,,1,1,[1],4.9,-3,2,"(0.66, 0.72)" -4923,100,100,,1,1,[1],4.9,-3,3,"(0.58, 0.71)" -4924,100,100,,1,1,[1],4.9,-3,4,"(0.57, 0.665)" -4925,100,100,,1,1,[1],4.9,-3,5,"(0.65, 0.735)" -4926,100,100,,1,1,[1],4.9,-3,6,"(0.58, 0.71)" -4927,100,100,,1,1,[1],4.9,-3,7,"(0.66, 0.71)" -4928,100,100,,1,1,[1],4.9,-3,8,"(0.6, 0.71)" -4929,100,100,,1,1,[1],4.9,-3,9,"(0.66, 0.77)" -4930,100,100,,1,1,[1],4.9,-2,0,"(0.55, 0.585)" -4931,100,100,,1,1,[1],4.9,-2,1,"(0.53, 0.595)" -4932,100,100,,1,1,[1],4.9,-2,2,"(0.56, 0.71)" -4933,100,100,,1,1,[1],4.9,-2,3,"(0.47, 0.545)" -4934,100,100,,1,1,[1],4.9,-2,4,"(0.58, 0.64)" -4935,100,100,,1,1,[1],4.9,-2,5,"(0.57, 0.665)" -4936,100,100,,1,1,[1],4.9,-2,6,"(0.66, 0.68)" -4937,100,100,,1,1,[1],4.9,-2,7,"(0.62, 0.68)" -4938,100,100,,1,1,[1],4.9,-2,8,"(0.66, 0.64)" -4939,100,100,,1,1,[1],4.9,-2,9,"(0.63, 0.625)" -4940,100,100,,1,1,[1],4.9,-1,0,"(0.61, 0.595)" -4941,100,100,,1,1,[1],4.9,-1,1,"(0.53, 0.615)" -4942,100,100,,1,1,[1],4.9,-1,2,"(0.59, 0.625)" -4943,100,100,,1,1,[1],4.9,-1,3,"(0.47, 0.505)" -4944,100,100,,1,1,[1],4.9,-1,4,"(0.55, 0.535)" -4945,100,100,,1,1,[1],4.9,-1,5,"(0.54, 0.63)" -4946,100,100,,1,1,[1],4.9,-1,6,"(0.52, 0.54)" -4947,100,100,,1,1,[1],4.9,-1,7,"(0.52, 0.6)" -4948,100,100,,1,1,[1],4.9,-1,8,"(0.5, 0.66)" -4949,100,100,,1,1,[1],4.9,-1,9,"(0.59, 0.525)" -4950,100,100,,1,1,[1],4.9,0,0,"(0.44, 0.56)" -4951,100,100,,1,1,[1],4.9,0,1,"(0.48, 0.51)" -4952,100,100,,1,1,[1],4.9,0,2,"(0.49, 0.495)" -4953,100,100,,1,1,[1],4.9,0,3,"(0.5, 0.57)" -4954,100,100,,1,1,[1],4.9,0,4,"(0.47, 0.495)" -4955,100,100,,1,1,[1],4.9,0,5,"(0.53, 0.445)" -4956,100,100,,1,1,[1],4.9,0,6,"(0.54, 0.46)" -4957,100,100,,1,1,[1],4.9,0,7,"(0.48, 0.47)" -4958,100,100,,1,1,[1],4.9,0,8,"(0.49, 0.505)" -4959,100,100,,1,1,[1],4.9,0,9,"(0.55, 0.505)" -4960,100,100,,1,1,[1],4.9,1,0,"(0.48, 0.45)" -4961,100,100,,1,1,[1],4.9,1,1,"(0.54, 0.43)" -4962,100,100,,1,1,[1],4.9,1,2,"(0.5, 0.41)" -4963,100,100,,1,1,[1],4.9,1,3,"(0.41, 0.465)" -4964,100,100,,1,1,[1],4.9,1,4,"(0.54, 0.44)" -4965,100,100,,1,1,[1],4.9,1,5,"(0.5, 0.37)" -4966,100,100,,1,1,[1],4.9,1,6,"(0.56, 0.46)" -4967,100,100,,1,1,[1],4.9,1,7,"(0.47, 0.475)" -4968,100,100,,1,1,[1],4.9,1,8,"(0.58, 0.42)" -4969,100,100,,1,1,[1],4.9,1,9,"(0.5, 0.4)" -4970,100,100,,1,1,[1],4.9,2,0,"(0.43, 0.375)" -4971,100,100,,1,1,[1],4.9,2,1,"(0.57, 0.345)" -4972,100,100,,1,1,[1],4.9,2,2,"(0.53, 0.355)" -4973,100,100,,1,1,[1],4.9,2,3,"(0.6, 0.35)" -4974,100,100,,1,1,[1],4.9,2,4,"(0.57, 0.375)" -4975,100,100,,1,1,[1],4.9,2,5,"(0.57, 0.335)" -4976,100,100,,1,1,[1],4.9,2,6,"(0.54, 0.34)" -4977,100,100,,1,1,[1],4.9,2,7,"(0.61, 0.315)" -4978,100,100,,1,1,[1],4.9,2,8,"(0.67, 0.345)" -4979,100,100,,1,1,[1],4.9,2,9,"(0.64, 0.36)" -4980,100,100,,1,1,[1],4.9,3,0,"(0.65, 0.295)" -4981,100,100,,1,1,[1],4.9,3,1,"(0.6, 0.26)" -4982,100,100,,1,1,[1],4.9,3,2,"(0.66, 0.22)" -4983,100,100,,1,1,[1],4.9,3,3,"(0.65, 0.285)" -4984,100,100,,1,1,[1],4.9,3,4,"(0.61, 0.315)" -4985,100,100,,1,1,[1],4.9,3,5,"(0.64, 0.29)" -4986,100,100,,1,1,[1],4.9,3,6,"(0.7, 0.24)" -4987,100,100,,1,1,[1],4.9,3,7,"(0.6, 0.37)" -4988,100,100,,1,1,[1],4.9,3,8,"(0.65, 0.295)" -4989,100,100,,1,1,[1],4.9,3,9,"(0.66, 0.28)" -4990,100,100,,1,1,[1],4.9,4,0,"(0.68, 0.19)" -4991,100,100,,1,1,[1],4.9,4,1,"(0.73, 0.195)" -4992,100,100,,1,1,[1],4.9,4,2,"(0.67, 0.185)" -4993,100,100,,1,1,[1],4.9,4,3,"(0.71, 0.205)" -4994,100,100,,1,1,[1],4.9,4,4,"(0.65, 0.225)" -4995,100,100,,1,1,[1],4.9,4,5,"(0.61, 0.235)" -4996,100,100,,1,1,[1],4.9,4,6,"(0.72, 0.14)" -4997,100,100,,1,1,[1],4.9,4,7,"(0.73, 0.165)" -4998,100,100,,1,1,[1],4.9,4,8,"(0.65, 0.235)" -4999,100,100,,1,1,[1],4.9,4,9,"(0.67, 0.225)" +,n_trials,n_repeated,trial_type,n_features,external_noise_std,kernel,internal_noise_std,criteria,run,prob_agree,prob_first +0,100,100,,1,1,[1],0.0,-5.0,0,1.0,1.0 +1,100,100,,1,1,[1],0.0,-4.9,0,1.0,1.0 +2,100,100,,1,1,[1],0.0,-4.800000000000001,0,1.0,1.0 +3,100,100,,1,1,[1],0.0,-4.700000000000001,0,1.0,1.0 +4,100,100,,1,1,[1],0.0,-4.600000000000001,0,1.0,1.0 +5,100,100,,1,1,[1],0.0,-4.500000000000002,0,1.0,1.0 +6,100,100,,1,1,[1],0.0,-4.400000000000002,0,1.0,1.0 +7,100,100,,1,1,[1],0.0,-4.3000000000000025,0,1.0,1.0 +8,100,100,,1,1,[1],0.0,-4.200000000000003,0,1.0,1.0 +9,100,100,,1,1,[1],0.0,-4.100000000000003,0,1.0,0.99 +10,100,100,,1,1,[1],0.0,-4.0000000000000036,0,1.0,1.0 +11,100,100,,1,1,[1],0.0,-3.900000000000004,0,1.0,1.0 +12,100,100,,1,1,[1],0.0,-3.8000000000000043,0,1.0,1.0 +13,100,100,,1,1,[1],0.0,-3.7000000000000046,0,1.0,1.0 +14,100,100,,1,1,[1],0.0,-3.600000000000005,0,1.0,1.0 +15,100,100,,1,1,[1],0.0,-3.5000000000000053,0,1.0,0.99 +16,100,100,,1,1,[1],0.0,-3.4000000000000057,0,1.0,1.0 +17,100,100,,1,1,[1],0.0,-3.300000000000006,0,1.0,1.0 +18,100,100,,1,1,[1],0.0,-3.2000000000000064,0,1.0,1.0 +19,100,100,,1,1,[1],0.0,-3.1000000000000068,0,1.0,1.0 +20,100,100,,1,1,[1],0.0,-3.000000000000007,0,1.0,0.99 +21,100,100,,1,1,[1],0.0,-2.9000000000000075,0,1.0,0.99 +22,100,100,,1,1,[1],0.0,-2.800000000000008,0,1.0,0.96 +23,100,100,,1,1,[1],0.0,-2.700000000000008,0,1.0,0.96 +24,100,100,,1,1,[1],0.0,-2.6000000000000085,0,1.0,0.99 +25,100,100,,1,1,[1],0.0,-2.500000000000009,0,1.0,0.99 +26,100,100,,1,1,[1],0.0,-2.4000000000000092,0,1.0,0.93 +27,100,100,,1,1,[1],0.0,-2.3000000000000096,0,1.0,0.98 +28,100,100,,1,1,[1],0.0,-2.20000000000001,0,1.0,0.96 +29,100,100,,1,1,[1],0.0,-2.1000000000000103,0,1.0,0.93 +30,100,100,,1,1,[1],0.0,-2.0000000000000107,0,1.0,0.91 +31,100,100,,1,1,[1],0.0,-1.900000000000011,0,1.0,0.89 +32,100,100,,1,1,[1],0.0,-1.8000000000000114,0,1.0,0.9 +33,100,100,,1,1,[1],0.0,-1.7000000000000117,0,1.0,0.83 +34,100,100,,1,1,[1],0.0,-1.600000000000012,0,1.0,0.86 +35,100,100,,1,1,[1],0.0,-1.5000000000000124,0,1.0,0.87 +36,100,100,,1,1,[1],0.0,-1.4000000000000128,0,1.0,0.89 +37,100,100,,1,1,[1],0.0,-1.3000000000000131,0,1.0,0.88 +38,100,100,,1,1,[1],0.0,-1.2000000000000135,0,1.0,0.84 +39,100,100,,1,1,[1],0.0,-1.1000000000000139,0,1.0,0.82 +40,100,100,,1,1,[1],0.0,-1.0000000000000142,0,1.0,0.76 +41,100,100,,1,1,[1],0.0,-0.9000000000000146,0,1.0,0.74 +42,100,100,,1,1,[1],0.0,-0.8000000000000149,0,1.0,0.68 +43,100,100,,1,1,[1],0.0,-0.7000000000000153,0,1.0,0.6 +44,100,100,,1,1,[1],0.0,-0.6000000000000156,0,1.0,0.73 +45,100,100,,1,1,[1],0.0,-0.500000000000016,0,1.0,0.62 +46,100,100,,1,1,[1],0.0,-0.40000000000001634,0,1.0,0.59 +47,100,100,,1,1,[1],0.0,-0.3000000000000167,0,1.0,0.56 +48,100,100,,1,1,[1],0.0,-0.20000000000001705,0,1.0,0.63 +49,100,100,,1,1,[1],0.0,-0.10000000000001741,0,1.0,0.52 +50,100,100,,1,1,[1],0.0,-1.7763568394002505e-14,0,1.0,0.48 +51,100,100,,1,1,[1],0.0,0.09999999999998188,0,1.0,0.42 +52,100,100,,1,1,[1],0.0,0.19999999999998153,0,1.0,0.37 +53,100,100,,1,1,[1],0.0,0.29999999999998117,0,1.0,0.4 +54,100,100,,1,1,[1],0.0,0.3999999999999808,0,1.0,0.34 +55,100,100,,1,1,[1],0.0,0.49999999999998046,0,1.0,0.39 +56,100,100,,1,1,[1],0.0,0.5999999999999801,0,1.0,0.28 +57,100,100,,1,1,[1],0.0,0.6999999999999797,0,1.0,0.3 +58,100,100,,1,1,[1],0.0,0.7999999999999794,0,1.0,0.22 +59,100,100,,1,1,[1],0.0,0.899999999999979,0,1.0,0.27 +60,100,100,,1,1,[1],0.0,0.9999999999999787,0,1.0,0.3 +61,100,100,,1,1,[1],0.0,1.0999999999999783,0,1.0,0.17 +62,100,100,,1,1,[1],0.0,1.199999999999978,0,1.0,0.19 +63,100,100,,1,1,[1],0.0,1.2999999999999776,0,1.0,0.14 +64,100,100,,1,1,[1],0.0,1.3999999999999773,0,1.0,0.21 +65,100,100,,1,1,[1],0.0,1.499999999999977,0,1.0,0.13 +66,100,100,,1,1,[1],0.0,1.5999999999999766,0,1.0,0.14 +67,100,100,,1,1,[1],0.0,1.6999999999999762,0,1.0,0.1 +68,100,100,,1,1,[1],0.0,1.7999999999999758,0,1.0,0.06 +69,100,100,,1,1,[1],0.0,1.8999999999999755,0,1.0,0.1 +70,100,100,,1,1,[1],0.0,1.9999999999999751,0,1.0,0.08 +71,100,100,,1,1,[1],0.0,2.0999999999999748,0,1.0,0.07 +72,100,100,,1,1,[1],0.0,2.1999999999999744,0,1.0,0.08 +73,100,100,,1,1,[1],0.0,2.299999999999974,0,1.0,0.04 +74,100,100,,1,1,[1],0.0,2.3999999999999737,0,1.0,0.04 +75,100,100,,1,1,[1],0.0,2.4999999999999734,0,1.0,0.01 +76,100,100,,1,1,[1],0.0,2.599999999999973,0,1.0,0.02 +77,100,100,,1,1,[1],0.0,2.6999999999999726,0,1.0,0.02 +78,100,100,,1,1,[1],0.0,2.7999999999999723,0,1.0,0.03 +79,100,100,,1,1,[1],0.0,2.899999999999972,0,1.0,0.01 +80,100,100,,1,1,[1],0.0,2.9999999999999716,0,1.0,0.03 +81,100,100,,1,1,[1],0.0,3.0999999999999712,0,1.0,0.0 +82,100,100,,1,1,[1],0.0,3.199999999999971,0,1.0,0.01 +83,100,100,,1,1,[1],0.0,3.2999999999999705,0,1.0,0.0 +84,100,100,,1,1,[1],0.0,3.39999999999997,0,1.0,0.0 +85,100,100,,1,1,[1],0.0,3.49999999999997,0,1.0,0.01 +86,100,100,,1,1,[1],0.0,3.5999999999999694,0,1.0,0.01 +87,100,100,,1,1,[1],0.0,3.699999999999969,0,1.0,0.0 +88,100,100,,1,1,[1],0.0,3.7999999999999687,0,1.0,0.0 +89,100,100,,1,1,[1],0.0,3.8999999999999684,0,1.0,0.01 +90,100,100,,1,1,[1],0.0,3.999999999999968,0,1.0,0.0 +91,100,100,,1,1,[1],0.0,4.099999999999968,0,1.0,0.01 +92,100,100,,1,1,[1],0.0,4.199999999999967,0,1.0,0.01 +93,100,100,,1,1,[1],0.0,4.299999999999967,0,1.0,0.0 +94,100,100,,1,1,[1],0.0,4.399999999999967,0,1.0,0.0 +95,100,100,,1,1,[1],0.0,4.499999999999966,0,1.0,0.0 +96,100,100,,1,1,[1],0.0,4.599999999999966,0,1.0,0.0 +97,100,100,,1,1,[1],0.0,4.6999999999999655,0,1.0,0.01 +98,100,100,,1,1,[1],0.0,4.799999999999965,0,1.0,0.0 +99,100,100,,1,1,[1],0.0,4.899999999999965,0,1.0,0.0 +100,100,100,,1,1,[1],0.1,-5.0,0,1.0,1.0 +101,100,100,,1,1,[1],0.1,-4.9,0,1.0,1.0 +102,100,100,,1,1,[1],0.1,-4.800000000000001,0,1.0,1.0 +103,100,100,,1,1,[1],0.1,-4.700000000000001,0,1.0,1.0 +104,100,100,,1,1,[1],0.1,-4.600000000000001,0,1.0,1.0 +105,100,100,,1,1,[1],0.1,-4.500000000000002,0,1.0,1.0 +106,100,100,,1,1,[1],0.1,-4.400000000000002,0,1.0,1.0 +107,100,100,,1,1,[1],0.1,-4.3000000000000025,0,1.0,0.99 +108,100,100,,1,1,[1],0.1,-4.200000000000003,0,1.0,1.0 +109,100,100,,1,1,[1],0.1,-4.100000000000003,0,1.0,1.0 +110,100,100,,1,1,[1],0.1,-4.0000000000000036,0,1.0,0.99 +111,100,100,,1,1,[1],0.1,-3.900000000000004,0,1.0,1.0 +112,100,100,,1,1,[1],0.1,-3.8000000000000043,0,1.0,0.99 +113,100,100,,1,1,[1],0.1,-3.7000000000000046,0,1.0,1.0 +114,100,100,,1,1,[1],0.1,-3.600000000000005,0,1.0,0.99 +115,100,100,,1,1,[1],0.1,-3.5000000000000053,0,1.0,0.98 +116,100,100,,1,1,[1],0.1,-3.4000000000000057,0,1.0,0.99 +117,100,100,,1,1,[1],0.1,-3.300000000000006,0,1.0,1.0 +118,100,100,,1,1,[1],0.1,-3.2000000000000064,0,1.0,0.99 +119,100,100,,1,1,[1],0.1,-3.1000000000000068,0,1.0,0.97 +120,100,100,,1,1,[1],0.1,-3.000000000000007,0,1.0,0.96 +121,100,100,,1,1,[1],0.1,-2.9000000000000075,0,1.0,1.0 +122,100,100,,1,1,[1],0.1,-2.800000000000008,0,0.99,0.995 +123,100,100,,1,1,[1],0.1,-2.700000000000008,0,1.0,1.0 +124,100,100,,1,1,[1],0.1,-2.6000000000000085,0,0.99,0.955 +125,100,100,,1,1,[1],0.1,-2.500000000000009,0,0.99,0.975 +126,100,100,,1,1,[1],0.1,-2.4000000000000092,0,1.0,0.96 +127,100,100,,1,1,[1],0.1,-2.3000000000000096,0,1.0,0.96 +128,100,100,,1,1,[1],0.1,-2.20000000000001,0,0.99,0.945 +129,100,100,,1,1,[1],0.1,-2.1000000000000103,0,1.0,0.93 +130,100,100,,1,1,[1],0.1,-2.0000000000000107,0,0.98,0.94 +131,100,100,,1,1,[1],0.1,-1.900000000000011,0,0.98,0.91 +132,100,100,,1,1,[1],0.1,-1.8000000000000114,0,0.99,0.855 +133,100,100,,1,1,[1],0.1,-1.7000000000000117,0,0.99,0.895 +134,100,100,,1,1,[1],0.1,-1.600000000000012,0,1.0,0.88 +135,100,100,,1,1,[1],0.1,-1.5000000000000124,0,0.97,0.865 +136,100,100,,1,1,[1],0.1,-1.4000000000000128,0,0.95,0.755 +137,100,100,,1,1,[1],0.1,-1.3000000000000131,0,0.99,0.855 +138,100,100,,1,1,[1],0.1,-1.2000000000000135,0,0.98,0.8 +139,100,100,,1,1,[1],0.1,-1.1000000000000139,0,0.99,0.795 +140,100,100,,1,1,[1],0.1,-1.0000000000000142,0,1.0,0.75 +141,100,100,,1,1,[1],0.1,-0.9000000000000146,0,0.99,0.735 +142,100,100,,1,1,[1],0.1,-0.8000000000000149,0,0.94,0.74 +143,100,100,,1,1,[1],0.1,-0.7000000000000153,0,0.98,0.75 +144,100,100,,1,1,[1],0.1,-0.6000000000000156,0,0.95,0.695 +145,100,100,,1,1,[1],0.1,-0.500000000000016,0,0.99,0.645 +146,100,100,,1,1,[1],0.1,-0.40000000000001634,0,0.97,0.575 +147,100,100,,1,1,[1],0.1,-0.3000000000000167,0,0.99,0.645 +148,100,100,,1,1,[1],0.1,-0.20000000000001705,0,0.97,0.585 +149,100,100,,1,1,[1],0.1,-0.10000000000001741,0,0.92,0.49 +150,100,100,,1,1,[1],0.1,-1.7763568394002505e-14,0,0.98,0.43 +151,100,100,,1,1,[1],0.1,0.09999999999998188,0,0.99,0.505 +152,100,100,,1,1,[1],0.1,0.19999999999998153,0,0.98,0.39 +153,100,100,,1,1,[1],0.1,0.29999999999998117,0,0.96,0.43 +154,100,100,,1,1,[1],0.1,0.3999999999999808,0,0.98,0.4 +155,100,100,,1,1,[1],0.1,0.49999999999998046,0,0.96,0.33 +156,100,100,,1,1,[1],0.1,0.5999999999999801,0,0.93,0.345 +157,100,100,,1,1,[1],0.1,0.6999999999999797,0,0.99,0.305 +158,100,100,,1,1,[1],0.1,0.7999999999999794,0,0.95,0.385 +159,100,100,,1,1,[1],0.1,0.899999999999979,0,0.96,0.31 +160,100,100,,1,1,[1],0.1,0.9999999999999787,0,0.98,0.21 +161,100,100,,1,1,[1],0.1,1.0999999999999783,0,0.95,0.305 +162,100,100,,1,1,[1],0.1,1.199999999999978,0,0.98,0.18 +163,100,100,,1,1,[1],0.1,1.2999999999999776,0,0.99,0.165 +164,100,100,,1,1,[1],0.1,1.3999999999999773,0,0.95,0.185 +165,100,100,,1,1,[1],0.1,1.499999999999977,0,1.0,0.14 +166,100,100,,1,1,[1],0.1,1.5999999999999766,0,0.98,0.13 +167,100,100,,1,1,[1],0.1,1.6999999999999762,0,0.99,0.115 +168,100,100,,1,1,[1],0.1,1.7999999999999758,0,0.98,0.08 +169,100,100,,1,1,[1],0.1,1.8999999999999755,0,0.98,0.09 +170,100,100,,1,1,[1],0.1,1.9999999999999751,0,0.98,0.07 +171,100,100,,1,1,[1],0.1,2.0999999999999748,0,0.99,0.065 +172,100,100,,1,1,[1],0.1,2.1999999999999744,0,0.98,0.05 +173,100,100,,1,1,[1],0.1,2.299999999999974,0,0.98,0.03 +174,100,100,,1,1,[1],0.1,2.3999999999999737,0,1.0,0.04 +175,100,100,,1,1,[1],0.1,2.4999999999999734,0,1.0,0.03 +176,100,100,,1,1,[1],0.1,2.599999999999973,0,0.98,0.04 +177,100,100,,1,1,[1],0.1,2.6999999999999726,0,1.0,0.02 +178,100,100,,1,1,[1],0.1,2.7999999999999723,0,1.0,0.01 +179,100,100,,1,1,[1],0.1,2.899999999999972,0,1.0,0.0 +180,100,100,,1,1,[1],0.1,2.9999999999999716,0,1.0,0.01 +181,100,100,,1,1,[1],0.1,3.0999999999999712,0,1.0,0.01 +182,100,100,,1,1,[1],0.1,3.199999999999971,0,1.0,0.03 +183,100,100,,1,1,[1],0.1,3.2999999999999705,0,1.0,0.01 +184,100,100,,1,1,[1],0.1,3.39999999999997,0,1.0,0.0 +185,100,100,,1,1,[1],0.1,3.49999999999997,0,1.0,0.01 +186,100,100,,1,1,[1],0.1,3.5999999999999694,0,1.0,0.0 +187,100,100,,1,1,[1],0.1,3.699999999999969,0,1.0,0.0 +188,100,100,,1,1,[1],0.1,3.7999999999999687,0,1.0,0.0 +189,100,100,,1,1,[1],0.1,3.8999999999999684,0,1.0,0.0 +190,100,100,,1,1,[1],0.1,3.999999999999968,0,1.0,0.01 +191,100,100,,1,1,[1],0.1,4.099999999999968,0,1.0,0.0 +192,100,100,,1,1,[1],0.1,4.199999999999967,0,1.0,0.0 +193,100,100,,1,1,[1],0.1,4.299999999999967,0,1.0,0.0 +194,100,100,,1,1,[1],0.1,4.399999999999967,0,1.0,0.0 +195,100,100,,1,1,[1],0.1,4.499999999999966,0,1.0,0.0 +196,100,100,,1,1,[1],0.1,4.599999999999966,0,1.0,0.0 +197,100,100,,1,1,[1],0.1,4.6999999999999655,0,1.0,0.0 +198,100,100,,1,1,[1],0.1,4.799999999999965,0,1.0,0.0 +199,100,100,,1,1,[1],0.1,4.899999999999965,0,1.0,0.0 +200,100,100,,1,1,[1],0.2,-5.0,0,1.0,1.0 +201,100,100,,1,1,[1],0.2,-4.9,0,1.0,1.0 +202,100,100,,1,1,[1],0.2,-4.800000000000001,0,1.0,1.0 +203,100,100,,1,1,[1],0.2,-4.700000000000001,0,1.0,1.0 +204,100,100,,1,1,[1],0.2,-4.600000000000001,0,1.0,1.0 +205,100,100,,1,1,[1],0.2,-4.500000000000002,0,1.0,1.0 +206,100,100,,1,1,[1],0.2,-4.400000000000002,0,1.0,1.0 +207,100,100,,1,1,[1],0.2,-4.3000000000000025,0,1.0,1.0 +208,100,100,,1,1,[1],0.2,-4.200000000000003,0,1.0,1.0 +209,100,100,,1,1,[1],0.2,-4.100000000000003,0,1.0,0.99 +210,100,100,,1,1,[1],0.2,-4.0000000000000036,0,1.0,1.0 +211,100,100,,1,1,[1],0.2,-3.900000000000004,0,1.0,1.0 +212,100,100,,1,1,[1],0.2,-3.8000000000000043,0,1.0,1.0 +213,100,100,,1,1,[1],0.2,-3.7000000000000046,0,1.0,1.0 +214,100,100,,1,1,[1],0.2,-3.600000000000005,0,0.99,0.985 +215,100,100,,1,1,[1],0.2,-3.5000000000000053,0,1.0,0.98 +216,100,100,,1,1,[1],0.2,-3.4000000000000057,0,1.0,1.0 +217,100,100,,1,1,[1],0.2,-3.300000000000006,0,0.99,0.975 +218,100,100,,1,1,[1],0.2,-3.2000000000000064,0,0.99,0.995 +219,100,100,,1,1,[1],0.2,-3.1000000000000068,0,1.0,1.0 +220,100,100,,1,1,[1],0.2,-3.000000000000007,0,0.98,0.98 +221,100,100,,1,1,[1],0.2,-2.9000000000000075,0,0.99,0.985 +222,100,100,,1,1,[1],0.2,-2.800000000000008,0,0.98,0.97 +223,100,100,,1,1,[1],0.2,-2.700000000000008,0,0.99,0.985 +224,100,100,,1,1,[1],0.2,-2.6000000000000085,0,0.99,0.975 +225,100,100,,1,1,[1],0.2,-2.500000000000009,0,1.0,0.94 +226,100,100,,1,1,[1],0.2,-2.4000000000000092,0,0.97,0.955 +227,100,100,,1,1,[1],0.2,-2.3000000000000096,0,0.97,0.935 +228,100,100,,1,1,[1],0.2,-2.20000000000001,0,0.96,0.94 +229,100,100,,1,1,[1],0.2,-2.1000000000000103,0,0.97,0.865 +230,100,100,,1,1,[1],0.2,-2.0000000000000107,0,0.97,0.915 +231,100,100,,1,1,[1],0.2,-1.900000000000011,0,0.97,0.925 +232,100,100,,1,1,[1],0.2,-1.8000000000000114,0,0.97,0.925 +233,100,100,,1,1,[1],0.2,-1.7000000000000117,0,0.98,0.89 +234,100,100,,1,1,[1],0.2,-1.600000000000012,0,0.97,0.855 +235,100,100,,1,1,[1],0.2,-1.5000000000000124,0,0.97,0.865 +236,100,100,,1,1,[1],0.2,-1.4000000000000128,0,0.97,0.825 +237,100,100,,1,1,[1],0.2,-1.3000000000000131,0,0.95,0.725 +238,100,100,,1,1,[1],0.2,-1.2000000000000135,0,0.96,0.84 +239,100,100,,1,1,[1],0.2,-1.1000000000000139,0,0.92,0.73 +240,100,100,,1,1,[1],0.2,-1.0000000000000142,0,0.93,0.695 +241,100,100,,1,1,[1],0.2,-0.9000000000000146,0,0.96,0.75 +242,100,100,,1,1,[1],0.2,-0.8000000000000149,0,0.95,0.585 +243,100,100,,1,1,[1],0.2,-0.7000000000000153,0,0.98,0.69 +244,100,100,,1,1,[1],0.2,-0.6000000000000156,0,0.9,0.65 +245,100,100,,1,1,[1],0.2,-0.500000000000016,0,0.93,0.635 +246,100,100,,1,1,[1],0.2,-0.40000000000001634,0,0.96,0.76 +247,100,100,,1,1,[1],0.2,-0.3000000000000167,0,0.97,0.485 +248,100,100,,1,1,[1],0.2,-0.20000000000001705,0,0.91,0.515 +249,100,100,,1,1,[1],0.2,-0.10000000000001741,0,0.95,0.595 +250,100,100,,1,1,[1],0.2,-1.7763568394002505e-14,0,0.95,0.455 +251,100,100,,1,1,[1],0.2,0.09999999999998188,0,0.91,0.435 +252,100,100,,1,1,[1],0.2,0.19999999999998153,0,0.96,0.47 +253,100,100,,1,1,[1],0.2,0.29999999999998117,0,0.94,0.41 +254,100,100,,1,1,[1],0.2,0.3999999999999808,0,0.88,0.35 +255,100,100,,1,1,[1],0.2,0.49999999999998046,0,0.95,0.315 +256,100,100,,1,1,[1],0.2,0.5999999999999801,0,0.94,0.41 +257,100,100,,1,1,[1],0.2,0.6999999999999797,0,0.95,0.285 +258,100,100,,1,1,[1],0.2,0.7999999999999794,0,0.95,0.335 +259,100,100,,1,1,[1],0.2,0.899999999999979,0,0.98,0.24 +260,100,100,,1,1,[1],0.2,0.9999999999999787,0,0.93,0.215 +261,100,100,,1,1,[1],0.2,1.0999999999999783,0,0.97,0.205 +262,100,100,,1,1,[1],0.2,1.199999999999978,0,0.97,0.155 +263,100,100,,1,1,[1],0.2,1.2999999999999776,0,0.94,0.23 +264,100,100,,1,1,[1],0.2,1.3999999999999773,0,0.95,0.175 +265,100,100,,1,1,[1],0.2,1.499999999999977,0,0.94,0.11 +266,100,100,,1,1,[1],0.2,1.5999999999999766,0,0.95,0.145 +267,100,100,,1,1,[1],0.2,1.6999999999999762,0,0.97,0.115 +268,100,100,,1,1,[1],0.2,1.7999999999999758,0,0.97,0.125 +269,100,100,,1,1,[1],0.2,1.8999999999999755,0,0.98,0.13 +270,100,100,,1,1,[1],0.2,1.9999999999999751,0,0.95,0.085 +271,100,100,,1,1,[1],0.2,2.0999999999999748,0,1.0,0.05 +272,100,100,,1,1,[1],0.2,2.1999999999999744,0,1.0,0.07 +273,100,100,,1,1,[1],0.2,2.299999999999974,0,0.98,0.06 +274,100,100,,1,1,[1],0.2,2.3999999999999737,0,0.99,0.035 +275,100,100,,1,1,[1],0.2,2.4999999999999734,0,0.98,0.03 +276,100,100,,1,1,[1],0.2,2.599999999999973,0,0.99,0.005 +277,100,100,,1,1,[1],0.2,2.6999999999999726,0,0.97,0.035 +278,100,100,,1,1,[1],0.2,2.7999999999999723,0,0.97,0.025 +279,100,100,,1,1,[1],0.2,2.899999999999972,0,0.99,0.035 +280,100,100,,1,1,[1],0.2,2.9999999999999716,0,1.0,0.0 +281,100,100,,1,1,[1],0.2,3.0999999999999712,0,0.99,0.015 +282,100,100,,1,1,[1],0.2,3.199999999999971,0,1.0,0.0 +283,100,100,,1,1,[1],0.2,3.2999999999999705,0,0.99,0.005 +284,100,100,,1,1,[1],0.2,3.39999999999997,0,0.99,0.005 +285,100,100,,1,1,[1],0.2,3.49999999999997,0,1.0,0.0 +286,100,100,,1,1,[1],0.2,3.5999999999999694,0,1.0,0.01 +287,100,100,,1,1,[1],0.2,3.699999999999969,0,0.99,0.005 +288,100,100,,1,1,[1],0.2,3.7999999999999687,0,1.0,0.01 +289,100,100,,1,1,[1],0.2,3.8999999999999684,0,1.0,0.0 +290,100,100,,1,1,[1],0.2,3.999999999999968,0,1.0,0.0 +291,100,100,,1,1,[1],0.2,4.099999999999968,0,1.0,0.0 +292,100,100,,1,1,[1],0.2,4.199999999999967,0,1.0,0.0 +293,100,100,,1,1,[1],0.2,4.299999999999967,0,1.0,0.0 +294,100,100,,1,1,[1],0.2,4.399999999999967,0,1.0,0.0 +295,100,100,,1,1,[1],0.2,4.499999999999966,0,1.0,0.0 +296,100,100,,1,1,[1],0.2,4.599999999999966,0,1.0,0.0 +297,100,100,,1,1,[1],0.2,4.6999999999999655,0,1.0,0.0 +298,100,100,,1,1,[1],0.2,4.799999999999965,0,1.0,0.0 +299,100,100,,1,1,[1],0.2,4.899999999999965,0,1.0,0.0 +300,100,100,,1,1,[1],0.30000000000000004,-5.0,0,1.0,1.0 +301,100,100,,1,1,[1],0.30000000000000004,-4.9,0,1.0,1.0 +302,100,100,,1,1,[1],0.30000000000000004,-4.800000000000001,0,1.0,1.0 +303,100,100,,1,1,[1],0.30000000000000004,-4.700000000000001,0,1.0,1.0 +304,100,100,,1,1,[1],0.30000000000000004,-4.600000000000001,0,1.0,0.99 +305,100,100,,1,1,[1],0.30000000000000004,-4.500000000000002,0,1.0,1.0 +306,100,100,,1,1,[1],0.30000000000000004,-4.400000000000002,0,1.0,1.0 +307,100,100,,1,1,[1],0.30000000000000004,-4.3000000000000025,0,1.0,0.99 +308,100,100,,1,1,[1],0.30000000000000004,-4.200000000000003,0,1.0,1.0 +309,100,100,,1,1,[1],0.30000000000000004,-4.100000000000003,0,1.0,1.0 +310,100,100,,1,1,[1],0.30000000000000004,-4.0000000000000036,0,0.99,0.995 +311,100,100,,1,1,[1],0.30000000000000004,-3.900000000000004,0,0.98,0.99 +312,100,100,,1,1,[1],0.30000000000000004,-3.8000000000000043,0,1.0,1.0 +313,100,100,,1,1,[1],0.30000000000000004,-3.7000000000000046,0,1.0,0.99 +314,100,100,,1,1,[1],0.30000000000000004,-3.600000000000005,0,1.0,0.99 +315,100,100,,1,1,[1],0.30000000000000004,-3.5000000000000053,0,0.99,0.995 +316,100,100,,1,1,[1],0.30000000000000004,-3.4000000000000057,0,1.0,1.0 +317,100,100,,1,1,[1],0.30000000000000004,-3.300000000000006,0,1.0,1.0 +318,100,100,,1,1,[1],0.30000000000000004,-3.2000000000000064,0,0.99,0.975 +319,100,100,,1,1,[1],0.30000000000000004,-3.1000000000000068,0,1.0,0.99 +320,100,100,,1,1,[1],0.30000000000000004,-3.000000000000007,0,0.99,0.985 +321,100,100,,1,1,[1],0.30000000000000004,-2.9000000000000075,0,1.0,0.97 +322,100,100,,1,1,[1],0.30000000000000004,-2.800000000000008,0,0.99,0.965 +323,100,100,,1,1,[1],0.30000000000000004,-2.700000000000008,0,0.99,0.965 +324,100,100,,1,1,[1],0.30000000000000004,-2.6000000000000085,0,0.99,0.975 +325,100,100,,1,1,[1],0.30000000000000004,-2.500000000000009,0,0.98,0.97 +326,100,100,,1,1,[1],0.30000000000000004,-2.4000000000000092,0,0.96,0.97 +327,100,100,,1,1,[1],0.30000000000000004,-2.3000000000000096,0,1.0,0.96 +328,100,100,,1,1,[1],0.30000000000000004,-2.20000000000001,0,0.99,0.935 +329,100,100,,1,1,[1],0.30000000000000004,-2.1000000000000103,0,0.99,0.965 +330,100,100,,1,1,[1],0.30000000000000004,-2.0000000000000107,0,0.96,0.87 +331,100,100,,1,1,[1],0.30000000000000004,-1.900000000000011,0,0.91,0.875 +332,100,100,,1,1,[1],0.30000000000000004,-1.8000000000000114,0,0.95,0.835 +333,100,100,,1,1,[1],0.30000000000000004,-1.7000000000000117,0,0.99,0.895 +334,100,100,,1,1,[1],0.30000000000000004,-1.600000000000012,0,0.96,0.93 +335,100,100,,1,1,[1],0.30000000000000004,-1.5000000000000124,0,0.96,0.82 +336,100,100,,1,1,[1],0.30000000000000004,-1.4000000000000128,0,0.93,0.785 +337,100,100,,1,1,[1],0.30000000000000004,-1.3000000000000131,0,0.96,0.84 +338,100,100,,1,1,[1],0.30000000000000004,-1.2000000000000135,0,0.94,0.79 +339,100,100,,1,1,[1],0.30000000000000004,-1.1000000000000139,0,0.9,0.81 +340,100,100,,1,1,[1],0.30000000000000004,-1.0000000000000142,0,0.89,0.775 +341,100,100,,1,1,[1],0.30000000000000004,-0.9000000000000146,0,0.95,0.745 +342,100,100,,1,1,[1],0.30000000000000004,-0.8000000000000149,0,0.94,0.73 +343,100,100,,1,1,[1],0.30000000000000004,-0.7000000000000153,0,0.91,0.585 +344,100,100,,1,1,[1],0.30000000000000004,-0.6000000000000156,0,0.92,0.68 +345,100,100,,1,1,[1],0.30000000000000004,-0.500000000000016,0,0.92,0.7 +346,100,100,,1,1,[1],0.30000000000000004,-0.40000000000001634,0,0.9,0.6 +347,100,100,,1,1,[1],0.30000000000000004,-0.3000000000000167,0,0.95,0.675 +348,100,100,,1,1,[1],0.30000000000000004,-0.20000000000001705,0,0.91,0.595 +349,100,100,,1,1,[1],0.30000000000000004,-0.10000000000001741,0,0.93,0.475 +350,100,100,,1,1,[1],0.30000000000000004,-1.7763568394002505e-14,0,0.94,0.54 +351,100,100,,1,1,[1],0.30000000000000004,0.09999999999998188,0,0.88,0.43 +352,100,100,,1,1,[1],0.30000000000000004,0.19999999999998153,0,0.93,0.485 +353,100,100,,1,1,[1],0.30000000000000004,0.29999999999998117,0,0.91,0.365 +354,100,100,,1,1,[1],0.30000000000000004,0.3999999999999808,0,0.9,0.41 +355,100,100,,1,1,[1],0.30000000000000004,0.49999999999998046,0,0.95,0.415 +356,100,100,,1,1,[1],0.30000000000000004,0.5999999999999801,0,0.93,0.345 +357,100,100,,1,1,[1],0.30000000000000004,0.6999999999999797,0,0.91,0.275 +358,100,100,,1,1,[1],0.30000000000000004,0.7999999999999794,0,0.94,0.33 +359,100,100,,1,1,[1],0.30000000000000004,0.899999999999979,0,0.87,0.265 +360,100,100,,1,1,[1],0.30000000000000004,0.9999999999999787,0,0.94,0.31 +361,100,100,,1,1,[1],0.30000000000000004,1.0999999999999783,0,0.84,0.27 +362,100,100,,1,1,[1],0.30000000000000004,1.199999999999978,0,0.99,0.195 +363,100,100,,1,1,[1],0.30000000000000004,1.2999999999999776,0,0.94,0.22 +364,100,100,,1,1,[1],0.30000000000000004,1.3999999999999773,0,0.92,0.14 +365,100,100,,1,1,[1],0.30000000000000004,1.499999999999977,0,0.97,0.155 +366,100,100,,1,1,[1],0.30000000000000004,1.5999999999999766,0,0.97,0.085 +367,100,100,,1,1,[1],0.30000000000000004,1.6999999999999762,0,0.96,0.11 +368,100,100,,1,1,[1],0.30000000000000004,1.7999999999999758,0,0.95,0.125 +369,100,100,,1,1,[1],0.30000000000000004,1.8999999999999755,0,1.0,0.06 +370,100,100,,1,1,[1],0.30000000000000004,1.9999999999999751,0,0.94,0.12 +371,100,100,,1,1,[1],0.30000000000000004,2.0999999999999748,0,0.96,0.08 +372,100,100,,1,1,[1],0.30000000000000004,2.1999999999999744,0,0.99,0.035 +373,100,100,,1,1,[1],0.30000000000000004,2.299999999999974,0,0.96,0.06 +374,100,100,,1,1,[1],0.30000000000000004,2.3999999999999737,0,0.98,0.02 +375,100,100,,1,1,[1],0.30000000000000004,2.4999999999999734,0,0.96,0.08 +376,100,100,,1,1,[1],0.30000000000000004,2.599999999999973,0,0.96,0.05 +377,100,100,,1,1,[1],0.30000000000000004,2.6999999999999726,0,0.99,0.025 +378,100,100,,1,1,[1],0.30000000000000004,2.7999999999999723,0,0.99,0.015 +379,100,100,,1,1,[1],0.30000000000000004,2.899999999999972,0,0.97,0.065 +380,100,100,,1,1,[1],0.30000000000000004,2.9999999999999716,0,1.0,0.0 +381,100,100,,1,1,[1],0.30000000000000004,3.0999999999999712,0,1.0,0.0 +382,100,100,,1,1,[1],0.30000000000000004,3.199999999999971,0,1.0,0.01 +383,100,100,,1,1,[1],0.30000000000000004,3.2999999999999705,0,1.0,0.01 +384,100,100,,1,1,[1],0.30000000000000004,3.39999999999997,0,0.99,0.005 +385,100,100,,1,1,[1],0.30000000000000004,3.49999999999997,0,1.0,0.0 +386,100,100,,1,1,[1],0.30000000000000004,3.5999999999999694,0,0.98,0.03 +387,100,100,,1,1,[1],0.30000000000000004,3.699999999999969,0,1.0,0.0 +388,100,100,,1,1,[1],0.30000000000000004,3.7999999999999687,0,1.0,0.0 +389,100,100,,1,1,[1],0.30000000000000004,3.8999999999999684,0,1.0,0.0 +390,100,100,,1,1,[1],0.30000000000000004,3.999999999999968,0,1.0,0.0 +391,100,100,,1,1,[1],0.30000000000000004,4.099999999999968,0,1.0,0.01 +392,100,100,,1,1,[1],0.30000000000000004,4.199999999999967,0,1.0,0.0 +393,100,100,,1,1,[1],0.30000000000000004,4.299999999999967,0,1.0,0.0 +394,100,100,,1,1,[1],0.30000000000000004,4.399999999999967,0,1.0,0.0 +395,100,100,,1,1,[1],0.30000000000000004,4.499999999999966,0,1.0,0.0 +396,100,100,,1,1,[1],0.30000000000000004,4.599999999999966,0,1.0,0.0 +397,100,100,,1,1,[1],0.30000000000000004,4.6999999999999655,0,1.0,0.0 +398,100,100,,1,1,[1],0.30000000000000004,4.799999999999965,0,0.99,0.005 +399,100,100,,1,1,[1],0.30000000000000004,4.899999999999965,0,1.0,0.0 +400,100,100,,1,1,[1],0.4,-5.0,0,1.0,1.0 +401,100,100,,1,1,[1],0.4,-4.9,0,0.99,0.995 +402,100,100,,1,1,[1],0.4,-4.800000000000001,0,1.0,1.0 +403,100,100,,1,1,[1],0.4,-4.700000000000001,0,1.0,1.0 +404,100,100,,1,1,[1],0.4,-4.600000000000001,0,1.0,1.0 +405,100,100,,1,1,[1],0.4,-4.500000000000002,0,1.0,1.0 +406,100,100,,1,1,[1],0.4,-4.400000000000002,0,1.0,1.0 +407,100,100,,1,1,[1],0.4,-4.3000000000000025,0,1.0,1.0 +408,100,100,,1,1,[1],0.4,-4.200000000000003,0,1.0,1.0 +409,100,100,,1,1,[1],0.4,-4.100000000000003,0,1.0,1.0 +410,100,100,,1,1,[1],0.4,-4.0000000000000036,0,1.0,1.0 +411,100,100,,1,1,[1],0.4,-3.900000000000004,0,1.0,0.99 +412,100,100,,1,1,[1],0.4,-3.8000000000000043,0,0.99,0.995 +413,100,100,,1,1,[1],0.4,-3.7000000000000046,0,1.0,1.0 +414,100,100,,1,1,[1],0.4,-3.600000000000005,0,1.0,1.0 +415,100,100,,1,1,[1],0.4,-3.5000000000000053,0,0.99,0.995 +416,100,100,,1,1,[1],0.4,-3.4000000000000057,0,1.0,1.0 +417,100,100,,1,1,[1],0.4,-3.300000000000006,0,1.0,0.99 +418,100,100,,1,1,[1],0.4,-3.2000000000000064,0,0.99,0.985 +419,100,100,,1,1,[1],0.4,-3.1000000000000068,0,0.99,0.995 +420,100,100,,1,1,[1],0.4,-3.000000000000007,0,1.0,1.0 +421,100,100,,1,1,[1],0.4,-2.9000000000000075,0,0.97,0.965 +422,100,100,,1,1,[1],0.4,-2.800000000000008,0,0.99,0.975 +423,100,100,,1,1,[1],0.4,-2.700000000000008,0,0.99,0.985 +424,100,100,,1,1,[1],0.4,-2.6000000000000085,0,0.99,0.985 +425,100,100,,1,1,[1],0.4,-2.500000000000009,0,0.96,0.96 +426,100,100,,1,1,[1],0.4,-2.4000000000000092,0,0.98,0.97 +427,100,100,,1,1,[1],0.4,-2.3000000000000096,0,0.97,0.955 +428,100,100,,1,1,[1],0.4,-2.20000000000001,0,0.95,0.935 +429,100,100,,1,1,[1],0.4,-2.1000000000000103,0,0.98,0.95 +430,100,100,,1,1,[1],0.4,-2.0000000000000107,0,0.95,0.905 +431,100,100,,1,1,[1],0.4,-1.900000000000011,0,0.94,0.92 +432,100,100,,1,1,[1],0.4,-1.8000000000000114,0,0.97,0.925 +433,100,100,,1,1,[1],0.4,-1.7000000000000117,0,0.91,0.865 +434,100,100,,1,1,[1],0.4,-1.600000000000012,0,0.92,0.81 +435,100,100,,1,1,[1],0.4,-1.5000000000000124,0,0.94,0.85 +436,100,100,,1,1,[1],0.4,-1.4000000000000128,0,0.96,0.82 +437,100,100,,1,1,[1],0.4,-1.3000000000000131,0,0.94,0.87 +438,100,100,,1,1,[1],0.4,-1.2000000000000135,0,0.92,0.84 +439,100,100,,1,1,[1],0.4,-1.1000000000000139,0,0.86,0.76 +440,100,100,,1,1,[1],0.4,-1.0000000000000142,0,0.87,0.745 +441,100,100,,1,1,[1],0.4,-0.9000000000000146,0,0.88,0.73 +442,100,100,,1,1,[1],0.4,-0.8000000000000149,0,0.94,0.68 +443,100,100,,1,1,[1],0.4,-0.7000000000000153,0,0.85,0.715 +444,100,100,,1,1,[1],0.4,-0.6000000000000156,0,0.9,0.7 +445,100,100,,1,1,[1],0.4,-0.500000000000016,0,0.93,0.675 +446,100,100,,1,1,[1],0.4,-0.40000000000001634,0,0.93,0.675 +447,100,100,,1,1,[1],0.4,-0.3000000000000167,0,0.84,0.63 +448,100,100,,1,1,[1],0.4,-0.20000000000001705,0,0.88,0.63 +449,100,100,,1,1,[1],0.4,-0.10000000000001741,0,0.89,0.515 +450,100,100,,1,1,[1],0.4,-1.7763568394002505e-14,0,0.8,0.51 +451,100,100,,1,1,[1],0.4,0.09999999999998188,0,0.83,0.505 +452,100,100,,1,1,[1],0.4,0.19999999999998153,0,0.94,0.37 +453,100,100,,1,1,[1],0.4,0.29999999999998117,0,0.88,0.45 +454,100,100,,1,1,[1],0.4,0.3999999999999808,0,0.87,0.355 +455,100,100,,1,1,[1],0.4,0.49999999999998046,0,0.88,0.4 +456,100,100,,1,1,[1],0.4,0.5999999999999801,0,0.89,0.365 +457,100,100,,1,1,[1],0.4,0.6999999999999797,0,0.9,0.29 +458,100,100,,1,1,[1],0.4,0.7999999999999794,0,0.89,0.255 +459,100,100,,1,1,[1],0.4,0.899999999999979,0,0.87,0.335 +460,100,100,,1,1,[1],0.4,0.9999999999999787,0,0.9,0.29 +461,100,100,,1,1,[1],0.4,1.0999999999999783,0,0.88,0.25 +462,100,100,,1,1,[1],0.4,1.199999999999978,0,0.91,0.195 +463,100,100,,1,1,[1],0.4,1.2999999999999776,0,0.92,0.21 +464,100,100,,1,1,[1],0.4,1.3999999999999773,0,0.92,0.24 +465,100,100,,1,1,[1],0.4,1.499999999999977,0,0.93,0.135 +466,100,100,,1,1,[1],0.4,1.5999999999999766,0,0.9,0.14 +467,100,100,,1,1,[1],0.4,1.6999999999999762,0,0.96,0.08 +468,100,100,,1,1,[1],0.4,1.7999999999999758,0,0.95,0.115 +469,100,100,,1,1,[1],0.4,1.8999999999999755,0,0.96,0.08 +470,100,100,,1,1,[1],0.4,1.9999999999999751,0,0.99,0.055 +471,100,100,,1,1,[1],0.4,2.0999999999999748,0,0.93,0.035 +472,100,100,,1,1,[1],0.4,2.1999999999999744,0,0.98,0.07 +473,100,100,,1,1,[1],0.4,2.299999999999974,0,0.94,0.05 +474,100,100,,1,1,[1],0.4,2.3999999999999737,0,0.97,0.065 +475,100,100,,1,1,[1],0.4,2.4999999999999734,0,0.98,0.04 +476,100,100,,1,1,[1],0.4,2.599999999999973,0,0.97,0.025 +477,100,100,,1,1,[1],0.4,2.6999999999999726,0,0.99,0.015 +478,100,100,,1,1,[1],0.4,2.7999999999999723,0,0.99,0.025 +479,100,100,,1,1,[1],0.4,2.899999999999972,0,0.98,0.03 +480,100,100,,1,1,[1],0.4,2.9999999999999716,0,0.96,0.05 +481,100,100,,1,1,[1],0.4,3.0999999999999712,0,0.97,0.015 +482,100,100,,1,1,[1],0.4,3.199999999999971,0,0.99,0.015 +483,100,100,,1,1,[1],0.4,3.2999999999999705,0,1.0,0.0 +484,100,100,,1,1,[1],0.4,3.39999999999997,0,0.98,0.02 +485,100,100,,1,1,[1],0.4,3.49999999999997,0,0.99,0.005 +486,100,100,,1,1,[1],0.4,3.5999999999999694,0,0.97,0.025 +487,100,100,,1,1,[1],0.4,3.699999999999969,0,1.0,0.0 +488,100,100,,1,1,[1],0.4,3.7999999999999687,0,1.0,0.0 +489,100,100,,1,1,[1],0.4,3.8999999999999684,0,1.0,0.0 +490,100,100,,1,1,[1],0.4,3.999999999999968,0,1.0,0.0 +491,100,100,,1,1,[1],0.4,4.099999999999968,0,1.0,0.0 +492,100,100,,1,1,[1],0.4,4.199999999999967,0,0.99,0.005 +493,100,100,,1,1,[1],0.4,4.299999999999967,0,1.0,0.0 +494,100,100,,1,1,[1],0.4,4.399999999999967,0,0.99,0.005 +495,100,100,,1,1,[1],0.4,4.499999999999966,0,1.0,0.0 +496,100,100,,1,1,[1],0.4,4.599999999999966,0,1.0,0.0 +497,100,100,,1,1,[1],0.4,4.6999999999999655,0,1.0,0.0 +498,100,100,,1,1,[1],0.4,4.799999999999965,0,1.0,0.0 +499,100,100,,1,1,[1],0.4,4.899999999999965,0,1.0,0.01 +500,100,100,,1,1,[1],0.5,-5.0,0,1.0,1.0 +501,100,100,,1,1,[1],0.5,-4.9,0,0.99,0.995 +502,100,100,,1,1,[1],0.5,-4.800000000000001,0,1.0,1.0 +503,100,100,,1,1,[1],0.5,-4.700000000000001,0,1.0,1.0 +504,100,100,,1,1,[1],0.5,-4.600000000000001,0,1.0,1.0 +505,100,100,,1,1,[1],0.5,-4.500000000000002,0,0.99,0.995 +506,100,100,,1,1,[1],0.5,-4.400000000000002,0,1.0,1.0 +507,100,100,,1,1,[1],0.5,-4.3000000000000025,0,1.0,1.0 +508,100,100,,1,1,[1],0.5,-4.200000000000003,0,1.0,1.0 +509,100,100,,1,1,[1],0.5,-4.100000000000003,0,1.0,0.99 +510,100,100,,1,1,[1],0.5,-4.0000000000000036,0,1.0,1.0 +511,100,100,,1,1,[1],0.5,-3.900000000000004,0,1.0,1.0 +512,100,100,,1,1,[1],0.5,-3.8000000000000043,0,0.99,0.995 +513,100,100,,1,1,[1],0.5,-3.7000000000000046,0,0.96,0.98 +514,100,100,,1,1,[1],0.5,-3.600000000000005,0,1.0,1.0 +515,100,100,,1,1,[1],0.5,-3.5000000000000053,0,0.99,0.995 +516,100,100,,1,1,[1],0.5,-3.4000000000000057,0,0.99,0.995 +517,100,100,,1,1,[1],0.5,-3.300000000000006,0,0.98,0.99 +518,100,100,,1,1,[1],0.5,-3.2000000000000064,0,0.99,0.985 +519,100,100,,1,1,[1],0.5,-3.1000000000000068,0,0.99,0.985 +520,100,100,,1,1,[1],0.5,-3.000000000000007,0,0.96,0.95 +521,100,100,,1,1,[1],0.5,-2.9000000000000075,0,0.96,0.98 +522,100,100,,1,1,[1],0.5,-2.800000000000008,0,0.99,0.985 +523,100,100,,1,1,[1],0.5,-2.700000000000008,0,0.97,0.935 +524,100,100,,1,1,[1],0.5,-2.6000000000000085,0,0.97,0.945 +525,100,100,,1,1,[1],0.5,-2.500000000000009,0,0.98,0.93 +526,100,100,,1,1,[1],0.5,-2.4000000000000092,0,0.94,0.93 +527,100,100,,1,1,[1],0.5,-2.3000000000000096,0,0.95,0.955 +528,100,100,,1,1,[1],0.5,-2.20000000000001,0,0.99,0.935 +529,100,100,,1,1,[1],0.5,-2.1000000000000103,0,0.94,0.93 +530,100,100,,1,1,[1],0.5,-2.0000000000000107,0,0.97,0.935 +531,100,100,,1,1,[1],0.5,-1.900000000000011,0,0.92,0.9 +532,100,100,,1,1,[1],0.5,-1.8000000000000114,0,0.92,0.86 +533,100,100,,1,1,[1],0.5,-1.7000000000000117,0,0.93,0.895 +534,100,100,,1,1,[1],0.5,-1.600000000000012,0,0.94,0.91 +535,100,100,,1,1,[1],0.5,-1.5000000000000124,0,0.88,0.86 +536,100,100,,1,1,[1],0.5,-1.4000000000000128,0,0.94,0.81 +537,100,100,,1,1,[1],0.5,-1.3000000000000131,0,0.88,0.8 +538,100,100,,1,1,[1],0.5,-1.2000000000000135,0,0.83,0.755 +539,100,100,,1,1,[1],0.5,-1.1000000000000139,0,0.88,0.84 +540,100,100,,1,1,[1],0.5,-1.0000000000000142,0,0.86,0.73 +541,100,100,,1,1,[1],0.5,-0.9000000000000146,0,0.88,0.67 +542,100,100,,1,1,[1],0.5,-0.8000000000000149,0,0.91,0.715 +543,100,100,,1,1,[1],0.5,-0.7000000000000153,0,0.81,0.705 +544,100,100,,1,1,[1],0.5,-0.6000000000000156,0,0.88,0.62 +545,100,100,,1,1,[1],0.5,-0.500000000000016,0,0.9,0.57 +546,100,100,,1,1,[1],0.5,-0.40000000000001634,0,0.84,0.64 +547,100,100,,1,1,[1],0.5,-0.3000000000000167,0,0.84,0.6 +548,100,100,,1,1,[1],0.5,-0.20000000000001705,0,0.88,0.59 +549,100,100,,1,1,[1],0.5,-0.10000000000001741,0,0.83,0.475 +550,100,100,,1,1,[1],0.5,-1.7763568394002505e-14,0,0.82,0.49 +551,100,100,,1,1,[1],0.5,0.09999999999998188,0,0.83,0.545 +552,100,100,,1,1,[1],0.5,0.19999999999998153,0,0.87,0.525 +553,100,100,,1,1,[1],0.5,0.29999999999998117,0,0.87,0.445 +554,100,100,,1,1,[1],0.5,0.3999999999999808,0,0.89,0.395 +555,100,100,,1,1,[1],0.5,0.49999999999998046,0,0.93,0.405 +556,100,100,,1,1,[1],0.5,0.5999999999999801,0,0.88,0.32 +557,100,100,,1,1,[1],0.5,0.6999999999999797,0,0.83,0.355 +558,100,100,,1,1,[1],0.5,0.7999999999999794,0,0.84,0.31 +559,100,100,,1,1,[1],0.5,0.899999999999979,0,0.86,0.27 +560,100,100,,1,1,[1],0.5,0.9999999999999787,0,0.88,0.21 +561,100,100,,1,1,[1],0.5,1.0999999999999783,0,0.92,0.22 +562,100,100,,1,1,[1],0.5,1.199999999999978,0,0.9,0.18 +563,100,100,,1,1,[1],0.5,1.2999999999999776,0,0.91,0.225 +564,100,100,,1,1,[1],0.5,1.3999999999999773,0,0.88,0.15 +565,100,100,,1,1,[1],0.5,1.499999999999977,0,0.91,0.245 +566,100,100,,1,1,[1],0.5,1.5999999999999766,0,0.95,0.145 +567,100,100,,1,1,[1],0.5,1.6999999999999762,0,0.92,0.15 +568,100,100,,1,1,[1],0.5,1.7999999999999758,0,0.92,0.15 +569,100,100,,1,1,[1],0.5,1.8999999999999755,0,0.97,0.085 +570,100,100,,1,1,[1],0.5,1.9999999999999751,0,0.93,0.125 +571,100,100,,1,1,[1],0.5,2.0999999999999748,0,0.93,0.125 +572,100,100,,1,1,[1],0.5,2.1999999999999744,0,0.97,0.055 +573,100,100,,1,1,[1],0.5,2.299999999999974,0,0.96,0.07 +574,100,100,,1,1,[1],0.5,2.3999999999999737,0,0.97,0.025 +575,100,100,,1,1,[1],0.5,2.4999999999999734,0,0.98,0.06 +576,100,100,,1,1,[1],0.5,2.599999999999973,0,0.97,0.045 +577,100,100,,1,1,[1],0.5,2.6999999999999726,0,0.98,0.02 +578,100,100,,1,1,[1],0.5,2.7999999999999723,0,0.99,0.025 +579,100,100,,1,1,[1],0.5,2.899999999999972,0,0.98,0.02 +580,100,100,,1,1,[1],0.5,2.9999999999999716,0,0.99,0.005 +581,100,100,,1,1,[1],0.5,3.0999999999999712,0,1.0,0.03 +582,100,100,,1,1,[1],0.5,3.199999999999971,0,1.0,0.01 +583,100,100,,1,1,[1],0.5,3.2999999999999705,0,0.98,0.02 +584,100,100,,1,1,[1],0.5,3.39999999999997,0,0.99,0.015 +585,100,100,,1,1,[1],0.5,3.49999999999997,0,1.0,0.0 +586,100,100,,1,1,[1],0.5,3.5999999999999694,0,1.0,0.01 +587,100,100,,1,1,[1],0.5,3.699999999999969,0,1.0,0.0 +588,100,100,,1,1,[1],0.5,3.7999999999999687,0,0.99,0.005 +589,100,100,,1,1,[1],0.5,3.8999999999999684,0,1.0,0.0 +590,100,100,,1,1,[1],0.5,3.999999999999968,0,1.0,0.0 +591,100,100,,1,1,[1],0.5,4.099999999999968,0,0.99,0.005 +592,100,100,,1,1,[1],0.5,4.199999999999967,0,1.0,0.0 +593,100,100,,1,1,[1],0.5,4.299999999999967,0,1.0,0.0 +594,100,100,,1,1,[1],0.5,4.399999999999967,0,1.0,0.0 +595,100,100,,1,1,[1],0.5,4.499999999999966,0,1.0,0.0 +596,100,100,,1,1,[1],0.5,4.599999999999966,0,1.0,0.0 +597,100,100,,1,1,[1],0.5,4.6999999999999655,0,1.0,0.0 +598,100,100,,1,1,[1],0.5,4.799999999999965,0,1.0,0.0 +599,100,100,,1,1,[1],0.5,4.899999999999965,0,1.0,0.0 +600,100,100,,1,1,[1],0.6000000000000001,-5.0,0,1.0,1.0 +601,100,100,,1,1,[1],0.6000000000000001,-4.9,0,1.0,1.0 +602,100,100,,1,1,[1],0.6000000000000001,-4.800000000000001,0,1.0,1.0 +603,100,100,,1,1,[1],0.6000000000000001,-4.700000000000001,0,1.0,1.0 +604,100,100,,1,1,[1],0.6000000000000001,-4.600000000000001,0,1.0,0.99 +605,100,100,,1,1,[1],0.6000000000000001,-4.500000000000002,0,1.0,1.0 +606,100,100,,1,1,[1],0.6000000000000001,-4.400000000000002,0,1.0,1.0 +607,100,100,,1,1,[1],0.6000000000000001,-4.3000000000000025,0,1.0,0.99 +608,100,100,,1,1,[1],0.6000000000000001,-4.200000000000003,0,0.99,0.995 +609,100,100,,1,1,[1],0.6000000000000001,-4.100000000000003,0,1.0,1.0 +610,100,100,,1,1,[1],0.6000000000000001,-4.0000000000000036,0,0.98,0.99 +611,100,100,,1,1,[1],0.6000000000000001,-3.900000000000004,0,0.99,0.995 +612,100,100,,1,1,[1],0.6000000000000001,-3.8000000000000043,0,1.0,1.0 +613,100,100,,1,1,[1],0.6000000000000001,-3.7000000000000046,0,1.0,1.0 +614,100,100,,1,1,[1],0.6000000000000001,-3.600000000000005,0,0.99,0.985 +615,100,100,,1,1,[1],0.6000000000000001,-3.5000000000000053,0,0.98,0.99 +616,100,100,,1,1,[1],0.6000000000000001,-3.4000000000000057,0,1.0,1.0 +617,100,100,,1,1,[1],0.6000000000000001,-3.300000000000006,0,0.97,0.985 +618,100,100,,1,1,[1],0.6000000000000001,-3.2000000000000064,0,0.98,0.98 +619,100,100,,1,1,[1],0.6000000000000001,-3.1000000000000068,0,0.97,0.955 +620,100,100,,1,1,[1],0.6000000000000001,-3.000000000000007,0,1.0,0.98 +621,100,100,,1,1,[1],0.6000000000000001,-2.9000000000000075,0,0.99,0.985 +622,100,100,,1,1,[1],0.6000000000000001,-2.800000000000008,0,0.99,0.985 +623,100,100,,1,1,[1],0.6000000000000001,-2.700000000000008,0,0.98,0.96 +624,100,100,,1,1,[1],0.6000000000000001,-2.6000000000000085,0,0.96,0.94 +625,100,100,,1,1,[1],0.6000000000000001,-2.500000000000009,0,0.97,0.975 +626,100,100,,1,1,[1],0.6000000000000001,-2.4000000000000092,0,0.96,0.97 +627,100,100,,1,1,[1],0.6000000000000001,-2.3000000000000096,0,0.94,0.95 +628,100,100,,1,1,[1],0.6000000000000001,-2.20000000000001,0,0.92,0.91 +629,100,100,,1,1,[1],0.6000000000000001,-2.1000000000000103,0,0.95,0.905 +630,100,100,,1,1,[1],0.6000000000000001,-2.0000000000000107,0,0.95,0.945 +631,100,100,,1,1,[1],0.6000000000000001,-1.900000000000011,0,0.92,0.9 +632,100,100,,1,1,[1],0.6000000000000001,-1.8000000000000114,0,0.93,0.895 +633,100,100,,1,1,[1],0.6000000000000001,-1.7000000000000117,0,0.89,0.855 +634,100,100,,1,1,[1],0.6000000000000001,-1.600000000000012,0,0.87,0.815 +635,100,100,,1,1,[1],0.6000000000000001,-1.5000000000000124,0,0.89,0.845 +636,100,100,,1,1,[1],0.6000000000000001,-1.4000000000000128,0,0.83,0.815 +637,100,100,,1,1,[1],0.6000000000000001,-1.3000000000000131,0,0.89,0.805 +638,100,100,,1,1,[1],0.6000000000000001,-1.2000000000000135,0,0.85,0.805 +639,100,100,,1,1,[1],0.6000000000000001,-1.1000000000000139,0,0.88,0.78 +640,100,100,,1,1,[1],0.6000000000000001,-1.0000000000000142,0,0.87,0.705 +641,100,100,,1,1,[1],0.6000000000000001,-0.9000000000000146,0,0.84,0.7 +642,100,100,,1,1,[1],0.6000000000000001,-0.8000000000000149,0,0.8,0.73 +643,100,100,,1,1,[1],0.6000000000000001,-0.7000000000000153,0,0.87,0.565 +644,100,100,,1,1,[1],0.6000000000000001,-0.6000000000000156,0,0.84,0.69 +645,100,100,,1,1,[1],0.6000000000000001,-0.500000000000016,0,0.85,0.625 +646,100,100,,1,1,[1],0.6000000000000001,-0.40000000000001634,0,0.81,0.595 +647,100,100,,1,1,[1],0.6000000000000001,-0.3000000000000167,0,0.81,0.575 +648,100,100,,1,1,[1],0.6000000000000001,-0.20000000000001705,0,0.85,0.505 +649,100,100,,1,1,[1],0.6000000000000001,-0.10000000000001741,0,0.82,0.45 +650,100,100,,1,1,[1],0.6000000000000001,-1.7763568394002505e-14,0,0.83,0.385 +651,100,100,,1,1,[1],0.6000000000000001,0.09999999999998188,0,0.85,0.485 +652,100,100,,1,1,[1],0.6000000000000001,0.19999999999998153,0,0.75,0.485 +653,100,100,,1,1,[1],0.6000000000000001,0.29999999999998117,0,0.87,0.455 +654,100,100,,1,1,[1],0.6000000000000001,0.3999999999999808,0,0.86,0.41 +655,100,100,,1,1,[1],0.6000000000000001,0.49999999999998046,0,0.82,0.41 +656,100,100,,1,1,[1],0.6000000000000001,0.5999999999999801,0,0.86,0.3 +657,100,100,,1,1,[1],0.6000000000000001,0.6999999999999797,0,0.82,0.29 +658,100,100,,1,1,[1],0.6000000000000001,0.7999999999999794,0,0.82,0.32 +659,100,100,,1,1,[1],0.6000000000000001,0.899999999999979,0,0.82,0.38 +660,100,100,,1,1,[1],0.6000000000000001,0.9999999999999787,0,0.88,0.27 +661,100,100,,1,1,[1],0.6000000000000001,1.0999999999999783,0,0.85,0.245 +662,100,100,,1,1,[1],0.6000000000000001,1.199999999999978,0,0.83,0.185 +663,100,100,,1,1,[1],0.6000000000000001,1.2999999999999776,0,0.88,0.17 +664,100,100,,1,1,[1],0.6000000000000001,1.3999999999999773,0,0.9,0.15 +665,100,100,,1,1,[1],0.6000000000000001,1.499999999999977,0,0.89,0.105 +666,100,100,,1,1,[1],0.6000000000000001,1.5999999999999766,0,0.85,0.175 +667,100,100,,1,1,[1],0.6000000000000001,1.6999999999999762,0,0.89,0.095 +668,100,100,,1,1,[1],0.6000000000000001,1.7999999999999758,0,0.88,0.1 +669,100,100,,1,1,[1],0.6000000000000001,1.8999999999999755,0,0.91,0.095 +670,100,100,,1,1,[1],0.6000000000000001,1.9999999999999751,0,0.91,0.125 +671,100,100,,1,1,[1],0.6000000000000001,2.0999999999999748,0,0.88,0.09 +672,100,100,,1,1,[1],0.6000000000000001,2.1999999999999744,0,0.95,0.045 +673,100,100,,1,1,[1],0.6000000000000001,2.299999999999974,0,0.96,0.07 +674,100,100,,1,1,[1],0.6000000000000001,2.3999999999999737,0,0.94,0.05 +675,100,100,,1,1,[1],0.6000000000000001,2.4999999999999734,0,0.93,0.085 +676,100,100,,1,1,[1],0.6000000000000001,2.599999999999973,0,0.92,0.07 +677,100,100,,1,1,[1],0.6000000000000001,2.6999999999999726,0,0.95,0.025 +678,100,100,,1,1,[1],0.6000000000000001,2.7999999999999723,0,0.93,0.055 +679,100,100,,1,1,[1],0.6000000000000001,2.899999999999972,0,0.99,0.005 +680,100,100,,1,1,[1],0.6000000000000001,2.9999999999999716,0,0.94,0.05 +681,100,100,,1,1,[1],0.6000000000000001,3.0999999999999712,0,1.0,0.01 +682,100,100,,1,1,[1],0.6000000000000001,3.199999999999971,0,1.0,0.01 +683,100,100,,1,1,[1],0.6000000000000001,3.2999999999999705,0,0.98,0.02 +684,100,100,,1,1,[1],0.6000000000000001,3.39999999999997,0,0.99,0.005 +685,100,100,,1,1,[1],0.6000000000000001,3.49999999999997,0,0.99,0.005 +686,100,100,,1,1,[1],0.6000000000000001,3.5999999999999694,0,0.98,0.01 +687,100,100,,1,1,[1],0.6000000000000001,3.699999999999969,0,0.99,0.005 +688,100,100,,1,1,[1],0.6000000000000001,3.7999999999999687,0,0.98,0.01 +689,100,100,,1,1,[1],0.6000000000000001,3.8999999999999684,0,0.98,0.01 +690,100,100,,1,1,[1],0.6000000000000001,3.999999999999968,0,1.0,0.0 +691,100,100,,1,1,[1],0.6000000000000001,4.099999999999968,0,0.99,0.005 +692,100,100,,1,1,[1],0.6000000000000001,4.199999999999967,0,1.0,0.0 +693,100,100,,1,1,[1],0.6000000000000001,4.299999999999967,0,1.0,0.0 +694,100,100,,1,1,[1],0.6000000000000001,4.399999999999967,0,0.98,0.01 +695,100,100,,1,1,[1],0.6000000000000001,4.499999999999966,0,1.0,0.0 +696,100,100,,1,1,[1],0.6000000000000001,4.599999999999966,0,1.0,0.0 +697,100,100,,1,1,[1],0.6000000000000001,4.6999999999999655,0,1.0,0.0 +698,100,100,,1,1,[1],0.6000000000000001,4.799999999999965,0,1.0,0.0 +699,100,100,,1,1,[1],0.6000000000000001,4.899999999999965,0,1.0,0.01 +700,100,100,,1,1,[1],0.7000000000000001,-5.0,0,1.0,1.0 +701,100,100,,1,1,[1],0.7000000000000001,-4.9,0,1.0,0.99 +702,100,100,,1,1,[1],0.7000000000000001,-4.800000000000001,0,1.0,1.0 +703,100,100,,1,1,[1],0.7000000000000001,-4.700000000000001,0,1.0,1.0 +704,100,100,,1,1,[1],0.7000000000000001,-4.600000000000001,0,1.0,1.0 +705,100,100,,1,1,[1],0.7000000000000001,-4.500000000000002,0,0.99,0.995 +706,100,100,,1,1,[1],0.7000000000000001,-4.400000000000002,0,1.0,1.0 +707,100,100,,1,1,[1],0.7000000000000001,-4.3000000000000025,0,0.99,0.995 +708,100,100,,1,1,[1],0.7000000000000001,-4.200000000000003,0,1.0,1.0 +709,100,100,,1,1,[1],0.7000000000000001,-4.100000000000003,0,1.0,1.0 +710,100,100,,1,1,[1],0.7000000000000001,-4.0000000000000036,0,0.99,0.995 +711,100,100,,1,1,[1],0.7000000000000001,-3.900000000000004,0,0.99,0.995 +712,100,100,,1,1,[1],0.7000000000000001,-3.8000000000000043,0,0.99,0.995 +713,100,100,,1,1,[1],0.7000000000000001,-3.7000000000000046,0,1.0,1.0 +714,100,100,,1,1,[1],0.7000000000000001,-3.600000000000005,0,1.0,1.0 +715,100,100,,1,1,[1],0.7000000000000001,-3.5000000000000053,0,0.97,0.975 +716,100,100,,1,1,[1],0.7000000000000001,-3.4000000000000057,0,0.97,0.975 +717,100,100,,1,1,[1],0.7000000000000001,-3.300000000000006,0,0.98,0.99 +718,100,100,,1,1,[1],0.7000000000000001,-3.2000000000000064,0,0.94,0.97 +719,100,100,,1,1,[1],0.7000000000000001,-3.1000000000000068,0,0.99,0.975 +720,100,100,,1,1,[1],0.7000000000000001,-3.000000000000007,0,0.97,0.955 +721,100,100,,1,1,[1],0.7000000000000001,-2.9000000000000075,0,0.98,0.98 +722,100,100,,1,1,[1],0.7000000000000001,-2.800000000000008,0,0.94,0.97 +723,100,100,,1,1,[1],0.7000000000000001,-2.700000000000008,0,0.98,0.97 +724,100,100,,1,1,[1],0.7000000000000001,-2.6000000000000085,0,0.95,0.925 +725,100,100,,1,1,[1],0.7000000000000001,-2.500000000000009,0,0.89,0.945 +726,100,100,,1,1,[1],0.7000000000000001,-2.4000000000000092,0,0.95,0.935 +727,100,100,,1,1,[1],0.7000000000000001,-2.3000000000000096,0,0.89,0.885 +728,100,100,,1,1,[1],0.7000000000000001,-2.20000000000001,0,0.89,0.875 +729,100,100,,1,1,[1],0.7000000000000001,-2.1000000000000103,0,0.91,0.915 +730,100,100,,1,1,[1],0.7000000000000001,-2.0000000000000107,0,0.89,0.875 +731,100,100,,1,1,[1],0.7000000000000001,-1.900000000000011,0,0.91,0.885 +732,100,100,,1,1,[1],0.7000000000000001,-1.8000000000000114,0,0.92,0.88 +733,100,100,,1,1,[1],0.7000000000000001,-1.7000000000000117,0,0.92,0.91 +734,100,100,,1,1,[1],0.7000000000000001,-1.600000000000012,0,0.93,0.855 +735,100,100,,1,1,[1],0.7000000000000001,-1.5000000000000124,0,0.86,0.82 +736,100,100,,1,1,[1],0.7000000000000001,-1.4000000000000128,0,0.85,0.835 +737,100,100,,1,1,[1],0.7000000000000001,-1.3000000000000131,0,0.86,0.8 +738,100,100,,1,1,[1],0.7000000000000001,-1.2000000000000135,0,0.82,0.77 +739,100,100,,1,1,[1],0.7000000000000001,-1.1000000000000139,0,0.76,0.76 +740,100,100,,1,1,[1],0.7000000000000001,-1.0000000000000142,0,0.87,0.775 +741,100,100,,1,1,[1],0.7000000000000001,-0.9000000000000146,0,0.8,0.7 +742,100,100,,1,1,[1],0.7000000000000001,-0.8000000000000149,0,0.79,0.735 +743,100,100,,1,1,[1],0.7000000000000001,-0.7000000000000153,0,0.88,0.67 +744,100,100,,1,1,[1],0.7000000000000001,-0.6000000000000156,0,0.83,0.625 +745,100,100,,1,1,[1],0.7000000000000001,-0.500000000000016,0,0.86,0.67 +746,100,100,,1,1,[1],0.7000000000000001,-0.40000000000001634,0,0.75,0.625 +747,100,100,,1,1,[1],0.7000000000000001,-0.3000000000000167,0,0.76,0.63 +748,100,100,,1,1,[1],0.7000000000000001,-0.20000000000001705,0,0.82,0.54 +749,100,100,,1,1,[1],0.7000000000000001,-0.10000000000001741,0,0.79,0.545 +750,100,100,,1,1,[1],0.7000000000000001,-1.7763568394002505e-14,0,0.79,0.475 +751,100,100,,1,1,[1],0.7000000000000001,0.09999999999998188,0,0.82,0.55 +752,100,100,,1,1,[1],0.7000000000000001,0.19999999999998153,0,0.85,0.465 +753,100,100,,1,1,[1],0.7000000000000001,0.29999999999998117,0,0.81,0.395 +754,100,100,,1,1,[1],0.7000000000000001,0.3999999999999808,0,0.78,0.49 +755,100,100,,1,1,[1],0.7000000000000001,0.49999999999998046,0,0.83,0.415 +756,100,100,,1,1,[1],0.7000000000000001,0.5999999999999801,0,0.82,0.29 +757,100,100,,1,1,[1],0.7000000000000001,0.6999999999999797,0,0.87,0.365 +758,100,100,,1,1,[1],0.7000000000000001,0.7999999999999794,0,0.86,0.26 +759,100,100,,1,1,[1],0.7000000000000001,0.899999999999979,0,0.82,0.31 +760,100,100,,1,1,[1],0.7000000000000001,0.9999999999999787,0,0.77,0.305 +761,100,100,,1,1,[1],0.7000000000000001,1.0999999999999783,0,0.86,0.25 +762,100,100,,1,1,[1],0.7000000000000001,1.199999999999978,0,0.8,0.24 +763,100,100,,1,1,[1],0.7000000000000001,1.2999999999999776,0,0.85,0.175 +764,100,100,,1,1,[1],0.7000000000000001,1.3999999999999773,0,0.85,0.145 +765,100,100,,1,1,[1],0.7000000000000001,1.499999999999977,0,0.87,0.205 +766,100,100,,1,1,[1],0.7000000000000001,1.5999999999999766,0,0.9,0.08 +767,100,100,,1,1,[1],0.7000000000000001,1.6999999999999762,0,0.93,0.095 +768,100,100,,1,1,[1],0.7000000000000001,1.7999999999999758,0,0.87,0.105 +769,100,100,,1,1,[1],0.7000000000000001,1.8999999999999755,0,0.9,0.13 +770,100,100,,1,1,[1],0.7000000000000001,1.9999999999999751,0,0.9,0.07 +771,100,100,,1,1,[1],0.7000000000000001,2.0999999999999748,0,0.93,0.075 +772,100,100,,1,1,[1],0.7000000000000001,2.1999999999999744,0,0.92,0.08 +773,100,100,,1,1,[1],0.7000000000000001,2.299999999999974,0,0.9,0.12 +774,100,100,,1,1,[1],0.7000000000000001,2.3999999999999737,0,0.93,0.045 +775,100,100,,1,1,[1],0.7000000000000001,2.4999999999999734,0,0.92,0.07 +776,100,100,,1,1,[1],0.7000000000000001,2.599999999999973,0,0.93,0.055 +777,100,100,,1,1,[1],0.7000000000000001,2.6999999999999726,0,0.93,0.055 +778,100,100,,1,1,[1],0.7000000000000001,2.7999999999999723,0,0.98,0.04 +779,100,100,,1,1,[1],0.7000000000000001,2.899999999999972,0,0.97,0.045 +780,100,100,,1,1,[1],0.7000000000000001,2.9999999999999716,0,0.96,0.04 +781,100,100,,1,1,[1],0.7000000000000001,3.0999999999999712,0,0.99,0.025 +782,100,100,,1,1,[1],0.7000000000000001,3.199999999999971,0,0.98,0.02 +783,100,100,,1,1,[1],0.7000000000000001,3.2999999999999705,0,0.97,0.015 +784,100,100,,1,1,[1],0.7000000000000001,3.39999999999997,0,1.0,0.0 +785,100,100,,1,1,[1],0.7000000000000001,3.49999999999997,0,0.99,0.015 +786,100,100,,1,1,[1],0.7000000000000001,3.5999999999999694,0,0.98,0.01 +787,100,100,,1,1,[1],0.7000000000000001,3.699999999999969,0,1.0,0.0 +788,100,100,,1,1,[1],0.7000000000000001,3.7999999999999687,0,0.99,0.015 +789,100,100,,1,1,[1],0.7000000000000001,3.8999999999999684,0,1.0,0.0 +790,100,100,,1,1,[1],0.7000000000000001,3.999999999999968,0,0.98,0.01 +791,100,100,,1,1,[1],0.7000000000000001,4.099999999999968,0,0.99,0.005 +792,100,100,,1,1,[1],0.7000000000000001,4.199999999999967,0,1.0,0.0 +793,100,100,,1,1,[1],0.7000000000000001,4.299999999999967,0,1.0,0.0 +794,100,100,,1,1,[1],0.7000000000000001,4.399999999999967,0,0.99,0.005 +795,100,100,,1,1,[1],0.7000000000000001,4.499999999999966,0,1.0,0.0 +796,100,100,,1,1,[1],0.7000000000000001,4.599999999999966,0,1.0,0.0 +797,100,100,,1,1,[1],0.7000000000000001,4.6999999999999655,0,1.0,0.0 +798,100,100,,1,1,[1],0.7000000000000001,4.799999999999965,0,1.0,0.0 +799,100,100,,1,1,[1],0.7000000000000001,4.899999999999965,0,1.0,0.0 +800,100,100,,1,1,[1],0.8,-5.0,0,0.99,0.995 +801,100,100,,1,1,[1],0.8,-4.9,0,0.99,0.995 +802,100,100,,1,1,[1],0.8,-4.800000000000001,0,1.0,1.0 +803,100,100,,1,1,[1],0.8,-4.700000000000001,0,1.0,1.0 +804,100,100,,1,1,[1],0.8,-4.600000000000001,0,1.0,1.0 +805,100,100,,1,1,[1],0.8,-4.500000000000002,0,0.99,0.995 +806,100,100,,1,1,[1],0.8,-4.400000000000002,0,1.0,1.0 +807,100,100,,1,1,[1],0.8,-4.3000000000000025,0,0.99,0.985 +808,100,100,,1,1,[1],0.8,-4.200000000000003,0,0.99,0.995 +809,100,100,,1,1,[1],0.8,-4.100000000000003,0,0.99,0.995 +810,100,100,,1,1,[1],0.8,-4.0000000000000036,0,0.99,0.995 +811,100,100,,1,1,[1],0.8,-3.900000000000004,0,1.0,1.0 +812,100,100,,1,1,[1],0.8,-3.8000000000000043,0,0.99,0.975 +813,100,100,,1,1,[1],0.8,-3.7000000000000046,0,0.98,0.99 +814,100,100,,1,1,[1],0.8,-3.600000000000005,0,1.0,0.99 +815,100,100,,1,1,[1],0.8,-3.5000000000000053,0,0.98,0.99 +816,100,100,,1,1,[1],0.8,-3.4000000000000057,0,0.97,0.985 +817,100,100,,1,1,[1],0.8,-3.300000000000006,0,0.99,0.985 +818,100,100,,1,1,[1],0.8,-3.2000000000000064,0,0.96,0.97 +819,100,100,,1,1,[1],0.8,-3.1000000000000068,0,0.95,0.965 +820,100,100,,1,1,[1],0.8,-3.000000000000007,0,0.96,0.97 +821,100,100,,1,1,[1],0.8,-2.9000000000000075,0,0.95,0.975 +822,100,100,,1,1,[1],0.8,-2.800000000000008,0,0.96,0.97 +823,100,100,,1,1,[1],0.8,-2.700000000000008,0,0.97,0.985 +824,100,100,,1,1,[1],0.8,-2.6000000000000085,0,0.94,0.94 +825,100,100,,1,1,[1],0.8,-2.500000000000009,0,0.91,0.935 +826,100,100,,1,1,[1],0.8,-2.4000000000000092,0,0.9,0.94 +827,100,100,,1,1,[1],0.8,-2.3000000000000096,0,0.88,0.89 +828,100,100,,1,1,[1],0.8,-2.20000000000001,0,0.88,0.92 +829,100,100,,1,1,[1],0.8,-2.1000000000000103,0,0.93,0.925 +830,100,100,,1,1,[1],0.8,-2.0000000000000107,0,0.87,0.885 +831,100,100,,1,1,[1],0.8,-1.900000000000011,0,0.9,0.9 +832,100,100,,1,1,[1],0.8,-1.8000000000000114,0,0.92,0.9 +833,100,100,,1,1,[1],0.8,-1.7000000000000117,0,0.89,0.865 +834,100,100,,1,1,[1],0.8,-1.600000000000012,0,0.83,0.795 +835,100,100,,1,1,[1],0.8,-1.5000000000000124,0,0.88,0.92 +836,100,100,,1,1,[1],0.8,-1.4000000000000128,0,0.83,0.845 +837,100,100,,1,1,[1],0.8,-1.3000000000000131,0,0.77,0.835 +838,100,100,,1,1,[1],0.8,-1.2000000000000135,0,0.86,0.77 +839,100,100,,1,1,[1],0.8,-1.1000000000000139,0,0.84,0.8 +840,100,100,,1,1,[1],0.8,-1.0000000000000142,0,0.87,0.765 +841,100,100,,1,1,[1],0.8,-0.9000000000000146,0,0.91,0.735 +842,100,100,,1,1,[1],0.8,-0.8000000000000149,0,0.79,0.675 +843,100,100,,1,1,[1],0.8,-0.7000000000000153,0,0.79,0.645 +844,100,100,,1,1,[1],0.8,-0.6000000000000156,0,0.87,0.615 +845,100,100,,1,1,[1],0.8,-0.500000000000016,0,0.78,0.6 +846,100,100,,1,1,[1],0.8,-0.40000000000001634,0,0.77,0.515 +847,100,100,,1,1,[1],0.8,-0.3000000000000167,0,0.74,0.58 +848,100,100,,1,1,[1],0.8,-0.20000000000001705,0,0.79,0.555 +849,100,100,,1,1,[1],0.8,-0.10000000000001741,0,0.72,0.49 +850,100,100,,1,1,[1],0.8,-1.7763568394002505e-14,0,0.83,0.535 +851,100,100,,1,1,[1],0.8,0.09999999999998188,0,0.79,0.545 +852,100,100,,1,1,[1],0.8,0.19999999999998153,0,0.8,0.41 +853,100,100,,1,1,[1],0.8,0.29999999999998117,0,0.72,0.47 +854,100,100,,1,1,[1],0.8,0.3999999999999808,0,0.77,0.455 +855,100,100,,1,1,[1],0.8,0.49999999999998046,0,0.68,0.41 +856,100,100,,1,1,[1],0.8,0.5999999999999801,0,0.79,0.355 +857,100,100,,1,1,[1],0.8,0.6999999999999797,0,0.77,0.295 +858,100,100,,1,1,[1],0.8,0.7999999999999794,0,0.79,0.275 +859,100,100,,1,1,[1],0.8,0.899999999999979,0,0.79,0.245 +860,100,100,,1,1,[1],0.8,0.9999999999999787,0,0.77,0.295 +861,100,100,,1,1,[1],0.8,1.0999999999999783,0,0.82,0.26 +862,100,100,,1,1,[1],0.8,1.199999999999978,0,0.86,0.21 +863,100,100,,1,1,[1],0.8,1.2999999999999776,0,0.8,0.22 +864,100,100,,1,1,[1],0.8,1.3999999999999773,0,0.89,0.215 +865,100,100,,1,1,[1],0.8,1.499999999999977,0,0.86,0.16 +866,100,100,,1,1,[1],0.8,1.5999999999999766,0,0.87,0.145 +867,100,100,,1,1,[1],0.8,1.6999999999999762,0,0.88,0.15 +868,100,100,,1,1,[1],0.8,1.7999999999999758,0,0.87,0.155 +869,100,100,,1,1,[1],0.8,1.8999999999999755,0,0.85,0.105 +870,100,100,,1,1,[1],0.8,1.9999999999999751,0,0.89,0.145 +871,100,100,,1,1,[1],0.8,2.0999999999999748,0,0.9,0.17 +872,100,100,,1,1,[1],0.8,2.1999999999999744,0,0.92,0.1 +873,100,100,,1,1,[1],0.8,2.299999999999974,0,0.95,0.045 +874,100,100,,1,1,[1],0.8,2.3999999999999737,0,0.92,0.06 +875,100,100,,1,1,[1],0.8,2.4999999999999734,0,0.92,0.07 +876,100,100,,1,1,[1],0.8,2.599999999999973,0,0.93,0.055 +877,100,100,,1,1,[1],0.8,2.6999999999999726,0,0.94,0.03 +878,100,100,,1,1,[1],0.8,2.7999999999999723,0,0.92,0.1 +879,100,100,,1,1,[1],0.8,2.899999999999972,0,0.95,0.035 +880,100,100,,1,1,[1],0.8,2.9999999999999716,0,0.95,0.035 +881,100,100,,1,1,[1],0.8,3.0999999999999712,0,0.97,0.015 +882,100,100,,1,1,[1],0.8,3.199999999999971,0,0.98,0.01 +883,100,100,,1,1,[1],0.8,3.2999999999999705,0,0.98,0.01 +884,100,100,,1,1,[1],0.8,3.39999999999997,0,1.0,0.02 +885,100,100,,1,1,[1],0.8,3.49999999999997,0,0.96,0.02 +886,100,100,,1,1,[1],0.8,3.5999999999999694,0,0.94,0.03 +887,100,100,,1,1,[1],0.8,3.699999999999969,0,0.96,0.02 +888,100,100,,1,1,[1],0.8,3.7999999999999687,0,1.0,0.01 +889,100,100,,1,1,[1],0.8,3.8999999999999684,0,1.0,0.0 +890,100,100,,1,1,[1],0.8,3.999999999999968,0,0.98,0.01 +891,100,100,,1,1,[1],0.8,4.099999999999968,0,1.0,0.0 +892,100,100,,1,1,[1],0.8,4.199999999999967,0,0.98,0.01 +893,100,100,,1,1,[1],0.8,4.299999999999967,0,1.0,0.0 +894,100,100,,1,1,[1],0.8,4.399999999999967,0,1.0,0.0 +895,100,100,,1,1,[1],0.8,4.499999999999966,0,0.98,0.01 +896,100,100,,1,1,[1],0.8,4.599999999999966,0,0.99,0.005 +897,100,100,,1,1,[1],0.8,4.6999999999999655,0,1.0,0.0 +898,100,100,,1,1,[1],0.8,4.799999999999965,0,1.0,0.0 +899,100,100,,1,1,[1],0.8,4.899999999999965,0,1.0,0.0 +900,100,100,,1,1,[1],0.9,-5.0,0,1.0,1.0 +901,100,100,,1,1,[1],0.9,-4.9,0,1.0,1.0 +902,100,100,,1,1,[1],0.9,-4.800000000000001,0,0.99,0.995 +903,100,100,,1,1,[1],0.9,-4.700000000000001,0,0.99,0.995 +904,100,100,,1,1,[1],0.9,-4.600000000000001,0,1.0,1.0 +905,100,100,,1,1,[1],0.9,-4.500000000000002,0,1.0,1.0 +906,100,100,,1,1,[1],0.9,-4.400000000000002,0,1.0,1.0 +907,100,100,,1,1,[1],0.9,-4.3000000000000025,0,0.99,0.995 +908,100,100,,1,1,[1],0.9,-4.200000000000003,0,0.99,0.995 +909,100,100,,1,1,[1],0.9,-4.100000000000003,0,0.98,0.99 +910,100,100,,1,1,[1],0.9,-4.0000000000000036,0,1.0,1.0 +911,100,100,,1,1,[1],0.9,-3.900000000000004,0,1.0,1.0 +912,100,100,,1,1,[1],0.9,-3.8000000000000043,0,0.99,0.995 +913,100,100,,1,1,[1],0.9,-3.7000000000000046,0,0.98,0.98 +914,100,100,,1,1,[1],0.9,-3.600000000000005,0,0.96,0.98 +915,100,100,,1,1,[1],0.9,-3.5000000000000053,0,1.0,0.98 +916,100,100,,1,1,[1],0.9,-3.4000000000000057,0,0.97,0.985 +917,100,100,,1,1,[1],0.9,-3.300000000000006,0,0.99,0.995 +918,100,100,,1,1,[1],0.9,-3.2000000000000064,0,0.97,0.975 +919,100,100,,1,1,[1],0.9,-3.1000000000000068,0,0.97,0.965 +920,100,100,,1,1,[1],0.9,-3.000000000000007,0,0.93,0.965 +921,100,100,,1,1,[1],0.9,-2.9000000000000075,0,0.97,0.965 +922,100,100,,1,1,[1],0.9,-2.800000000000008,0,0.97,0.945 +923,100,100,,1,1,[1],0.9,-2.700000000000008,0,0.95,0.945 +924,100,100,,1,1,[1],0.9,-2.6000000000000085,0,0.94,0.95 +925,100,100,,1,1,[1],0.9,-2.500000000000009,0,0.93,0.925 +926,100,100,,1,1,[1],0.9,-2.4000000000000092,0,0.91,0.945 +927,100,100,,1,1,[1],0.9,-2.3000000000000096,0,0.92,0.94 +928,100,100,,1,1,[1],0.9,-2.20000000000001,0,0.87,0.915 +929,100,100,,1,1,[1],0.9,-2.1000000000000103,0,0.96,0.93 +930,100,100,,1,1,[1],0.9,-2.0000000000000107,0,0.89,0.905 +931,100,100,,1,1,[1],0.9,-1.900000000000011,0,0.9,0.89 +932,100,100,,1,1,[1],0.9,-1.8000000000000114,0,0.93,0.905 +933,100,100,,1,1,[1],0.9,-1.7000000000000117,0,0.88,0.87 +934,100,100,,1,1,[1],0.9,-1.600000000000012,0,0.86,0.84 +935,100,100,,1,1,[1],0.9,-1.5000000000000124,0,0.81,0.835 +936,100,100,,1,1,[1],0.9,-1.4000000000000128,0,0.86,0.85 +937,100,100,,1,1,[1],0.9,-1.3000000000000131,0,0.75,0.745 +938,100,100,,1,1,[1],0.9,-1.2000000000000135,0,0.78,0.77 +939,100,100,,1,1,[1],0.9,-1.1000000000000139,0,0.81,0.765 +940,100,100,,1,1,[1],0.9,-1.0000000000000142,0,0.82,0.77 +941,100,100,,1,1,[1],0.9,-0.9000000000000146,0,0.79,0.725 +942,100,100,,1,1,[1],0.9,-0.8000000000000149,0,0.82,0.68 +943,100,100,,1,1,[1],0.9,-0.7000000000000153,0,0.78,0.69 +944,100,100,,1,1,[1],0.9,-0.6000000000000156,0,0.79,0.665 +945,100,100,,1,1,[1],0.9,-0.500000000000016,0,0.8,0.57 +946,100,100,,1,1,[1],0.9,-0.40000000000001634,0,0.73,0.555 +947,100,100,,1,1,[1],0.9,-0.3000000000000167,0,0.7,0.49 +948,100,100,,1,1,[1],0.9,-0.20000000000001705,0,0.73,0.515 +949,100,100,,1,1,[1],0.9,-0.10000000000001741,0,0.76,0.5 +950,100,100,,1,1,[1],0.9,-1.7763568394002505e-14,0,0.81,0.475 +951,100,100,,1,1,[1],0.9,0.09999999999998188,0,0.74,0.46 +952,100,100,,1,1,[1],0.9,0.19999999999998153,0,0.75,0.555 +953,100,100,,1,1,[1],0.9,0.29999999999998117,0,0.87,0.385 +954,100,100,,1,1,[1],0.9,0.3999999999999808,0,0.72,0.45 +955,100,100,,1,1,[1],0.9,0.49999999999998046,0,0.72,0.41 +956,100,100,,1,1,[1],0.9,0.5999999999999801,0,0.65,0.315 +957,100,100,,1,1,[1],0.9,0.6999999999999797,0,0.8,0.34 +958,100,100,,1,1,[1],0.9,0.7999999999999794,0,0.81,0.335 +959,100,100,,1,1,[1],0.9,0.899999999999979,0,0.82,0.32 +960,100,100,,1,1,[1],0.9,0.9999999999999787,0,0.75,0.285 +961,100,100,,1,1,[1],0.9,1.0999999999999783,0,0.7,0.31 +962,100,100,,1,1,[1],0.9,1.199999999999978,0,0.87,0.225 +963,100,100,,1,1,[1],0.9,1.2999999999999776,0,0.87,0.225 +964,100,100,,1,1,[1],0.9,1.3999999999999773,0,0.82,0.21 +965,100,100,,1,1,[1],0.9,1.499999999999977,0,0.86,0.26 +966,100,100,,1,1,[1],0.9,1.5999999999999766,0,0.77,0.185 +967,100,100,,1,1,[1],0.9,1.6999999999999762,0,0.88,0.13 +968,100,100,,1,1,[1],0.9,1.7999999999999758,0,0.88,0.13 +969,100,100,,1,1,[1],0.9,1.8999999999999755,0,0.95,0.085 +970,100,100,,1,1,[1],0.9,1.9999999999999751,0,0.84,0.16 +971,100,100,,1,1,[1],0.9,2.0999999999999748,0,0.94,0.06 +972,100,100,,1,1,[1],0.9,2.1999999999999744,0,0.92,0.15 +973,100,100,,1,1,[1],0.9,2.299999999999974,0,0.96,0.08 +974,100,100,,1,1,[1],0.9,2.3999999999999737,0,0.92,0.11 +975,100,100,,1,1,[1],0.9,2.4999999999999734,0,0.92,0.1 +976,100,100,,1,1,[1],0.9,2.599999999999973,0,0.93,0.035 +977,100,100,,1,1,[1],0.9,2.6999999999999726,0,0.93,0.055 +978,100,100,,1,1,[1],0.9,2.7999999999999723,0,0.97,0.045 +979,100,100,,1,1,[1],0.9,2.899999999999972,0,0.92,0.08 +980,100,100,,1,1,[1],0.9,2.9999999999999716,0,0.95,0.045 +981,100,100,,1,1,[1],0.9,3.0999999999999712,0,0.96,0.02 +982,100,100,,1,1,[1],0.9,3.199999999999971,0,0.95,0.035 +983,100,100,,1,1,[1],0.9,3.2999999999999705,0,0.99,0.005 +984,100,100,,1,1,[1],0.9,3.39999999999997,0,0.97,0.025 +985,100,100,,1,1,[1],0.9,3.49999999999997,0,0.97,0.015 +986,100,100,,1,1,[1],0.9,3.5999999999999694,0,0.99,0.005 +987,100,100,,1,1,[1],0.9,3.699999999999969,0,0.95,0.035 +988,100,100,,1,1,[1],0.9,3.7999999999999687,0,0.98,0.01 +989,100,100,,1,1,[1],0.9,3.8999999999999684,0,0.98,0.01 +990,100,100,,1,1,[1],0.9,3.999999999999968,0,0.99,0.005 +991,100,100,,1,1,[1],0.9,4.099999999999968,0,0.99,0.005 +992,100,100,,1,1,[1],0.9,4.199999999999967,0,0.99,0.005 +993,100,100,,1,1,[1],0.9,4.299999999999967,0,0.95,0.025 +994,100,100,,1,1,[1],0.9,4.399999999999967,0,0.99,0.005 +995,100,100,,1,1,[1],0.9,4.499999999999966,0,1.0,0.0 +996,100,100,,1,1,[1],0.9,4.599999999999966,0,1.0,0.0 +997,100,100,,1,1,[1],0.9,4.6999999999999655,0,1.0,0.0 +998,100,100,,1,1,[1],0.9,4.799999999999965,0,1.0,0.0 +999,100,100,,1,1,[1],0.9,4.899999999999965,0,1.0,0.0 +1000,100,100,,1,1,[1],1.0,-5.0,0,0.99,0.995 +1001,100,100,,1,1,[1],1.0,-4.9,0,1.0,1.0 +1002,100,100,,1,1,[1],1.0,-4.800000000000001,0,0.99,0.995 +1003,100,100,,1,1,[1],1.0,-4.700000000000001,0,1.0,1.0 +1004,100,100,,1,1,[1],1.0,-4.600000000000001,0,1.0,1.0 +1005,100,100,,1,1,[1],1.0,-4.500000000000002,0,0.99,0.995 +1006,100,100,,1,1,[1],1.0,-4.400000000000002,0,1.0,1.0 +1007,100,100,,1,1,[1],1.0,-4.3000000000000025,0,0.98,0.99 +1008,100,100,,1,1,[1],1.0,-4.200000000000003,0,0.99,0.995 +1009,100,100,,1,1,[1],1.0,-4.100000000000003,0,1.0,0.99 +1010,100,100,,1,1,[1],1.0,-4.0000000000000036,0,0.98,0.99 +1011,100,100,,1,1,[1],1.0,-3.900000000000004,0,0.99,0.995 +1012,100,100,,1,1,[1],1.0,-3.8000000000000043,0,0.98,0.98 +1013,100,100,,1,1,[1],1.0,-3.7000000000000046,0,0.99,0.995 +1014,100,100,,1,1,[1],1.0,-3.600000000000005,0,0.97,0.985 +1015,100,100,,1,1,[1],1.0,-3.5000000000000053,0,0.98,0.98 +1016,100,100,,1,1,[1],1.0,-3.4000000000000057,0,0.99,0.985 +1017,100,100,,1,1,[1],1.0,-3.300000000000006,0,0.94,0.96 +1018,100,100,,1,1,[1],1.0,-3.2000000000000064,0,0.96,0.97 +1019,100,100,,1,1,[1],1.0,-3.1000000000000068,0,0.96,0.98 +1020,100,100,,1,1,[1],1.0,-3.000000000000007,0,0.91,0.915 +1021,100,100,,1,1,[1],1.0,-2.9000000000000075,0,0.96,0.97 +1022,100,100,,1,1,[1],1.0,-2.800000000000008,0,0.97,0.975 +1023,100,100,,1,1,[1],1.0,-2.700000000000008,0,0.95,0.975 +1024,100,100,,1,1,[1],1.0,-2.6000000000000085,0,0.93,0.955 +1025,100,100,,1,1,[1],1.0,-2.500000000000009,0,0.91,0.885 +1026,100,100,,1,1,[1],1.0,-2.4000000000000092,0,0.95,0.965 +1027,100,100,,1,1,[1],1.0,-2.3000000000000096,0,0.87,0.875 +1028,100,100,,1,1,[1],1.0,-2.20000000000001,0,0.93,0.875 +1029,100,100,,1,1,[1],1.0,-2.1000000000000103,0,0.85,0.875 +1030,100,100,,1,1,[1],1.0,-2.0000000000000107,0,0.88,0.9 +1031,100,100,,1,1,[1],1.0,-1.900000000000011,0,0.86,0.91 +1032,100,100,,1,1,[1],1.0,-1.8000000000000114,0,0.82,0.78 +1033,100,100,,1,1,[1],1.0,-1.7000000000000117,0,0.83,0.805 +1034,100,100,,1,1,[1],1.0,-1.600000000000012,0,0.76,0.75 +1035,100,100,,1,1,[1],1.0,-1.5000000000000124,0,0.81,0.775 +1036,100,100,,1,1,[1],1.0,-1.4000000000000128,0,0.88,0.73 +1037,100,100,,1,1,[1],1.0,-1.3000000000000131,0,0.78,0.8 +1038,100,100,,1,1,[1],1.0,-1.2000000000000135,0,0.87,0.785 +1039,100,100,,1,1,[1],1.0,-1.1000000000000139,0,0.76,0.72 +1040,100,100,,1,1,[1],1.0,-1.0000000000000142,0,0.83,0.695 +1041,100,100,,1,1,[1],1.0,-0.9000000000000146,0,0.78,0.72 +1042,100,100,,1,1,[1],1.0,-0.8000000000000149,0,0.69,0.665 +1043,100,100,,1,1,[1],1.0,-0.7000000000000153,0,0.77,0.655 +1044,100,100,,1,1,[1],1.0,-0.6000000000000156,0,0.8,0.65 +1045,100,100,,1,1,[1],1.0,-0.500000000000016,0,0.74,0.57 +1046,100,100,,1,1,[1],1.0,-0.40000000000001634,0,0.78,0.67 +1047,100,100,,1,1,[1],1.0,-0.3000000000000167,0,0.69,0.575 +1048,100,100,,1,1,[1],1.0,-0.20000000000001705,0,0.72,0.56 +1049,100,100,,1,1,[1],1.0,-0.10000000000001741,0,0.69,0.525 +1050,100,100,,1,1,[1],1.0,-1.7763568394002505e-14,0,0.75,0.515 +1051,100,100,,1,1,[1],1.0,0.09999999999998188,0,0.74,0.45 +1052,100,100,,1,1,[1],1.0,0.19999999999998153,0,0.71,0.465 +1053,100,100,,1,1,[1],1.0,0.29999999999998117,0,0.77,0.405 +1054,100,100,,1,1,[1],1.0,0.3999999999999808,0,0.71,0.405 +1055,100,100,,1,1,[1],1.0,0.49999999999998046,0,0.71,0.395 +1056,100,100,,1,1,[1],1.0,0.5999999999999801,0,0.82,0.29 +1057,100,100,,1,1,[1],1.0,0.6999999999999797,0,0.71,0.325 +1058,100,100,,1,1,[1],1.0,0.7999999999999794,0,0.75,0.325 +1059,100,100,,1,1,[1],1.0,0.899999999999979,0,0.76,0.32 +1060,100,100,,1,1,[1],1.0,0.9999999999999787,0,0.74,0.3 +1061,100,100,,1,1,[1],1.0,1.0999999999999783,0,0.72,0.3 +1062,100,100,,1,1,[1],1.0,1.199999999999978,0,0.86,0.2 +1063,100,100,,1,1,[1],1.0,1.2999999999999776,0,0.8,0.22 +1064,100,100,,1,1,[1],1.0,1.3999999999999773,0,0.76,0.2 +1065,100,100,,1,1,[1],1.0,1.499999999999977,0,0.84,0.21 +1066,100,100,,1,1,[1],1.0,1.5999999999999766,0,0.86,0.18 +1067,100,100,,1,1,[1],1.0,1.6999999999999762,0,0.89,0.145 +1068,100,100,,1,1,[1],1.0,1.7999999999999758,0,0.84,0.13 +1069,100,100,,1,1,[1],1.0,1.8999999999999755,0,0.84,0.12 +1070,100,100,,1,1,[1],1.0,1.9999999999999751,0,0.88,0.14 +1071,100,100,,1,1,[1],1.0,2.0999999999999748,0,0.87,0.085 +1072,100,100,,1,1,[1],1.0,2.1999999999999744,0,0.91,0.115 +1073,100,100,,1,1,[1],1.0,2.299999999999974,0,0.93,0.075 +1074,100,100,,1,1,[1],1.0,2.3999999999999737,0,0.91,0.115 +1075,100,100,,1,1,[1],1.0,2.4999999999999734,0,0.92,0.05 +1076,100,100,,1,1,[1],1.0,2.599999999999973,0,0.97,0.055 +1077,100,100,,1,1,[1],1.0,2.6999999999999726,0,0.92,0.07 +1078,100,100,,1,1,[1],1.0,2.7999999999999723,0,0.98,0.02 +1079,100,100,,1,1,[1],1.0,2.899999999999972,0,0.94,0.05 +1080,100,100,,1,1,[1],1.0,2.9999999999999716,0,0.95,0.035 +1081,100,100,,1,1,[1],1.0,3.0999999999999712,0,0.95,0.035 +1082,100,100,,1,1,[1],1.0,3.199999999999971,0,0.97,0.025 +1083,100,100,,1,1,[1],1.0,3.2999999999999705,0,0.96,0.03 +1084,100,100,,1,1,[1],1.0,3.39999999999997,0,0.97,0.015 +1085,100,100,,1,1,[1],1.0,3.49999999999997,0,0.95,0.025 +1086,100,100,,1,1,[1],1.0,3.5999999999999694,0,0.96,0.02 +1087,100,100,,1,1,[1],1.0,3.699999999999969,0,0.96,0.03 +1088,100,100,,1,1,[1],1.0,3.7999999999999687,0,0.99,0.005 +1089,100,100,,1,1,[1],1.0,3.8999999999999684,0,0.99,0.015 +1090,100,100,,1,1,[1],1.0,3.999999999999968,0,0.98,0.01 +1091,100,100,,1,1,[1],1.0,4.099999999999968,0,0.98,0.01 +1092,100,100,,1,1,[1],1.0,4.199999999999967,0,0.96,0.02 +1093,100,100,,1,1,[1],1.0,4.299999999999967,0,0.99,0.005 +1094,100,100,,1,1,[1],1.0,4.399999999999967,0,1.0,0.0 +1095,100,100,,1,1,[1],1.0,4.499999999999966,0,0.99,0.005 +1096,100,100,,1,1,[1],1.0,4.599999999999966,0,1.0,0.0 +1097,100,100,,1,1,[1],1.0,4.6999999999999655,0,0.99,0.005 +1098,100,100,,1,1,[1],1.0,4.799999999999965,0,1.0,0.0 +1099,100,100,,1,1,[1],1.0,4.899999999999965,0,0.99,0.005 +1100,100,100,,1,1,[1],1.1,-5.0,0,1.0,1.0 +1101,100,100,,1,1,[1],1.1,-4.9,0,1.0,1.0 +1102,100,100,,1,1,[1],1.1,-4.800000000000001,0,1.0,0.99 +1103,100,100,,1,1,[1],1.1,-4.700000000000001,0,1.0,1.0 +1104,100,100,,1,1,[1],1.1,-4.600000000000001,0,0.99,0.995 +1105,100,100,,1,1,[1],1.1,-4.500000000000002,0,1.0,1.0 +1106,100,100,,1,1,[1],1.1,-4.400000000000002,0,0.98,0.99 +1107,100,100,,1,1,[1],1.1,-4.3000000000000025,0,1.0,1.0 +1108,100,100,,1,1,[1],1.1,-4.200000000000003,0,0.98,0.99 +1109,100,100,,1,1,[1],1.1,-4.100000000000003,0,0.95,0.975 +1110,100,100,,1,1,[1],1.1,-4.0000000000000036,0,0.98,0.99 +1111,100,100,,1,1,[1],1.1,-3.900000000000004,0,0.95,0.975 +1112,100,100,,1,1,[1],1.1,-3.8000000000000043,0,0.97,0.965 +1113,100,100,,1,1,[1],1.1,-3.7000000000000046,0,0.94,0.97 +1114,100,100,,1,1,[1],1.1,-3.600000000000005,0,0.98,0.99 +1115,100,100,,1,1,[1],1.1,-3.5000000000000053,0,0.93,0.945 +1116,100,100,,1,1,[1],1.1,-3.4000000000000057,0,0.97,0.965 +1117,100,100,,1,1,[1],1.1,-3.300000000000006,0,0.94,0.96 +1118,100,100,,1,1,[1],1.1,-3.2000000000000064,0,0.94,0.96 +1119,100,100,,1,1,[1],1.1,-3.1000000000000068,0,0.95,0.965 +1120,100,100,,1,1,[1],1.1,-3.000000000000007,0,0.96,0.97 +1121,100,100,,1,1,[1],1.1,-2.9000000000000075,0,0.94,0.94 +1122,100,100,,1,1,[1],1.1,-2.800000000000008,0,0.92,0.92 +1123,100,100,,1,1,[1],1.1,-2.700000000000008,0,0.93,0.955 +1124,100,100,,1,1,[1],1.1,-2.6000000000000085,0,0.88,0.91 +1125,100,100,,1,1,[1],1.1,-2.500000000000009,0,0.9,0.87 +1126,100,100,,1,1,[1],1.1,-2.4000000000000092,0,0.87,0.895 +1127,100,100,,1,1,[1],1.1,-2.3000000000000096,0,0.91,0.895 +1128,100,100,,1,1,[1],1.1,-2.20000000000001,0,0.84,0.87 +1129,100,100,,1,1,[1],1.1,-2.1000000000000103,0,0.81,0.855 +1130,100,100,,1,1,[1],1.1,-2.0000000000000107,0,0.82,0.85 +1131,100,100,,1,1,[1],1.1,-1.900000000000011,0,0.86,0.84 +1132,100,100,,1,1,[1],1.1,-1.8000000000000114,0,0.84,0.84 +1133,100,100,,1,1,[1],1.1,-1.7000000000000117,0,0.81,0.855 +1134,100,100,,1,1,[1],1.1,-1.600000000000012,0,0.74,0.79 +1135,100,100,,1,1,[1],1.1,-1.5000000000000124,0,0.86,0.83 +1136,100,100,,1,1,[1],1.1,-1.4000000000000128,0,0.8,0.77 +1137,100,100,,1,1,[1],1.1,-1.3000000000000131,0,0.85,0.815 +1138,100,100,,1,1,[1],1.1,-1.2000000000000135,0,0.76,0.76 +1139,100,100,,1,1,[1],1.1,-1.1000000000000139,0,0.79,0.785 +1140,100,100,,1,1,[1],1.1,-1.0000000000000142,0,0.71,0.595 +1141,100,100,,1,1,[1],1.1,-0.9000000000000146,0,0.76,0.74 +1142,100,100,,1,1,[1],1.1,-0.8000000000000149,0,0.79,0.685 +1143,100,100,,1,1,[1],1.1,-0.7000000000000153,0,0.75,0.675 +1144,100,100,,1,1,[1],1.1,-0.6000000000000156,0,0.74,0.58 +1145,100,100,,1,1,[1],1.1,-0.500000000000016,0,0.72,0.66 +1146,100,100,,1,1,[1],1.1,-0.40000000000001634,0,0.7,0.62 +1147,100,100,,1,1,[1],1.1,-0.3000000000000167,0,0.78,0.58 +1148,100,100,,1,1,[1],1.1,-0.20000000000001705,0,0.85,0.515 +1149,100,100,,1,1,[1],1.1,-0.10000000000001741,0,0.73,0.655 +1150,100,100,,1,1,[1],1.1,-1.7763568394002505e-14,0,0.74,0.46 +1151,100,100,,1,1,[1],1.1,0.09999999999998188,0,0.72,0.45 +1152,100,100,,1,1,[1],1.1,0.19999999999998153,0,0.69,0.435 +1153,100,100,,1,1,[1],1.1,0.29999999999998117,0,0.74,0.42 +1154,100,100,,1,1,[1],1.1,0.3999999999999808,0,0.81,0.375 +1155,100,100,,1,1,[1],1.1,0.49999999999998046,0,0.77,0.335 +1156,100,100,,1,1,[1],1.1,0.5999999999999801,0,0.63,0.395 +1157,100,100,,1,1,[1],1.1,0.6999999999999797,0,0.74,0.33 +1158,100,100,,1,1,[1],1.1,0.7999999999999794,0,0.74,0.26 +1159,100,100,,1,1,[1],1.1,0.899999999999979,0,0.71,0.375 +1160,100,100,,1,1,[1],1.1,0.9999999999999787,0,0.78,0.25 +1161,100,100,,1,1,[1],1.1,1.0999999999999783,0,0.76,0.38 +1162,100,100,,1,1,[1],1.1,1.199999999999978,0,0.71,0.255 +1163,100,100,,1,1,[1],1.1,1.2999999999999776,0,0.8,0.19 +1164,100,100,,1,1,[1],1.1,1.3999999999999773,0,0.75,0.205 +1165,100,100,,1,1,[1],1.1,1.499999999999977,0,0.83,0.215 +1166,100,100,,1,1,[1],1.1,1.5999999999999766,0,0.88,0.13 +1167,100,100,,1,1,[1],1.1,1.6999999999999762,0,0.91,0.115 +1168,100,100,,1,1,[1],1.1,1.7999999999999758,0,0.88,0.17 +1169,100,100,,1,1,[1],1.1,1.8999999999999755,0,0.89,0.105 +1170,100,100,,1,1,[1],1.1,1.9999999999999751,0,0.88,0.12 +1171,100,100,,1,1,[1],1.1,2.0999999999999748,0,0.86,0.12 +1172,100,100,,1,1,[1],1.1,2.1999999999999744,0,0.86,0.11 +1173,100,100,,1,1,[1],1.1,2.299999999999974,0,0.87,0.075 +1174,100,100,,1,1,[1],1.1,2.3999999999999737,0,0.92,0.08 +1175,100,100,,1,1,[1],1.1,2.4999999999999734,0,0.9,0.06 +1176,100,100,,1,1,[1],1.1,2.599999999999973,0,0.86,0.1 +1177,100,100,,1,1,[1],1.1,2.6999999999999726,0,0.91,0.075 +1178,100,100,,1,1,[1],1.1,2.7999999999999723,0,0.94,0.07 +1179,100,100,,1,1,[1],1.1,2.899999999999972,0,0.94,0.03 +1180,100,100,,1,1,[1],1.1,2.9999999999999716,0,0.94,0.04 +1181,100,100,,1,1,[1],1.1,3.0999999999999712,0,0.93,0.075 +1182,100,100,,1,1,[1],1.1,3.199999999999971,0,0.92,0.06 +1183,100,100,,1,1,[1],1.1,3.2999999999999705,0,0.99,0.025 +1184,100,100,,1,1,[1],1.1,3.39999999999997,0,0.97,0.035 +1185,100,100,,1,1,[1],1.1,3.49999999999997,0,1.0,0.0 +1186,100,100,,1,1,[1],1.1,3.5999999999999694,0,0.98,0.01 +1187,100,100,,1,1,[1],1.1,3.699999999999969,0,0.98,0.02 +1188,100,100,,1,1,[1],1.1,3.7999999999999687,0,0.99,0.015 +1189,100,100,,1,1,[1],1.1,3.8999999999999684,0,0.97,0.045 +1190,100,100,,1,1,[1],1.1,3.999999999999968,0,0.98,0.01 +1191,100,100,,1,1,[1],1.1,4.099999999999968,0,0.98,0.01 +1192,100,100,,1,1,[1],1.1,4.199999999999967,0,0.98,0.01 +1193,100,100,,1,1,[1],1.1,4.299999999999967,0,0.99,0.015 +1194,100,100,,1,1,[1],1.1,4.399999999999967,0,0.98,0.01 +1195,100,100,,1,1,[1],1.1,4.499999999999966,0,1.0,0.0 +1196,100,100,,1,1,[1],1.1,4.599999999999966,0,1.0,0.0 +1197,100,100,,1,1,[1],1.1,4.6999999999999655,0,0.99,0.005 +1198,100,100,,1,1,[1],1.1,4.799999999999965,0,1.0,0.0 +1199,100,100,,1,1,[1],1.1,4.899999999999965,0,1.0,0.0 +1200,100,100,,1,1,[1],1.2000000000000002,-5.0,0,1.0,1.0 +1201,100,100,,1,1,[1],1.2000000000000002,-4.9,0,1.0,1.0 +1202,100,100,,1,1,[1],1.2000000000000002,-4.800000000000001,0,0.99,0.995 +1203,100,100,,1,1,[1],1.2000000000000002,-4.700000000000001,0,0.99,0.995 +1204,100,100,,1,1,[1],1.2000000000000002,-4.600000000000001,0,0.99,0.985 +1205,100,100,,1,1,[1],1.2000000000000002,-4.500000000000002,0,1.0,1.0 +1206,100,100,,1,1,[1],1.2000000000000002,-4.400000000000002,0,0.99,0.985 +1207,100,100,,1,1,[1],1.2000000000000002,-4.3000000000000025,0,0.99,0.995 +1208,100,100,,1,1,[1],1.2000000000000002,-4.200000000000003,0,0.99,0.985 +1209,100,100,,1,1,[1],1.2000000000000002,-4.100000000000003,0,0.98,0.99 +1210,100,100,,1,1,[1],1.2000000000000002,-4.0000000000000036,0,0.99,0.985 +1211,100,100,,1,1,[1],1.2000000000000002,-3.900000000000004,0,1.0,1.0 +1212,100,100,,1,1,[1],1.2000000000000002,-3.8000000000000043,0,0.97,0.975 +1213,100,100,,1,1,[1],1.2000000000000002,-3.7000000000000046,0,0.95,0.975 +1214,100,100,,1,1,[1],1.2000000000000002,-3.600000000000005,0,0.96,0.97 +1215,100,100,,1,1,[1],1.2000000000000002,-3.5000000000000053,0,0.96,0.98 +1216,100,100,,1,1,[1],1.2000000000000002,-3.4000000000000057,0,0.93,0.965 +1217,100,100,,1,1,[1],1.2000000000000002,-3.300000000000006,0,0.88,0.94 +1218,100,100,,1,1,[1],1.2000000000000002,-3.2000000000000064,0,0.94,0.97 +1219,100,100,,1,1,[1],1.2000000000000002,-3.1000000000000068,0,0.9,0.9 +1220,100,100,,1,1,[1],1.2000000000000002,-3.000000000000007,0,0.94,0.96 +1221,100,100,,1,1,[1],1.2000000000000002,-2.9000000000000075,0,0.93,0.965 +1222,100,100,,1,1,[1],1.2000000000000002,-2.800000000000008,0,0.91,0.935 +1223,100,100,,1,1,[1],1.2000000000000002,-2.700000000000008,0,0.95,0.955 +1224,100,100,,1,1,[1],1.2000000000000002,-2.6000000000000085,0,0.91,0.905 +1225,100,100,,1,1,[1],1.2000000000000002,-2.500000000000009,0,0.85,0.895 +1226,100,100,,1,1,[1],1.2000000000000002,-2.4000000000000092,0,0.91,0.905 +1227,100,100,,1,1,[1],1.2000000000000002,-2.3000000000000096,0,0.84,0.87 +1228,100,100,,1,1,[1],1.2000000000000002,-2.20000000000001,0,0.82,0.88 +1229,100,100,,1,1,[1],1.2000000000000002,-2.1000000000000103,0,0.86,0.91 +1230,100,100,,1,1,[1],1.2000000000000002,-2.0000000000000107,0,0.85,0.815 +1231,100,100,,1,1,[1],1.2000000000000002,-1.900000000000011,0,0.86,0.88 +1232,100,100,,1,1,[1],1.2000000000000002,-1.8000000000000114,0,0.81,0.825 +1233,100,100,,1,1,[1],1.2000000000000002,-1.7000000000000117,0,0.76,0.81 +1234,100,100,,1,1,[1],1.2000000000000002,-1.600000000000012,0,0.83,0.865 +1235,100,100,,1,1,[1],1.2000000000000002,-1.5000000000000124,0,0.83,0.805 +1236,100,100,,1,1,[1],1.2000000000000002,-1.4000000000000128,0,0.81,0.835 +1237,100,100,,1,1,[1],1.2000000000000002,-1.3000000000000131,0,0.72,0.67 +1238,100,100,,1,1,[1],1.2000000000000002,-1.2000000000000135,0,0.77,0.705 +1239,100,100,,1,1,[1],1.2000000000000002,-1.1000000000000139,0,0.79,0.695 +1240,100,100,,1,1,[1],1.2000000000000002,-1.0000000000000142,0,0.74,0.7 +1241,100,100,,1,1,[1],1.2000000000000002,-0.9000000000000146,0,0.68,0.69 +1242,100,100,,1,1,[1],1.2000000000000002,-0.8000000000000149,0,0.73,0.655 +1243,100,100,,1,1,[1],1.2000000000000002,-0.7000000000000153,0,0.73,0.625 +1244,100,100,,1,1,[1],1.2000000000000002,-0.6000000000000156,0,0.68,0.62 +1245,100,100,,1,1,[1],1.2000000000000002,-0.500000000000016,0,0.76,0.62 +1246,100,100,,1,1,[1],1.2000000000000002,-0.40000000000001634,0,0.76,0.51 +1247,100,100,,1,1,[1],1.2000000000000002,-0.3000000000000167,0,0.67,0.535 +1248,100,100,,1,1,[1],1.2000000000000002,-0.20000000000001705,0,0.68,0.58 +1249,100,100,,1,1,[1],1.2000000000000002,-0.10000000000001741,0,0.79,0.505 +1250,100,100,,1,1,[1],1.2000000000000002,-1.7763568394002505e-14,0,0.73,0.495 +1251,100,100,,1,1,[1],1.2000000000000002,0.09999999999998188,0,0.68,0.52 +1252,100,100,,1,1,[1],1.2000000000000002,0.19999999999998153,0,0.65,0.405 +1253,100,100,,1,1,[1],1.2000000000000002,0.29999999999998117,0,0.71,0.445 +1254,100,100,,1,1,[1],1.2000000000000002,0.3999999999999808,0,0.71,0.385 +1255,100,100,,1,1,[1],1.2000000000000002,0.49999999999998046,0,0.69,0.395 +1256,100,100,,1,1,[1],1.2000000000000002,0.5999999999999801,0,0.69,0.405 +1257,100,100,,1,1,[1],1.2000000000000002,0.6999999999999797,0,0.71,0.355 +1258,100,100,,1,1,[1],1.2000000000000002,0.7999999999999794,0,0.72,0.29 +1259,100,100,,1,1,[1],1.2000000000000002,0.899999999999979,0,0.84,0.26 +1260,100,100,,1,1,[1],1.2000000000000002,0.9999999999999787,0,0.79,0.315 +1261,100,100,,1,1,[1],1.2000000000000002,1.0999999999999783,0,0.72,0.25 +1262,100,100,,1,1,[1],1.2000000000000002,1.199999999999978,0,0.74,0.29 +1263,100,100,,1,1,[1],1.2000000000000002,1.2999999999999776,0,0.78,0.23 +1264,100,100,,1,1,[1],1.2000000000000002,1.3999999999999773,0,0.78,0.18 +1265,100,100,,1,1,[1],1.2000000000000002,1.499999999999977,0,0.78,0.22 +1266,100,100,,1,1,[1],1.2000000000000002,1.5999999999999766,0,0.77,0.215 +1267,100,100,,1,1,[1],1.2000000000000002,1.6999999999999762,0,0.87,0.165 +1268,100,100,,1,1,[1],1.2000000000000002,1.7999999999999758,0,0.75,0.205 +1269,100,100,,1,1,[1],1.2000000000000002,1.8999999999999755,0,0.86,0.12 +1270,100,100,,1,1,[1],1.2000000000000002,1.9999999999999751,0,0.83,0.125 +1271,100,100,,1,1,[1],1.2000000000000002,2.0999999999999748,0,0.85,0.155 +1272,100,100,,1,1,[1],1.2000000000000002,2.1999999999999744,0,0.87,0.165 +1273,100,100,,1,1,[1],1.2000000000000002,2.299999999999974,0,0.86,0.1 +1274,100,100,,1,1,[1],1.2000000000000002,2.3999999999999737,0,0.77,0.125 +1275,100,100,,1,1,[1],1.2000000000000002,2.4999999999999734,0,0.87,0.105 +1276,100,100,,1,1,[1],1.2000000000000002,2.599999999999973,0,0.95,0.055 +1277,100,100,,1,1,[1],1.2000000000000002,2.6999999999999726,0,0.9,0.05 +1278,100,100,,1,1,[1],1.2000000000000002,2.7999999999999723,0,0.95,0.055 +1279,100,100,,1,1,[1],1.2000000000000002,2.899999999999972,0,0.91,0.055 +1280,100,100,,1,1,[1],1.2000000000000002,2.9999999999999716,0,0.93,0.045 +1281,100,100,,1,1,[1],1.2000000000000002,3.0999999999999712,0,0.96,0.02 +1282,100,100,,1,1,[1],1.2000000000000002,3.199999999999971,0,0.91,0.045 +1283,100,100,,1,1,[1],1.2000000000000002,3.2999999999999705,0,0.97,0.035 +1284,100,100,,1,1,[1],1.2000000000000002,3.39999999999997,0,0.96,0.02 +1285,100,100,,1,1,[1],1.2000000000000002,3.49999999999997,0,0.96,0.02 +1286,100,100,,1,1,[1],1.2000000000000002,3.5999999999999694,0,0.97,0.015 +1287,100,100,,1,1,[1],1.2000000000000002,3.699999999999969,0,0.95,0.025 +1288,100,100,,1,1,[1],1.2000000000000002,3.7999999999999687,0,0.98,0.02 +1289,100,100,,1,1,[1],1.2000000000000002,3.8999999999999684,0,0.96,0.03 +1290,100,100,,1,1,[1],1.2000000000000002,3.999999999999968,0,0.99,0.005 +1291,100,100,,1,1,[1],1.2000000000000002,4.099999999999968,0,1.0,0.0 +1292,100,100,,1,1,[1],1.2000000000000002,4.199999999999967,0,1.0,0.0 +1293,100,100,,1,1,[1],1.2000000000000002,4.299999999999967,0,0.98,0.02 +1294,100,100,,1,1,[1],1.2000000000000002,4.399999999999967,0,0.98,0.01 +1295,100,100,,1,1,[1],1.2000000000000002,4.499999999999966,0,1.0,0.0 +1296,100,100,,1,1,[1],1.2000000000000002,4.599999999999966,0,0.99,0.005 +1297,100,100,,1,1,[1],1.2000000000000002,4.6999999999999655,0,1.0,0.0 +1298,100,100,,1,1,[1],1.2000000000000002,4.799999999999965,0,0.99,0.005 +1299,100,100,,1,1,[1],1.2000000000000002,4.899999999999965,0,1.0,0.0 +1300,100,100,,1,1,[1],1.3,-5.0,0,1.0,1.0 +1301,100,100,,1,1,[1],1.3,-4.9,0,1.0,1.0 +1302,100,100,,1,1,[1],1.3,-4.800000000000001,0,0.99,0.995 +1303,100,100,,1,1,[1],1.3,-4.700000000000001,0,0.99,0.995 +1304,100,100,,1,1,[1],1.3,-4.600000000000001,0,0.96,0.98 +1305,100,100,,1,1,[1],1.3,-4.500000000000002,0,0.97,0.985 +1306,100,100,,1,1,[1],1.3,-4.400000000000002,0,0.98,0.99 +1307,100,100,,1,1,[1],1.3,-4.3000000000000025,0,0.97,0.985 +1308,100,100,,1,1,[1],1.3,-4.200000000000003,0,0.99,0.995 +1309,100,100,,1,1,[1],1.3,-4.100000000000003,0,0.98,0.99 +1310,100,100,,1,1,[1],1.3,-4.0000000000000036,0,1.0,0.99 +1311,100,100,,1,1,[1],1.3,-3.900000000000004,0,0.96,0.98 +1312,100,100,,1,1,[1],1.3,-3.8000000000000043,0,0.95,0.975 +1313,100,100,,1,1,[1],1.3,-3.7000000000000046,0,0.98,0.97 +1314,100,100,,1,1,[1],1.3,-3.600000000000005,0,0.98,0.98 +1315,100,100,,1,1,[1],1.3,-3.5000000000000053,0,0.93,0.955 +1316,100,100,,1,1,[1],1.3,-3.4000000000000057,0,0.92,0.95 +1317,100,100,,1,1,[1],1.3,-3.300000000000006,0,0.95,0.975 +1318,100,100,,1,1,[1],1.3,-3.2000000000000064,0,0.92,0.96 +1319,100,100,,1,1,[1],1.3,-3.1000000000000068,0,0.92,0.96 +1320,100,100,,1,1,[1],1.3,-3.000000000000007,0,0.92,0.93 +1321,100,100,,1,1,[1],1.3,-2.9000000000000075,0,0.95,0.965 +1322,100,100,,1,1,[1],1.3,-2.800000000000008,0,0.93,0.945 +1323,100,100,,1,1,[1],1.3,-2.700000000000008,0,0.93,0.935 +1324,100,100,,1,1,[1],1.3,-2.6000000000000085,0,0.96,0.95 +1325,100,100,,1,1,[1],1.3,-2.500000000000009,0,0.89,0.905 +1326,100,100,,1,1,[1],1.3,-2.4000000000000092,0,0.89,0.925 +1327,100,100,,1,1,[1],1.3,-2.3000000000000096,0,0.86,0.9 +1328,100,100,,1,1,[1],1.3,-2.20000000000001,0,0.87,0.885 +1329,100,100,,1,1,[1],1.3,-2.1000000000000103,0,0.82,0.89 +1330,100,100,,1,1,[1],1.3,-2.0000000000000107,0,0.83,0.815 +1331,100,100,,1,1,[1],1.3,-1.900000000000011,0,0.86,0.86 +1332,100,100,,1,1,[1],1.3,-1.8000000000000114,0,0.71,0.825 +1333,100,100,,1,1,[1],1.3,-1.7000000000000117,0,0.79,0.815 +1334,100,100,,1,1,[1],1.3,-1.600000000000012,0,0.79,0.795 +1335,100,100,,1,1,[1],1.3,-1.5000000000000124,0,0.77,0.805 +1336,100,100,,1,1,[1],1.3,-1.4000000000000128,0,0.86,0.82 +1337,100,100,,1,1,[1],1.3,-1.3000000000000131,0,0.81,0.765 +1338,100,100,,1,1,[1],1.3,-1.2000000000000135,0,0.73,0.765 +1339,100,100,,1,1,[1],1.3,-1.1000000000000139,0,0.68,0.69 +1340,100,100,,1,1,[1],1.3,-1.0000000000000142,0,0.72,0.75 +1341,100,100,,1,1,[1],1.3,-0.9000000000000146,0,0.74,0.69 +1342,100,100,,1,1,[1],1.3,-0.8000000000000149,0,0.72,0.71 +1343,100,100,,1,1,[1],1.3,-0.7000000000000153,0,0.69,0.645 +1344,100,100,,1,1,[1],1.3,-0.6000000000000156,0,0.62,0.67 +1345,100,100,,1,1,[1],1.3,-0.500000000000016,0,0.76,0.66 +1346,100,100,,1,1,[1],1.3,-0.40000000000001634,0,0.69,0.585 +1347,100,100,,1,1,[1],1.3,-0.3000000000000167,0,0.64,0.64 +1348,100,100,,1,1,[1],1.3,-0.20000000000001705,0,0.7,0.49 +1349,100,100,,1,1,[1],1.3,-0.10000000000001741,0,0.74,0.51 +1350,100,100,,1,1,[1],1.3,-1.7763568394002505e-14,0,0.67,0.505 +1351,100,100,,1,1,[1],1.3,0.09999999999998188,0,0.7,0.52 +1352,100,100,,1,1,[1],1.3,0.19999999999998153,0,0.72,0.46 +1353,100,100,,1,1,[1],1.3,0.29999999999998117,0,0.73,0.485 +1354,100,100,,1,1,[1],1.3,0.3999999999999808,0,0.63,0.425 +1355,100,100,,1,1,[1],1.3,0.49999999999998046,0,0.6,0.42 +1356,100,100,,1,1,[1],1.3,0.5999999999999801,0,0.66,0.37 +1357,100,100,,1,1,[1],1.3,0.6999999999999797,0,0.68,0.4 +1358,100,100,,1,1,[1],1.3,0.7999999999999794,0,0.72,0.35 +1359,100,100,,1,1,[1],1.3,0.899999999999979,0,0.64,0.29 +1360,100,100,,1,1,[1],1.3,0.9999999999999787,0,0.69,0.345 +1361,100,100,,1,1,[1],1.3,1.0999999999999783,0,0.76,0.3 +1362,100,100,,1,1,[1],1.3,1.199999999999978,0,0.71,0.295 +1363,100,100,,1,1,[1],1.3,1.2999999999999776,0,0.77,0.245 +1364,100,100,,1,1,[1],1.3,1.3999999999999773,0,0.77,0.215 +1365,100,100,,1,1,[1],1.3,1.499999999999977,0,0.74,0.22 +1366,100,100,,1,1,[1],1.3,1.5999999999999766,0,0.77,0.195 +1367,100,100,,1,1,[1],1.3,1.6999999999999762,0,0.82,0.19 +1368,100,100,,1,1,[1],1.3,1.7999999999999758,0,0.82,0.13 +1369,100,100,,1,1,[1],1.3,1.8999999999999755,0,0.8,0.2 +1370,100,100,,1,1,[1],1.3,1.9999999999999751,0,0.85,0.105 +1371,100,100,,1,1,[1],1.3,2.0999999999999748,0,0.82,0.12 +1372,100,100,,1,1,[1],1.3,2.1999999999999744,0,0.86,0.13 +1373,100,100,,1,1,[1],1.3,2.299999999999974,0,0.85,0.115 +1374,100,100,,1,1,[1],1.3,2.3999999999999737,0,0.88,0.06 +1375,100,100,,1,1,[1],1.3,2.4999999999999734,0,0.87,0.065 +1376,100,100,,1,1,[1],1.3,2.599999999999973,0,0.89,0.085 +1377,100,100,,1,1,[1],1.3,2.6999999999999726,0,0.93,0.055 +1378,100,100,,1,1,[1],1.3,2.7999999999999723,0,0.92,0.08 +1379,100,100,,1,1,[1],1.3,2.899999999999972,0,0.91,0.055 +1380,100,100,,1,1,[1],1.3,2.9999999999999716,0,0.88,0.08 +1381,100,100,,1,1,[1],1.3,3.0999999999999712,0,0.91,0.055 +1382,100,100,,1,1,[1],1.3,3.199999999999971,0,0.96,0.03 +1383,100,100,,1,1,[1],1.3,3.2999999999999705,0,0.94,0.05 +1384,100,100,,1,1,[1],1.3,3.39999999999997,0,0.93,0.035 +1385,100,100,,1,1,[1],1.3,3.49999999999997,0,0.92,0.05 +1386,100,100,,1,1,[1],1.3,3.5999999999999694,0,0.95,0.035 +1387,100,100,,1,1,[1],1.3,3.699999999999969,0,0.96,0.03 +1388,100,100,,1,1,[1],1.3,3.7999999999999687,0,0.98,0.01 +1389,100,100,,1,1,[1],1.3,3.8999999999999684,0,0.95,0.035 +1390,100,100,,1,1,[1],1.3,3.999999999999968,0,0.97,0.015 +1391,100,100,,1,1,[1],1.3,4.099999999999968,0,0.97,0.015 +1392,100,100,,1,1,[1],1.3,4.199999999999967,0,0.95,0.025 +1393,100,100,,1,1,[1],1.3,4.299999999999967,0,1.0,0.0 +1394,100,100,,1,1,[1],1.3,4.399999999999967,0,1.0,0.0 +1395,100,100,,1,1,[1],1.3,4.499999999999966,0,0.99,0.015 +1396,100,100,,1,1,[1],1.3,4.599999999999966,0,0.98,0.01 +1397,100,100,,1,1,[1],1.3,4.6999999999999655,0,1.0,0.0 +1398,100,100,,1,1,[1],1.3,4.799999999999965,0,0.98,0.01 +1399,100,100,,1,1,[1],1.3,4.899999999999965,0,0.99,0.005 +1400,100,100,,1,1,[1],1.4000000000000001,-5.0,0,1.0,1.0 +1401,100,100,,1,1,[1],1.4000000000000001,-4.9,0,0.98,0.99 +1402,100,100,,1,1,[1],1.4000000000000001,-4.800000000000001,0,0.99,0.995 +1403,100,100,,1,1,[1],1.4000000000000001,-4.700000000000001,0,0.99,0.995 +1404,100,100,,1,1,[1],1.4000000000000001,-4.600000000000001,0,1.0,1.0 +1405,100,100,,1,1,[1],1.4000000000000001,-4.500000000000002,0,0.97,0.985 +1406,100,100,,1,1,[1],1.4000000000000001,-4.400000000000002,0,0.98,0.99 +1407,100,100,,1,1,[1],1.4000000000000001,-4.3000000000000025,0,0.98,0.98 +1408,100,100,,1,1,[1],1.4000000000000001,-4.200000000000003,0,0.97,0.985 +1409,100,100,,1,1,[1],1.4000000000000001,-4.100000000000003,0,0.97,0.985 +1410,100,100,,1,1,[1],1.4000000000000001,-4.0000000000000036,0,0.98,0.99 +1411,100,100,,1,1,[1],1.4000000000000001,-3.900000000000004,0,0.98,0.99 +1412,100,100,,1,1,[1],1.4000000000000001,-3.8000000000000043,0,0.96,0.98 +1413,100,100,,1,1,[1],1.4000000000000001,-3.7000000000000046,0,0.97,0.985 +1414,100,100,,1,1,[1],1.4000000000000001,-3.600000000000005,0,0.92,0.94 +1415,100,100,,1,1,[1],1.4000000000000001,-3.5000000000000053,0,0.93,0.965 +1416,100,100,,1,1,[1],1.4000000000000001,-3.4000000000000057,0,0.97,0.985 +1417,100,100,,1,1,[1],1.4000000000000001,-3.300000000000006,0,0.96,0.97 +1418,100,100,,1,1,[1],1.4000000000000001,-3.2000000000000064,0,0.96,0.97 +1419,100,100,,1,1,[1],1.4000000000000001,-3.1000000000000068,0,0.96,0.97 +1420,100,100,,1,1,[1],1.4000000000000001,-3.000000000000007,0,0.93,0.935 +1421,100,100,,1,1,[1],1.4000000000000001,-2.9000000000000075,0,0.93,0.955 +1422,100,100,,1,1,[1],1.4000000000000001,-2.800000000000008,0,0.89,0.905 +1423,100,100,,1,1,[1],1.4000000000000001,-2.700000000000008,0,0.91,0.935 +1424,100,100,,1,1,[1],1.4000000000000001,-2.6000000000000085,0,0.93,0.925 +1425,100,100,,1,1,[1],1.4000000000000001,-2.500000000000009,0,0.81,0.865 +1426,100,100,,1,1,[1],1.4000000000000001,-2.4000000000000092,0,0.87,0.855 +1427,100,100,,1,1,[1],1.4000000000000001,-2.3000000000000096,0,0.85,0.885 +1428,100,100,,1,1,[1],1.4000000000000001,-2.20000000000001,0,0.81,0.875 +1429,100,100,,1,1,[1],1.4000000000000001,-2.1000000000000103,0,0.77,0.835 +1430,100,100,,1,1,[1],1.4000000000000001,-2.0000000000000107,0,0.81,0.815 +1431,100,100,,1,1,[1],1.4000000000000001,-1.900000000000011,0,0.79,0.765 +1432,100,100,,1,1,[1],1.4000000000000001,-1.8000000000000114,0,0.84,0.86 +1433,100,100,,1,1,[1],1.4000000000000001,-1.7000000000000117,0,0.82,0.81 +1434,100,100,,1,1,[1],1.4000000000000001,-1.600000000000012,0,0.67,0.775 +1435,100,100,,1,1,[1],1.4000000000000001,-1.5000000000000124,0,0.74,0.76 +1436,100,100,,1,1,[1],1.4000000000000001,-1.4000000000000128,0,0.74,0.75 +1437,100,100,,1,1,[1],1.4000000000000001,-1.3000000000000131,0,0.7,0.71 +1438,100,100,,1,1,[1],1.4000000000000001,-1.2000000000000135,0,0.78,0.8 +1439,100,100,,1,1,[1],1.4000000000000001,-1.1000000000000139,0,0.66,0.63 +1440,100,100,,1,1,[1],1.4000000000000001,-1.0000000000000142,0,0.72,0.7 +1441,100,100,,1,1,[1],1.4000000000000001,-0.9000000000000146,0,0.79,0.685 +1442,100,100,,1,1,[1],1.4000000000000001,-0.8000000000000149,0,0.7,0.61 +1443,100,100,,1,1,[1],1.4000000000000001,-0.7000000000000153,0,0.7,0.55 +1444,100,100,,1,1,[1],1.4000000000000001,-0.6000000000000156,0,0.64,0.62 +1445,100,100,,1,1,[1],1.4000000000000001,-0.500000000000016,0,0.65,0.605 +1446,100,100,,1,1,[1],1.4000000000000001,-0.40000000000001634,0,0.6,0.56 +1447,100,100,,1,1,[1],1.4000000000000001,-0.3000000000000167,0,0.59,0.445 +1448,100,100,,1,1,[1],1.4000000000000001,-0.20000000000001705,0,0.62,0.48 +1449,100,100,,1,1,[1],1.4000000000000001,-0.10000000000001741,0,0.65,0.585 +1450,100,100,,1,1,[1],1.4000000000000001,-1.7763568394002505e-14,0,0.69,0.515 +1451,100,100,,1,1,[1],1.4000000000000001,0.09999999999998188,0,0.66,0.51 +1452,100,100,,1,1,[1],1.4000000000000001,0.19999999999998153,0,0.68,0.45 +1453,100,100,,1,1,[1],1.4000000000000001,0.29999999999998117,0,0.68,0.44 +1454,100,100,,1,1,[1],1.4000000000000001,0.3999999999999808,0,0.69,0.415 +1455,100,100,,1,1,[1],1.4000000000000001,0.49999999999998046,0,0.66,0.37 +1456,100,100,,1,1,[1],1.4000000000000001,0.5999999999999801,0,0.71,0.345 +1457,100,100,,1,1,[1],1.4000000000000001,0.6999999999999797,0,0.73,0.355 +1458,100,100,,1,1,[1],1.4000000000000001,0.7999999999999794,0,0.65,0.355 +1459,100,100,,1,1,[1],1.4000000000000001,0.899999999999979,0,0.71,0.345 +1460,100,100,,1,1,[1],1.4000000000000001,0.9999999999999787,0,0.69,0.265 +1461,100,100,,1,1,[1],1.4000000000000001,1.0999999999999783,0,0.67,0.365 +1462,100,100,,1,1,[1],1.4000000000000001,1.199999999999978,0,0.78,0.27 +1463,100,100,,1,1,[1],1.4000000000000001,1.2999999999999776,0,0.9,0.2 +1464,100,100,,1,1,[1],1.4000000000000001,1.3999999999999773,0,0.8,0.23 +1465,100,100,,1,1,[1],1.4000000000000001,1.499999999999977,0,0.72,0.2 +1466,100,100,,1,1,[1],1.4000000000000001,1.5999999999999766,0,0.8,0.17 +1467,100,100,,1,1,[1],1.4000000000000001,1.6999999999999762,0,0.82,0.2 +1468,100,100,,1,1,[1],1.4000000000000001,1.7999999999999758,0,0.82,0.16 +1469,100,100,,1,1,[1],1.4000000000000001,1.8999999999999755,0,0.82,0.13 +1470,100,100,,1,1,[1],1.4000000000000001,1.9999999999999751,0,0.84,0.13 +1471,100,100,,1,1,[1],1.4000000000000001,2.0999999999999748,0,0.89,0.115 +1472,100,100,,1,1,[1],1.4000000000000001,2.1999999999999744,0,0.93,0.055 +1473,100,100,,1,1,[1],1.4000000000000001,2.299999999999974,0,0.87,0.125 +1474,100,100,,1,1,[1],1.4000000000000001,2.3999999999999737,0,0.83,0.125 +1475,100,100,,1,1,[1],1.4000000000000001,2.4999999999999734,0,0.81,0.115 +1476,100,100,,1,1,[1],1.4000000000000001,2.599999999999973,0,0.86,0.08 +1477,100,100,,1,1,[1],1.4000000000000001,2.6999999999999726,0,0.87,0.095 +1478,100,100,,1,1,[1],1.4000000000000001,2.7999999999999723,0,0.94,0.04 +1479,100,100,,1,1,[1],1.4000000000000001,2.899999999999972,0,0.91,0.085 +1480,100,100,,1,1,[1],1.4000000000000001,2.9999999999999716,0,0.93,0.065 +1481,100,100,,1,1,[1],1.4000000000000001,3.0999999999999712,0,0.91,0.055 +1482,100,100,,1,1,[1],1.4000000000000001,3.199999999999971,0,0.9,0.05 +1483,100,100,,1,1,[1],1.4000000000000001,3.2999999999999705,0,0.87,0.075 +1484,100,100,,1,1,[1],1.4000000000000001,3.39999999999997,0,0.96,0.02 +1485,100,100,,1,1,[1],1.4000000000000001,3.49999999999997,0,0.95,0.035 +1486,100,100,,1,1,[1],1.4000000000000001,3.5999999999999694,0,0.92,0.05 +1487,100,100,,1,1,[1],1.4000000000000001,3.699999999999969,0,0.98,0.04 +1488,100,100,,1,1,[1],1.4000000000000001,3.7999999999999687,0,0.95,0.025 +1489,100,100,,1,1,[1],1.4000000000000001,3.8999999999999684,0,0.97,0.025 +1490,100,100,,1,1,[1],1.4000000000000001,3.999999999999968,0,0.96,0.02 +1491,100,100,,1,1,[1],1.4000000000000001,4.099999999999968,0,0.96,0.03 +1492,100,100,,1,1,[1],1.4000000000000001,4.199999999999967,0,0.95,0.025 +1493,100,100,,1,1,[1],1.4000000000000001,4.299999999999967,0,0.95,0.025 +1494,100,100,,1,1,[1],1.4000000000000001,4.399999999999967,0,0.97,0.015 +1495,100,100,,1,1,[1],1.4000000000000001,4.499999999999966,0,0.99,0.005 +1496,100,100,,1,1,[1],1.4000000000000001,4.599999999999966,0,0.99,0.005 +1497,100,100,,1,1,[1],1.4000000000000001,4.6999999999999655,0,0.99,0.005 +1498,100,100,,1,1,[1],1.4000000000000001,4.799999999999965,0,0.97,0.015 +1499,100,100,,1,1,[1],1.4000000000000001,4.899999999999965,0,0.99,0.005 +1500,100,100,,1,1,[1],1.5,-5.0,0,1.0,1.0 +1501,100,100,,1,1,[1],1.5,-4.9,0,1.0,1.0 +1502,100,100,,1,1,[1],1.5,-4.800000000000001,0,0.97,0.985 +1503,100,100,,1,1,[1],1.5,-4.700000000000001,0,0.95,0.975 +1504,100,100,,1,1,[1],1.5,-4.600000000000001,0,0.98,0.99 +1505,100,100,,1,1,[1],1.5,-4.500000000000002,0,0.97,0.985 +1506,100,100,,1,1,[1],1.5,-4.400000000000002,0,0.97,0.975 +1507,100,100,,1,1,[1],1.5,-4.3000000000000025,0,0.98,0.99 +1508,100,100,,1,1,[1],1.5,-4.200000000000003,0,0.98,0.98 +1509,100,100,,1,1,[1],1.5,-4.100000000000003,0,0.98,0.99 +1510,100,100,,1,1,[1],1.5,-4.0000000000000036,0,0.94,0.96 +1511,100,100,,1,1,[1],1.5,-3.900000000000004,0,0.96,0.98 +1512,100,100,,1,1,[1],1.5,-3.8000000000000043,0,0.94,0.97 +1513,100,100,,1,1,[1],1.5,-3.7000000000000046,0,0.97,0.965 +1514,100,100,,1,1,[1],1.5,-3.600000000000005,0,0.91,0.945 +1515,100,100,,1,1,[1],1.5,-3.5000000000000053,0,0.89,0.945 +1516,100,100,,1,1,[1],1.5,-3.4000000000000057,0,0.9,0.95 +1517,100,100,,1,1,[1],1.5,-3.300000000000006,0,0.96,0.97 +1518,100,100,,1,1,[1],1.5,-3.2000000000000064,0,0.94,0.96 +1519,100,100,,1,1,[1],1.5,-3.1000000000000068,0,0.89,0.935 +1520,100,100,,1,1,[1],1.5,-3.000000000000007,0,0.88,0.93 +1521,100,100,,1,1,[1],1.5,-2.9000000000000075,0,0.88,0.92 +1522,100,100,,1,1,[1],1.5,-2.800000000000008,0,0.88,0.92 +1523,100,100,,1,1,[1],1.5,-2.700000000000008,0,0.81,0.855 +1524,100,100,,1,1,[1],1.5,-2.6000000000000085,0,0.88,0.85 +1525,100,100,,1,1,[1],1.5,-2.500000000000009,0,0.87,0.905 +1526,100,100,,1,1,[1],1.5,-2.4000000000000092,0,0.82,0.85 +1527,100,100,,1,1,[1],1.5,-2.3000000000000096,0,0.82,0.87 +1528,100,100,,1,1,[1],1.5,-2.20000000000001,0,0.87,0.905 +1529,100,100,,1,1,[1],1.5,-2.1000000000000103,0,0.78,0.85 +1530,100,100,,1,1,[1],1.5,-2.0000000000000107,0,0.81,0.815 +1531,100,100,,1,1,[1],1.5,-1.900000000000011,0,0.76,0.83 +1532,100,100,,1,1,[1],1.5,-1.8000000000000114,0,0.8,0.78 +1533,100,100,,1,1,[1],1.5,-1.7000000000000117,0,0.79,0.775 +1534,100,100,,1,1,[1],1.5,-1.600000000000012,0,0.72,0.74 +1535,100,100,,1,1,[1],1.5,-1.5000000000000124,0,0.81,0.785 +1536,100,100,,1,1,[1],1.5,-1.4000000000000128,0,0.71,0.765 +1537,100,100,,1,1,[1],1.5,-1.3000000000000131,0,0.72,0.72 +1538,100,100,,1,1,[1],1.5,-1.2000000000000135,0,0.81,0.815 +1539,100,100,,1,1,[1],1.5,-1.1000000000000139,0,0.75,0.715 +1540,100,100,,1,1,[1],1.5,-1.0000000000000142,0,0.7,0.71 +1541,100,100,,1,1,[1],1.5,-0.9000000000000146,0,0.7,0.65 +1542,100,100,,1,1,[1],1.5,-0.8000000000000149,0,0.64,0.62 +1543,100,100,,1,1,[1],1.5,-0.7000000000000153,0,0.7,0.64 +1544,100,100,,1,1,[1],1.5,-0.6000000000000156,0,0.64,0.58 +1545,100,100,,1,1,[1],1.5,-0.500000000000016,0,0.72,0.61 +1546,100,100,,1,1,[1],1.5,-0.40000000000001634,0,0.72,0.54 +1547,100,100,,1,1,[1],1.5,-0.3000000000000167,0,0.76,0.59 +1548,100,100,,1,1,[1],1.5,-0.20000000000001705,0,0.56,0.58 +1549,100,100,,1,1,[1],1.5,-0.10000000000001741,0,0.63,0.545 +1550,100,100,,1,1,[1],1.5,-1.7763568394002505e-14,0,0.61,0.545 +1551,100,100,,1,1,[1],1.5,0.09999999999998188,0,0.68,0.4 +1552,100,100,,1,1,[1],1.5,0.19999999999998153,0,0.71,0.395 +1553,100,100,,1,1,[1],1.5,0.29999999999998117,0,0.62,0.46 +1554,100,100,,1,1,[1],1.5,0.3999999999999808,0,0.71,0.355 +1555,100,100,,1,1,[1],1.5,0.49999999999998046,0,0.7,0.4 +1556,100,100,,1,1,[1],1.5,0.5999999999999801,0,0.71,0.385 +1557,100,100,,1,1,[1],1.5,0.6999999999999797,0,0.67,0.385 +1558,100,100,,1,1,[1],1.5,0.7999999999999794,0,0.7,0.32 +1559,100,100,,1,1,[1],1.5,0.899999999999979,0,0.7,0.31 +1560,100,100,,1,1,[1],1.5,0.9999999999999787,0,0.77,0.305 +1561,100,100,,1,1,[1],1.5,1.0999999999999783,0,0.75,0.225 +1562,100,100,,1,1,[1],1.5,1.199999999999978,0,0.65,0.315 +1563,100,100,,1,1,[1],1.5,1.2999999999999776,0,0.72,0.24 +1564,100,100,,1,1,[1],1.5,1.3999999999999773,0,0.74,0.26 +1565,100,100,,1,1,[1],1.5,1.499999999999977,0,0.75,0.225 +1566,100,100,,1,1,[1],1.5,1.5999999999999766,0,0.81,0.195 +1567,100,100,,1,1,[1],1.5,1.6999999999999762,0,0.79,0.145 +1568,100,100,,1,1,[1],1.5,1.7999999999999758,0,0.75,0.195 +1569,100,100,,1,1,[1],1.5,1.8999999999999755,0,0.78,0.16 +1570,100,100,,1,1,[1],1.5,1.9999999999999751,0,0.73,0.195 +1571,100,100,,1,1,[1],1.5,2.0999999999999748,0,0.78,0.17 +1572,100,100,,1,1,[1],1.5,2.1999999999999744,0,0.81,0.115 +1573,100,100,,1,1,[1],1.5,2.299999999999974,0,0.86,0.15 +1574,100,100,,1,1,[1],1.5,2.3999999999999737,0,0.84,0.12 +1575,100,100,,1,1,[1],1.5,2.4999999999999734,0,0.82,0.17 +1576,100,100,,1,1,[1],1.5,2.599999999999973,0,0.86,0.16 +1577,100,100,,1,1,[1],1.5,2.6999999999999726,0,0.9,0.07 +1578,100,100,,1,1,[1],1.5,2.7999999999999723,0,0.85,0.125 +1579,100,100,,1,1,[1],1.5,2.899999999999972,0,0.88,0.07 +1580,100,100,,1,1,[1],1.5,2.9999999999999716,0,0.84,0.08 +1581,100,100,,1,1,[1],1.5,3.0999999999999712,0,0.86,0.09 +1582,100,100,,1,1,[1],1.5,3.199999999999971,0,0.96,0.04 +1583,100,100,,1,1,[1],1.5,3.2999999999999705,0,0.93,0.075 +1584,100,100,,1,1,[1],1.5,3.39999999999997,0,0.95,0.055 +1585,100,100,,1,1,[1],1.5,3.49999999999997,0,0.97,0.015 +1586,100,100,,1,1,[1],1.5,3.5999999999999694,0,0.95,0.045 +1587,100,100,,1,1,[1],1.5,3.699999999999969,0,0.95,0.045 +1588,100,100,,1,1,[1],1.5,3.7999999999999687,0,0.93,0.045 +1589,100,100,,1,1,[1],1.5,3.8999999999999684,0,0.97,0.015 +1590,100,100,,1,1,[1],1.5,3.999999999999968,0,0.96,0.03 +1591,100,100,,1,1,[1],1.5,4.099999999999968,0,0.96,0.03 +1592,100,100,,1,1,[1],1.5,4.199999999999967,0,0.98,0.01 +1593,100,100,,1,1,[1],1.5,4.299999999999967,0,0.96,0.02 +1594,100,100,,1,1,[1],1.5,4.399999999999967,0,0.94,0.03 +1595,100,100,,1,1,[1],1.5,4.499999999999966,0,0.97,0.015 +1596,100,100,,1,1,[1],1.5,4.599999999999966,0,0.97,0.015 +1597,100,100,,1,1,[1],1.5,4.6999999999999655,0,0.99,0.005 +1598,100,100,,1,1,[1],1.5,4.799999999999965,0,1.0,0.0 +1599,100,100,,1,1,[1],1.5,4.899999999999965,0,0.99,0.005 +1600,100,100,,1,1,[1],1.6,-5.0,0,0.98,0.99 +1601,100,100,,1,1,[1],1.6,-4.9,0,0.99,0.995 +1602,100,100,,1,1,[1],1.6,-4.800000000000001,0,0.97,0.985 +1603,100,100,,1,1,[1],1.6,-4.700000000000001,0,0.98,0.99 +1604,100,100,,1,1,[1],1.6,-4.600000000000001,0,0.99,0.985 +1605,100,100,,1,1,[1],1.6,-4.500000000000002,0,0.99,0.995 +1606,100,100,,1,1,[1],1.6,-4.400000000000002,0,0.94,0.95 +1607,100,100,,1,1,[1],1.6,-4.3000000000000025,0,0.97,0.985 +1608,100,100,,1,1,[1],1.6,-4.200000000000003,0,0.97,0.985 +1609,100,100,,1,1,[1],1.6,-4.100000000000003,0,0.97,0.985 +1610,100,100,,1,1,[1],1.6,-4.0000000000000036,0,0.99,0.995 +1611,100,100,,1,1,[1],1.6,-3.900000000000004,0,0.91,0.955 +1612,100,100,,1,1,[1],1.6,-3.8000000000000043,0,0.98,0.99 +1613,100,100,,1,1,[1],1.6,-3.7000000000000046,0,0.92,0.96 +1614,100,100,,1,1,[1],1.6,-3.600000000000005,0,0.97,0.985 +1615,100,100,,1,1,[1],1.6,-3.5000000000000053,0,0.91,0.945 +1616,100,100,,1,1,[1],1.6,-3.4000000000000057,0,0.93,0.955 +1617,100,100,,1,1,[1],1.6,-3.300000000000006,0,0.88,0.9 +1618,100,100,,1,1,[1],1.6,-3.2000000000000064,0,0.94,0.96 +1619,100,100,,1,1,[1],1.6,-3.1000000000000068,0,0.88,0.93 +1620,100,100,,1,1,[1],1.6,-3.000000000000007,0,0.87,0.915 +1621,100,100,,1,1,[1],1.6,-2.9000000000000075,0,0.91,0.925 +1622,100,100,,1,1,[1],1.6,-2.800000000000008,0,0.78,0.88 +1623,100,100,,1,1,[1],1.6,-2.700000000000008,0,0.82,0.87 +1624,100,100,,1,1,[1],1.6,-2.6000000000000085,0,0.89,0.905 +1625,100,100,,1,1,[1],1.6,-2.500000000000009,0,0.83,0.865 +1626,100,100,,1,1,[1],1.6,-2.4000000000000092,0,0.82,0.83 +1627,100,100,,1,1,[1],1.6,-2.3000000000000096,0,0.86,0.85 +1628,100,100,,1,1,[1],1.6,-2.20000000000001,0,0.81,0.845 +1629,100,100,,1,1,[1],1.6,-2.1000000000000103,0,0.77,0.845 +1630,100,100,,1,1,[1],1.6,-2.0000000000000107,0,0.81,0.825 +1631,100,100,,1,1,[1],1.6,-1.900000000000011,0,0.73,0.735 +1632,100,100,,1,1,[1],1.6,-1.8000000000000114,0,0.76,0.78 +1633,100,100,,1,1,[1],1.6,-1.7000000000000117,0,0.75,0.805 +1634,100,100,,1,1,[1],1.6,-1.600000000000012,0,0.75,0.745 +1635,100,100,,1,1,[1],1.6,-1.5000000000000124,0,0.63,0.745 +1636,100,100,,1,1,[1],1.6,-1.4000000000000128,0,0.75,0.785 +1637,100,100,,1,1,[1],1.6,-1.3000000000000131,0,0.65,0.695 +1638,100,100,,1,1,[1],1.6,-1.2000000000000135,0,0.73,0.745 +1639,100,100,,1,1,[1],1.6,-1.1000000000000139,0,0.7,0.69 +1640,100,100,,1,1,[1],1.6,-1.0000000000000142,0,0.71,0.625 +1641,100,100,,1,1,[1],1.6,-0.9000000000000146,0,0.57,0.615 +1642,100,100,,1,1,[1],1.6,-0.8000000000000149,0,0.53,0.615 +1643,100,100,,1,1,[1],1.6,-0.7000000000000153,0,0.65,0.635 +1644,100,100,,1,1,[1],1.6,-0.6000000000000156,0,0.64,0.62 +1645,100,100,,1,1,[1],1.6,-0.500000000000016,0,0.64,0.51 +1646,100,100,,1,1,[1],1.6,-0.40000000000001634,0,0.69,0.655 +1647,100,100,,1,1,[1],1.6,-0.3000000000000167,0,0.65,0.595 +1648,100,100,,1,1,[1],1.6,-0.20000000000001705,0,0.64,0.51 +1649,100,100,,1,1,[1],1.6,-0.10000000000001741,0,0.64,0.5 +1650,100,100,,1,1,[1],1.6,-1.7763568394002505e-14,0,0.6,0.54 +1651,100,100,,1,1,[1],1.6,0.09999999999998188,0,0.65,0.455 +1652,100,100,,1,1,[1],1.6,0.19999999999998153,0,0.63,0.445 +1653,100,100,,1,1,[1],1.6,0.29999999999998117,0,0.6,0.39 +1654,100,100,,1,1,[1],1.6,0.3999999999999808,0,0.68,0.44 +1655,100,100,,1,1,[1],1.6,0.49999999999998046,0,0.63,0.445 +1656,100,100,,1,1,[1],1.6,0.5999999999999801,0,0.72,0.39 +1657,100,100,,1,1,[1],1.6,0.6999999999999797,0,0.7,0.36 +1658,100,100,,1,1,[1],1.6,0.7999999999999794,0,0.67,0.355 +1659,100,100,,1,1,[1],1.6,0.899999999999979,0,0.69,0.415 +1660,100,100,,1,1,[1],1.6,0.9999999999999787,0,0.65,0.345 +1661,100,100,,1,1,[1],1.6,1.0999999999999783,0,0.68,0.32 +1662,100,100,,1,1,[1],1.6,1.199999999999978,0,0.67,0.285 +1663,100,100,,1,1,[1],1.6,1.2999999999999776,0,0.82,0.26 +1664,100,100,,1,1,[1],1.6,1.3999999999999773,0,0.63,0.295 +1665,100,100,,1,1,[1],1.6,1.499999999999977,0,0.68,0.25 +1666,100,100,,1,1,[1],1.6,1.5999999999999766,0,0.7,0.27 +1667,100,100,,1,1,[1],1.6,1.6999999999999762,0,0.73,0.185 +1668,100,100,,1,1,[1],1.6,1.7999999999999758,0,0.73,0.185 +1669,100,100,,1,1,[1],1.6,1.8999999999999755,0,0.81,0.215 +1670,100,100,,1,1,[1],1.6,1.9999999999999751,0,0.73,0.265 +1671,100,100,,1,1,[1],1.6,2.0999999999999748,0,0.79,0.195 +1672,100,100,,1,1,[1],1.6,2.1999999999999744,0,0.85,0.135 +1673,100,100,,1,1,[1],1.6,2.299999999999974,0,0.8,0.17 +1674,100,100,,1,1,[1],1.6,2.3999999999999737,0,0.87,0.095 +1675,100,100,,1,1,[1],1.6,2.4999999999999734,0,0.8,0.13 +1676,100,100,,1,1,[1],1.6,2.599999999999973,0,0.84,0.13 +1677,100,100,,1,1,[1],1.6,2.6999999999999726,0,0.89,0.085 +1678,100,100,,1,1,[1],1.6,2.7999999999999723,0,0.88,0.11 +1679,100,100,,1,1,[1],1.6,2.899999999999972,0,0.76,0.15 +1680,100,100,,1,1,[1],1.6,2.9999999999999716,0,0.87,0.085 +1681,100,100,,1,1,[1],1.6,3.0999999999999712,0,0.9,0.05 +1682,100,100,,1,1,[1],1.6,3.199999999999971,0,0.92,0.09 +1683,100,100,,1,1,[1],1.6,3.2999999999999705,0,0.89,0.055 +1684,100,100,,1,1,[1],1.6,3.39999999999997,0,0.93,0.045 +1685,100,100,,1,1,[1],1.6,3.49999999999997,0,0.95,0.025 +1686,100,100,,1,1,[1],1.6,3.5999999999999694,0,0.91,0.065 +1687,100,100,,1,1,[1],1.6,3.699999999999969,0,0.92,0.04 +1688,100,100,,1,1,[1],1.6,3.7999999999999687,0,0.96,0.03 +1689,100,100,,1,1,[1],1.6,3.8999999999999684,0,0.93,0.035 +1690,100,100,,1,1,[1],1.6,3.999999999999968,0,0.99,0.005 +1691,100,100,,1,1,[1],1.6,4.099999999999968,0,0.99,0.015 +1692,100,100,,1,1,[1],1.6,4.199999999999967,0,1.0,0.0 +1693,100,100,,1,1,[1],1.6,4.299999999999967,0,0.97,0.015 +1694,100,100,,1,1,[1],1.6,4.399999999999967,0,0.96,0.04 +1695,100,100,,1,1,[1],1.6,4.499999999999966,0,0.97,0.015 +1696,100,100,,1,1,[1],1.6,4.599999999999966,0,0.95,0.025 +1697,100,100,,1,1,[1],1.6,4.6999999999999655,0,0.98,0.01 +1698,100,100,,1,1,[1],1.6,4.799999999999965,0,0.97,0.015 +1699,100,100,,1,1,[1],1.6,4.899999999999965,0,0.98,0.02 +1700,100,100,,1,1,[1],1.7000000000000002,-5.0,0,0.97,0.985 +1701,100,100,,1,1,[1],1.7000000000000002,-4.9,0,0.98,0.98 +1702,100,100,,1,1,[1],1.7000000000000002,-4.800000000000001,0,0.96,0.98 +1703,100,100,,1,1,[1],1.7000000000000002,-4.700000000000001,0,0.94,0.97 +1704,100,100,,1,1,[1],1.7000000000000002,-4.600000000000001,0,0.93,0.965 +1705,100,100,,1,1,[1],1.7000000000000002,-4.500000000000002,0,0.95,0.975 +1706,100,100,,1,1,[1],1.7000000000000002,-4.400000000000002,0,0.96,0.98 +1707,100,100,,1,1,[1],1.7000000000000002,-4.3000000000000025,0,0.94,0.97 +1708,100,100,,1,1,[1],1.7000000000000002,-4.200000000000003,0,0.95,0.965 +1709,100,100,,1,1,[1],1.7000000000000002,-4.100000000000003,0,0.97,0.975 +1710,100,100,,1,1,[1],1.7000000000000002,-4.0000000000000036,0,0.96,0.97 +1711,100,100,,1,1,[1],1.7000000000000002,-3.900000000000004,0,0.97,0.985 +1712,100,100,,1,1,[1],1.7000000000000002,-3.8000000000000043,0,0.94,0.94 +1713,100,100,,1,1,[1],1.7000000000000002,-3.7000000000000046,0,0.93,0.955 +1714,100,100,,1,1,[1],1.7000000000000002,-3.600000000000005,0,0.88,0.94 +1715,100,100,,1,1,[1],1.7000000000000002,-3.5000000000000053,0,0.91,0.955 +1716,100,100,,1,1,[1],1.7000000000000002,-3.4000000000000057,0,0.91,0.945 +1717,100,100,,1,1,[1],1.7000000000000002,-3.300000000000006,0,0.94,0.95 +1718,100,100,,1,1,[1],1.7000000000000002,-3.2000000000000064,0,0.92,0.95 +1719,100,100,,1,1,[1],1.7000000000000002,-3.1000000000000068,0,0.91,0.925 +1720,100,100,,1,1,[1],1.7000000000000002,-3.000000000000007,0,0.9,0.93 +1721,100,100,,1,1,[1],1.7000000000000002,-2.9000000000000075,0,0.9,0.93 +1722,100,100,,1,1,[1],1.7000000000000002,-2.800000000000008,0,0.8,0.87 +1723,100,100,,1,1,[1],1.7000000000000002,-2.700000000000008,0,0.8,0.87 +1724,100,100,,1,1,[1],1.7000000000000002,-2.6000000000000085,0,0.78,0.86 +1725,100,100,,1,1,[1],1.7000000000000002,-2.500000000000009,0,0.86,0.9 +1726,100,100,,1,1,[1],1.7000000000000002,-2.4000000000000092,0,0.77,0.835 +1727,100,100,,1,1,[1],1.7000000000000002,-2.3000000000000096,0,0.83,0.855 +1728,100,100,,1,1,[1],1.7000000000000002,-2.20000000000001,0,0.76,0.79 +1729,100,100,,1,1,[1],1.7000000000000002,-2.1000000000000103,0,0.78,0.81 +1730,100,100,,1,1,[1],1.7000000000000002,-2.0000000000000107,0,0.79,0.835 +1731,100,100,,1,1,[1],1.7000000000000002,-1.900000000000011,0,0.76,0.83 +1732,100,100,,1,1,[1],1.7000000000000002,-1.8000000000000114,0,0.79,0.815 +1733,100,100,,1,1,[1],1.7000000000000002,-1.7000000000000117,0,0.68,0.69 +1734,100,100,,1,1,[1],1.7000000000000002,-1.600000000000012,0,0.7,0.74 +1735,100,100,,1,1,[1],1.7000000000000002,-1.5000000000000124,0,0.73,0.775 +1736,100,100,,1,1,[1],1.7000000000000002,-1.4000000000000128,0,0.68,0.69 +1737,100,100,,1,1,[1],1.7000000000000002,-1.3000000000000131,0,0.64,0.68 +1738,100,100,,1,1,[1],1.7000000000000002,-1.2000000000000135,0,0.76,0.69 +1739,100,100,,1,1,[1],1.7000000000000002,-1.1000000000000139,0,0.69,0.655 +1740,100,100,,1,1,[1],1.7000000000000002,-1.0000000000000142,0,0.6,0.68 +1741,100,100,,1,1,[1],1.7000000000000002,-0.9000000000000146,0,0.6,0.58 +1742,100,100,,1,1,[1],1.7000000000000002,-0.8000000000000149,0,0.73,0.675 +1743,100,100,,1,1,[1],1.7000000000000002,-0.7000000000000153,0,0.65,0.695 +1744,100,100,,1,1,[1],1.7000000000000002,-0.6000000000000156,0,0.69,0.665 +1745,100,100,,1,1,[1],1.7000000000000002,-0.500000000000016,0,0.66,0.55 +1746,100,100,,1,1,[1],1.7000000000000002,-0.40000000000001634,0,0.61,0.535 +1747,100,100,,1,1,[1],1.7000000000000002,-0.3000000000000167,0,0.58,0.61 +1748,100,100,,1,1,[1],1.7000000000000002,-0.20000000000001705,0,0.55,0.505 +1749,100,100,,1,1,[1],1.7000000000000002,-0.10000000000001741,0,0.69,0.525 +1750,100,100,,1,1,[1],1.7000000000000002,-1.7763568394002505e-14,0,0.68,0.48 +1751,100,100,,1,1,[1],1.7000000000000002,0.09999999999998188,0,0.71,0.515 +1752,100,100,,1,1,[1],1.7000000000000002,0.19999999999998153,0,0.66,0.52 +1753,100,100,,1,1,[1],1.7000000000000002,0.29999999999998117,0,0.66,0.48 +1754,100,100,,1,1,[1],1.7000000000000002,0.3999999999999808,0,0.68,0.46 +1755,100,100,,1,1,[1],1.7000000000000002,0.49999999999998046,0,0.72,0.45 +1756,100,100,,1,1,[1],1.7000000000000002,0.5999999999999801,0,0.64,0.43 +1757,100,100,,1,1,[1],1.7000000000000002,0.6999999999999797,0,0.7,0.37 +1758,100,100,,1,1,[1],1.7000000000000002,0.7999999999999794,0,0.67,0.345 +1759,100,100,,1,1,[1],1.7000000000000002,0.899999999999979,0,0.7,0.33 +1760,100,100,,1,1,[1],1.7000000000000002,0.9999999999999787,0,0.66,0.3 +1761,100,100,,1,1,[1],1.7000000000000002,1.0999999999999783,0,0.68,0.28 +1762,100,100,,1,1,[1],1.7000000000000002,1.199999999999978,0,0.65,0.295 +1763,100,100,,1,1,[1],1.7000000000000002,1.2999999999999776,0,0.68,0.33 +1764,100,100,,1,1,[1],1.7000000000000002,1.3999999999999773,0,0.68,0.32 +1765,100,100,,1,1,[1],1.7000000000000002,1.499999999999977,0,0.69,0.265 +1766,100,100,,1,1,[1],1.7000000000000002,1.5999999999999766,0,0.76,0.25 +1767,100,100,,1,1,[1],1.7000000000000002,1.6999999999999762,0,0.7,0.21 +1768,100,100,,1,1,[1],1.7000000000000002,1.7999999999999758,0,0.7,0.18 +1769,100,100,,1,1,[1],1.7000000000000002,1.8999999999999755,0,0.78,0.2 +1770,100,100,,1,1,[1],1.7000000000000002,1.9999999999999751,0,0.84,0.1 +1771,100,100,,1,1,[1],1.7000000000000002,2.0999999999999748,0,0.78,0.22 +1772,100,100,,1,1,[1],1.7000000000000002,2.1999999999999744,0,0.8,0.16 +1773,100,100,,1,1,[1],1.7000000000000002,2.299999999999974,0,0.77,0.175 +1774,100,100,,1,1,[1],1.7000000000000002,2.3999999999999737,0,0.77,0.145 +1775,100,100,,1,1,[1],1.7000000000000002,2.4999999999999734,0,0.83,0.125 +1776,100,100,,1,1,[1],1.7000000000000002,2.599999999999973,0,0.88,0.11 +1777,100,100,,1,1,[1],1.7000000000000002,2.6999999999999726,0,0.85,0.115 +1778,100,100,,1,1,[1],1.7000000000000002,2.7999999999999723,0,0.93,0.055 +1779,100,100,,1,1,[1],1.7000000000000002,2.899999999999972,0,0.85,0.095 +1780,100,100,,1,1,[1],1.7000000000000002,2.9999999999999716,0,0.86,0.07 +1781,100,100,,1,1,[1],1.7000000000000002,3.0999999999999712,0,0.89,0.075 +1782,100,100,,1,1,[1],1.7000000000000002,3.199999999999971,0,0.86,0.08 +1783,100,100,,1,1,[1],1.7000000000000002,3.2999999999999705,0,0.93,0.045 +1784,100,100,,1,1,[1],1.7000000000000002,3.39999999999997,0,0.89,0.065 +1785,100,100,,1,1,[1],1.7000000000000002,3.49999999999997,0,0.91,0.055 +1786,100,100,,1,1,[1],1.7000000000000002,3.5999999999999694,0,0.91,0.045 +1787,100,100,,1,1,[1],1.7000000000000002,3.699999999999969,0,0.92,0.04 +1788,100,100,,1,1,[1],1.7000000000000002,3.7999999999999687,0,0.96,0.02 +1789,100,100,,1,1,[1],1.7000000000000002,3.8999999999999684,0,0.91,0.045 +1790,100,100,,1,1,[1],1.7000000000000002,3.999999999999968,0,0.96,0.03 +1791,100,100,,1,1,[1],1.7000000000000002,4.099999999999968,0,0.98,0.02 +1792,100,100,,1,1,[1],1.7000000000000002,4.199999999999967,0,0.99,0.005 +1793,100,100,,1,1,[1],1.7000000000000002,4.299999999999967,0,0.94,0.03 +1794,100,100,,1,1,[1],1.7000000000000002,4.399999999999967,0,0.98,0.01 +1795,100,100,,1,1,[1],1.7000000000000002,4.499999999999966,0,0.96,0.02 +1796,100,100,,1,1,[1],1.7000000000000002,4.599999999999966,0,0.99,0.005 +1797,100,100,,1,1,[1],1.7000000000000002,4.6999999999999655,0,0.95,0.025 +1798,100,100,,1,1,[1],1.7000000000000002,4.799999999999965,0,0.99,0.005 +1799,100,100,,1,1,[1],1.7000000000000002,4.899999999999965,0,0.98,0.01 +1800,100,100,,1,1,[1],1.8,-5.0,0,0.98,0.99 +1801,100,100,,1,1,[1],1.8,-4.9,0,0.98,0.98 +1802,100,100,,1,1,[1],1.8,-4.800000000000001,0,0.93,0.965 +1803,100,100,,1,1,[1],1.8,-4.700000000000001,0,0.96,0.98 +1804,100,100,,1,1,[1],1.8,-4.600000000000001,0,0.96,0.97 +1805,100,100,,1,1,[1],1.8,-4.500000000000002,0,0.97,0.975 +1806,100,100,,1,1,[1],1.8,-4.400000000000002,0,0.95,0.955 +1807,100,100,,1,1,[1],1.8,-4.3000000000000025,0,0.96,0.98 +1808,100,100,,1,1,[1],1.8,-4.200000000000003,0,0.92,0.96 +1809,100,100,,1,1,[1],1.8,-4.100000000000003,0,0.95,0.975 +1810,100,100,,1,1,[1],1.8,-4.0000000000000036,0,0.91,0.955 +1811,100,100,,1,1,[1],1.8,-3.900000000000004,0,0.87,0.905 +1812,100,100,,1,1,[1],1.8,-3.8000000000000043,0,0.94,0.96 +1813,100,100,,1,1,[1],1.8,-3.7000000000000046,0,0.93,0.965 +1814,100,100,,1,1,[1],1.8,-3.600000000000005,0,0.91,0.945 +1815,100,100,,1,1,[1],1.8,-3.5000000000000053,0,0.95,0.955 +1816,100,100,,1,1,[1],1.8,-3.4000000000000057,0,0.89,0.925 +1817,100,100,,1,1,[1],1.8,-3.300000000000006,0,0.91,0.935 +1818,100,100,,1,1,[1],1.8,-3.2000000000000064,0,0.88,0.9 +1819,100,100,,1,1,[1],1.8,-3.1000000000000068,0,0.84,0.91 +1820,100,100,,1,1,[1],1.8,-3.000000000000007,0,0.86,0.89 +1821,100,100,,1,1,[1],1.8,-2.9000000000000075,0,0.87,0.875 +1822,100,100,,1,1,[1],1.8,-2.800000000000008,0,0.82,0.87 +1823,100,100,,1,1,[1],1.8,-2.700000000000008,0,0.84,0.89 +1824,100,100,,1,1,[1],1.8,-2.6000000000000085,0,0.85,0.855 +1825,100,100,,1,1,[1],1.8,-2.500000000000009,0,0.75,0.825 +1826,100,100,,1,1,[1],1.8,-2.4000000000000092,0,0.77,0.825 +1827,100,100,,1,1,[1],1.8,-2.3000000000000096,0,0.84,0.87 +1828,100,100,,1,1,[1],1.8,-2.20000000000001,0,0.73,0.815 +1829,100,100,,1,1,[1],1.8,-2.1000000000000103,0,0.74,0.79 +1830,100,100,,1,1,[1],1.8,-2.0000000000000107,0,0.77,0.775 +1831,100,100,,1,1,[1],1.8,-1.900000000000011,0,0.76,0.8 +1832,100,100,,1,1,[1],1.8,-1.8000000000000114,0,0.75,0.835 +1833,100,100,,1,1,[1],1.8,-1.7000000000000117,0,0.76,0.78 +1834,100,100,,1,1,[1],1.8,-1.600000000000012,0,0.77,0.805 +1835,100,100,,1,1,[1],1.8,-1.5000000000000124,0,0.81,0.795 +1836,100,100,,1,1,[1],1.8,-1.4000000000000128,0,0.8,0.7 +1837,100,100,,1,1,[1],1.8,-1.3000000000000131,0,0.58,0.66 +1838,100,100,,1,1,[1],1.8,-1.2000000000000135,0,0.7,0.73 +1839,100,100,,1,1,[1],1.8,-1.1000000000000139,0,0.63,0.645 +1840,100,100,,1,1,[1],1.8,-1.0000000000000142,0,0.6,0.66 +1841,100,100,,1,1,[1],1.8,-0.9000000000000146,0,0.67,0.635 +1842,100,100,,1,1,[1],1.8,-0.8000000000000149,0,0.65,0.645 +1843,100,100,,1,1,[1],1.8,-0.7000000000000153,0,0.63,0.625 +1844,100,100,,1,1,[1],1.8,-0.6000000000000156,0,0.65,0.595 +1845,100,100,,1,1,[1],1.8,-0.500000000000016,0,0.6,0.54 +1846,100,100,,1,1,[1],1.8,-0.40000000000001634,0,0.64,0.56 +1847,100,100,,1,1,[1],1.8,-0.3000000000000167,0,0.69,0.525 +1848,100,100,,1,1,[1],1.8,-0.20000000000001705,0,0.58,0.55 +1849,100,100,,1,1,[1],1.8,-0.10000000000001741,0,0.57,0.525 +1850,100,100,,1,1,[1],1.8,-1.7763568394002505e-14,0,0.76,0.56 +1851,100,100,,1,1,[1],1.8,0.09999999999998188,0,0.66,0.49 +1852,100,100,,1,1,[1],1.8,0.19999999999998153,0,0.6,0.37 +1853,100,100,,1,1,[1],1.8,0.29999999999998117,0,0.65,0.415 +1854,100,100,,1,1,[1],1.8,0.3999999999999808,0,0.55,0.445 +1855,100,100,,1,1,[1],1.8,0.49999999999998046,0,0.61,0.425 +1856,100,100,,1,1,[1],1.8,0.5999999999999801,0,0.69,0.385 +1857,100,100,,1,1,[1],1.8,0.6999999999999797,0,0.67,0.425 +1858,100,100,,1,1,[1],1.8,0.7999999999999794,0,0.69,0.385 +1859,100,100,,1,1,[1],1.8,0.899999999999979,0,0.6,0.37 +1860,100,100,,1,1,[1],1.8,0.9999999999999787,0,0.68,0.33 +1861,100,100,,1,1,[1],1.8,1.0999999999999783,0,0.76,0.28 +1862,100,100,,1,1,[1],1.8,1.199999999999978,0,0.62,0.31 +1863,100,100,,1,1,[1],1.8,1.2999999999999776,0,0.6,0.3 +1864,100,100,,1,1,[1],1.8,1.3999999999999773,0,0.61,0.295 +1865,100,100,,1,1,[1],1.8,1.499999999999977,0,0.68,0.26 +1866,100,100,,1,1,[1],1.8,1.5999999999999766,0,0.75,0.205 +1867,100,100,,1,1,[1],1.8,1.6999999999999762,0,0.71,0.195 +1868,100,100,,1,1,[1],1.8,1.7999999999999758,0,0.69,0.245 +1869,100,100,,1,1,[1],1.8,1.8999999999999755,0,0.76,0.17 +1870,100,100,,1,1,[1],1.8,1.9999999999999751,0,0.76,0.17 +1871,100,100,,1,1,[1],1.8,2.0999999999999748,0,0.76,0.15 +1872,100,100,,1,1,[1],1.8,2.1999999999999744,0,0.76,0.21 +1873,100,100,,1,1,[1],1.8,2.299999999999974,0,0.79,0.165 +1874,100,100,,1,1,[1],1.8,2.3999999999999737,0,0.82,0.14 +1875,100,100,,1,1,[1],1.8,2.4999999999999734,0,0.84,0.12 +1876,100,100,,1,1,[1],1.8,2.599999999999973,0,0.83,0.125 +1877,100,100,,1,1,[1],1.8,2.6999999999999726,0,0.83,0.115 +1878,100,100,,1,1,[1],1.8,2.7999999999999723,0,0.8,0.11 +1879,100,100,,1,1,[1],1.8,2.899999999999972,0,0.83,0.115 +1880,100,100,,1,1,[1],1.8,2.9999999999999716,0,0.78,0.15 +1881,100,100,,1,1,[1],1.8,3.0999999999999712,0,0.89,0.065 +1882,100,100,,1,1,[1],1.8,3.199999999999971,0,0.91,0.065 +1883,100,100,,1,1,[1],1.8,3.2999999999999705,0,0.85,0.075 +1884,100,100,,1,1,[1],1.8,3.39999999999997,0,0.89,0.065 +1885,100,100,,1,1,[1],1.8,3.49999999999997,0,0.97,0.035 +1886,100,100,,1,1,[1],1.8,3.5999999999999694,0,0.93,0.045 +1887,100,100,,1,1,[1],1.8,3.699999999999969,0,0.9,0.08 +1888,100,100,,1,1,[1],1.8,3.7999999999999687,0,0.91,0.045 +1889,100,100,,1,1,[1],1.8,3.8999999999999684,0,0.91,0.055 +1890,100,100,,1,1,[1],1.8,3.999999999999968,0,0.96,0.02 +1891,100,100,,1,1,[1],1.8,4.099999999999968,0,0.92,0.06 +1892,100,100,,1,1,[1],1.8,4.199999999999967,0,0.93,0.035 +1893,100,100,,1,1,[1],1.8,4.299999999999967,0,0.93,0.035 +1894,100,100,,1,1,[1],1.8,4.399999999999967,0,0.98,0.01 +1895,100,100,,1,1,[1],1.8,4.499999999999966,0,0.95,0.025 +1896,100,100,,1,1,[1],1.8,4.599999999999966,0,0.97,0.015 +1897,100,100,,1,1,[1],1.8,4.6999999999999655,0,0.97,0.015 +1898,100,100,,1,1,[1],1.8,4.799999999999965,0,0.98,0.01 +1899,100,100,,1,1,[1],1.8,4.899999999999965,0,0.98,0.01 +1900,100,100,,1,1,[1],1.9000000000000001,-5.0,0,0.96,0.98 +1901,100,100,,1,1,[1],1.9000000000000001,-4.9,0,0.94,0.97 +1902,100,100,,1,1,[1],1.9000000000000001,-4.800000000000001,0,0.98,0.99 +1903,100,100,,1,1,[1],1.9000000000000001,-4.700000000000001,0,0.95,0.975 +1904,100,100,,1,1,[1],1.9000000000000001,-4.600000000000001,0,0.93,0.965 +1905,100,100,,1,1,[1],1.9000000000000001,-4.500000000000002,0,0.98,0.99 +1906,100,100,,1,1,[1],1.9000000000000001,-4.400000000000002,0,0.92,0.96 +1907,100,100,,1,1,[1],1.9000000000000001,-4.3000000000000025,0,0.92,0.95 +1908,100,100,,1,1,[1],1.9000000000000001,-4.200000000000003,0,0.95,0.975 +1909,100,100,,1,1,[1],1.9000000000000001,-4.100000000000003,0,0.92,0.95 +1910,100,100,,1,1,[1],1.9000000000000001,-4.0000000000000036,0,0.9,0.95 +1911,100,100,,1,1,[1],1.9000000000000001,-3.900000000000004,0,0.95,0.965 +1912,100,100,,1,1,[1],1.9000000000000001,-3.8000000000000043,0,0.89,0.945 +1913,100,100,,1,1,[1],1.9000000000000001,-3.7000000000000046,0,0.88,0.94 +1914,100,100,,1,1,[1],1.9000000000000001,-3.600000000000005,0,0.89,0.945 +1915,100,100,,1,1,[1],1.9000000000000001,-3.5000000000000053,0,0.89,0.945 +1916,100,100,,1,1,[1],1.9000000000000001,-3.4000000000000057,0,0.9,0.93 +1917,100,100,,1,1,[1],1.9000000000000001,-3.300000000000006,0,0.92,0.95 +1918,100,100,,1,1,[1],1.9000000000000001,-3.2000000000000064,0,0.89,0.905 +1919,100,100,,1,1,[1],1.9000000000000001,-3.1000000000000068,0,0.84,0.89 +1920,100,100,,1,1,[1],1.9000000000000001,-3.000000000000007,0,0.86,0.88 +1921,100,100,,1,1,[1],1.9000000000000001,-2.9000000000000075,0,0.85,0.875 +1922,100,100,,1,1,[1],1.9000000000000001,-2.800000000000008,0,0.84,0.9 +1923,100,100,,1,1,[1],1.9000000000000001,-2.700000000000008,0,0.88,0.89 +1924,100,100,,1,1,[1],1.9000000000000001,-2.6000000000000085,0,0.82,0.87 +1925,100,100,,1,1,[1],1.9000000000000001,-2.500000000000009,0,0.77,0.835 +1926,100,100,,1,1,[1],1.9000000000000001,-2.4000000000000092,0,0.86,0.86 +1927,100,100,,1,1,[1],1.9000000000000001,-2.3000000000000096,0,0.7,0.76 +1928,100,100,,1,1,[1],1.9000000000000001,-2.20000000000001,0,0.76,0.83 +1929,100,100,,1,1,[1],1.9000000000000001,-2.1000000000000103,0,0.78,0.83 +1930,100,100,,1,1,[1],1.9000000000000001,-2.0000000000000107,0,0.75,0.775 +1931,100,100,,1,1,[1],1.9000000000000001,-1.900000000000011,0,0.71,0.745 +1932,100,100,,1,1,[1],1.9000000000000001,-1.8000000000000114,0,0.77,0.815 +1933,100,100,,1,1,[1],1.9000000000000001,-1.7000000000000117,0,0.71,0.805 +1934,100,100,,1,1,[1],1.9000000000000001,-1.600000000000012,0,0.74,0.81 +1935,100,100,,1,1,[1],1.9000000000000001,-1.5000000000000124,0,0.73,0.715 +1936,100,100,,1,1,[1],1.9000000000000001,-1.4000000000000128,0,0.62,0.73 +1937,100,100,,1,1,[1],1.9000000000000001,-1.3000000000000131,0,0.73,0.685 +1938,100,100,,1,1,[1],1.9000000000000001,-1.2000000000000135,0,0.76,0.73 +1939,100,100,,1,1,[1],1.9000000000000001,-1.1000000000000139,0,0.69,0.715 +1940,100,100,,1,1,[1],1.9000000000000001,-1.0000000000000142,0,0.68,0.64 +1941,100,100,,1,1,[1],1.9000000000000001,-0.9000000000000146,0,0.68,0.75 +1942,100,100,,1,1,[1],1.9000000000000001,-0.8000000000000149,0,0.52,0.64 +1943,100,100,,1,1,[1],1.9000000000000001,-0.7000000000000153,0,0.71,0.615 +1944,100,100,,1,1,[1],1.9000000000000001,-0.6000000000000156,0,0.58,0.6 +1945,100,100,,1,1,[1],1.9000000000000001,-0.500000000000016,0,0.62,0.57 +1946,100,100,,1,1,[1],1.9000000000000001,-0.40000000000001634,0,0.6,0.56 +1947,100,100,,1,1,[1],1.9000000000000001,-0.3000000000000167,0,0.68,0.56 +1948,100,100,,1,1,[1],1.9000000000000001,-0.20000000000001705,0,0.61,0.595 +1949,100,100,,1,1,[1],1.9000000000000001,-0.10000000000001741,0,0.66,0.52 +1950,100,100,,1,1,[1],1.9000000000000001,-1.7763568394002505e-14,0,0.62,0.46 +1951,100,100,,1,1,[1],1.9000000000000001,0.09999999999998188,0,0.65,0.565 +1952,100,100,,1,1,[1],1.9000000000000001,0.19999999999998153,0,0.6,0.47 +1953,100,100,,1,1,[1],1.9000000000000001,0.29999999999998117,0,0.57,0.425 +1954,100,100,,1,1,[1],1.9000000000000001,0.3999999999999808,0,0.56,0.44 +1955,100,100,,1,1,[1],1.9000000000000001,0.49999999999998046,0,0.6,0.47 +1956,100,100,,1,1,[1],1.9000000000000001,0.5999999999999801,0,0.71,0.355 +1957,100,100,,1,1,[1],1.9000000000000001,0.6999999999999797,0,0.57,0.415 +1958,100,100,,1,1,[1],1.9000000000000001,0.7999999999999794,0,0.71,0.385 +1959,100,100,,1,1,[1],1.9000000000000001,0.899999999999979,0,0.55,0.385 +1960,100,100,,1,1,[1],1.9000000000000001,0.9999999999999787,0,0.71,0.225 +1961,100,100,,1,1,[1],1.9000000000000001,1.0999999999999783,0,0.77,0.335 +1962,100,100,,1,1,[1],1.9000000000000001,1.199999999999978,0,0.75,0.255 +1963,100,100,,1,1,[1],1.9000000000000001,1.2999999999999776,0,0.77,0.235 +1964,100,100,,1,1,[1],1.9000000000000001,1.3999999999999773,0,0.62,0.32 +1965,100,100,,1,1,[1],1.9000000000000001,1.499999999999977,0,0.74,0.24 +1966,100,100,,1,1,[1],1.9000000000000001,1.5999999999999766,0,0.7,0.28 +1967,100,100,,1,1,[1],1.9000000000000001,1.6999999999999762,0,0.66,0.25 +1968,100,100,,1,1,[1],1.9000000000000001,1.7999999999999758,0,0.75,0.255 +1969,100,100,,1,1,[1],1.9000000000000001,1.8999999999999755,0,0.7,0.26 +1970,100,100,,1,1,[1],1.9000000000000001,1.9999999999999751,0,0.77,0.185 +1971,100,100,,1,1,[1],1.9000000000000001,2.0999999999999748,0,0.76,0.2 +1972,100,100,,1,1,[1],1.9000000000000001,2.1999999999999744,0,0.76,0.15 +1973,100,100,,1,1,[1],1.9000000000000001,2.299999999999974,0,0.77,0.145 +1974,100,100,,1,1,[1],1.9000000000000001,2.3999999999999737,0,0.84,0.12 +1975,100,100,,1,1,[1],1.9000000000000001,2.4999999999999734,0,0.83,0.105 +1976,100,100,,1,1,[1],1.9000000000000001,2.599999999999973,0,0.73,0.155 +1977,100,100,,1,1,[1],1.9000000000000001,2.6999999999999726,0,0.9,0.09 +1978,100,100,,1,1,[1],1.9000000000000001,2.7999999999999723,0,0.88,0.12 +1979,100,100,,1,1,[1],1.9000000000000001,2.899999999999972,0,0.86,0.08 +1980,100,100,,1,1,[1],1.9000000000000001,2.9999999999999716,0,0.79,0.145 +1981,100,100,,1,1,[1],1.9000000000000001,3.0999999999999712,0,0.86,0.07 +1982,100,100,,1,1,[1],1.9000000000000001,3.199999999999971,0,0.86,0.09 +1983,100,100,,1,1,[1],1.9000000000000001,3.2999999999999705,0,0.84,0.12 +1984,100,100,,1,1,[1],1.9000000000000001,3.39999999999997,0,0.86,0.08 +1985,100,100,,1,1,[1],1.9000000000000001,3.49999999999997,0,0.86,0.08 +1986,100,100,,1,1,[1],1.9000000000000001,3.5999999999999694,0,0.86,0.08 +1987,100,100,,1,1,[1],1.9000000000000001,3.699999999999969,0,0.88,0.06 +1988,100,100,,1,1,[1],1.9000000000000001,3.7999999999999687,0,0.92,0.04 +1989,100,100,,1,1,[1],1.9000000000000001,3.8999999999999684,0,0.85,0.075 +1990,100,100,,1,1,[1],1.9000000000000001,3.999999999999968,0,0.91,0.065 +1991,100,100,,1,1,[1],1.9000000000000001,4.099999999999968,0,0.89,0.055 +1992,100,100,,1,1,[1],1.9000000000000001,4.199999999999967,0,0.96,0.02 +1993,100,100,,1,1,[1],1.9000000000000001,4.299999999999967,0,0.96,0.02 +1994,100,100,,1,1,[1],1.9000000000000001,4.399999999999967,0,0.97,0.015 +1995,100,100,,1,1,[1],1.9000000000000001,4.499999999999966,0,0.94,0.04 +1996,100,100,,1,1,[1],1.9000000000000001,4.599999999999966,0,0.96,0.02 +1997,100,100,,1,1,[1],1.9000000000000001,4.6999999999999655,0,0.97,0.015 +1998,100,100,,1,1,[1],1.9000000000000001,4.799999999999965,0,0.96,0.02 +1999,100,100,,1,1,[1],1.9000000000000001,4.899999999999965,0,0.97,0.015 +2000,100,100,,1,1,[1],2.0,-5.0,0,0.96,0.98 +2001,100,100,,1,1,[1],2.0,-4.9,0,0.95,0.975 +2002,100,100,,1,1,[1],2.0,-4.800000000000001,0,0.97,0.985 +2003,100,100,,1,1,[1],2.0,-4.700000000000001,0,0.96,0.98 +2004,100,100,,1,1,[1],2.0,-4.600000000000001,0,0.96,0.98 +2005,100,100,,1,1,[1],2.0,-4.500000000000002,0,0.96,0.97 +2006,100,100,,1,1,[1],2.0,-4.400000000000002,0,0.95,0.975 +2007,100,100,,1,1,[1],2.0,-4.3000000000000025,0,0.98,0.99 +2008,100,100,,1,1,[1],2.0,-4.200000000000003,0,0.95,0.965 +2009,100,100,,1,1,[1],2.0,-4.100000000000003,0,0.9,0.94 +2010,100,100,,1,1,[1],2.0,-4.0000000000000036,0,0.93,0.965 +2011,100,100,,1,1,[1],2.0,-3.900000000000004,0,0.94,0.95 +2012,100,100,,1,1,[1],2.0,-3.8000000000000043,0,0.85,0.915 +2013,100,100,,1,1,[1],2.0,-3.7000000000000046,0,0.87,0.915 +2014,100,100,,1,1,[1],2.0,-3.600000000000005,0,0.96,0.95 +2015,100,100,,1,1,[1],2.0,-3.5000000000000053,0,0.85,0.895 +2016,100,100,,1,1,[1],2.0,-3.4000000000000057,0,0.85,0.905 +2017,100,100,,1,1,[1],2.0,-3.300000000000006,0,0.87,0.915 +2018,100,100,,1,1,[1],2.0,-3.2000000000000064,0,0.88,0.92 +2019,100,100,,1,1,[1],2.0,-3.1000000000000068,0,0.84,0.88 +2020,100,100,,1,1,[1],2.0,-3.000000000000007,0,0.84,0.88 +2021,100,100,,1,1,[1],2.0,-2.9000000000000075,0,0.79,0.885 +2022,100,100,,1,1,[1],2.0,-2.800000000000008,0,0.77,0.865 +2023,100,100,,1,1,[1],2.0,-2.700000000000008,0,0.68,0.81 +2024,100,100,,1,1,[1],2.0,-2.6000000000000085,0,0.84,0.86 +2025,100,100,,1,1,[1],2.0,-2.500000000000009,0,0.82,0.87 +2026,100,100,,1,1,[1],2.0,-2.4000000000000092,0,0.68,0.81 +2027,100,100,,1,1,[1],2.0,-2.3000000000000096,0,0.68,0.8 +2028,100,100,,1,1,[1],2.0,-2.20000000000001,0,0.84,0.81 +2029,100,100,,1,1,[1],2.0,-2.1000000000000103,0,0.76,0.79 +2030,100,100,,1,1,[1],2.0,-2.0000000000000107,0,0.78,0.82 +2031,100,100,,1,1,[1],2.0,-1.900000000000011,0,0.78,0.81 +2032,100,100,,1,1,[1],2.0,-1.8000000000000114,0,0.66,0.71 +2033,100,100,,1,1,[1],2.0,-1.7000000000000117,0,0.73,0.775 +2034,100,100,,1,1,[1],2.0,-1.600000000000012,0,0.65,0.745 +2035,100,100,,1,1,[1],2.0,-1.5000000000000124,0,0.63,0.675 +2036,100,100,,1,1,[1],2.0,-1.4000000000000128,0,0.69,0.765 +2037,100,100,,1,1,[1],2.0,-1.3000000000000131,0,0.74,0.72 +2038,100,100,,1,1,[1],2.0,-1.2000000000000135,0,0.67,0.685 +2039,100,100,,1,1,[1],2.0,-1.1000000000000139,0,0.61,0.645 +2040,100,100,,1,1,[1],2.0,-1.0000000000000142,0,0.66,0.64 +2041,100,100,,1,1,[1],2.0,-0.9000000000000146,0,0.58,0.64 +2042,100,100,,1,1,[1],2.0,-0.8000000000000149,0,0.6,0.65 +2043,100,100,,1,1,[1],2.0,-0.7000000000000153,0,0.65,0.635 +2044,100,100,,1,1,[1],2.0,-0.6000000000000156,0,0.62,0.66 +2045,100,100,,1,1,[1],2.0,-0.500000000000016,0,0.61,0.535 +2046,100,100,,1,1,[1],2.0,-0.40000000000001634,0,0.65,0.485 +2047,100,100,,1,1,[1],2.0,-0.3000000000000167,0,0.64,0.47 +2048,100,100,,1,1,[1],2.0,-0.20000000000001705,0,0.54,0.5 +2049,100,100,,1,1,[1],2.0,-0.10000000000001741,0,0.59,0.495 +2050,100,100,,1,1,[1],2.0,-1.7763568394002505e-14,0,0.63,0.455 +2051,100,100,,1,1,[1],2.0,0.09999999999998188,0,0.64,0.47 +2052,100,100,,1,1,[1],2.0,0.19999999999998153,0,0.61,0.445 +2053,100,100,,1,1,[1],2.0,0.29999999999998117,0,0.65,0.495 +2054,100,100,,1,1,[1],2.0,0.3999999999999808,0,0.54,0.47 +2055,100,100,,1,1,[1],2.0,0.49999999999998046,0,0.66,0.44 +2056,100,100,,1,1,[1],2.0,0.5999999999999801,0,0.56,0.4 +2057,100,100,,1,1,[1],2.0,0.6999999999999797,0,0.63,0.355 +2058,100,100,,1,1,[1],2.0,0.7999999999999794,0,0.66,0.35 +2059,100,100,,1,1,[1],2.0,0.899999999999979,0,0.65,0.395 +2060,100,100,,1,1,[1],2.0,0.9999999999999787,0,0.67,0.335 +2061,100,100,,1,1,[1],2.0,1.0999999999999783,0,0.63,0.295 +2062,100,100,,1,1,[1],2.0,1.199999999999978,0,0.59,0.355 +2063,100,100,,1,1,[1],2.0,1.2999999999999776,0,0.72,0.28 +2064,100,100,,1,1,[1],2.0,1.3999999999999773,0,0.7,0.28 +2065,100,100,,1,1,[1],2.0,1.499999999999977,0,0.61,0.305 +2066,100,100,,1,1,[1],2.0,1.5999999999999766,0,0.69,0.235 +2067,100,100,,1,1,[1],2.0,1.6999999999999762,0,0.69,0.275 +2068,100,100,,1,1,[1],2.0,1.7999999999999758,0,0.66,0.23 +2069,100,100,,1,1,[1],2.0,1.8999999999999755,0,0.66,0.24 +2070,100,100,,1,1,[1],2.0,1.9999999999999751,0,0.72,0.22 +2071,100,100,,1,1,[1],2.0,2.0999999999999748,0,0.72,0.22 +2072,100,100,,1,1,[1],2.0,2.1999999999999744,0,0.78,0.21 +2073,100,100,,1,1,[1],2.0,2.299999999999974,0,0.85,0.185 +2074,100,100,,1,1,[1],2.0,2.3999999999999737,0,0.77,0.205 +2075,100,100,,1,1,[1],2.0,2.4999999999999734,0,0.77,0.185 +2076,100,100,,1,1,[1],2.0,2.599999999999973,0,0.76,0.17 +2077,100,100,,1,1,[1],2.0,2.6999999999999726,0,0.81,0.125 +2078,100,100,,1,1,[1],2.0,2.7999999999999723,0,0.84,0.15 +2079,100,100,,1,1,[1],2.0,2.899999999999972,0,0.89,0.095 +2080,100,100,,1,1,[1],2.0,2.9999999999999716,0,0.82,0.1 +2081,100,100,,1,1,[1],2.0,3.0999999999999712,0,0.86,0.08 +2082,100,100,,1,1,[1],2.0,3.199999999999971,0,0.8,0.14 +2083,100,100,,1,1,[1],2.0,3.2999999999999705,0,0.81,0.105 +2084,100,100,,1,1,[1],2.0,3.39999999999997,0,0.83,0.105 +2085,100,100,,1,1,[1],2.0,3.49999999999997,0,0.85,0.085 +2086,100,100,,1,1,[1],2.0,3.5999999999999694,0,0.91,0.065 +2087,100,100,,1,1,[1],2.0,3.699999999999969,0,0.87,0.075 +2088,100,100,,1,1,[1],2.0,3.7999999999999687,0,0.89,0.055 +2089,100,100,,1,1,[1],2.0,3.8999999999999684,0,0.93,0.045 +2090,100,100,,1,1,[1],2.0,3.999999999999968,0,0.94,0.04 +2091,100,100,,1,1,[1],2.0,4.099999999999968,0,0.9,0.05 +2092,100,100,,1,1,[1],2.0,4.199999999999967,0,0.92,0.04 +2093,100,100,,1,1,[1],2.0,4.299999999999967,0,0.96,0.02 +2094,100,100,,1,1,[1],2.0,4.399999999999967,0,0.93,0.035 +2095,100,100,,1,1,[1],2.0,4.499999999999966,0,0.89,0.075 +2096,100,100,,1,1,[1],2.0,4.599999999999966,0,0.95,0.035 +2097,100,100,,1,1,[1],2.0,4.6999999999999655,0,0.91,0.045 +2098,100,100,,1,1,[1],2.0,4.799999999999965,0,0.95,0.025 +2099,100,100,,1,1,[1],2.0,4.899999999999965,0,0.99,0.005 +2100,100,100,,1,1,[1],2.1,-5.0,0,0.98,0.99 +2101,100,100,,1,1,[1],2.1,-4.9,0,0.94,0.97 +2102,100,100,,1,1,[1],2.1,-4.800000000000001,0,0.95,0.975 +2103,100,100,,1,1,[1],2.1,-4.700000000000001,0,0.94,0.97 +2104,100,100,,1,1,[1],2.1,-4.600000000000001,0,0.95,0.965 +2105,100,100,,1,1,[1],2.1,-4.500000000000002,0,0.87,0.925 +2106,100,100,,1,1,[1],2.1,-4.400000000000002,0,0.93,0.955 +2107,100,100,,1,1,[1],2.1,-4.3000000000000025,0,0.94,0.97 +2108,100,100,,1,1,[1],2.1,-4.200000000000003,0,0.91,0.955 +2109,100,100,,1,1,[1],2.1,-4.100000000000003,0,0.9,0.93 +2110,100,100,,1,1,[1],2.1,-4.0000000000000036,0,0.93,0.965 +2111,100,100,,1,1,[1],2.1,-3.900000000000004,0,0.85,0.925 +2112,100,100,,1,1,[1],2.1,-3.8000000000000043,0,0.89,0.945 +2113,100,100,,1,1,[1],2.1,-3.7000000000000046,0,0.87,0.935 +2114,100,100,,1,1,[1],2.1,-3.600000000000005,0,0.89,0.945 +2115,100,100,,1,1,[1],2.1,-3.5000000000000053,0,0.88,0.9 +2116,100,100,,1,1,[1],2.1,-3.4000000000000057,0,0.87,0.925 +2117,100,100,,1,1,[1],2.1,-3.300000000000006,0,0.87,0.915 +2118,100,100,,1,1,[1],2.1,-3.2000000000000064,0,0.78,0.88 +2119,100,100,,1,1,[1],2.1,-3.1000000000000068,0,0.82,0.89 +2120,100,100,,1,1,[1],2.1,-3.000000000000007,0,0.79,0.875 +2121,100,100,,1,1,[1],2.1,-2.9000000000000075,0,0.82,0.9 +2122,100,100,,1,1,[1],2.1,-2.800000000000008,0,0.75,0.835 +2123,100,100,,1,1,[1],2.1,-2.700000000000008,0,0.81,0.825 +2124,100,100,,1,1,[1],2.1,-2.6000000000000085,0,0.78,0.86 +2125,100,100,,1,1,[1],2.1,-2.500000000000009,0,0.72,0.82 +2126,100,100,,1,1,[1],2.1,-2.4000000000000092,0,0.75,0.835 +2127,100,100,,1,1,[1],2.1,-2.3000000000000096,0,0.76,0.84 +2128,100,100,,1,1,[1],2.1,-2.20000000000001,0,0.77,0.855 +2129,100,100,,1,1,[1],2.1,-2.1000000000000103,0,0.73,0.815 +2130,100,100,,1,1,[1],2.1,-2.0000000000000107,0,0.69,0.745 +2131,100,100,,1,1,[1],2.1,-1.900000000000011,0,0.67,0.725 +2132,100,100,,1,1,[1],2.1,-1.8000000000000114,0,0.69,0.785 +2133,100,100,,1,1,[1],2.1,-1.7000000000000117,0,0.75,0.675 +2134,100,100,,1,1,[1],2.1,-1.600000000000012,0,0.61,0.725 +2135,100,100,,1,1,[1],2.1,-1.5000000000000124,0,0.68,0.75 +2136,100,100,,1,1,[1],2.1,-1.4000000000000128,0,0.64,0.69 +2137,100,100,,1,1,[1],2.1,-1.3000000000000131,0,0.57,0.695 +2138,100,100,,1,1,[1],2.1,-1.2000000000000135,0,0.65,0.695 +2139,100,100,,1,1,[1],2.1,-1.1000000000000139,0,0.69,0.725 +2140,100,100,,1,1,[1],2.1,-1.0000000000000142,0,0.63,0.595 +2141,100,100,,1,1,[1],2.1,-0.9000000000000146,0,0.62,0.64 +2142,100,100,,1,1,[1],2.1,-0.8000000000000149,0,0.64,0.62 +2143,100,100,,1,1,[1],2.1,-0.7000000000000153,0,0.69,0.585 +2144,100,100,,1,1,[1],2.1,-0.6000000000000156,0,0.55,0.615 +2145,100,100,,1,1,[1],2.1,-0.500000000000016,0,0.67,0.555 +2146,100,100,,1,1,[1],2.1,-0.40000000000001634,0,0.61,0.575 +2147,100,100,,1,1,[1],2.1,-0.3000000000000167,0,0.55,0.485 +2148,100,100,,1,1,[1],2.1,-0.20000000000001705,0,0.57,0.485 +2149,100,100,,1,1,[1],2.1,-0.10000000000001741,0,0.59,0.525 +2150,100,100,,1,1,[1],2.1,-1.7763568394002505e-14,0,0.57,0.475 +2151,100,100,,1,1,[1],2.1,0.09999999999998188,0,0.58,0.47 +2152,100,100,,1,1,[1],2.1,0.19999999999998153,0,0.57,0.485 +2153,100,100,,1,1,[1],2.1,0.29999999999998117,0,0.52,0.5 +2154,100,100,,1,1,[1],2.1,0.3999999999999808,0,0.58,0.4 +2155,100,100,,1,1,[1],2.1,0.49999999999998046,0,0.49,0.415 +2156,100,100,,1,1,[1],2.1,0.5999999999999801,0,0.61,0.385 +2157,100,100,,1,1,[1],2.1,0.6999999999999797,0,0.57,0.385 +2158,100,100,,1,1,[1],2.1,0.7999999999999794,0,0.59,0.345 +2159,100,100,,1,1,[1],2.1,0.899999999999979,0,0.64,0.31 +2160,100,100,,1,1,[1],2.1,0.9999999999999787,0,0.65,0.365 +2161,100,100,,1,1,[1],2.1,1.0999999999999783,0,0.7,0.33 +2162,100,100,,1,1,[1],2.1,1.199999999999978,0,0.71,0.355 +2163,100,100,,1,1,[1],2.1,1.2999999999999776,0,0.59,0.295 +2164,100,100,,1,1,[1],2.1,1.3999999999999773,0,0.74,0.28 +2165,100,100,,1,1,[1],2.1,1.499999999999977,0,0.68,0.28 +2166,100,100,,1,1,[1],2.1,1.5999999999999766,0,0.68,0.31 +2167,100,100,,1,1,[1],2.1,1.6999999999999762,0,0.69,0.305 +2168,100,100,,1,1,[1],2.1,1.7999999999999758,0,0.76,0.22 +2169,100,100,,1,1,[1],2.1,1.8999999999999755,0,0.69,0.195 +2170,100,100,,1,1,[1],2.1,1.9999999999999751,0,0.69,0.195 +2171,100,100,,1,1,[1],2.1,2.0999999999999748,0,0.65,0.265 +2172,100,100,,1,1,[1],2.1,2.1999999999999744,0,0.72,0.22 +2173,100,100,,1,1,[1],2.1,2.299999999999974,0,0.75,0.215 +2174,100,100,,1,1,[1],2.1,2.3999999999999737,0,0.71,0.165 +2175,100,100,,1,1,[1],2.1,2.4999999999999734,0,0.79,0.165 +2176,100,100,,1,1,[1],2.1,2.599999999999973,0,0.8,0.13 +2177,100,100,,1,1,[1],2.1,2.6999999999999726,0,0.77,0.145 +2178,100,100,,1,1,[1],2.1,2.7999999999999723,0,0.82,0.14 +2179,100,100,,1,1,[1],2.1,2.899999999999972,0,0.74,0.13 +2180,100,100,,1,1,[1],2.1,2.9999999999999716,0,0.77,0.135 +2181,100,100,,1,1,[1],2.1,3.0999999999999712,0,0.83,0.115 +2182,100,100,,1,1,[1],2.1,3.199999999999971,0,0.87,0.075 +2183,100,100,,1,1,[1],2.1,3.2999999999999705,0,0.84,0.11 +2184,100,100,,1,1,[1],2.1,3.39999999999997,0,0.85,0.125 +2185,100,100,,1,1,[1],2.1,3.49999999999997,0,0.9,0.07 +2186,100,100,,1,1,[1],2.1,3.5999999999999694,0,0.9,0.07 +2187,100,100,,1,1,[1],2.1,3.699999999999969,0,0.84,0.08 +2188,100,100,,1,1,[1],2.1,3.7999999999999687,0,0.89,0.065 +2189,100,100,,1,1,[1],2.1,3.8999999999999684,0,0.89,0.095 +2190,100,100,,1,1,[1],2.1,3.999999999999968,0,0.93,0.045 +2191,100,100,,1,1,[1],2.1,4.099999999999968,0,0.94,0.03 +2192,100,100,,1,1,[1],2.1,4.199999999999967,0,0.94,0.04 +2193,100,100,,1,1,[1],2.1,4.299999999999967,0,0.93,0.045 +2194,100,100,,1,1,[1],2.1,4.399999999999967,0,0.91,0.055 +2195,100,100,,1,1,[1],2.1,4.499999999999966,0,0.95,0.035 +2196,100,100,,1,1,[1],2.1,4.599999999999966,0,0.96,0.03 +2197,100,100,,1,1,[1],2.1,4.6999999999999655,0,0.89,0.055 +2198,100,100,,1,1,[1],2.1,4.799999999999965,0,0.97,0.025 +2199,100,100,,1,1,[1],2.1,4.899999999999965,0,0.94,0.03 +2200,100,100,,1,1,[1],2.2,-5.0,0,0.95,0.975 +2201,100,100,,1,1,[1],2.2,-4.9,0,0.94,0.96 +2202,100,100,,1,1,[1],2.2,-4.800000000000001,0,0.89,0.935 +2203,100,100,,1,1,[1],2.2,-4.700000000000001,0,0.96,0.97 +2204,100,100,,1,1,[1],2.2,-4.600000000000001,0,0.84,0.92 +2205,100,100,,1,1,[1],2.2,-4.500000000000002,0,0.94,0.96 +2206,100,100,,1,1,[1],2.2,-4.400000000000002,0,0.93,0.965 +2207,100,100,,1,1,[1],2.2,-4.3000000000000025,0,0.92,0.95 +2208,100,100,,1,1,[1],2.2,-4.200000000000003,0,0.9,0.94 +2209,100,100,,1,1,[1],2.2,-4.100000000000003,0,0.91,0.945 +2210,100,100,,1,1,[1],2.2,-4.0000000000000036,0,0.96,0.98 +2211,100,100,,1,1,[1],2.2,-3.900000000000004,0,0.89,0.945 +2212,100,100,,1,1,[1],2.2,-3.8000000000000043,0,0.89,0.945 +2213,100,100,,1,1,[1],2.2,-3.7000000000000046,0,0.86,0.93 +2214,100,100,,1,1,[1],2.2,-3.600000000000005,0,0.87,0.895 +2215,100,100,,1,1,[1],2.2,-3.5000000000000053,0,0.89,0.905 +2216,100,100,,1,1,[1],2.2,-3.4000000000000057,0,0.88,0.93 +2217,100,100,,1,1,[1],2.2,-3.300000000000006,0,0.81,0.905 +2218,100,100,,1,1,[1],2.2,-3.2000000000000064,0,0.79,0.865 +2219,100,100,,1,1,[1],2.2,-3.1000000000000068,0,0.8,0.89 +2220,100,100,,1,1,[1],2.2,-3.000000000000007,0,0.79,0.865 +2221,100,100,,1,1,[1],2.2,-2.9000000000000075,0,0.85,0.895 +2222,100,100,,1,1,[1],2.2,-2.800000000000008,0,0.83,0.895 +2223,100,100,,1,1,[1],2.2,-2.700000000000008,0,0.75,0.825 +2224,100,100,,1,1,[1],2.2,-2.6000000000000085,0,0.74,0.82 +2225,100,100,,1,1,[1],2.2,-2.500000000000009,0,0.76,0.82 +2226,100,100,,1,1,[1],2.2,-2.4000000000000092,0,0.78,0.84 +2227,100,100,,1,1,[1],2.2,-2.3000000000000096,0,0.73,0.815 +2228,100,100,,1,1,[1],2.2,-2.20000000000001,0,0.73,0.805 +2229,100,100,,1,1,[1],2.2,-2.1000000000000103,0,0.77,0.825 +2230,100,100,,1,1,[1],2.2,-2.0000000000000107,0,0.65,0.765 +2231,100,100,,1,1,[1],2.2,-1.900000000000011,0,0.68,0.75 +2232,100,100,,1,1,[1],2.2,-1.8000000000000114,0,0.69,0.765 +2233,100,100,,1,1,[1],2.2,-1.7000000000000117,0,0.7,0.73 +2234,100,100,,1,1,[1],2.2,-1.600000000000012,0,0.68,0.76 +2235,100,100,,1,1,[1],2.2,-1.5000000000000124,0,0.65,0.715 +2236,100,100,,1,1,[1],2.2,-1.4000000000000128,0,0.61,0.705 +2237,100,100,,1,1,[1],2.2,-1.3000000000000131,0,0.68,0.7 +2238,100,100,,1,1,[1],2.2,-1.2000000000000135,0,0.77,0.735 +2239,100,100,,1,1,[1],2.2,-1.1000000000000139,0,0.63,0.675 +2240,100,100,,1,1,[1],2.2,-1.0000000000000142,0,0.58,0.71 +2241,100,100,,1,1,[1],2.2,-0.9000000000000146,0,0.62,0.69 +2242,100,100,,1,1,[1],2.2,-0.8000000000000149,0,0.6,0.64 +2243,100,100,,1,1,[1],2.2,-0.7000000000000153,0,0.59,0.675 +2244,100,100,,1,1,[1],2.2,-0.6000000000000156,0,0.58,0.54 +2245,100,100,,1,1,[1],2.2,-0.500000000000016,0,0.6,0.58 +2246,100,100,,1,1,[1],2.2,-0.40000000000001634,0,0.56,0.55 +2247,100,100,,1,1,[1],2.2,-0.3000000000000167,0,0.55,0.575 +2248,100,100,,1,1,[1],2.2,-0.20000000000001705,0,0.55,0.525 +2249,100,100,,1,1,[1],2.2,-0.10000000000001741,0,0.59,0.535 +2250,100,100,,1,1,[1],2.2,-1.7763568394002505e-14,0,0.66,0.56 +2251,100,100,,1,1,[1],2.2,0.09999999999998188,0,0.62,0.42 +2252,100,100,,1,1,[1],2.2,0.19999999999998153,0,0.63,0.495 +2253,100,100,,1,1,[1],2.2,0.29999999999998117,0,0.53,0.405 +2254,100,100,,1,1,[1],2.2,0.3999999999999808,0,0.57,0.445 +2255,100,100,,1,1,[1],2.2,0.49999999999998046,0,0.59,0.405 +2256,100,100,,1,1,[1],2.2,0.5999999999999801,0,0.61,0.455 +2257,100,100,,1,1,[1],2.2,0.6999999999999797,0,0.61,0.365 +2258,100,100,,1,1,[1],2.2,0.7999999999999794,0,0.67,0.365 +2259,100,100,,1,1,[1],2.2,0.899999999999979,0,0.73,0.375 +2260,100,100,,1,1,[1],2.2,0.9999999999999787,0,0.67,0.285 +2261,100,100,,1,1,[1],2.2,1.0999999999999783,0,0.58,0.35 +2262,100,100,,1,1,[1],2.2,1.199999999999978,0,0.63,0.325 +2263,100,100,,1,1,[1],2.2,1.2999999999999776,0,0.68,0.31 +2264,100,100,,1,1,[1],2.2,1.3999999999999773,0,0.69,0.345 +2265,100,100,,1,1,[1],2.2,1.499999999999977,0,0.71,0.295 +2266,100,100,,1,1,[1],2.2,1.5999999999999766,0,0.73,0.225 +2267,100,100,,1,1,[1],2.2,1.6999999999999762,0,0.64,0.3 +2268,100,100,,1,1,[1],2.2,1.7999999999999758,0,0.71,0.225 +2269,100,100,,1,1,[1],2.2,1.8999999999999755,0,0.64,0.25 +2270,100,100,,1,1,[1],2.2,1.9999999999999751,0,0.68,0.24 +2271,100,100,,1,1,[1],2.2,2.0999999999999748,0,0.72,0.21 +2272,100,100,,1,1,[1],2.2,2.1999999999999744,0,0.74,0.15 +2273,100,100,,1,1,[1],2.2,2.299999999999974,0,0.73,0.225 +2274,100,100,,1,1,[1],2.2,2.3999999999999737,0,0.75,0.165 +2275,100,100,,1,1,[1],2.2,2.4999999999999734,0,0.83,0.125 +2276,100,100,,1,1,[1],2.2,2.599999999999973,0,0.8,0.13 +2277,100,100,,1,1,[1],2.2,2.6999999999999726,0,0.79,0.115 +2278,100,100,,1,1,[1],2.2,2.7999999999999723,0,0.73,0.165 +2279,100,100,,1,1,[1],2.2,2.899999999999972,0,0.79,0.145 +2280,100,100,,1,1,[1],2.2,2.9999999999999716,0,0.8,0.12 +2281,100,100,,1,1,[1],2.2,3.0999999999999712,0,0.83,0.145 +2282,100,100,,1,1,[1],2.2,3.199999999999971,0,0.8,0.11 +2283,100,100,,1,1,[1],2.2,3.2999999999999705,0,0.89,0.095 +2284,100,100,,1,1,[1],2.2,3.39999999999997,0,0.84,0.1 +2285,100,100,,1,1,[1],2.2,3.49999999999997,0,0.88,0.07 +2286,100,100,,1,1,[1],2.2,3.5999999999999694,0,0.9,0.07 +2287,100,100,,1,1,[1],2.2,3.699999999999969,0,0.87,0.075 +2288,100,100,,1,1,[1],2.2,3.7999999999999687,0,0.88,0.06 +2289,100,100,,1,1,[1],2.2,3.8999999999999684,0,0.89,0.075 +2290,100,100,,1,1,[1],2.2,3.999999999999968,0,0.86,0.07 +2291,100,100,,1,1,[1],2.2,4.099999999999968,0,0.91,0.055 +2292,100,100,,1,1,[1],2.2,4.199999999999967,0,0.88,0.06 +2293,100,100,,1,1,[1],2.2,4.299999999999967,0,0.93,0.035 +2294,100,100,,1,1,[1],2.2,4.399999999999967,0,0.88,0.06 +2295,100,100,,1,1,[1],2.2,4.499999999999966,0,0.94,0.05 +2296,100,100,,1,1,[1],2.2,4.599999999999966,0,0.91,0.055 +2297,100,100,,1,1,[1],2.2,4.6999999999999655,0,0.91,0.045 +2298,100,100,,1,1,[1],2.2,4.799999999999965,0,0.94,0.03 +2299,100,100,,1,1,[1],2.2,4.899999999999965,0,0.94,0.03 +2300,100,100,,1,1,[1],2.3000000000000003,-5.0,0,0.95,0.975 +2301,100,100,,1,1,[1],2.3000000000000003,-4.9,0,0.96,0.98 +2302,100,100,,1,1,[1],2.3000000000000003,-4.800000000000001,0,0.96,0.97 +2303,100,100,,1,1,[1],2.3000000000000003,-4.700000000000001,0,0.91,0.955 +2304,100,100,,1,1,[1],2.3000000000000003,-4.600000000000001,0,0.92,0.96 +2305,100,100,,1,1,[1],2.3000000000000003,-4.500000000000002,0,0.93,0.965 +2306,100,100,,1,1,[1],2.3000000000000003,-4.400000000000002,0,0.9,0.95 +2307,100,100,,1,1,[1],2.3000000000000003,-4.3000000000000025,0,0.9,0.94 +2308,100,100,,1,1,[1],2.3000000000000003,-4.200000000000003,0,0.95,0.975 +2309,100,100,,1,1,[1],2.3000000000000003,-4.100000000000003,0,0.87,0.915 +2310,100,100,,1,1,[1],2.3000000000000003,-4.0000000000000036,0,0.89,0.925 +2311,100,100,,1,1,[1],2.3000000000000003,-3.900000000000004,0,0.88,0.92 +2312,100,100,,1,1,[1],2.3000000000000003,-3.8000000000000043,0,0.88,0.93 +2313,100,100,,1,1,[1],2.3000000000000003,-3.7000000000000046,0,0.86,0.92 +2314,100,100,,1,1,[1],2.3000000000000003,-3.600000000000005,0,0.83,0.895 +2315,100,100,,1,1,[1],2.3000000000000003,-3.5000000000000053,0,0.86,0.9 +2316,100,100,,1,1,[1],2.3000000000000003,-3.4000000000000057,0,0.88,0.91 +2317,100,100,,1,1,[1],2.3000000000000003,-3.300000000000006,0,0.89,0.915 +2318,100,100,,1,1,[1],2.3000000000000003,-3.2000000000000064,0,0.88,0.92 +2319,100,100,,1,1,[1],2.3000000000000003,-3.1000000000000068,0,0.75,0.835 +2320,100,100,,1,1,[1],2.3000000000000003,-3.000000000000007,0,0.77,0.835 +2321,100,100,,1,1,[1],2.3000000000000003,-2.9000000000000075,0,0.78,0.86 +2322,100,100,,1,1,[1],2.3000000000000003,-2.800000000000008,0,0.79,0.865 +2323,100,100,,1,1,[1],2.3000000000000003,-2.700000000000008,0,0.81,0.865 +2324,100,100,,1,1,[1],2.3000000000000003,-2.6000000000000085,0,0.7,0.8 +2325,100,100,,1,1,[1],2.3000000000000003,-2.500000000000009,0,0.66,0.79 +2326,100,100,,1,1,[1],2.3000000000000003,-2.4000000000000092,0,0.71,0.805 +2327,100,100,,1,1,[1],2.3000000000000003,-2.3000000000000096,0,0.74,0.83 +2328,100,100,,1,1,[1],2.3000000000000003,-2.20000000000001,0,0.77,0.815 +2329,100,100,,1,1,[1],2.3000000000000003,-2.1000000000000103,0,0.78,0.81 +2330,100,100,,1,1,[1],2.3000000000000003,-2.0000000000000107,0,0.71,0.755 +2331,100,100,,1,1,[1],2.3000000000000003,-1.900000000000011,0,0.73,0.725 +2332,100,100,,1,1,[1],2.3000000000000003,-1.8000000000000114,0,0.68,0.73 +2333,100,100,,1,1,[1],2.3000000000000003,-1.7000000000000117,0,0.68,0.69 +2334,100,100,,1,1,[1],2.3000000000000003,-1.600000000000012,0,0.7,0.77 +2335,100,100,,1,1,[1],2.3000000000000003,-1.5000000000000124,0,0.69,0.725 +2336,100,100,,1,1,[1],2.3000000000000003,-1.4000000000000128,0,0.66,0.67 +2337,100,100,,1,1,[1],2.3000000000000003,-1.3000000000000131,0,0.73,0.745 +2338,100,100,,1,1,[1],2.3000000000000003,-1.2000000000000135,0,0.7,0.65 +2339,100,100,,1,1,[1],2.3000000000000003,-1.1000000000000139,0,0.66,0.63 +2340,100,100,,1,1,[1],2.3000000000000003,-1.0000000000000142,0,0.8,0.62 +2341,100,100,,1,1,[1],2.3000000000000003,-0.9000000000000146,0,0.62,0.64 +2342,100,100,,1,1,[1],2.3000000000000003,-0.8000000000000149,0,0.6,0.61 +2343,100,100,,1,1,[1],2.3000000000000003,-0.7000000000000153,0,0.62,0.56 +2344,100,100,,1,1,[1],2.3000000000000003,-0.6000000000000156,0,0.61,0.605 +2345,100,100,,1,1,[1],2.3000000000000003,-0.500000000000016,0,0.56,0.56 +2346,100,100,,1,1,[1],2.3000000000000003,-0.40000000000001634,0,0.61,0.615 +2347,100,100,,1,1,[1],2.3000000000000003,-0.3000000000000167,0,0.64,0.55 +2348,100,100,,1,1,[1],2.3000000000000003,-0.20000000000001705,0,0.59,0.565 +2349,100,100,,1,1,[1],2.3000000000000003,-0.10000000000001741,0,0.62,0.53 +2350,100,100,,1,1,[1],2.3000000000000003,-1.7763568394002505e-14,0,0.58,0.41 +2351,100,100,,1,1,[1],2.3000000000000003,0.09999999999998188,0,0.6,0.53 +2352,100,100,,1,1,[1],2.3000000000000003,0.19999999999998153,0,0.61,0.345 +2353,100,100,,1,1,[1],2.3000000000000003,0.29999999999998117,0,0.64,0.47 +2354,100,100,,1,1,[1],2.3000000000000003,0.3999999999999808,0,0.51,0.455 +2355,100,100,,1,1,[1],2.3000000000000003,0.49999999999998046,0,0.6,0.45 +2356,100,100,,1,1,[1],2.3000000000000003,0.5999999999999801,0,0.69,0.405 +2357,100,100,,1,1,[1],2.3000000000000003,0.6999999999999797,0,0.62,0.36 +2358,100,100,,1,1,[1],2.3000000000000003,0.7999999999999794,0,0.63,0.375 +2359,100,100,,1,1,[1],2.3000000000000003,0.899999999999979,0,0.62,0.33 +2360,100,100,,1,1,[1],2.3000000000000003,0.9999999999999787,0,0.74,0.35 +2361,100,100,,1,1,[1],2.3000000000000003,1.0999999999999783,0,0.7,0.27 +2362,100,100,,1,1,[1],2.3000000000000003,1.199999999999978,0,0.65,0.345 +2363,100,100,,1,1,[1],2.3000000000000003,1.2999999999999776,0,0.65,0.305 +2364,100,100,,1,1,[1],2.3000000000000003,1.3999999999999773,0,0.7,0.29 +2365,100,100,,1,1,[1],2.3000000000000003,1.499999999999977,0,0.61,0.325 +2366,100,100,,1,1,[1],2.3000000000000003,1.5999999999999766,0,0.72,0.27 +2367,100,100,,1,1,[1],2.3000000000000003,1.6999999999999762,0,0.71,0.245 +2368,100,100,,1,1,[1],2.3000000000000003,1.7999999999999758,0,0.6,0.28 +2369,100,100,,1,1,[1],2.3000000000000003,1.8999999999999755,0,0.75,0.235 +2370,100,100,,1,1,[1],2.3000000000000003,1.9999999999999751,0,0.7,0.3 +2371,100,100,,1,1,[1],2.3000000000000003,2.0999999999999748,0,0.68,0.29 +2372,100,100,,1,1,[1],2.3000000000000003,2.1999999999999744,0,0.77,0.185 +2373,100,100,,1,1,[1],2.3000000000000003,2.299999999999974,0,0.77,0.175 +2374,100,100,,1,1,[1],2.3000000000000003,2.3999999999999737,0,0.72,0.2 +2375,100,100,,1,1,[1],2.3000000000000003,2.4999999999999734,0,0.74,0.16 +2376,100,100,,1,1,[1],2.3000000000000003,2.599999999999973,0,0.79,0.185 +2377,100,100,,1,1,[1],2.3000000000000003,2.6999999999999726,0,0.82,0.17 +2378,100,100,,1,1,[1],2.3000000000000003,2.7999999999999723,0,0.83,0.165 +2379,100,100,,1,1,[1],2.3000000000000003,2.899999999999972,0,0.7,0.2 +2380,100,100,,1,1,[1],2.3000000000000003,2.9999999999999716,0,0.8,0.15 +2381,100,100,,1,1,[1],2.3000000000000003,3.0999999999999712,0,0.76,0.14 +2382,100,100,,1,1,[1],2.3000000000000003,3.199999999999971,0,0.83,0.105 +2383,100,100,,1,1,[1],2.3000000000000003,3.2999999999999705,0,0.8,0.14 +2384,100,100,,1,1,[1],2.3000000000000003,3.39999999999997,0,0.85,0.105 +2385,100,100,,1,1,[1],2.3000000000000003,3.49999999999997,0,0.89,0.075 +2386,100,100,,1,1,[1],2.3000000000000003,3.5999999999999694,0,0.88,0.08 +2387,100,100,,1,1,[1],2.3000000000000003,3.699999999999969,0,0.86,0.07 +2388,100,100,,1,1,[1],2.3000000000000003,3.7999999999999687,0,0.88,0.06 +2389,100,100,,1,1,[1],2.3000000000000003,3.8999999999999684,0,0.87,0.075 +2390,100,100,,1,1,[1],2.3000000000000003,3.999999999999968,0,0.88,0.06 +2391,100,100,,1,1,[1],2.3000000000000003,4.099999999999968,0,0.89,0.055 +2392,100,100,,1,1,[1],2.3000000000000003,4.199999999999967,0,0.85,0.085 +2393,100,100,,1,1,[1],2.3000000000000003,4.299999999999967,0,0.94,0.03 +2394,100,100,,1,1,[1],2.3000000000000003,4.399999999999967,0,0.91,0.045 +2395,100,100,,1,1,[1],2.3000000000000003,4.499999999999966,0,0.94,0.03 +2396,100,100,,1,1,[1],2.3000000000000003,4.599999999999966,0,0.92,0.05 +2397,100,100,,1,1,[1],2.3000000000000003,4.6999999999999655,0,0.93,0.045 +2398,100,100,,1,1,[1],2.3000000000000003,4.799999999999965,0,0.91,0.045 +2399,100,100,,1,1,[1],2.3000000000000003,4.899999999999965,0,0.95,0.025 +2400,100,100,,1,1,[1],2.4000000000000004,-5.0,0,0.89,0.945 +2401,100,100,,1,1,[1],2.4000000000000004,-4.9,0,0.93,0.965 +2402,100,100,,1,1,[1],2.4000000000000004,-4.800000000000001,0,0.92,0.95 +2403,100,100,,1,1,[1],2.4000000000000004,-4.700000000000001,0,0.92,0.96 +2404,100,100,,1,1,[1],2.4000000000000004,-4.600000000000001,0,0.92,0.96 +2405,100,100,,1,1,[1],2.4000000000000004,-4.500000000000002,0,0.91,0.955 +2406,100,100,,1,1,[1],2.4000000000000004,-4.400000000000002,0,0.93,0.945 +2407,100,100,,1,1,[1],2.4000000000000004,-4.3000000000000025,0,0.93,0.965 +2408,100,100,,1,1,[1],2.4000000000000004,-4.200000000000003,0,0.9,0.94 +2409,100,100,,1,1,[1],2.4000000000000004,-4.100000000000003,0,0.92,0.95 +2410,100,100,,1,1,[1],2.4000000000000004,-4.0000000000000036,0,0.87,0.935 +2411,100,100,,1,1,[1],2.4000000000000004,-3.900000000000004,0,0.84,0.92 +2412,100,100,,1,1,[1],2.4000000000000004,-3.8000000000000043,0,0.86,0.91 +2413,100,100,,1,1,[1],2.4000000000000004,-3.7000000000000046,0,0.82,0.88 +2414,100,100,,1,1,[1],2.4000000000000004,-3.600000000000005,0,0.86,0.9 +2415,100,100,,1,1,[1],2.4000000000000004,-3.5000000000000053,0,0.83,0.875 +2416,100,100,,1,1,[1],2.4000000000000004,-3.4000000000000057,0,0.83,0.895 +2417,100,100,,1,1,[1],2.4000000000000004,-3.300000000000006,0,0.81,0.865 +2418,100,100,,1,1,[1],2.4000000000000004,-3.2000000000000064,0,0.75,0.835 +2419,100,100,,1,1,[1],2.4000000000000004,-3.1000000000000068,0,0.79,0.875 +2420,100,100,,1,1,[1],2.4000000000000004,-3.000000000000007,0,0.79,0.865 +2421,100,100,,1,1,[1],2.4000000000000004,-2.9000000000000075,0,0.77,0.855 +2422,100,100,,1,1,[1],2.4000000000000004,-2.800000000000008,0,0.75,0.835 +2423,100,100,,1,1,[1],2.4000000000000004,-2.700000000000008,0,0.77,0.875 +2424,100,100,,1,1,[1],2.4000000000000004,-2.6000000000000085,0,0.67,0.775 +2425,100,100,,1,1,[1],2.4000000000000004,-2.500000000000009,0,0.65,0.755 +2426,100,100,,1,1,[1],2.4000000000000004,-2.4000000000000092,0,0.68,0.8 +2427,100,100,,1,1,[1],2.4000000000000004,-2.3000000000000096,0,0.67,0.785 +2428,100,100,,1,1,[1],2.4000000000000004,-2.20000000000001,0,0.74,0.84 +2429,100,100,,1,1,[1],2.4000000000000004,-2.1000000000000103,0,0.74,0.77 +2430,100,100,,1,1,[1],2.4000000000000004,-2.0000000000000107,0,0.69,0.785 +2431,100,100,,1,1,[1],2.4000000000000004,-1.900000000000011,0,0.68,0.8 +2432,100,100,,1,1,[1],2.4000000000000004,-1.8000000000000114,0,0.68,0.74 +2433,100,100,,1,1,[1],2.4000000000000004,-1.7000000000000117,0,0.65,0.765 +2434,100,100,,1,1,[1],2.4000000000000004,-1.600000000000012,0,0.64,0.67 +2435,100,100,,1,1,[1],2.4000000000000004,-1.5000000000000124,0,0.65,0.715 +2436,100,100,,1,1,[1],2.4000000000000004,-1.4000000000000128,0,0.63,0.705 +2437,100,100,,1,1,[1],2.4000000000000004,-1.3000000000000131,0,0.56,0.71 +2438,100,100,,1,1,[1],2.4000000000000004,-1.2000000000000135,0,0.62,0.61 +2439,100,100,,1,1,[1],2.4000000000000004,-1.1000000000000139,0,0.63,0.695 +2440,100,100,,1,1,[1],2.4000000000000004,-1.0000000000000142,0,0.65,0.635 +2441,100,100,,1,1,[1],2.4000000000000004,-0.9000000000000146,0,0.59,0.555 +2442,100,100,,1,1,[1],2.4000000000000004,-0.8000000000000149,0,0.68,0.6 +2443,100,100,,1,1,[1],2.4000000000000004,-0.7000000000000153,0,0.6,0.6 +2444,100,100,,1,1,[1],2.4000000000000004,-0.6000000000000156,0,0.62,0.55 +2445,100,100,,1,1,[1],2.4000000000000004,-0.500000000000016,0,0.58,0.54 +2446,100,100,,1,1,[1],2.4000000000000004,-0.40000000000001634,0,0.62,0.54 +2447,100,100,,1,1,[1],2.4000000000000004,-0.3000000000000167,0,0.53,0.595 +2448,100,100,,1,1,[1],2.4000000000000004,-0.20000000000001705,0,0.63,0.535 +2449,100,100,,1,1,[1],2.4000000000000004,-0.10000000000001741,0,0.62,0.46 +2450,100,100,,1,1,[1],2.4000000000000004,-1.7763568394002505e-14,0,0.62,0.51 +2451,100,100,,1,1,[1],2.4000000000000004,0.09999999999998188,0,0.56,0.47 +2452,100,100,,1,1,[1],2.4000000000000004,0.19999999999998153,0,0.53,0.415 +2453,100,100,,1,1,[1],2.4000000000000004,0.29999999999998117,0,0.58,0.47 +2454,100,100,,1,1,[1],2.4000000000000004,0.3999999999999808,0,0.64,0.44 +2455,100,100,,1,1,[1],2.4000000000000004,0.49999999999998046,0,0.6,0.43 +2456,100,100,,1,1,[1],2.4000000000000004,0.5999999999999801,0,0.63,0.385 +2457,100,100,,1,1,[1],2.4000000000000004,0.6999999999999797,0,0.56,0.43 +2458,100,100,,1,1,[1],2.4000000000000004,0.7999999999999794,0,0.52,0.34 +2459,100,100,,1,1,[1],2.4000000000000004,0.899999999999979,0,0.56,0.37 +2460,100,100,,1,1,[1],2.4000000000000004,0.9999999999999787,0,0.65,0.395 +2461,100,100,,1,1,[1],2.4000000000000004,1.0999999999999783,0,0.62,0.36 +2462,100,100,,1,1,[1],2.4000000000000004,1.199999999999978,0,0.56,0.34 +2463,100,100,,1,1,[1],2.4000000000000004,1.2999999999999776,0,0.62,0.34 +2464,100,100,,1,1,[1],2.4000000000000004,1.3999999999999773,0,0.62,0.32 +2465,100,100,,1,1,[1],2.4000000000000004,1.499999999999977,0,0.62,0.26 +2466,100,100,,1,1,[1],2.4000000000000004,1.5999999999999766,0,0.6,0.27 +2467,100,100,,1,1,[1],2.4000000000000004,1.6999999999999762,0,0.58,0.3 +2468,100,100,,1,1,[1],2.4000000000000004,1.7999999999999758,0,0.7,0.31 +2469,100,100,,1,1,[1],2.4000000000000004,1.8999999999999755,0,0.7,0.23 +2470,100,100,,1,1,[1],2.4000000000000004,1.9999999999999751,0,0.67,0.215 +2471,100,100,,1,1,[1],2.4000000000000004,2.0999999999999748,0,0.73,0.165 +2472,100,100,,1,1,[1],2.4000000000000004,2.1999999999999744,0,0.74,0.24 +2473,100,100,,1,1,[1],2.4000000000000004,2.299999999999974,0,0.69,0.205 +2474,100,100,,1,1,[1],2.4000000000000004,2.3999999999999737,0,0.57,0.255 +2475,100,100,,1,1,[1],2.4000000000000004,2.4999999999999734,0,0.73,0.225 +2476,100,100,,1,1,[1],2.4000000000000004,2.599999999999973,0,0.7,0.17 +2477,100,100,,1,1,[1],2.4000000000000004,2.6999999999999726,0,0.76,0.2 +2478,100,100,,1,1,[1],2.4000000000000004,2.7999999999999723,0,0.75,0.165 +2479,100,100,,1,1,[1],2.4000000000000004,2.899999999999972,0,0.78,0.16 +2480,100,100,,1,1,[1],2.4000000000000004,2.9999999999999716,0,0.81,0.135 +2481,100,100,,1,1,[1],2.4000000000000004,3.0999999999999712,0,0.72,0.2 +2482,100,100,,1,1,[1],2.4000000000000004,3.199999999999971,0,0.9,0.07 +2483,100,100,,1,1,[1],2.4000000000000004,3.2999999999999705,0,0.74,0.16 +2484,100,100,,1,1,[1],2.4000000000000004,3.39999999999997,0,0.84,0.09 +2485,100,100,,1,1,[1],2.4000000000000004,3.49999999999997,0,0.91,0.075 +2486,100,100,,1,1,[1],2.4000000000000004,3.5999999999999694,0,0.87,0.085 +2487,100,100,,1,1,[1],2.4000000000000004,3.699999999999969,0,0.83,0.095 +2488,100,100,,1,1,[1],2.4000000000000004,3.7999999999999687,0,0.82,0.13 +2489,100,100,,1,1,[1],2.4000000000000004,3.8999999999999684,0,0.86,0.08 +2490,100,100,,1,1,[1],2.4000000000000004,3.999999999999968,0,0.88,0.07 +2491,100,100,,1,1,[1],2.4000000000000004,4.099999999999968,0,0.89,0.055 +2492,100,100,,1,1,[1],2.4000000000000004,4.199999999999967,0,0.87,0.065 +2493,100,100,,1,1,[1],2.4000000000000004,4.299999999999967,0,0.88,0.06 +2494,100,100,,1,1,[1],2.4000000000000004,4.399999999999967,0,0.86,0.08 +2495,100,100,,1,1,[1],2.4000000000000004,4.499999999999966,0,0.91,0.055 +2496,100,100,,1,1,[1],2.4000000000000004,4.599999999999966,0,0.96,0.02 +2497,100,100,,1,1,[1],2.4000000000000004,4.6999999999999655,0,0.94,0.03 +2498,100,100,,1,1,[1],2.4000000000000004,4.799999999999965,0,0.94,0.03 +2499,100,100,,1,1,[1],2.4000000000000004,4.899999999999965,0,0.94,0.03 +2500,100,100,,1,1,[1],2.5,-5.0,0,0.97,0.985 +2501,100,100,,1,1,[1],2.5,-4.9,0,0.96,0.97 +2502,100,100,,1,1,[1],2.5,-4.800000000000001,0,0.88,0.94 +2503,100,100,,1,1,[1],2.5,-4.700000000000001,0,0.89,0.945 +2504,100,100,,1,1,[1],2.5,-4.600000000000001,0,0.92,0.96 +2505,100,100,,1,1,[1],2.5,-4.500000000000002,0,0.89,0.945 +2506,100,100,,1,1,[1],2.5,-4.400000000000002,0,0.93,0.955 +2507,100,100,,1,1,[1],2.5,-4.3000000000000025,0,0.91,0.955 +2508,100,100,,1,1,[1],2.5,-4.200000000000003,0,0.87,0.925 +2509,100,100,,1,1,[1],2.5,-4.100000000000003,0,0.88,0.94 +2510,100,100,,1,1,[1],2.5,-4.0000000000000036,0,0.79,0.885 +2511,100,100,,1,1,[1],2.5,-3.900000000000004,0,0.89,0.935 +2512,100,100,,1,1,[1],2.5,-3.8000000000000043,0,0.79,0.895 +2513,100,100,,1,1,[1],2.5,-3.7000000000000046,0,0.78,0.88 +2514,100,100,,1,1,[1],2.5,-3.600000000000005,0,0.79,0.875 +2515,100,100,,1,1,[1],2.5,-3.5000000000000053,0,0.86,0.91 +2516,100,100,,1,1,[1],2.5,-3.4000000000000057,0,0.8,0.88 +2517,100,100,,1,1,[1],2.5,-3.300000000000006,0,0.78,0.84 +2518,100,100,,1,1,[1],2.5,-3.2000000000000064,0,0.77,0.855 +2519,100,100,,1,1,[1],2.5,-3.1000000000000068,0,0.76,0.84 +2520,100,100,,1,1,[1],2.5,-3.000000000000007,0,0.7,0.8 +2521,100,100,,1,1,[1],2.5,-2.9000000000000075,0,0.79,0.875 +2522,100,100,,1,1,[1],2.5,-2.800000000000008,0,0.78,0.85 +2523,100,100,,1,1,[1],2.5,-2.700000000000008,0,0.69,0.815 +2524,100,100,,1,1,[1],2.5,-2.6000000000000085,0,0.76,0.85 +2525,100,100,,1,1,[1],2.5,-2.500000000000009,0,0.72,0.8 +2526,100,100,,1,1,[1],2.5,-2.4000000000000092,0,0.73,0.745 +2527,100,100,,1,1,[1],2.5,-2.3000000000000096,0,0.74,0.77 +2528,100,100,,1,1,[1],2.5,-2.20000000000001,0,0.74,0.77 +2529,100,100,,1,1,[1],2.5,-2.1000000000000103,0,0.68,0.75 +2530,100,100,,1,1,[1],2.5,-2.0000000000000107,0,0.7,0.74 +2531,100,100,,1,1,[1],2.5,-1.900000000000011,0,0.73,0.745 +2532,100,100,,1,1,[1],2.5,-1.8000000000000114,0,0.63,0.735 +2533,100,100,,1,1,[1],2.5,-1.7000000000000117,0,0.64,0.7 +2534,100,100,,1,1,[1],2.5,-1.600000000000012,0,0.58,0.71 +2535,100,100,,1,1,[1],2.5,-1.5000000000000124,0,0.69,0.705 +2536,100,100,,1,1,[1],2.5,-1.4000000000000128,0,0.64,0.72 +2537,100,100,,1,1,[1],2.5,-1.3000000000000131,0,0.62,0.66 +2538,100,100,,1,1,[1],2.5,-1.2000000000000135,0,0.56,0.64 +2539,100,100,,1,1,[1],2.5,-1.1000000000000139,0,0.63,0.675 +2540,100,100,,1,1,[1],2.5,-1.0000000000000142,0,0.56,0.6 +2541,100,100,,1,1,[1],2.5,-0.9000000000000146,0,0.63,0.585 +2542,100,100,,1,1,[1],2.5,-0.8000000000000149,0,0.6,0.66 +2543,100,100,,1,1,[1],2.5,-0.7000000000000153,0,0.54,0.56 +2544,100,100,,1,1,[1],2.5,-0.6000000000000156,0,0.6,0.57 +2545,100,100,,1,1,[1],2.5,-0.500000000000016,0,0.59,0.585 +2546,100,100,,1,1,[1],2.5,-0.40000000000001634,0,0.5,0.57 +2547,100,100,,1,1,[1],2.5,-0.3000000000000167,0,0.61,0.555 +2548,100,100,,1,1,[1],2.5,-0.20000000000001705,0,0.58,0.6 +2549,100,100,,1,1,[1],2.5,-0.10000000000001741,0,0.62,0.48 +2550,100,100,,1,1,[1],2.5,-1.7763568394002505e-14,0,0.69,0.495 +2551,100,100,,1,1,[1],2.5,0.09999999999998188,0,0.51,0.495 +2552,100,100,,1,1,[1],2.5,0.19999999999998153,0,0.56,0.49 +2553,100,100,,1,1,[1],2.5,0.29999999999998117,0,0.61,0.475 +2554,100,100,,1,1,[1],2.5,0.3999999999999808,0,0.55,0.465 +2555,100,100,,1,1,[1],2.5,0.49999999999998046,0,0.52,0.43 +2556,100,100,,1,1,[1],2.5,0.5999999999999801,0,0.59,0.415 +2557,100,100,,1,1,[1],2.5,0.6999999999999797,0,0.55,0.405 +2558,100,100,,1,1,[1],2.5,0.7999999999999794,0,0.65,0.425 +2559,100,100,,1,1,[1],2.5,0.899999999999979,0,0.6,0.34 +2560,100,100,,1,1,[1],2.5,0.9999999999999787,0,0.65,0.325 +2561,100,100,,1,1,[1],2.5,1.0999999999999783,0,0.55,0.355 +2562,100,100,,1,1,[1],2.5,1.199999999999978,0,0.66,0.33 +2563,100,100,,1,1,[1],2.5,1.2999999999999776,0,0.66,0.27 +2564,100,100,,1,1,[1],2.5,1.3999999999999773,0,0.59,0.315 +2565,100,100,,1,1,[1],2.5,1.499999999999977,0,0.61,0.285 +2566,100,100,,1,1,[1],2.5,1.5999999999999766,0,0.67,0.225 +2567,100,100,,1,1,[1],2.5,1.6999999999999762,0,0.73,0.255 +2568,100,100,,1,1,[1],2.5,1.7999999999999758,0,0.67,0.245 +2569,100,100,,1,1,[1],2.5,1.8999999999999755,0,0.69,0.275 +2570,100,100,,1,1,[1],2.5,1.9999999999999751,0,0.67,0.295 +2571,100,100,,1,1,[1],2.5,2.0999999999999748,0,0.69,0.255 +2572,100,100,,1,1,[1],2.5,2.1999999999999744,0,0.72,0.19 +2573,100,100,,1,1,[1],2.5,2.299999999999974,0,0.72,0.19 +2574,100,100,,1,1,[1],2.5,2.3999999999999737,0,0.74,0.2 +2575,100,100,,1,1,[1],2.5,2.4999999999999734,0,0.72,0.19 +2576,100,100,,1,1,[1],2.5,2.599999999999973,0,0.79,0.135 +2577,100,100,,1,1,[1],2.5,2.6999999999999726,0,0.81,0.165 +2578,100,100,,1,1,[1],2.5,2.7999999999999723,0,0.77,0.185 +2579,100,100,,1,1,[1],2.5,2.899999999999972,0,0.73,0.195 +2580,100,100,,1,1,[1],2.5,2.9999999999999716,0,0.78,0.16 +2581,100,100,,1,1,[1],2.5,3.0999999999999712,0,0.81,0.105 +2582,100,100,,1,1,[1],2.5,3.199999999999971,0,0.81,0.125 +2583,100,100,,1,1,[1],2.5,3.2999999999999705,0,0.84,0.1 +2584,100,100,,1,1,[1],2.5,3.39999999999997,0,0.78,0.13 +2585,100,100,,1,1,[1],2.5,3.49999999999997,0,0.85,0.085 +2586,100,100,,1,1,[1],2.5,3.5999999999999694,0,0.84,0.09 +2587,100,100,,1,1,[1],2.5,3.699999999999969,0,0.89,0.075 +2588,100,100,,1,1,[1],2.5,3.7999999999999687,0,0.86,0.1 +2589,100,100,,1,1,[1],2.5,3.8999999999999684,0,0.89,0.065 +2590,100,100,,1,1,[1],2.5,3.999999999999968,0,0.83,0.115 +2591,100,100,,1,1,[1],2.5,4.099999999999968,0,0.86,0.08 +2592,100,100,,1,1,[1],2.5,4.199999999999967,0,0.79,0.105 +2593,100,100,,1,1,[1],2.5,4.299999999999967,0,0.89,0.055 +2594,100,100,,1,1,[1],2.5,4.399999999999967,0,0.89,0.055 +2595,100,100,,1,1,[1],2.5,4.499999999999966,0,0.83,0.085 +2596,100,100,,1,1,[1],2.5,4.599999999999966,0,0.88,0.06 +2597,100,100,,1,1,[1],2.5,4.6999999999999655,0,0.91,0.055 +2598,100,100,,1,1,[1],2.5,4.799999999999965,0,0.87,0.065 +2599,100,100,,1,1,[1],2.5,4.899999999999965,0,0.94,0.05 +2600,100,100,,1,1,[1],2.6,-5.0,0,0.93,0.965 +2601,100,100,,1,1,[1],2.6,-4.9,0,0.92,0.94 +2602,100,100,,1,1,[1],2.6,-4.800000000000001,0,0.91,0.955 +2603,100,100,,1,1,[1],2.6,-4.700000000000001,0,0.9,0.95 +2604,100,100,,1,1,[1],2.6,-4.600000000000001,0,0.95,0.975 +2605,100,100,,1,1,[1],2.6,-4.500000000000002,0,0.9,0.95 +2606,100,100,,1,1,[1],2.6,-4.400000000000002,0,0.9,0.95 +2607,100,100,,1,1,[1],2.6,-4.3000000000000025,0,0.9,0.93 +2608,100,100,,1,1,[1],2.6,-4.200000000000003,0,0.86,0.92 +2609,100,100,,1,1,[1],2.6,-4.100000000000003,0,0.91,0.945 +2610,100,100,,1,1,[1],2.6,-4.0000000000000036,0,0.87,0.915 +2611,100,100,,1,1,[1],2.6,-3.900000000000004,0,0.85,0.905 +2612,100,100,,1,1,[1],2.6,-3.8000000000000043,0,0.86,0.89 +2613,100,100,,1,1,[1],2.6,-3.7000000000000046,0,0.83,0.915 +2614,100,100,,1,1,[1],2.6,-3.600000000000005,0,0.83,0.915 +2615,100,100,,1,1,[1],2.6,-3.5000000000000053,0,0.76,0.86 +2616,100,100,,1,1,[1],2.6,-3.4000000000000057,0,0.8,0.85 +2617,100,100,,1,1,[1],2.6,-3.300000000000006,0,0.74,0.84 +2618,100,100,,1,1,[1],2.6,-3.2000000000000064,0,0.82,0.91 +2619,100,100,,1,1,[1],2.6,-3.1000000000000068,0,0.85,0.915 +2620,100,100,,1,1,[1],2.6,-3.000000000000007,0,0.85,0.905 +2621,100,100,,1,1,[1],2.6,-2.9000000000000075,0,0.79,0.795 +2622,100,100,,1,1,[1],2.6,-2.800000000000008,0,0.78,0.83 +2623,100,100,,1,1,[1],2.6,-2.700000000000008,0,0.65,0.725 +2624,100,100,,1,1,[1],2.6,-2.6000000000000085,0,0.74,0.83 +2625,100,100,,1,1,[1],2.6,-2.500000000000009,0,0.69,0.725 +2626,100,100,,1,1,[1],2.6,-2.4000000000000092,0,0.72,0.77 +2627,100,100,,1,1,[1],2.6,-2.3000000000000096,0,0.68,0.78 +2628,100,100,,1,1,[1],2.6,-2.20000000000001,0,0.64,0.73 +2629,100,100,,1,1,[1],2.6,-2.1000000000000103,0,0.66,0.78 +2630,100,100,,1,1,[1],2.6,-2.0000000000000107,0,0.67,0.755 +2631,100,100,,1,1,[1],2.6,-1.900000000000011,0,0.69,0.725 +2632,100,100,,1,1,[1],2.6,-1.8000000000000114,0,0.66,0.72 +2633,100,100,,1,1,[1],2.6,-1.7000000000000117,0,0.66,0.7 +2634,100,100,,1,1,[1],2.6,-1.600000000000012,0,0.69,0.765 +2635,100,100,,1,1,[1],2.6,-1.5000000000000124,0,0.66,0.73 +2636,100,100,,1,1,[1],2.6,-1.4000000000000128,0,0.6,0.68 +2637,100,100,,1,1,[1],2.6,-1.3000000000000131,0,0.64,0.66 +2638,100,100,,1,1,[1],2.6,-1.2000000000000135,0,0.65,0.665 +2639,100,100,,1,1,[1],2.6,-1.1000000000000139,0,0.61,0.595 +2640,100,100,,1,1,[1],2.6,-1.0000000000000142,0,0.6,0.63 +2641,100,100,,1,1,[1],2.6,-0.9000000000000146,0,0.56,0.62 +2642,100,100,,1,1,[1],2.6,-0.8000000000000149,0,0.58,0.53 +2643,100,100,,1,1,[1],2.6,-0.7000000000000153,0,0.54,0.58 +2644,100,100,,1,1,[1],2.6,-0.6000000000000156,0,0.52,0.6 +2645,100,100,,1,1,[1],2.6,-0.500000000000016,0,0.66,0.53 +2646,100,100,,1,1,[1],2.6,-0.40000000000001634,0,0.54,0.54 +2647,100,100,,1,1,[1],2.6,-0.3000000000000167,0,0.57,0.525 +2648,100,100,,1,1,[1],2.6,-0.20000000000001705,0,0.6,0.55 +2649,100,100,,1,1,[1],2.6,-0.10000000000001741,0,0.69,0.545 +2650,100,100,,1,1,[1],2.6,-1.7763568394002505e-14,0,0.49,0.515 +2651,100,100,,1,1,[1],2.6,0.09999999999998188,0,0.61,0.495 +2652,100,100,,1,1,[1],2.6,0.19999999999998153,0,0.55,0.455 +2653,100,100,,1,1,[1],2.6,0.29999999999998117,0,0.62,0.42 +2654,100,100,,1,1,[1],2.6,0.3999999999999808,0,0.54,0.47 +2655,100,100,,1,1,[1],2.6,0.49999999999998046,0,0.59,0.365 +2656,100,100,,1,1,[1],2.6,0.5999999999999801,0,0.5,0.41 +2657,100,100,,1,1,[1],2.6,0.6999999999999797,0,0.63,0.395 +2658,100,100,,1,1,[1],2.6,0.7999999999999794,0,0.65,0.435 +2659,100,100,,1,1,[1],2.6,0.899999999999979,0,0.56,0.35 +2660,100,100,,1,1,[1],2.6,0.9999999999999787,0,0.58,0.36 +2661,100,100,,1,1,[1],2.6,1.0999999999999783,0,0.66,0.36 +2662,100,100,,1,1,[1],2.6,1.199999999999978,0,0.57,0.375 +2663,100,100,,1,1,[1],2.6,1.2999999999999776,0,0.58,0.33 +2664,100,100,,1,1,[1],2.6,1.3999999999999773,0,0.62,0.3 +2665,100,100,,1,1,[1],2.6,1.499999999999977,0,0.73,0.325 +2666,100,100,,1,1,[1],2.6,1.5999999999999766,0,0.65,0.295 +2667,100,100,,1,1,[1],2.6,1.6999999999999762,0,0.62,0.3 +2668,100,100,,1,1,[1],2.6,1.7999999999999758,0,0.68,0.27 +2669,100,100,,1,1,[1],2.6,1.8999999999999755,0,0.65,0.285 +2670,100,100,,1,1,[1],2.6,1.9999999999999751,0,0.58,0.25 +2671,100,100,,1,1,[1],2.6,2.0999999999999748,0,0.74,0.19 +2672,100,100,,1,1,[1],2.6,2.1999999999999744,0,0.71,0.205 +2673,100,100,,1,1,[1],2.6,2.299999999999974,0,0.75,0.195 +2674,100,100,,1,1,[1],2.6,2.3999999999999737,0,0.73,0.185 +2675,100,100,,1,1,[1],2.6,2.4999999999999734,0,0.74,0.22 +2676,100,100,,1,1,[1],2.6,2.599999999999973,0,0.77,0.155 +2677,100,100,,1,1,[1],2.6,2.6999999999999726,0,0.8,0.12 +2678,100,100,,1,1,[1],2.6,2.7999999999999723,0,0.74,0.17 +2679,100,100,,1,1,[1],2.6,2.899999999999972,0,0.75,0.155 +2680,100,100,,1,1,[1],2.6,2.9999999999999716,0,0.8,0.13 +2681,100,100,,1,1,[1],2.6,3.0999999999999712,0,0.72,0.17 +2682,100,100,,1,1,[1],2.6,3.199999999999971,0,0.83,0.125 +2683,100,100,,1,1,[1],2.6,3.2999999999999705,0,0.75,0.175 +2684,100,100,,1,1,[1],2.6,3.39999999999997,0,0.81,0.105 +2685,100,100,,1,1,[1],2.6,3.49999999999997,0,0.86,0.09 +2686,100,100,,1,1,[1],2.6,3.5999999999999694,0,0.9,0.06 +2687,100,100,,1,1,[1],2.6,3.699999999999969,0,0.85,0.085 +2688,100,100,,1,1,[1],2.6,3.7999999999999687,0,0.74,0.14 +2689,100,100,,1,1,[1],2.6,3.8999999999999684,0,0.88,0.08 +2690,100,100,,1,1,[1],2.6,3.999999999999968,0,0.89,0.055 +2691,100,100,,1,1,[1],2.6,4.099999999999968,0,0.9,0.07 +2692,100,100,,1,1,[1],2.6,4.199999999999967,0,0.9,0.05 +2693,100,100,,1,1,[1],2.6,4.299999999999967,0,0.89,0.065 +2694,100,100,,1,1,[1],2.6,4.399999999999967,0,0.9,0.06 +2695,100,100,,1,1,[1],2.6,4.499999999999966,0,0.91,0.065 +2696,100,100,,1,1,[1],2.6,4.599999999999966,0,0.96,0.03 +2697,100,100,,1,1,[1],2.6,4.6999999999999655,0,0.94,0.05 +2698,100,100,,1,1,[1],2.6,4.799999999999965,0,0.94,0.04 +2699,100,100,,1,1,[1],2.6,4.899999999999965,0,0.94,0.04 +2700,100,100,,1,1,[1],2.7,-5.0,0,0.88,0.93 +2701,100,100,,1,1,[1],2.7,-4.9,0,0.91,0.955 +2702,100,100,,1,1,[1],2.7,-4.800000000000001,0,0.92,0.96 +2703,100,100,,1,1,[1],2.7,-4.700000000000001,0,0.95,0.975 +2704,100,100,,1,1,[1],2.7,-4.600000000000001,0,0.91,0.945 +2705,100,100,,1,1,[1],2.7,-4.500000000000002,0,0.9,0.93 +2706,100,100,,1,1,[1],2.7,-4.400000000000002,0,0.88,0.93 +2707,100,100,,1,1,[1],2.7,-4.3000000000000025,0,0.88,0.9 +2708,100,100,,1,1,[1],2.7,-4.200000000000003,0,0.86,0.92 +2709,100,100,,1,1,[1],2.7,-4.100000000000003,0,0.83,0.885 +2710,100,100,,1,1,[1],2.7,-4.0000000000000036,0,0.87,0.905 +2711,100,100,,1,1,[1],2.7,-3.900000000000004,0,0.82,0.9 +2712,100,100,,1,1,[1],2.7,-3.8000000000000043,0,0.87,0.915 +2713,100,100,,1,1,[1],2.7,-3.7000000000000046,0,0.81,0.885 +2714,100,100,,1,1,[1],2.7,-3.600000000000005,0,0.85,0.915 +2715,100,100,,1,1,[1],2.7,-3.5000000000000053,0,0.76,0.88 +2716,100,100,,1,1,[1],2.7,-3.4000000000000057,0,0.77,0.835 +2717,100,100,,1,1,[1],2.7,-3.300000000000006,0,0.77,0.835 +2718,100,100,,1,1,[1],2.7,-3.2000000000000064,0,0.69,0.825 +2719,100,100,,1,1,[1],2.7,-3.1000000000000068,0,0.76,0.84 +2720,100,100,,1,1,[1],2.7,-3.000000000000007,0,0.79,0.865 +2721,100,100,,1,1,[1],2.7,-2.9000000000000075,0,0.76,0.86 +2722,100,100,,1,1,[1],2.7,-2.800000000000008,0,0.76,0.85 +2723,100,100,,1,1,[1],2.7,-2.700000000000008,0,0.71,0.805 +2724,100,100,,1,1,[1],2.7,-2.6000000000000085,0,0.66,0.78 +2725,100,100,,1,1,[1],2.7,-2.500000000000009,0,0.71,0.795 +2726,100,100,,1,1,[1],2.7,-2.4000000000000092,0,0.72,0.81 +2727,100,100,,1,1,[1],2.7,-2.3000000000000096,0,0.63,0.695 +2728,100,100,,1,1,[1],2.7,-2.20000000000001,0,0.6,0.69 +2729,100,100,,1,1,[1],2.7,-2.1000000000000103,0,0.71,0.775 +2730,100,100,,1,1,[1],2.7,-2.0000000000000107,0,0.69,0.725 +2731,100,100,,1,1,[1],2.7,-1.900000000000011,0,0.6,0.72 +2732,100,100,,1,1,[1],2.7,-1.8000000000000114,0,0.65,0.735 +2733,100,100,,1,1,[1],2.7,-1.7000000000000117,0,0.65,0.655 +2734,100,100,,1,1,[1],2.7,-1.600000000000012,0,0.64,0.74 +2735,100,100,,1,1,[1],2.7,-1.5000000000000124,0,0.57,0.675 +2736,100,100,,1,1,[1],2.7,-1.4000000000000128,0,0.76,0.75 +2737,100,100,,1,1,[1],2.7,-1.3000000000000131,0,0.67,0.725 +2738,100,100,,1,1,[1],2.7,-1.2000000000000135,0,0.64,0.67 +2739,100,100,,1,1,[1],2.7,-1.1000000000000139,0,0.65,0.725 +2740,100,100,,1,1,[1],2.7,-1.0000000000000142,0,0.57,0.625 +2741,100,100,,1,1,[1],2.7,-0.9000000000000146,0,0.53,0.635 +2742,100,100,,1,1,[1],2.7,-0.8000000000000149,0,0.56,0.6 +2743,100,100,,1,1,[1],2.7,-0.7000000000000153,0,0.62,0.6 +2744,100,100,,1,1,[1],2.7,-0.6000000000000156,0,0.52,0.57 +2745,100,100,,1,1,[1],2.7,-0.500000000000016,0,0.64,0.55 +2746,100,100,,1,1,[1],2.7,-0.40000000000001634,0,0.62,0.62 +2747,100,100,,1,1,[1],2.7,-0.3000000000000167,0,0.65,0.555 +2748,100,100,,1,1,[1],2.7,-0.20000000000001705,0,0.56,0.51 +2749,100,100,,1,1,[1],2.7,-0.10000000000001741,0,0.55,0.525 +2750,100,100,,1,1,[1],2.7,-1.7763568394002505e-14,0,0.56,0.52 +2751,100,100,,1,1,[1],2.7,0.09999999999998188,0,0.61,0.375 +2752,100,100,,1,1,[1],2.7,0.19999999999998153,0,0.51,0.465 +2753,100,100,,1,1,[1],2.7,0.29999999999998117,0,0.56,0.43 +2754,100,100,,1,1,[1],2.7,0.3999999999999808,0,0.62,0.48 +2755,100,100,,1,1,[1],2.7,0.49999999999998046,0,0.65,0.425 +2756,100,100,,1,1,[1],2.7,0.5999999999999801,0,0.56,0.42 +2757,100,100,,1,1,[1],2.7,0.6999999999999797,0,0.61,0.365 +2758,100,100,,1,1,[1],2.7,0.7999999999999794,0,0.58,0.41 +2759,100,100,,1,1,[1],2.7,0.899999999999979,0,0.63,0.365 +2760,100,100,,1,1,[1],2.7,0.9999999999999787,0,0.56,0.35 +2761,100,100,,1,1,[1],2.7,1.0999999999999783,0,0.58,0.37 +2762,100,100,,1,1,[1],2.7,1.199999999999978,0,0.67,0.315 +2763,100,100,,1,1,[1],2.7,1.2999999999999776,0,0.6,0.39 +2764,100,100,,1,1,[1],2.7,1.3999999999999773,0,0.61,0.285 +2765,100,100,,1,1,[1],2.7,1.499999999999977,0,0.62,0.25 +2766,100,100,,1,1,[1],2.7,1.5999999999999766,0,0.64,0.31 +2767,100,100,,1,1,[1],2.7,1.6999999999999762,0,0.6,0.26 +2768,100,100,,1,1,[1],2.7,1.7999999999999758,0,0.68,0.28 +2769,100,100,,1,1,[1],2.7,1.8999999999999755,0,0.59,0.315 +2770,100,100,,1,1,[1],2.7,1.9999999999999751,0,0.64,0.27 +2771,100,100,,1,1,[1],2.7,2.0999999999999748,0,0.6,0.27 +2772,100,100,,1,1,[1],2.7,2.1999999999999744,0,0.72,0.22 +2773,100,100,,1,1,[1],2.7,2.299999999999974,0,0.74,0.21 +2774,100,100,,1,1,[1],2.7,2.3999999999999737,0,0.69,0.195 +2775,100,100,,1,1,[1],2.7,2.4999999999999734,0,0.77,0.135 +2776,100,100,,1,1,[1],2.7,2.599999999999973,0,0.73,0.185 +2777,100,100,,1,1,[1],2.7,2.6999999999999726,0,0.65,0.215 +2778,100,100,,1,1,[1],2.7,2.7999999999999723,0,0.7,0.23 +2779,100,100,,1,1,[1],2.7,2.899999999999972,0,0.8,0.14 +2780,100,100,,1,1,[1],2.7,2.9999999999999716,0,0.8,0.18 +2781,100,100,,1,1,[1],2.7,3.0999999999999712,0,0.84,0.13 +2782,100,100,,1,1,[1],2.7,3.199999999999971,0,0.81,0.125 +2783,100,100,,1,1,[1],2.7,3.2999999999999705,0,0.73,0.185 +2784,100,100,,1,1,[1],2.7,3.39999999999997,0,0.83,0.095 +2785,100,100,,1,1,[1],2.7,3.49999999999997,0,0.78,0.16 +2786,100,100,,1,1,[1],2.7,3.5999999999999694,0,0.79,0.115 +2787,100,100,,1,1,[1],2.7,3.699999999999969,0,0.85,0.085 +2788,100,100,,1,1,[1],2.7,3.7999999999999687,0,0.81,0.125 +2789,100,100,,1,1,[1],2.7,3.8999999999999684,0,0.83,0.105 +2790,100,100,,1,1,[1],2.7,3.999999999999968,0,0.83,0.125 +2791,100,100,,1,1,[1],2.7,4.099999999999968,0,0.87,0.075 +2792,100,100,,1,1,[1],2.7,4.199999999999967,0,0.77,0.125 +2793,100,100,,1,1,[1],2.7,4.299999999999967,0,0.88,0.13 +2794,100,100,,1,1,[1],2.7,4.399999999999967,0,0.86,0.08 +2795,100,100,,1,1,[1],2.7,4.499999999999966,0,0.84,0.08 +2796,100,100,,1,1,[1],2.7,4.599999999999966,0,0.9,0.05 +2797,100,100,,1,1,[1],2.7,4.6999999999999655,0,0.83,0.085 +2798,100,100,,1,1,[1],2.7,4.799999999999965,0,0.92,0.04 +2799,100,100,,1,1,[1],2.7,4.899999999999965,0,0.9,0.05 +2800,100,100,,1,1,[1],2.8000000000000003,-5.0,0,0.94,0.96 +2801,100,100,,1,1,[1],2.8000000000000003,-4.9,0,0.85,0.925 +2802,100,100,,1,1,[1],2.8000000000000003,-4.800000000000001,0,0.89,0.925 +2803,100,100,,1,1,[1],2.8000000000000003,-4.700000000000001,0,0.9,0.95 +2804,100,100,,1,1,[1],2.8000000000000003,-4.600000000000001,0,0.87,0.915 +2805,100,100,,1,1,[1],2.8000000000000003,-4.500000000000002,0,0.82,0.91 +2806,100,100,,1,1,[1],2.8000000000000003,-4.400000000000002,0,0.88,0.91 +2807,100,100,,1,1,[1],2.8000000000000003,-4.3000000000000025,0,0.84,0.91 +2808,100,100,,1,1,[1],2.8000000000000003,-4.200000000000003,0,0.81,0.885 +2809,100,100,,1,1,[1],2.8000000000000003,-4.100000000000003,0,0.8,0.89 +2810,100,100,,1,1,[1],2.8000000000000003,-4.0000000000000036,0,0.8,0.9 +2811,100,100,,1,1,[1],2.8000000000000003,-3.900000000000004,0,0.82,0.9 +2812,100,100,,1,1,[1],2.8000000000000003,-3.8000000000000043,0,0.8,0.88 +2813,100,100,,1,1,[1],2.8000000000000003,-3.7000000000000046,0,0.8,0.9 +2814,100,100,,1,1,[1],2.8000000000000003,-3.600000000000005,0,0.76,0.84 +2815,100,100,,1,1,[1],2.8000000000000003,-3.5000000000000053,0,0.85,0.915 +2816,100,100,,1,1,[1],2.8000000000000003,-3.4000000000000057,0,0.79,0.875 +2817,100,100,,1,1,[1],2.8000000000000003,-3.300000000000006,0,0.75,0.855 +2818,100,100,,1,1,[1],2.8000000000000003,-3.2000000000000064,0,0.78,0.84 +2819,100,100,,1,1,[1],2.8000000000000003,-3.1000000000000068,0,0.77,0.815 +2820,100,100,,1,1,[1],2.8000000000000003,-3.000000000000007,0,0.85,0.855 +2821,100,100,,1,1,[1],2.8000000000000003,-2.9000000000000075,0,0.79,0.845 +2822,100,100,,1,1,[1],2.8000000000000003,-2.800000000000008,0,0.68,0.76 +2823,100,100,,1,1,[1],2.8000000000000003,-2.700000000000008,0,0.75,0.855 +2824,100,100,,1,1,[1],2.8000000000000003,-2.6000000000000085,0,0.73,0.805 +2825,100,100,,1,1,[1],2.8000000000000003,-2.500000000000009,0,0.64,0.77 +2826,100,100,,1,1,[1],2.8000000000000003,-2.4000000000000092,0,0.7,0.78 +2827,100,100,,1,1,[1],2.8000000000000003,-2.3000000000000096,0,0.71,0.795 +2828,100,100,,1,1,[1],2.8000000000000003,-2.20000000000001,0,0.57,0.735 +2829,100,100,,1,1,[1],2.8000000000000003,-2.1000000000000103,0,0.58,0.77 +2830,100,100,,1,1,[1],2.8000000000000003,-2.0000000000000107,0,0.7,0.76 +2831,100,100,,1,1,[1],2.8000000000000003,-1.900000000000011,0,0.69,0.735 +2832,100,100,,1,1,[1],2.8000000000000003,-1.8000000000000114,0,0.71,0.745 +2833,100,100,,1,1,[1],2.8000000000000003,-1.7000000000000117,0,0.61,0.685 +2834,100,100,,1,1,[1],2.8000000000000003,-1.600000000000012,0,0.71,0.735 +2835,100,100,,1,1,[1],2.8000000000000003,-1.5000000000000124,0,0.58,0.72 +2836,100,100,,1,1,[1],2.8000000000000003,-1.4000000000000128,0,0.6,0.64 +2837,100,100,,1,1,[1],2.8000000000000003,-1.3000000000000131,0,0.59,0.705 +2838,100,100,,1,1,[1],2.8000000000000003,-1.2000000000000135,0,0.55,0.615 +2839,100,100,,1,1,[1],2.8000000000000003,-1.1000000000000139,0,0.56,0.65 +2840,100,100,,1,1,[1],2.8000000000000003,-1.0000000000000142,0,0.67,0.615 +2841,100,100,,1,1,[1],2.8000000000000003,-0.9000000000000146,0,0.62,0.71 +2842,100,100,,1,1,[1],2.8000000000000003,-0.8000000000000149,0,0.63,0.575 +2843,100,100,,1,1,[1],2.8000000000000003,-0.7000000000000153,0,0.55,0.565 +2844,100,100,,1,1,[1],2.8000000000000003,-0.6000000000000156,0,0.59,0.545 +2845,100,100,,1,1,[1],2.8000000000000003,-0.500000000000016,0,0.55,0.535 +2846,100,100,,1,1,[1],2.8000000000000003,-0.40000000000001634,0,0.49,0.485 +2847,100,100,,1,1,[1],2.8000000000000003,-0.3000000000000167,0,0.6,0.52 +2848,100,100,,1,1,[1],2.8000000000000003,-0.20000000000001705,0,0.49,0.475 +2849,100,100,,1,1,[1],2.8000000000000003,-0.10000000000001741,0,0.52,0.54 +2850,100,100,,1,1,[1],2.8000000000000003,-1.7763568394002505e-14,0,0.61,0.495 +2851,100,100,,1,1,[1],2.8000000000000003,0.09999999999998188,0,0.59,0.525 +2852,100,100,,1,1,[1],2.8000000000000003,0.19999999999998153,0,0.52,0.5 +2853,100,100,,1,1,[1],2.8000000000000003,0.29999999999998117,0,0.6,0.43 +2854,100,100,,1,1,[1],2.8000000000000003,0.3999999999999808,0,0.62,0.43 +2855,100,100,,1,1,[1],2.8000000000000003,0.49999999999998046,0,0.6,0.39 +2856,100,100,,1,1,[1],2.8000000000000003,0.5999999999999801,0,0.54,0.4 +2857,100,100,,1,1,[1],2.8000000000000003,0.6999999999999797,0,0.6,0.48 +2858,100,100,,1,1,[1],2.8000000000000003,0.7999999999999794,0,0.57,0.375 +2859,100,100,,1,1,[1],2.8000000000000003,0.899999999999979,0,0.66,0.4 +2860,100,100,,1,1,[1],2.8000000000000003,0.9999999999999787,0,0.56,0.32 +2861,100,100,,1,1,[1],2.8000000000000003,1.0999999999999783,0,0.57,0.355 +2862,100,100,,1,1,[1],2.8000000000000003,1.199999999999978,0,0.6,0.33 +2863,100,100,,1,1,[1],2.8000000000000003,1.2999999999999776,0,0.63,0.395 +2864,100,100,,1,1,[1],2.8000000000000003,1.3999999999999773,0,0.61,0.325 +2865,100,100,,1,1,[1],2.8000000000000003,1.499999999999977,0,0.6,0.34 +2866,100,100,,1,1,[1],2.8000000000000003,1.5999999999999766,0,0.61,0.335 +2867,100,100,,1,1,[1],2.8000000000000003,1.6999999999999762,0,0.63,0.285 +2868,100,100,,1,1,[1],2.8000000000000003,1.7999999999999758,0,0.57,0.325 +2869,100,100,,1,1,[1],2.8000000000000003,1.8999999999999755,0,0.62,0.27 +2870,100,100,,1,1,[1],2.8000000000000003,1.9999999999999751,0,0.59,0.265 +2871,100,100,,1,1,[1],2.8000000000000003,2.0999999999999748,0,0.74,0.29 +2872,100,100,,1,1,[1],2.8000000000000003,2.1999999999999744,0,0.64,0.23 +2873,100,100,,1,1,[1],2.8000000000000003,2.299999999999974,0,0.75,0.225 +2874,100,100,,1,1,[1],2.8000000000000003,2.3999999999999737,0,0.72,0.23 +2875,100,100,,1,1,[1],2.8000000000000003,2.4999999999999734,0,0.67,0.255 +2876,100,100,,1,1,[1],2.8000000000000003,2.599999999999973,0,0.74,0.16 +2877,100,100,,1,1,[1],2.8000000000000003,2.6999999999999726,0,0.68,0.22 +2878,100,100,,1,1,[1],2.8000000000000003,2.7999999999999723,0,0.71,0.175 +2879,100,100,,1,1,[1],2.8000000000000003,2.899999999999972,0,0.78,0.17 +2880,100,100,,1,1,[1],2.8000000000000003,2.9999999999999716,0,0.73,0.175 +2881,100,100,,1,1,[1],2.8000000000000003,3.0999999999999712,0,0.74,0.16 +2882,100,100,,1,1,[1],2.8000000000000003,3.199999999999971,0,0.68,0.21 +2883,100,100,,1,1,[1],2.8000000000000003,3.2999999999999705,0,0.82,0.14 +2884,100,100,,1,1,[1],2.8000000000000003,3.39999999999997,0,0.8,0.12 +2885,100,100,,1,1,[1],2.8000000000000003,3.49999999999997,0,0.82,0.13 +2886,100,100,,1,1,[1],2.8000000000000003,3.5999999999999694,0,0.81,0.135 +2887,100,100,,1,1,[1],2.8000000000000003,3.699999999999969,0,0.87,0.135 +2888,100,100,,1,1,[1],2.8000000000000003,3.7999999999999687,0,0.83,0.095 +2889,100,100,,1,1,[1],2.8000000000000003,3.8999999999999684,0,0.82,0.1 +2890,100,100,,1,1,[1],2.8000000000000003,3.999999999999968,0,0.88,0.06 +2891,100,100,,1,1,[1],2.8000000000000003,4.099999999999968,0,0.83,0.085 +2892,100,100,,1,1,[1],2.8000000000000003,4.199999999999967,0,0.91,0.075 +2893,100,100,,1,1,[1],2.8000000000000003,4.299999999999967,0,0.85,0.095 +2894,100,100,,1,1,[1],2.8000000000000003,4.399999999999967,0,0.86,0.09 +2895,100,100,,1,1,[1],2.8000000000000003,4.499999999999966,0,0.83,0.095 +2896,100,100,,1,1,[1],2.8000000000000003,4.599999999999966,0,0.83,0.115 +2897,100,100,,1,1,[1],2.8000000000000003,4.6999999999999655,0,0.84,0.08 +2898,100,100,,1,1,[1],2.8000000000000003,4.799999999999965,0,0.86,0.07 +2899,100,100,,1,1,[1],2.8000000000000003,4.899999999999965,0,0.84,0.08 +2900,100,100,,1,1,[1],2.9000000000000004,-5.0,0,0.9,0.95 +2901,100,100,,1,1,[1],2.9000000000000004,-4.9,0,0.9,0.94 +2902,100,100,,1,1,[1],2.9000000000000004,-4.800000000000001,0,0.92,0.94 +2903,100,100,,1,1,[1],2.9000000000000004,-4.700000000000001,0,0.9,0.94 +2904,100,100,,1,1,[1],2.9000000000000004,-4.600000000000001,0,0.84,0.92 +2905,100,100,,1,1,[1],2.9000000000000004,-4.500000000000002,0,0.84,0.9 +2906,100,100,,1,1,[1],2.9000000000000004,-4.400000000000002,0,0.85,0.925 +2907,100,100,,1,1,[1],2.9000000000000004,-4.3000000000000025,0,0.82,0.89 +2908,100,100,,1,1,[1],2.9000000000000004,-4.200000000000003,0,0.85,0.875 +2909,100,100,,1,1,[1],2.9000000000000004,-4.100000000000003,0,0.78,0.85 +2910,100,100,,1,1,[1],2.9000000000000004,-4.0000000000000036,0,0.86,0.89 +2911,100,100,,1,1,[1],2.9000000000000004,-3.900000000000004,0,0.88,0.93 +2912,100,100,,1,1,[1],2.9000000000000004,-3.8000000000000043,0,0.79,0.865 +2913,100,100,,1,1,[1],2.9000000000000004,-3.7000000000000046,0,0.73,0.835 +2914,100,100,,1,1,[1],2.9000000000000004,-3.600000000000005,0,0.87,0.905 +2915,100,100,,1,1,[1],2.9000000000000004,-3.5000000000000053,0,0.83,0.865 +2916,100,100,,1,1,[1],2.9000000000000004,-3.4000000000000057,0,0.74,0.82 +2917,100,100,,1,1,[1],2.9000000000000004,-3.300000000000006,0,0.8,0.84 +2918,100,100,,1,1,[1],2.9000000000000004,-3.2000000000000064,0,0.67,0.785 +2919,100,100,,1,1,[1],2.9000000000000004,-3.1000000000000068,0,0.74,0.82 +2920,100,100,,1,1,[1],2.9000000000000004,-3.000000000000007,0,0.69,0.805 +2921,100,100,,1,1,[1],2.9000000000000004,-2.9000000000000075,0,0.71,0.805 +2922,100,100,,1,1,[1],2.9000000000000004,-2.800000000000008,0,0.71,0.815 +2923,100,100,,1,1,[1],2.9000000000000004,-2.700000000000008,0,0.69,0.775 +2924,100,100,,1,1,[1],2.9000000000000004,-2.6000000000000085,0,0.7,0.79 +2925,100,100,,1,1,[1],2.9000000000000004,-2.500000000000009,0,0.67,0.765 +2926,100,100,,1,1,[1],2.9000000000000004,-2.4000000000000092,0,0.71,0.755 +2927,100,100,,1,1,[1],2.9000000000000004,-2.3000000000000096,0,0.69,0.765 +2928,100,100,,1,1,[1],2.9000000000000004,-2.20000000000001,0,0.67,0.795 +2929,100,100,,1,1,[1],2.9000000000000004,-2.1000000000000103,0,0.65,0.755 +2930,100,100,,1,1,[1],2.9000000000000004,-2.0000000000000107,0,0.65,0.715 +2931,100,100,,1,1,[1],2.9000000000000004,-1.900000000000011,0,0.64,0.76 +2932,100,100,,1,1,[1],2.9000000000000004,-1.8000000000000114,0,0.62,0.72 +2933,100,100,,1,1,[1],2.9000000000000004,-1.7000000000000117,0,0.67,0.695 +2934,100,100,,1,1,[1],2.9000000000000004,-1.600000000000012,0,0.56,0.65 +2935,100,100,,1,1,[1],2.9000000000000004,-1.5000000000000124,0,0.59,0.735 +2936,100,100,,1,1,[1],2.9000000000000004,-1.4000000000000128,0,0.64,0.71 +2937,100,100,,1,1,[1],2.9000000000000004,-1.3000000000000131,0,0.62,0.69 +2938,100,100,,1,1,[1],2.9000000000000004,-1.2000000000000135,0,0.53,0.625 +2939,100,100,,1,1,[1],2.9000000000000004,-1.1000000000000139,0,0.62,0.64 +2940,100,100,,1,1,[1],2.9000000000000004,-1.0000000000000142,0,0.59,0.585 +2941,100,100,,1,1,[1],2.9000000000000004,-0.9000000000000146,0,0.51,0.625 +2942,100,100,,1,1,[1],2.9000000000000004,-0.8000000000000149,0,0.58,0.63 +2943,100,100,,1,1,[1],2.9000000000000004,-0.7000000000000153,0,0.56,0.53 +2944,100,100,,1,1,[1],2.9000000000000004,-0.6000000000000156,0,0.68,0.6 +2945,100,100,,1,1,[1],2.9000000000000004,-0.500000000000016,0,0.61,0.535 +2946,100,100,,1,1,[1],2.9000000000000004,-0.40000000000001634,0,0.61,0.595 +2947,100,100,,1,1,[1],2.9000000000000004,-0.3000000000000167,0,0.63,0.515 +2948,100,100,,1,1,[1],2.9000000000000004,-0.20000000000001705,0,0.55,0.505 +2949,100,100,,1,1,[1],2.9000000000000004,-0.10000000000001741,0,0.62,0.52 +2950,100,100,,1,1,[1],2.9000000000000004,-1.7763568394002505e-14,0,0.55,0.475 +2951,100,100,,1,1,[1],2.9000000000000004,0.09999999999998188,0,0.51,0.475 +2952,100,100,,1,1,[1],2.9000000000000004,0.19999999999998153,0,0.54,0.5 +2953,100,100,,1,1,[1],2.9000000000000004,0.29999999999998117,0,0.58,0.4 +2954,100,100,,1,1,[1],2.9000000000000004,0.3999999999999808,0,0.6,0.42 +2955,100,100,,1,1,[1],2.9000000000000004,0.49999999999998046,0,0.53,0.415 +2956,100,100,,1,1,[1],2.9000000000000004,0.5999999999999801,0,0.58,0.46 +2957,100,100,,1,1,[1],2.9000000000000004,0.6999999999999797,0,0.53,0.475 +2958,100,100,,1,1,[1],2.9000000000000004,0.7999999999999794,0,0.54,0.41 +2959,100,100,,1,1,[1],2.9000000000000004,0.899999999999979,0,0.62,0.42 +2960,100,100,,1,1,[1],2.9000000000000004,0.9999999999999787,0,0.53,0.395 +2961,100,100,,1,1,[1],2.9000000000000004,1.0999999999999783,0,0.67,0.335 +2962,100,100,,1,1,[1],2.9000000000000004,1.199999999999978,0,0.63,0.355 +2963,100,100,,1,1,[1],2.9000000000000004,1.2999999999999776,0,0.57,0.345 +2964,100,100,,1,1,[1],2.9000000000000004,1.3999999999999773,0,0.61,0.295 +2965,100,100,,1,1,[1],2.9000000000000004,1.499999999999977,0,0.59,0.305 +2966,100,100,,1,1,[1],2.9000000000000004,1.5999999999999766,0,0.5,0.37 +2967,100,100,,1,1,[1],2.9000000000000004,1.6999999999999762,0,0.58,0.29 +2968,100,100,,1,1,[1],2.9000000000000004,1.7999999999999758,0,0.64,0.32 +2969,100,100,,1,1,[1],2.9000000000000004,1.8999999999999755,0,0.61,0.265 +2970,100,100,,1,1,[1],2.9000000000000004,1.9999999999999751,0,0.63,0.255 +2971,100,100,,1,1,[1],2.9000000000000004,2.0999999999999748,0,0.62,0.25 +2972,100,100,,1,1,[1],2.9000000000000004,2.1999999999999744,0,0.7,0.22 +2973,100,100,,1,1,[1],2.9000000000000004,2.299999999999974,0,0.64,0.24 +2974,100,100,,1,1,[1],2.9000000000000004,2.3999999999999737,0,0.64,0.26 +2975,100,100,,1,1,[1],2.9000000000000004,2.4999999999999734,0,0.58,0.29 +2976,100,100,,1,1,[1],2.9000000000000004,2.599999999999973,0,0.66,0.21 +2977,100,100,,1,1,[1],2.9000000000000004,2.6999999999999726,0,0.64,0.25 +2978,100,100,,1,1,[1],2.9000000000000004,2.7999999999999723,0,0.77,0.145 +2979,100,100,,1,1,[1],2.9000000000000004,2.899999999999972,0,0.68,0.22 +2980,100,100,,1,1,[1],2.9000000000000004,2.9999999999999716,0,0.7,0.2 +2981,100,100,,1,1,[1],2.9000000000000004,3.0999999999999712,0,0.69,0.175 +2982,100,100,,1,1,[1],2.9000000000000004,3.199999999999971,0,0.73,0.155 +2983,100,100,,1,1,[1],2.9000000000000004,3.2999999999999705,0,0.78,0.16 +2984,100,100,,1,1,[1],2.9000000000000004,3.39999999999997,0,0.74,0.17 +2985,100,100,,1,1,[1],2.9000000000000004,3.49999999999997,0,0.78,0.16 +2986,100,100,,1,1,[1],2.9000000000000004,3.5999999999999694,0,0.73,0.195 +2987,100,100,,1,1,[1],2.9000000000000004,3.699999999999969,0,0.82,0.14 +2988,100,100,,1,1,[1],2.9000000000000004,3.7999999999999687,0,0.82,0.11 +2989,100,100,,1,1,[1],2.9000000000000004,3.8999999999999684,0,0.85,0.095 +2990,100,100,,1,1,[1],2.9000000000000004,3.999999999999968,0,0.79,0.155 +2991,100,100,,1,1,[1],2.9000000000000004,4.099999999999968,0,0.88,0.06 +2992,100,100,,1,1,[1],2.9000000000000004,4.199999999999967,0,0.88,0.12 +2993,100,100,,1,1,[1],2.9000000000000004,4.299999999999967,0,0.85,0.085 +2994,100,100,,1,1,[1],2.9000000000000004,4.399999999999967,0,0.86,0.1 +2995,100,100,,1,1,[1],2.9000000000000004,4.499999999999966,0,0.87,0.075 +2996,100,100,,1,1,[1],2.9000000000000004,4.599999999999966,0,0.93,0.035 +2997,100,100,,1,1,[1],2.9000000000000004,4.6999999999999655,0,0.87,0.075 +2998,100,100,,1,1,[1],2.9000000000000004,4.799999999999965,0,0.88,0.07 +2999,100,100,,1,1,[1],2.9000000000000004,4.899999999999965,0,0.91,0.055 +3000,100,100,,1,1,[1],3.0,-5.0,0,0.84,0.92 +3001,100,100,,1,1,[1],3.0,-4.9,0,0.92,0.96 +3002,100,100,,1,1,[1],3.0,-4.800000000000001,0,0.87,0.925 +3003,100,100,,1,1,[1],3.0,-4.700000000000001,0,0.92,0.95 +3004,100,100,,1,1,[1],3.0,-4.600000000000001,0,0.85,0.905 +3005,100,100,,1,1,[1],3.0,-4.500000000000002,0,0.86,0.93 +3006,100,100,,1,1,[1],3.0,-4.400000000000002,0,0.88,0.93 +3007,100,100,,1,1,[1],3.0,-4.3000000000000025,0,0.78,0.87 +3008,100,100,,1,1,[1],3.0,-4.200000000000003,0,0.86,0.9 +3009,100,100,,1,1,[1],3.0,-4.100000000000003,0,0.85,0.905 +3010,100,100,,1,1,[1],3.0,-4.0000000000000036,0,0.8,0.85 +3011,100,100,,1,1,[1],3.0,-3.900000000000004,0,0.81,0.885 +3012,100,100,,1,1,[1],3.0,-3.8000000000000043,0,0.76,0.85 +3013,100,100,,1,1,[1],3.0,-3.7000000000000046,0,0.75,0.815 +3014,100,100,,1,1,[1],3.0,-3.600000000000005,0,0.84,0.92 +3015,100,100,,1,1,[1],3.0,-3.5000000000000053,0,0.74,0.83 +3016,100,100,,1,1,[1],3.0,-3.4000000000000057,0,0.79,0.875 +3017,100,100,,1,1,[1],3.0,-3.300000000000006,0,0.75,0.825 +3018,100,100,,1,1,[1],3.0,-3.2000000000000064,0,0.73,0.825 +3019,100,100,,1,1,[1],3.0,-3.1000000000000068,0,0.67,0.785 +3020,100,100,,1,1,[1],3.0,-3.000000000000007,0,0.73,0.805 +3021,100,100,,1,1,[1],3.0,-2.9000000000000075,0,0.71,0.815 +3022,100,100,,1,1,[1],3.0,-2.800000000000008,0,0.71,0.785 +3023,100,100,,1,1,[1],3.0,-2.700000000000008,0,0.77,0.805 +3024,100,100,,1,1,[1],3.0,-2.6000000000000085,0,0.71,0.815 +3025,100,100,,1,1,[1],3.0,-2.500000000000009,0,0.71,0.795 +3026,100,100,,1,1,[1],3.0,-2.4000000000000092,0,0.67,0.725 +3027,100,100,,1,1,[1],3.0,-2.3000000000000096,0,0.66,0.76 +3028,100,100,,1,1,[1],3.0,-2.20000000000001,0,0.71,0.755 +3029,100,100,,1,1,[1],3.0,-2.1000000000000103,0,0.69,0.765 +3030,100,100,,1,1,[1],3.0,-2.0000000000000107,0,0.61,0.735 +3031,100,100,,1,1,[1],3.0,-1.900000000000011,0,0.63,0.735 +3032,100,100,,1,1,[1],3.0,-1.8000000000000114,0,0.7,0.73 +3033,100,100,,1,1,[1],3.0,-1.7000000000000117,0,0.68,0.77 +3034,100,100,,1,1,[1],3.0,-1.600000000000012,0,0.72,0.69 +3035,100,100,,1,1,[1],3.0,-1.5000000000000124,0,0.62,0.72 +3036,100,100,,1,1,[1],3.0,-1.4000000000000128,0,0.59,0.685 +3037,100,100,,1,1,[1],3.0,-1.3000000000000131,0,0.61,0.605 +3038,100,100,,1,1,[1],3.0,-1.2000000000000135,0,0.56,0.59 +3039,100,100,,1,1,[1],3.0,-1.1000000000000139,0,0.61,0.615 +3040,100,100,,1,1,[1],3.0,-1.0000000000000142,0,0.61,0.625 +3041,100,100,,1,1,[1],3.0,-0.9000000000000146,0,0.55,0.565 +3042,100,100,,1,1,[1],3.0,-0.8000000000000149,0,0.56,0.66 +3043,100,100,,1,1,[1],3.0,-0.7000000000000153,0,0.63,0.615 +3044,100,100,,1,1,[1],3.0,-0.6000000000000156,0,0.56,0.53 +3045,100,100,,1,1,[1],3.0,-0.500000000000016,0,0.56,0.6 +3046,100,100,,1,1,[1],3.0,-0.40000000000001634,0,0.6,0.53 +3047,100,100,,1,1,[1],3.0,-0.3000000000000167,0,0.58,0.54 +3048,100,100,,1,1,[1],3.0,-0.20000000000001705,0,0.53,0.515 +3049,100,100,,1,1,[1],3.0,-0.10000000000001741,0,0.63,0.505 +3050,100,100,,1,1,[1],3.0,-1.7763568394002505e-14,0,0.53,0.495 +3051,100,100,,1,1,[1],3.0,0.09999999999998188,0,0.53,0.485 +3052,100,100,,1,1,[1],3.0,0.19999999999998153,0,0.56,0.46 +3053,100,100,,1,1,[1],3.0,0.29999999999998117,0,0.56,0.43 +3054,100,100,,1,1,[1],3.0,0.3999999999999808,0,0.6,0.48 +3055,100,100,,1,1,[1],3.0,0.49999999999998046,0,0.55,0.435 +3056,100,100,,1,1,[1],3.0,0.5999999999999801,0,0.53,0.465 +3057,100,100,,1,1,[1],3.0,0.6999999999999797,0,0.6,0.41 +3058,100,100,,1,1,[1],3.0,0.7999999999999794,0,0.54,0.35 +3059,100,100,,1,1,[1],3.0,0.899999999999979,0,0.43,0.395 +3060,100,100,,1,1,[1],3.0,0.9999999999999787,0,0.63,0.365 +3061,100,100,,1,1,[1],3.0,1.0999999999999783,0,0.56,0.36 +3062,100,100,,1,1,[1],3.0,1.199999999999978,0,0.55,0.345 +3063,100,100,,1,1,[1],3.0,1.2999999999999776,0,0.56,0.4 +3064,100,100,,1,1,[1],3.0,1.3999999999999773,0,0.62,0.39 +3065,100,100,,1,1,[1],3.0,1.499999999999977,0,0.54,0.39 +3066,100,100,,1,1,[1],3.0,1.5999999999999766,0,0.63,0.315 +3067,100,100,,1,1,[1],3.0,1.6999999999999762,0,0.66,0.26 +3068,100,100,,1,1,[1],3.0,1.7999999999999758,0,0.6,0.31 +3069,100,100,,1,1,[1],3.0,1.8999999999999755,0,0.6,0.31 +3070,100,100,,1,1,[1],3.0,1.9999999999999751,0,0.64,0.24 +3071,100,100,,1,1,[1],3.0,2.0999999999999748,0,0.6,0.29 +3072,100,100,,1,1,[1],3.0,2.1999999999999744,0,0.63,0.275 +3073,100,100,,1,1,[1],3.0,2.299999999999974,0,0.64,0.3 +3074,100,100,,1,1,[1],3.0,2.3999999999999737,0,0.64,0.27 +3075,100,100,,1,1,[1],3.0,2.4999999999999734,0,0.71,0.215 +3076,100,100,,1,1,[1],3.0,2.599999999999973,0,0.74,0.22 +3077,100,100,,1,1,[1],3.0,2.6999999999999726,0,0.73,0.195 +3078,100,100,,1,1,[1],3.0,2.7999999999999723,0,0.73,0.195 +3079,100,100,,1,1,[1],3.0,2.899999999999972,0,0.84,0.2 +3080,100,100,,1,1,[1],3.0,2.9999999999999716,0,0.71,0.165 +3081,100,100,,1,1,[1],3.0,3.0999999999999712,0,0.74,0.16 +3082,100,100,,1,1,[1],3.0,3.199999999999971,0,0.71,0.155 +3083,100,100,,1,1,[1],3.0,3.2999999999999705,0,0.79,0.125 +3084,100,100,,1,1,[1],3.0,3.39999999999997,0,0.76,0.17 +3085,100,100,,1,1,[1],3.0,3.49999999999997,0,0.78,0.16 +3086,100,100,,1,1,[1],3.0,3.5999999999999694,0,0.81,0.095 +3087,100,100,,1,1,[1],3.0,3.699999999999969,0,0.83,0.105 +3088,100,100,,1,1,[1],3.0,3.7999999999999687,0,0.76,0.13 +3089,100,100,,1,1,[1],3.0,3.8999999999999684,0,0.79,0.125 +3090,100,100,,1,1,[1],3.0,3.999999999999968,0,0.8,0.13 +3091,100,100,,1,1,[1],3.0,4.099999999999968,0,0.79,0.115 +3092,100,100,,1,1,[1],3.0,4.199999999999967,0,0.87,0.075 +3093,100,100,,1,1,[1],3.0,4.299999999999967,0,0.85,0.085 +3094,100,100,,1,1,[1],3.0,4.399999999999967,0,0.84,0.1 +3095,100,100,,1,1,[1],3.0,4.499999999999966,0,0.83,0.085 +3096,100,100,,1,1,[1],3.0,4.599999999999966,0,0.79,0.105 +3097,100,100,,1,1,[1],3.0,4.6999999999999655,0,0.86,0.07 +3098,100,100,,1,1,[1],3.0,4.799999999999965,0,0.91,0.055 +3099,100,100,,1,1,[1],3.0,4.899999999999965,0,0.83,0.085 +3100,100,100,,1,1,[1],3.1,-5.0,0,0.92,0.95 +3101,100,100,,1,1,[1],3.1,-4.9,0,0.88,0.91 +3102,100,100,,1,1,[1],3.1,-4.800000000000001,0,0.88,0.92 +3103,100,100,,1,1,[1],3.1,-4.700000000000001,0,0.84,0.91 +3104,100,100,,1,1,[1],3.1,-4.600000000000001,0,0.86,0.92 +3105,100,100,,1,1,[1],3.1,-4.500000000000002,0,0.86,0.89 +3106,100,100,,1,1,[1],3.1,-4.400000000000002,0,0.77,0.865 +3107,100,100,,1,1,[1],3.1,-4.3000000000000025,0,0.86,0.92 +3108,100,100,,1,1,[1],3.1,-4.200000000000003,0,0.76,0.87 +3109,100,100,,1,1,[1],3.1,-4.100000000000003,0,0.84,0.9 +3110,100,100,,1,1,[1],3.1,-4.0000000000000036,0,0.81,0.875 +3111,100,100,,1,1,[1],3.1,-3.900000000000004,0,0.74,0.85 +3112,100,100,,1,1,[1],3.1,-3.8000000000000043,0,0.76,0.87 +3113,100,100,,1,1,[1],3.1,-3.7000000000000046,0,0.82,0.89 +3114,100,100,,1,1,[1],3.1,-3.600000000000005,0,0.71,0.835 +3115,100,100,,1,1,[1],3.1,-3.5000000000000053,0,0.78,0.83 +3116,100,100,,1,1,[1],3.1,-3.4000000000000057,0,0.79,0.865 +3117,100,100,,1,1,[1],3.1,-3.300000000000006,0,0.8,0.84 +3118,100,100,,1,1,[1],3.1,-3.2000000000000064,0,0.77,0.835 +3119,100,100,,1,1,[1],3.1,-3.1000000000000068,0,0.67,0.755 +3120,100,100,,1,1,[1],3.1,-3.000000000000007,0,0.74,0.86 +3121,100,100,,1,1,[1],3.1,-2.9000000000000075,0,0.75,0.835 +3122,100,100,,1,1,[1],3.1,-2.800000000000008,0,0.75,0.825 +3123,100,100,,1,1,[1],3.1,-2.700000000000008,0,0.78,0.83 +3124,100,100,,1,1,[1],3.1,-2.6000000000000085,0,0.6,0.72 +3125,100,100,,1,1,[1],3.1,-2.500000000000009,0,0.71,0.805 +3126,100,100,,1,1,[1],3.1,-2.4000000000000092,0,0.56,0.71 +3127,100,100,,1,1,[1],3.1,-2.3000000000000096,0,0.62,0.76 +3128,100,100,,1,1,[1],3.1,-2.20000000000001,0,0.69,0.805 +3129,100,100,,1,1,[1],3.1,-2.1000000000000103,0,0.65,0.765 +3130,100,100,,1,1,[1],3.1,-2.0000000000000107,0,0.67,0.755 +3131,100,100,,1,1,[1],3.1,-1.900000000000011,0,0.68,0.69 +3132,100,100,,1,1,[1],3.1,-1.8000000000000114,0,0.67,0.715 +3133,100,100,,1,1,[1],3.1,-1.7000000000000117,0,0.59,0.695 +3134,100,100,,1,1,[1],3.1,-1.600000000000012,0,0.71,0.675 +3135,100,100,,1,1,[1],3.1,-1.5000000000000124,0,0.56,0.63 +3136,100,100,,1,1,[1],3.1,-1.4000000000000128,0,0.63,0.725 +3137,100,100,,1,1,[1],3.1,-1.3000000000000131,0,0.65,0.665 +3138,100,100,,1,1,[1],3.1,-1.2000000000000135,0,0.61,0.695 +3139,100,100,,1,1,[1],3.1,-1.1000000000000139,0,0.47,0.635 +3140,100,100,,1,1,[1],3.1,-1.0000000000000142,0,0.63,0.675 +3141,100,100,,1,1,[1],3.1,-0.9000000000000146,0,0.58,0.64 +3142,100,100,,1,1,[1],3.1,-0.8000000000000149,0,0.57,0.585 +3143,100,100,,1,1,[1],3.1,-0.7000000000000153,0,0.5,0.59 +3144,100,100,,1,1,[1],3.1,-0.6000000000000156,0,0.54,0.53 +3145,100,100,,1,1,[1],3.1,-0.500000000000016,0,0.57,0.505 +3146,100,100,,1,1,[1],3.1,-0.40000000000001634,0,0.53,0.575 +3147,100,100,,1,1,[1],3.1,-0.3000000000000167,0,0.51,0.595 +3148,100,100,,1,1,[1],3.1,-0.20000000000001705,0,0.53,0.495 +3149,100,100,,1,1,[1],3.1,-0.10000000000001741,0,0.51,0.515 +3150,100,100,,1,1,[1],3.1,-1.7763568394002505e-14,0,0.58,0.5 +3151,100,100,,1,1,[1],3.1,0.09999999999998188,0,0.56,0.42 +3152,100,100,,1,1,[1],3.1,0.19999999999998153,0,0.59,0.455 +3153,100,100,,1,1,[1],3.1,0.29999999999998117,0,0.6,0.47 +3154,100,100,,1,1,[1],3.1,0.3999999999999808,0,0.46,0.49 +3155,100,100,,1,1,[1],3.1,0.49999999999998046,0,0.59,0.515 +3156,100,100,,1,1,[1],3.1,0.5999999999999801,0,0.67,0.405 +3157,100,100,,1,1,[1],3.1,0.6999999999999797,0,0.51,0.485 +3158,100,100,,1,1,[1],3.1,0.7999999999999794,0,0.63,0.415 +3159,100,100,,1,1,[1],3.1,0.899999999999979,0,0.6,0.42 +3160,100,100,,1,1,[1],3.1,0.9999999999999787,0,0.57,0.455 +3161,100,100,,1,1,[1],3.1,1.0999999999999783,0,0.53,0.395 +3162,100,100,,1,1,[1],3.1,1.199999999999978,0,0.55,0.375 +3163,100,100,,1,1,[1],3.1,1.2999999999999776,0,0.58,0.35 +3164,100,100,,1,1,[1],3.1,1.3999999999999773,0,0.59,0.345 +3165,100,100,,1,1,[1],3.1,1.499999999999977,0,0.62,0.32 +3166,100,100,,1,1,[1],3.1,1.5999999999999766,0,0.62,0.29 +3167,100,100,,1,1,[1],3.1,1.6999999999999762,0,0.6,0.27 +3168,100,100,,1,1,[1],3.1,1.7999999999999758,0,0.6,0.32 +3169,100,100,,1,1,[1],3.1,1.8999999999999755,0,0.62,0.3 +3170,100,100,,1,1,[1],3.1,1.9999999999999751,0,0.62,0.29 +3171,100,100,,1,1,[1],3.1,2.0999999999999748,0,0.66,0.28 +3172,100,100,,1,1,[1],3.1,2.1999999999999744,0,0.64,0.3 +3173,100,100,,1,1,[1],3.1,2.299999999999974,0,0.66,0.2 +3174,100,100,,1,1,[1],3.1,2.3999999999999737,0,0.71,0.265 +3175,100,100,,1,1,[1],3.1,2.4999999999999734,0,0.73,0.255 +3176,100,100,,1,1,[1],3.1,2.599999999999973,0,0.69,0.235 +3177,100,100,,1,1,[1],3.1,2.6999999999999726,0,0.74,0.22 +3178,100,100,,1,1,[1],3.1,2.7999999999999723,0,0.71,0.245 +3179,100,100,,1,1,[1],3.1,2.899999999999972,0,0.68,0.21 +3180,100,100,,1,1,[1],3.1,2.9999999999999716,0,0.72,0.17 +3181,100,100,,1,1,[1],3.1,3.0999999999999712,0,0.72,0.19 +3182,100,100,,1,1,[1],3.1,3.199999999999971,0,0.75,0.155 +3183,100,100,,1,1,[1],3.1,3.2999999999999705,0,0.81,0.145 +3184,100,100,,1,1,[1],3.1,3.39999999999997,0,0.79,0.145 +3185,100,100,,1,1,[1],3.1,3.49999999999997,0,0.67,0.195 +3186,100,100,,1,1,[1],3.1,3.5999999999999694,0,0.78,0.12 +3187,100,100,,1,1,[1],3.1,3.699999999999969,0,0.8,0.17 +3188,100,100,,1,1,[1],3.1,3.7999999999999687,0,0.77,0.125 +3189,100,100,,1,1,[1],3.1,3.8999999999999684,0,0.72,0.15 +3190,100,100,,1,1,[1],3.1,3.999999999999968,0,0.81,0.115 +3191,100,100,,1,1,[1],3.1,4.099999999999968,0,0.82,0.1 +3192,100,100,,1,1,[1],3.1,4.199999999999967,0,0.85,0.095 +3193,100,100,,1,1,[1],3.1,4.299999999999967,0,0.83,0.105 +3194,100,100,,1,1,[1],3.1,4.399999999999967,0,0.82,0.1 +3195,100,100,,1,1,[1],3.1,4.499999999999966,0,0.92,0.06 +3196,100,100,,1,1,[1],3.1,4.599999999999966,0,0.91,0.075 +3197,100,100,,1,1,[1],3.1,4.6999999999999655,0,0.94,0.03 +3198,100,100,,1,1,[1],3.1,4.799999999999965,0,0.87,0.065 +3199,100,100,,1,1,[1],3.1,4.899999999999965,0,0.84,0.08 +3200,100,100,,1,1,[1],3.2,-5.0,0,0.84,0.91 +3201,100,100,,1,1,[1],3.2,-4.9,0,0.88,0.92 +3202,100,100,,1,1,[1],3.2,-4.800000000000001,0,0.85,0.925 +3203,100,100,,1,1,[1],3.2,-4.700000000000001,0,0.84,0.89 +3204,100,100,,1,1,[1],3.2,-4.600000000000001,0,0.77,0.865 +3205,100,100,,1,1,[1],3.2,-4.500000000000002,0,0.85,0.915 +3206,100,100,,1,1,[1],3.2,-4.400000000000002,0,0.77,0.885 +3207,100,100,,1,1,[1],3.2,-4.3000000000000025,0,0.8,0.88 +3208,100,100,,1,1,[1],3.2,-4.200000000000003,0,0.86,0.9 +3209,100,100,,1,1,[1],3.2,-4.100000000000003,0,0.75,0.855 +3210,100,100,,1,1,[1],3.2,-4.0000000000000036,0,0.77,0.875 +3211,100,100,,1,1,[1],3.2,-3.900000000000004,0,0.85,0.885 +3212,100,100,,1,1,[1],3.2,-3.8000000000000043,0,0.72,0.85 +3213,100,100,,1,1,[1],3.2,-3.7000000000000046,0,0.74,0.85 +3214,100,100,,1,1,[1],3.2,-3.600000000000005,0,0.8,0.85 +3215,100,100,,1,1,[1],3.2,-3.5000000000000053,0,0.74,0.8 +3216,100,100,,1,1,[1],3.2,-3.4000000000000057,0,0.75,0.875 +3217,100,100,,1,1,[1],3.2,-3.300000000000006,0,0.78,0.87 +3218,100,100,,1,1,[1],3.2,-3.2000000000000064,0,0.72,0.83 +3219,100,100,,1,1,[1],3.2,-3.1000000000000068,0,0.7,0.78 +3220,100,100,,1,1,[1],3.2,-3.000000000000007,0,0.73,0.825 +3221,100,100,,1,1,[1],3.2,-2.9000000000000075,0,0.73,0.825 +3222,100,100,,1,1,[1],3.2,-2.800000000000008,0,0.74,0.8 +3223,100,100,,1,1,[1],3.2,-2.700000000000008,0,0.76,0.83 +3224,100,100,,1,1,[1],3.2,-2.6000000000000085,0,0.71,0.785 +3225,100,100,,1,1,[1],3.2,-2.500000000000009,0,0.76,0.82 +3226,100,100,,1,1,[1],3.2,-2.4000000000000092,0,0.66,0.76 +3227,100,100,,1,1,[1],3.2,-2.3000000000000096,0,0.73,0.785 +3228,100,100,,1,1,[1],3.2,-2.20000000000001,0,0.58,0.7 +3229,100,100,,1,1,[1],3.2,-2.1000000000000103,0,0.59,0.675 +3230,100,100,,1,1,[1],3.2,-2.0000000000000107,0,0.63,0.675 +3231,100,100,,1,1,[1],3.2,-1.900000000000011,0,0.59,0.665 +3232,100,100,,1,1,[1],3.2,-1.8000000000000114,0,0.61,0.675 +3233,100,100,,1,1,[1],3.2,-1.7000000000000117,0,0.57,0.745 +3234,100,100,,1,1,[1],3.2,-1.600000000000012,0,0.62,0.69 +3235,100,100,,1,1,[1],3.2,-1.5000000000000124,0,0.64,0.7 +3236,100,100,,1,1,[1],3.2,-1.4000000000000128,0,0.58,0.71 +3237,100,100,,1,1,[1],3.2,-1.3000000000000131,0,0.58,0.65 +3238,100,100,,1,1,[1],3.2,-1.2000000000000135,0,0.56,0.64 +3239,100,100,,1,1,[1],3.2,-1.1000000000000139,0,0.54,0.6 +3240,100,100,,1,1,[1],3.2,-1.0000000000000142,0,0.58,0.64 +3241,100,100,,1,1,[1],3.2,-0.9000000000000146,0,0.51,0.545 +3242,100,100,,1,1,[1],3.2,-0.8000000000000149,0,0.62,0.64 +3243,100,100,,1,1,[1],3.2,-0.7000000000000153,0,0.5,0.64 +3244,100,100,,1,1,[1],3.2,-0.6000000000000156,0,0.64,0.65 +3245,100,100,,1,1,[1],3.2,-0.500000000000016,0,0.6,0.53 +3246,100,100,,1,1,[1],3.2,-0.40000000000001634,0,0.52,0.56 +3247,100,100,,1,1,[1],3.2,-0.3000000000000167,0,0.66,0.51 +3248,100,100,,1,1,[1],3.2,-0.20000000000001705,0,0.52,0.51 +3249,100,100,,1,1,[1],3.2,-0.10000000000001741,0,0.46,0.54 +3250,100,100,,1,1,[1],3.2,-1.7763568394002505e-14,0,0.47,0.555 +3251,100,100,,1,1,[1],3.2,0.09999999999998188,0,0.48,0.51 +3252,100,100,,1,1,[1],3.2,0.19999999999998153,0,0.5,0.51 +3253,100,100,,1,1,[1],3.2,0.29999999999998117,0,0.58,0.38 +3254,100,100,,1,1,[1],3.2,0.3999999999999808,0,0.65,0.455 +3255,100,100,,1,1,[1],3.2,0.49999999999998046,0,0.51,0.455 +3256,100,100,,1,1,[1],3.2,0.5999999999999801,0,0.63,0.435 +3257,100,100,,1,1,[1],3.2,0.6999999999999797,0,0.63,0.405 +3258,100,100,,1,1,[1],3.2,0.7999999999999794,0,0.56,0.43 +3259,100,100,,1,1,[1],3.2,0.899999999999979,0,0.6,0.41 +3260,100,100,,1,1,[1],3.2,0.9999999999999787,0,0.66,0.3 +3261,100,100,,1,1,[1],3.2,1.0999999999999783,0,0.61,0.335 +3262,100,100,,1,1,[1],3.2,1.199999999999978,0,0.58,0.33 +3263,100,100,,1,1,[1],3.2,1.2999999999999776,0,0.53,0.385 +3264,100,100,,1,1,[1],3.2,1.3999999999999773,0,0.52,0.31 +3265,100,100,,1,1,[1],3.2,1.499999999999977,0,0.68,0.32 +3266,100,100,,1,1,[1],3.2,1.5999999999999766,0,0.62,0.34 +3267,100,100,,1,1,[1],3.2,1.6999999999999762,0,0.59,0.305 +3268,100,100,,1,1,[1],3.2,1.7999999999999758,0,0.6,0.31 +3269,100,100,,1,1,[1],3.2,1.8999999999999755,0,0.57,0.245 +3270,100,100,,1,1,[1],3.2,1.9999999999999751,0,0.64,0.28 +3271,100,100,,1,1,[1],3.2,2.0999999999999748,0,0.58,0.34 +3272,100,100,,1,1,[1],3.2,2.1999999999999744,0,0.58,0.31 +3273,100,100,,1,1,[1],3.2,2.299999999999974,0,0.65,0.215 +3274,100,100,,1,1,[1],3.2,2.3999999999999737,0,0.65,0.265 +3275,100,100,,1,1,[1],3.2,2.4999999999999734,0,0.67,0.255 +3276,100,100,,1,1,[1],3.2,2.599999999999973,0,0.73,0.205 +3277,100,100,,1,1,[1],3.2,2.6999999999999726,0,0.73,0.195 +3278,100,100,,1,1,[1],3.2,2.7999999999999723,0,0.65,0.245 +3279,100,100,,1,1,[1],3.2,2.899999999999972,0,0.76,0.16 +3280,100,100,,1,1,[1],3.2,2.9999999999999716,0,0.73,0.165 +3281,100,100,,1,1,[1],3.2,3.0999999999999712,0,0.71,0.165 +3282,100,100,,1,1,[1],3.2,3.199999999999971,0,0.73,0.135 +3283,100,100,,1,1,[1],3.2,3.2999999999999705,0,0.74,0.19 +3284,100,100,,1,1,[1],3.2,3.39999999999997,0,0.78,0.14 +3285,100,100,,1,1,[1],3.2,3.49999999999997,0,0.75,0.205 +3286,100,100,,1,1,[1],3.2,3.5999999999999694,0,0.79,0.205 +3287,100,100,,1,1,[1],3.2,3.699999999999969,0,0.74,0.15 +3288,100,100,,1,1,[1],3.2,3.7999999999999687,0,0.73,0.145 +3289,100,100,,1,1,[1],3.2,3.8999999999999684,0,0.81,0.125 +3290,100,100,,1,1,[1],3.2,3.999999999999968,0,0.81,0.095 +3291,100,100,,1,1,[1],3.2,4.099999999999968,0,0.81,0.105 +3292,100,100,,1,1,[1],3.2,4.199999999999967,0,0.9,0.08 +3293,100,100,,1,1,[1],3.2,4.299999999999967,0,0.81,0.105 +3294,100,100,,1,1,[1],3.2,4.399999999999967,0,0.81,0.105 +3295,100,100,,1,1,[1],3.2,4.499999999999966,0,0.87,0.075 +3296,100,100,,1,1,[1],3.2,4.599999999999966,0,0.87,0.075 +3297,100,100,,1,1,[1],3.2,4.6999999999999655,0,0.93,0.035 +3298,100,100,,1,1,[1],3.2,4.799999999999965,0,0.84,0.08 +3299,100,100,,1,1,[1],3.2,4.899999999999965,0,0.85,0.095 +3300,100,100,,1,1,[1],3.3000000000000003,-5.0,0,0.83,0.915 +3301,100,100,,1,1,[1],3.3000000000000003,-4.9,0,0.85,0.905 +3302,100,100,,1,1,[1],3.3000000000000003,-4.800000000000001,0,0.85,0.925 +3303,100,100,,1,1,[1],3.3000000000000003,-4.700000000000001,0,0.89,0.915 +3304,100,100,,1,1,[1],3.3000000000000003,-4.600000000000001,0,0.87,0.935 +3305,100,100,,1,1,[1],3.3000000000000003,-4.500000000000002,0,0.74,0.86 +3306,100,100,,1,1,[1],3.3000000000000003,-4.400000000000002,0,0.83,0.875 +3307,100,100,,1,1,[1],3.3000000000000003,-4.3000000000000025,0,0.77,0.875 +3308,100,100,,1,1,[1],3.3000000000000003,-4.200000000000003,0,0.79,0.845 +3309,100,100,,1,1,[1],3.3000000000000003,-4.100000000000003,0,0.8,0.88 +3310,100,100,,1,1,[1],3.3000000000000003,-4.0000000000000036,0,0.76,0.83 +3311,100,100,,1,1,[1],3.3000000000000003,-3.900000000000004,0,0.72,0.84 +3312,100,100,,1,1,[1],3.3000000000000003,-3.8000000000000043,0,0.76,0.85 +3313,100,100,,1,1,[1],3.3000000000000003,-3.7000000000000046,0,0.81,0.865 +3314,100,100,,1,1,[1],3.3000000000000003,-3.600000000000005,0,0.66,0.79 +3315,100,100,,1,1,[1],3.3000000000000003,-3.5000000000000053,0,0.77,0.865 +3316,100,100,,1,1,[1],3.3000000000000003,-3.4000000000000057,0,0.71,0.825 +3317,100,100,,1,1,[1],3.3000000000000003,-3.300000000000006,0,0.76,0.82 +3318,100,100,,1,1,[1],3.3000000000000003,-3.2000000000000064,0,0.79,0.855 +3319,100,100,,1,1,[1],3.3000000000000003,-3.1000000000000068,0,0.63,0.785 +3320,100,100,,1,1,[1],3.3000000000000003,-3.000000000000007,0,0.7,0.8 +3321,100,100,,1,1,[1],3.3000000000000003,-2.9000000000000075,0,0.69,0.775 +3322,100,100,,1,1,[1],3.3000000000000003,-2.800000000000008,0,0.72,0.84 +3323,100,100,,1,1,[1],3.3000000000000003,-2.700000000000008,0,0.69,0.775 +3324,100,100,,1,1,[1],3.3000000000000003,-2.6000000000000085,0,0.63,0.785 +3325,100,100,,1,1,[1],3.3000000000000003,-2.500000000000009,0,0.7,0.81 +3326,100,100,,1,1,[1],3.3000000000000003,-2.4000000000000092,0,0.66,0.72 +3327,100,100,,1,1,[1],3.3000000000000003,-2.3000000000000096,0,0.63,0.765 +3328,100,100,,1,1,[1],3.3000000000000003,-2.20000000000001,0,0.61,0.725 +3329,100,100,,1,1,[1],3.3000000000000003,-2.1000000000000103,0,0.67,0.695 +3330,100,100,,1,1,[1],3.3000000000000003,-2.0000000000000107,0,0.61,0.705 +3331,100,100,,1,1,[1],3.3000000000000003,-1.900000000000011,0,0.69,0.725 +3332,100,100,,1,1,[1],3.3000000000000003,-1.8000000000000114,0,0.58,0.62 +3333,100,100,,1,1,[1],3.3000000000000003,-1.7000000000000117,0,0.52,0.68 +3334,100,100,,1,1,[1],3.3000000000000003,-1.600000000000012,0,0.59,0.655 +3335,100,100,,1,1,[1],3.3000000000000003,-1.5000000000000124,0,0.68,0.66 +3336,100,100,,1,1,[1],3.3000000000000003,-1.4000000000000128,0,0.66,0.65 +3337,100,100,,1,1,[1],3.3000000000000003,-1.3000000000000131,0,0.6,0.64 +3338,100,100,,1,1,[1],3.3000000000000003,-1.2000000000000135,0,0.56,0.64 +3339,100,100,,1,1,[1],3.3000000000000003,-1.1000000000000139,0,0.53,0.615 +3340,100,100,,1,1,[1],3.3000000000000003,-1.0000000000000142,0,0.57,0.645 +3341,100,100,,1,1,[1],3.3000000000000003,-0.9000000000000146,0,0.55,0.605 +3342,100,100,,1,1,[1],3.3000000000000003,-0.8000000000000149,0,0.5,0.62 +3343,100,100,,1,1,[1],3.3000000000000003,-0.7000000000000153,0,0.56,0.56 +3344,100,100,,1,1,[1],3.3000000000000003,-0.6000000000000156,0,0.58,0.55 +3345,100,100,,1,1,[1],3.3000000000000003,-0.500000000000016,0,0.47,0.575 +3346,100,100,,1,1,[1],3.3000000000000003,-0.40000000000001634,0,0.51,0.595 +3347,100,100,,1,1,[1],3.3000000000000003,-0.3000000000000167,0,0.59,0.535 +3348,100,100,,1,1,[1],3.3000000000000003,-0.20000000000001705,0,0.57,0.615 +3349,100,100,,1,1,[1],3.3000000000000003,-0.10000000000001741,0,0.54,0.48 +3350,100,100,,1,1,[1],3.3000000000000003,-1.7763568394002505e-14,0,0.6,0.5 +3351,100,100,,1,1,[1],3.3000000000000003,0.09999999999998188,0,0.54,0.52 +3352,100,100,,1,1,[1],3.3000000000000003,0.19999999999998153,0,0.62,0.46 +3353,100,100,,1,1,[1],3.3000000000000003,0.29999999999998117,0,0.54,0.51 +3354,100,100,,1,1,[1],3.3000000000000003,0.3999999999999808,0,0.49,0.455 +3355,100,100,,1,1,[1],3.3000000000000003,0.49999999999998046,0,0.62,0.44 +3356,100,100,,1,1,[1],3.3000000000000003,0.5999999999999801,0,0.56,0.47 +3357,100,100,,1,1,[1],3.3000000000000003,0.6999999999999797,0,0.59,0.385 +3358,100,100,,1,1,[1],3.3000000000000003,0.7999999999999794,0,0.54,0.36 +3359,100,100,,1,1,[1],3.3000000000000003,0.899999999999979,0,0.55,0.405 +3360,100,100,,1,1,[1],3.3000000000000003,0.9999999999999787,0,0.6,0.37 +3361,100,100,,1,1,[1],3.3000000000000003,1.0999999999999783,0,0.63,0.425 +3362,100,100,,1,1,[1],3.3000000000000003,1.199999999999978,0,0.57,0.385 +3363,100,100,,1,1,[1],3.3000000000000003,1.2999999999999776,0,0.5,0.41 +3364,100,100,,1,1,[1],3.3000000000000003,1.3999999999999773,0,0.57,0.325 +3365,100,100,,1,1,[1],3.3000000000000003,1.499999999999977,0,0.55,0.325 +3366,100,100,,1,1,[1],3.3000000000000003,1.5999999999999766,0,0.64,0.31 +3367,100,100,,1,1,[1],3.3000000000000003,1.6999999999999762,0,0.52,0.32 +3368,100,100,,1,1,[1],3.3000000000000003,1.7999999999999758,0,0.59,0.315 +3369,100,100,,1,1,[1],3.3000000000000003,1.8999999999999755,0,0.57,0.305 +3370,100,100,,1,1,[1],3.3000000000000003,1.9999999999999751,0,0.64,0.28 +3371,100,100,,1,1,[1],3.3000000000000003,2.0999999999999748,0,0.66,0.29 +3372,100,100,,1,1,[1],3.3000000000000003,2.1999999999999744,0,0.73,0.265 +3373,100,100,,1,1,[1],3.3000000000000003,2.299999999999974,0,0.7,0.22 +3374,100,100,,1,1,[1],3.3000000000000003,2.3999999999999737,0,0.73,0.195 +3375,100,100,,1,1,[1],3.3000000000000003,2.4999999999999734,0,0.65,0.255 +3376,100,100,,1,1,[1],3.3000000000000003,2.599999999999973,0,0.69,0.195 +3377,100,100,,1,1,[1],3.3000000000000003,2.6999999999999726,0,0.72,0.26 +3378,100,100,,1,1,[1],3.3000000000000003,2.7999999999999723,0,0.67,0.225 +3379,100,100,,1,1,[1],3.3000000000000003,2.899999999999972,0,0.68,0.17 +3380,100,100,,1,1,[1],3.3000000000000003,2.9999999999999716,0,0.67,0.215 +3381,100,100,,1,1,[1],3.3000000000000003,3.0999999999999712,0,0.65,0.205 +3382,100,100,,1,1,[1],3.3000000000000003,3.199999999999971,0,0.71,0.175 +3383,100,100,,1,1,[1],3.3000000000000003,3.2999999999999705,0,0.73,0.205 +3384,100,100,,1,1,[1],3.3000000000000003,3.39999999999997,0,0.79,0.175 +3385,100,100,,1,1,[1],3.3000000000000003,3.49999999999997,0,0.81,0.105 +3386,100,100,,1,1,[1],3.3000000000000003,3.5999999999999694,0,0.86,0.09 +3387,100,100,,1,1,[1],3.3000000000000003,3.699999999999969,0,0.75,0.145 +3388,100,100,,1,1,[1],3.3000000000000003,3.7999999999999687,0,0.77,0.135 +3389,100,100,,1,1,[1],3.3000000000000003,3.8999999999999684,0,0.8,0.1 +3390,100,100,,1,1,[1],3.3000000000000003,3.999999999999968,0,0.74,0.14 +3391,100,100,,1,1,[1],3.3000000000000003,4.099999999999968,0,0.81,0.125 +3392,100,100,,1,1,[1],3.3000000000000003,4.199999999999967,0,0.8,0.14 +3393,100,100,,1,1,[1],3.3000000000000003,4.299999999999967,0,0.81,0.115 +3394,100,100,,1,1,[1],3.3000000000000003,4.399999999999967,0,0.83,0.095 +3395,100,100,,1,1,[1],3.3000000000000003,4.499999999999966,0,0.83,0.085 +3396,100,100,,1,1,[1],3.3000000000000003,4.599999999999966,0,0.87,0.095 +3397,100,100,,1,1,[1],3.3000000000000003,4.6999999999999655,0,0.82,0.09 +3398,100,100,,1,1,[1],3.3000000000000003,4.799999999999965,0,0.9,0.08 +3399,100,100,,1,1,[1],3.3000000000000003,4.899999999999965,0,0.84,0.11 +3400,100,100,,1,1,[1],3.4000000000000004,-5.0,0,0.81,0.905 +3401,100,100,,1,1,[1],3.4000000000000004,-4.9,0,0.84,0.91 +3402,100,100,,1,1,[1],3.4000000000000004,-4.800000000000001,0,0.72,0.86 +3403,100,100,,1,1,[1],3.4000000000000004,-4.700000000000001,0,0.86,0.89 +3404,100,100,,1,1,[1],3.4000000000000004,-4.600000000000001,0,0.81,0.875 +3405,100,100,,1,1,[1],3.4000000000000004,-4.500000000000002,0,0.82,0.89 +3406,100,100,,1,1,[1],3.4000000000000004,-4.400000000000002,0,0.72,0.84 +3407,100,100,,1,1,[1],3.4000000000000004,-4.3000000000000025,0,0.81,0.875 +3408,100,100,,1,1,[1],3.4000000000000004,-4.200000000000003,0,0.79,0.895 +3409,100,100,,1,1,[1],3.4000000000000004,-4.100000000000003,0,0.82,0.87 +3410,100,100,,1,1,[1],3.4000000000000004,-4.0000000000000036,0,0.85,0.885 +3411,100,100,,1,1,[1],3.4000000000000004,-3.900000000000004,0,0.78,0.88 +3412,100,100,,1,1,[1],3.4000000000000004,-3.8000000000000043,0,0.79,0.865 +3413,100,100,,1,1,[1],3.4000000000000004,-3.7000000000000046,0,0.68,0.84 +3414,100,100,,1,1,[1],3.4000000000000004,-3.600000000000005,0,0.73,0.805 +3415,100,100,,1,1,[1],3.4000000000000004,-3.5000000000000053,0,0.77,0.845 +3416,100,100,,1,1,[1],3.4000000000000004,-3.4000000000000057,0,0.8,0.82 +3417,100,100,,1,1,[1],3.4000000000000004,-3.300000000000006,0,0.76,0.85 +3418,100,100,,1,1,[1],3.4000000000000004,-3.2000000000000064,0,0.77,0.865 +3419,100,100,,1,1,[1],3.4000000000000004,-3.1000000000000068,0,0.69,0.745 +3420,100,100,,1,1,[1],3.4000000000000004,-3.000000000000007,0,0.72,0.81 +3421,100,100,,1,1,[1],3.4000000000000004,-2.9000000000000075,0,0.72,0.81 +3422,100,100,,1,1,[1],3.4000000000000004,-2.800000000000008,0,0.73,0.775 +3423,100,100,,1,1,[1],3.4000000000000004,-2.700000000000008,0,0.71,0.775 +3424,100,100,,1,1,[1],3.4000000000000004,-2.6000000000000085,0,0.7,0.78 +3425,100,100,,1,1,[1],3.4000000000000004,-2.500000000000009,0,0.68,0.74 +3426,100,100,,1,1,[1],3.4000000000000004,-2.4000000000000092,0,0.62,0.71 +3427,100,100,,1,1,[1],3.4000000000000004,-2.3000000000000096,0,0.59,0.735 +3428,100,100,,1,1,[1],3.4000000000000004,-2.20000000000001,0,0.66,0.71 +3429,100,100,,1,1,[1],3.4000000000000004,-2.1000000000000103,0,0.59,0.695 +3430,100,100,,1,1,[1],3.4000000000000004,-2.0000000000000107,0,0.56,0.67 +3431,100,100,,1,1,[1],3.4000000000000004,-1.900000000000011,0,0.66,0.72 +3432,100,100,,1,1,[1],3.4000000000000004,-1.8000000000000114,0,0.56,0.68 +3433,100,100,,1,1,[1],3.4000000000000004,-1.7000000000000117,0,0.58,0.64 +3434,100,100,,1,1,[1],3.4000000000000004,-1.600000000000012,0,0.63,0.665 +3435,100,100,,1,1,[1],3.4000000000000004,-1.5000000000000124,0,0.58,0.62 +3436,100,100,,1,1,[1],3.4000000000000004,-1.4000000000000128,0,0.53,0.595 +3437,100,100,,1,1,[1],3.4000000000000004,-1.3000000000000131,0,0.52,0.61 +3438,100,100,,1,1,[1],3.4000000000000004,-1.2000000000000135,0,0.57,0.575 +3439,100,100,,1,1,[1],3.4000000000000004,-1.1000000000000139,0,0.54,0.62 +3440,100,100,,1,1,[1],3.4000000000000004,-1.0000000000000142,0,0.65,0.645 +3441,100,100,,1,1,[1],3.4000000000000004,-0.9000000000000146,0,0.56,0.58 +3442,100,100,,1,1,[1],3.4000000000000004,-0.8000000000000149,0,0.48,0.58 +3443,100,100,,1,1,[1],3.4000000000000004,-0.7000000000000153,0,0.58,0.61 +3444,100,100,,1,1,[1],3.4000000000000004,-0.6000000000000156,0,0.58,0.54 +3445,100,100,,1,1,[1],3.4000000000000004,-0.500000000000016,0,0.53,0.535 +3446,100,100,,1,1,[1],3.4000000000000004,-0.40000000000001634,0,0.5,0.54 +3447,100,100,,1,1,[1],3.4000000000000004,-0.3000000000000167,0,0.55,0.445 +3448,100,100,,1,1,[1],3.4000000000000004,-0.20000000000001705,0,0.63,0.515 +3449,100,100,,1,1,[1],3.4000000000000004,-0.10000000000001741,0,0.5,0.53 +3450,100,100,,1,1,[1],3.4000000000000004,-1.7763568394002505e-14,0,0.5,0.47 +3451,100,100,,1,1,[1],3.4000000000000004,0.09999999999998188,0,0.47,0.505 +3452,100,100,,1,1,[1],3.4000000000000004,0.19999999999998153,0,0.54,0.48 +3453,100,100,,1,1,[1],3.4000000000000004,0.29999999999998117,0,0.63,0.475 +3454,100,100,,1,1,[1],3.4000000000000004,0.3999999999999808,0,0.61,0.455 +3455,100,100,,1,1,[1],3.4000000000000004,0.49999999999998046,0,0.49,0.475 +3456,100,100,,1,1,[1],3.4000000000000004,0.5999999999999801,0,0.49,0.355 +3457,100,100,,1,1,[1],3.4000000000000004,0.6999999999999797,0,0.56,0.44 +3458,100,100,,1,1,[1],3.4000000000000004,0.7999999999999794,0,0.53,0.385 +3459,100,100,,1,1,[1],3.4000000000000004,0.899999999999979,0,0.6,0.51 +3460,100,100,,1,1,[1],3.4000000000000004,0.9999999999999787,0,0.63,0.395 +3461,100,100,,1,1,[1],3.4000000000000004,1.0999999999999783,0,0.61,0.355 +3462,100,100,,1,1,[1],3.4000000000000004,1.199999999999978,0,0.65,0.375 +3463,100,100,,1,1,[1],3.4000000000000004,1.2999999999999776,0,0.57,0.315 +3464,100,100,,1,1,[1],3.4000000000000004,1.3999999999999773,0,0.58,0.35 +3465,100,100,,1,1,[1],3.4000000000000004,1.499999999999977,0,0.61,0.375 +3466,100,100,,1,1,[1],3.4000000000000004,1.5999999999999766,0,0.66,0.29 +3467,100,100,,1,1,[1],3.4000000000000004,1.6999999999999762,0,0.54,0.33 +3468,100,100,,1,1,[1],3.4000000000000004,1.7999999999999758,0,0.6,0.32 +3469,100,100,,1,1,[1],3.4000000000000004,1.8999999999999755,0,0.65,0.315 +3470,100,100,,1,1,[1],3.4000000000000004,1.9999999999999751,0,0.57,0.305 +3471,100,100,,1,1,[1],3.4000000000000004,2.0999999999999748,0,0.64,0.2 +3472,100,100,,1,1,[1],3.4000000000000004,2.1999999999999744,0,0.77,0.235 +3473,100,100,,1,1,[1],3.4000000000000004,2.299999999999974,0,0.61,0.295 +3474,100,100,,1,1,[1],3.4000000000000004,2.3999999999999737,0,0.6,0.3 +3475,100,100,,1,1,[1],3.4000000000000004,2.4999999999999734,0,0.71,0.225 +3476,100,100,,1,1,[1],3.4000000000000004,2.599999999999973,0,0.67,0.255 +3477,100,100,,1,1,[1],3.4000000000000004,2.6999999999999726,0,0.68,0.22 +3478,100,100,,1,1,[1],3.4000000000000004,2.7999999999999723,0,0.63,0.195 +3479,100,100,,1,1,[1],3.4000000000000004,2.899999999999972,0,0.65,0.225 +3480,100,100,,1,1,[1],3.4000000000000004,2.9999999999999716,0,0.76,0.15 +3481,100,100,,1,1,[1],3.4000000000000004,3.0999999999999712,0,0.76,0.18 +3482,100,100,,1,1,[1],3.4000000000000004,3.199999999999971,0,0.65,0.215 +3483,100,100,,1,1,[1],3.4000000000000004,3.2999999999999705,0,0.71,0.185 +3484,100,100,,1,1,[1],3.4000000000000004,3.39999999999997,0,0.76,0.15 +3485,100,100,,1,1,[1],3.4000000000000004,3.49999999999997,0,0.65,0.215 +3486,100,100,,1,1,[1],3.4000000000000004,3.5999999999999694,0,0.71,0.195 +3487,100,100,,1,1,[1],3.4000000000000004,3.699999999999969,0,0.79,0.145 +3488,100,100,,1,1,[1],3.4000000000000004,3.7999999999999687,0,0.75,0.155 +3489,100,100,,1,1,[1],3.4000000000000004,3.8999999999999684,0,0.77,0.145 +3490,100,100,,1,1,[1],3.4000000000000004,3.999999999999968,0,0.77,0.155 +3491,100,100,,1,1,[1],3.4000000000000004,4.099999999999968,0,0.86,0.09 +3492,100,100,,1,1,[1],3.4000000000000004,4.199999999999967,0,0.77,0.135 +3493,100,100,,1,1,[1],3.4000000000000004,4.299999999999967,0,0.82,0.1 +3494,100,100,,1,1,[1],3.4000000000000004,4.399999999999967,0,0.78,0.14 +3495,100,100,,1,1,[1],3.4000000000000004,4.499999999999966,0,0.8,0.1 +3496,100,100,,1,1,[1],3.4000000000000004,4.599999999999966,0,0.86,0.08 +3497,100,100,,1,1,[1],3.4000000000000004,4.6999999999999655,0,0.86,0.08 +3498,100,100,,1,1,[1],3.4000000000000004,4.799999999999965,0,0.81,0.105 +3499,100,100,,1,1,[1],3.4000000000000004,4.899999999999965,0,0.9,0.05 +3500,100,100,,1,1,[1],3.5,-5.0,0,0.86,0.92 +3501,100,100,,1,1,[1],3.5,-4.9,0,0.87,0.915 +3502,100,100,,1,1,[1],3.5,-4.800000000000001,0,0.78,0.89 +3503,100,100,,1,1,[1],3.5,-4.700000000000001,0,0.83,0.905 +3504,100,100,,1,1,[1],3.5,-4.600000000000001,0,0.77,0.865 +3505,100,100,,1,1,[1],3.5,-4.500000000000002,0,0.83,0.905 +3506,100,100,,1,1,[1],3.5,-4.400000000000002,0,0.79,0.885 +3507,100,100,,1,1,[1],3.5,-4.3000000000000025,0,0.82,0.89 +3508,100,100,,1,1,[1],3.5,-4.200000000000003,0,0.8,0.86 +3509,100,100,,1,1,[1],3.5,-4.100000000000003,0,0.8,0.86 +3510,100,100,,1,1,[1],3.5,-4.0000000000000036,0,0.85,0.875 +3511,100,100,,1,1,[1],3.5,-3.900000000000004,0,0.72,0.81 +3512,100,100,,1,1,[1],3.5,-3.8000000000000043,0,0.76,0.83 +3513,100,100,,1,1,[1],3.5,-3.7000000000000046,0,0.81,0.845 +3514,100,100,,1,1,[1],3.5,-3.600000000000005,0,0.75,0.825 +3515,100,100,,1,1,[1],3.5,-3.5000000000000053,0,0.76,0.86 +3516,100,100,,1,1,[1],3.5,-3.4000000000000057,0,0.75,0.845 +3517,100,100,,1,1,[1],3.5,-3.300000000000006,0,0.83,0.875 +3518,100,100,,1,1,[1],3.5,-3.2000000000000064,0,0.82,0.87 +3519,100,100,,1,1,[1],3.5,-3.1000000000000068,0,0.69,0.785 +3520,100,100,,1,1,[1],3.5,-3.000000000000007,0,0.67,0.735 +3521,100,100,,1,1,[1],3.5,-2.9000000000000075,0,0.64,0.79 +3522,100,100,,1,1,[1],3.5,-2.800000000000008,0,0.77,0.765 +3523,100,100,,1,1,[1],3.5,-2.700000000000008,0,0.62,0.75 +3524,100,100,,1,1,[1],3.5,-2.6000000000000085,0,0.73,0.765 +3525,100,100,,1,1,[1],3.5,-2.500000000000009,0,0.68,0.71 +3526,100,100,,1,1,[1],3.5,-2.4000000000000092,0,0.63,0.725 +3527,100,100,,1,1,[1],3.5,-2.3000000000000096,0,0.65,0.785 +3528,100,100,,1,1,[1],3.5,-2.20000000000001,0,0.66,0.75 +3529,100,100,,1,1,[1],3.5,-2.1000000000000103,0,0.56,0.72 +3530,100,100,,1,1,[1],3.5,-2.0000000000000107,0,0.63,0.655 +3531,100,100,,1,1,[1],3.5,-1.900000000000011,0,0.65,0.725 +3532,100,100,,1,1,[1],3.5,-1.8000000000000114,0,0.62,0.7 +3533,100,100,,1,1,[1],3.5,-1.7000000000000117,0,0.61,0.605 +3534,100,100,,1,1,[1],3.5,-1.600000000000012,0,0.63,0.645 +3535,100,100,,1,1,[1],3.5,-1.5000000000000124,0,0.58,0.63 +3536,100,100,,1,1,[1],3.5,-1.4000000000000128,0,0.54,0.57 +3537,100,100,,1,1,[1],3.5,-1.3000000000000131,0,0.54,0.57 +3538,100,100,,1,1,[1],3.5,-1.2000000000000135,0,0.52,0.64 +3539,100,100,,1,1,[1],3.5,-1.1000000000000139,0,0.54,0.62 +3540,100,100,,1,1,[1],3.5,-1.0000000000000142,0,0.53,0.665 +3541,100,100,,1,1,[1],3.5,-0.9000000000000146,0,0.55,0.555 +3542,100,100,,1,1,[1],3.5,-0.8000000000000149,0,0.53,0.585 +3543,100,100,,1,1,[1],3.5,-0.7000000000000153,0,0.64,0.58 +3544,100,100,,1,1,[1],3.5,-0.6000000000000156,0,0.59,0.615 +3545,100,100,,1,1,[1],3.5,-0.500000000000016,0,0.59,0.605 +3546,100,100,,1,1,[1],3.5,-0.40000000000001634,0,0.52,0.54 +3547,100,100,,1,1,[1],3.5,-0.3000000000000167,0,0.47,0.545 +3548,100,100,,1,1,[1],3.5,-0.20000000000001705,0,0.57,0.505 +3549,100,100,,1,1,[1],3.5,-0.10000000000001741,0,0.58,0.44 +3550,100,100,,1,1,[1],3.5,-1.7763568394002505e-14,0,0.61,0.525 +3551,100,100,,1,1,[1],3.5,0.09999999999998188,0,0.45,0.475 +3552,100,100,,1,1,[1],3.5,0.19999999999998153,0,0.47,0.435 +3553,100,100,,1,1,[1],3.5,0.29999999999998117,0,0.51,0.485 +3554,100,100,,1,1,[1],3.5,0.3999999999999808,0,0.54,0.47 +3555,100,100,,1,1,[1],3.5,0.49999999999998046,0,0.62,0.4 +3556,100,100,,1,1,[1],3.5,0.5999999999999801,0,0.68,0.42 +3557,100,100,,1,1,[1],3.5,0.6999999999999797,0,0.55,0.385 +3558,100,100,,1,1,[1],3.5,0.7999999999999794,0,0.52,0.42 +3559,100,100,,1,1,[1],3.5,0.899999999999979,0,0.57,0.385 +3560,100,100,,1,1,[1],3.5,0.9999999999999787,0,0.61,0.445 +3561,100,100,,1,1,[1],3.5,1.0999999999999783,0,0.53,0.415 +3562,100,100,,1,1,[1],3.5,1.199999999999978,0,0.56,0.41 +3563,100,100,,1,1,[1],3.5,1.2999999999999776,0,0.65,0.345 +3564,100,100,,1,1,[1],3.5,1.3999999999999773,0,0.56,0.41 +3565,100,100,,1,1,[1],3.5,1.499999999999977,0,0.6,0.37 +3566,100,100,,1,1,[1],3.5,1.5999999999999766,0,0.6,0.39 +3567,100,100,,1,1,[1],3.5,1.6999999999999762,0,0.54,0.34 +3568,100,100,,1,1,[1],3.5,1.7999999999999758,0,0.6,0.32 +3569,100,100,,1,1,[1],3.5,1.8999999999999755,0,0.61,0.325 +3570,100,100,,1,1,[1],3.5,1.9999999999999751,0,0.61,0.295 +3571,100,100,,1,1,[1],3.5,2.0999999999999748,0,0.67,0.255 +3572,100,100,,1,1,[1],3.5,2.1999999999999744,0,0.68,0.25 +3573,100,100,,1,1,[1],3.5,2.299999999999974,0,0.65,0.235 +3574,100,100,,1,1,[1],3.5,2.3999999999999737,0,0.6,0.26 +3575,100,100,,1,1,[1],3.5,2.4999999999999734,0,0.58,0.3 +3576,100,100,,1,1,[1],3.5,2.599999999999973,0,0.68,0.27 +3577,100,100,,1,1,[1],3.5,2.6999999999999726,0,0.71,0.225 +3578,100,100,,1,1,[1],3.5,2.7999999999999723,0,0.7,0.27 +3579,100,100,,1,1,[1],3.5,2.899999999999972,0,0.69,0.205 +3580,100,100,,1,1,[1],3.5,2.9999999999999716,0,0.52,0.31 +3581,100,100,,1,1,[1],3.5,3.0999999999999712,0,0.71,0.245 +3582,100,100,,1,1,[1],3.5,3.199999999999971,0,0.65,0.205 +3583,100,100,,1,1,[1],3.5,3.2999999999999705,0,0.68,0.2 +3584,100,100,,1,1,[1],3.5,3.39999999999997,0,0.65,0.195 +3585,100,100,,1,1,[1],3.5,3.49999999999997,0,0.74,0.16 +3586,100,100,,1,1,[1],3.5,3.5999999999999694,0,0.75,0.155 +3587,100,100,,1,1,[1],3.5,3.699999999999969,0,0.76,0.15 +3588,100,100,,1,1,[1],3.5,3.7999999999999687,0,0.8,0.16 +3589,100,100,,1,1,[1],3.5,3.8999999999999684,0,0.79,0.135 +3590,100,100,,1,1,[1],3.5,3.999999999999968,0,0.72,0.16 +3591,100,100,,1,1,[1],3.5,4.099999999999968,0,0.78,0.13 +3592,100,100,,1,1,[1],3.5,4.199999999999967,0,0.8,0.13 +3593,100,100,,1,1,[1],3.5,4.299999999999967,0,0.74,0.13 +3594,100,100,,1,1,[1],3.5,4.399999999999967,0,0.84,0.09 +3595,100,100,,1,1,[1],3.5,4.499999999999966,0,0.79,0.115 +3596,100,100,,1,1,[1],3.5,4.599999999999966,0,0.8,0.13 +3597,100,100,,1,1,[1],3.5,4.6999999999999655,0,0.78,0.13 +3598,100,100,,1,1,[1],3.5,4.799999999999965,0,0.85,0.095 +3599,100,100,,1,1,[1],3.5,4.899999999999965,0,0.85,0.075 +3600,100,100,,1,1,[1],3.6,-5.0,0,0.8,0.89 +3601,100,100,,1,1,[1],3.6,-4.9,0,0.82,0.87 +3602,100,100,,1,1,[1],3.6,-4.800000000000001,0,0.81,0.885 +3603,100,100,,1,1,[1],3.6,-4.700000000000001,0,0.8,0.87 +3604,100,100,,1,1,[1],3.6,-4.600000000000001,0,0.8,0.89 +3605,100,100,,1,1,[1],3.6,-4.500000000000002,0,0.87,0.905 +3606,100,100,,1,1,[1],3.6,-4.400000000000002,0,0.78,0.85 +3607,100,100,,1,1,[1],3.6,-4.3000000000000025,0,0.79,0.885 +3608,100,100,,1,1,[1],3.6,-4.200000000000003,0,0.83,0.905 +3609,100,100,,1,1,[1],3.6,-4.100000000000003,0,0.81,0.875 +3610,100,100,,1,1,[1],3.6,-4.0000000000000036,0,0.77,0.825 +3611,100,100,,1,1,[1],3.6,-3.900000000000004,0,0.72,0.84 +3612,100,100,,1,1,[1],3.6,-3.8000000000000043,0,0.73,0.855 +3613,100,100,,1,1,[1],3.6,-3.7000000000000046,0,0.73,0.835 +3614,100,100,,1,1,[1],3.6,-3.600000000000005,0,0.69,0.755 +3615,100,100,,1,1,[1],3.6,-3.5000000000000053,0,0.71,0.805 +3616,100,100,,1,1,[1],3.6,-3.4000000000000057,0,0.65,0.785 +3617,100,100,,1,1,[1],3.6,-3.300000000000006,0,0.72,0.78 +3618,100,100,,1,1,[1],3.6,-3.2000000000000064,0,0.68,0.77 +3619,100,100,,1,1,[1],3.6,-3.1000000000000068,0,0.69,0.795 +3620,100,100,,1,1,[1],3.6,-3.000000000000007,0,0.73,0.755 +3621,100,100,,1,1,[1],3.6,-2.9000000000000075,0,0.68,0.81 +3622,100,100,,1,1,[1],3.6,-2.800000000000008,0,0.66,0.75 +3623,100,100,,1,1,[1],3.6,-2.700000000000008,0,0.63,0.755 +3624,100,100,,1,1,[1],3.6,-2.6000000000000085,0,0.72,0.79 +3625,100,100,,1,1,[1],3.6,-2.500000000000009,0,0.68,0.73 +3626,100,100,,1,1,[1],3.6,-2.4000000000000092,0,0.61,0.735 +3627,100,100,,1,1,[1],3.6,-2.3000000000000096,0,0.68,0.73 +3628,100,100,,1,1,[1],3.6,-2.20000000000001,0,0.66,0.74 +3629,100,100,,1,1,[1],3.6,-2.1000000000000103,0,0.63,0.725 +3630,100,100,,1,1,[1],3.6,-2.0000000000000107,0,0.66,0.65 +3631,100,100,,1,1,[1],3.6,-1.900000000000011,0,0.57,0.625 +3632,100,100,,1,1,[1],3.6,-1.8000000000000114,0,0.52,0.65 +3633,100,100,,1,1,[1],3.6,-1.7000000000000117,0,0.53,0.675 +3634,100,100,,1,1,[1],3.6,-1.600000000000012,0,0.56,0.64 +3635,100,100,,1,1,[1],3.6,-1.5000000000000124,0,0.55,0.605 +3636,100,100,,1,1,[1],3.6,-1.4000000000000128,0,0.53,0.615 +3637,100,100,,1,1,[1],3.6,-1.3000000000000131,0,0.42,0.58 +3638,100,100,,1,1,[1],3.6,-1.2000000000000135,0,0.6,0.65 +3639,100,100,,1,1,[1],3.6,-1.1000000000000139,0,0.6,0.6 +3640,100,100,,1,1,[1],3.6,-1.0000000000000142,0,0.58,0.62 +3641,100,100,,1,1,[1],3.6,-0.9000000000000146,0,0.6,0.71 +3642,100,100,,1,1,[1],3.6,-0.8000000000000149,0,0.59,0.585 +3643,100,100,,1,1,[1],3.6,-0.7000000000000153,0,0.53,0.575 +3644,100,100,,1,1,[1],3.6,-0.6000000000000156,0,0.53,0.595 +3645,100,100,,1,1,[1],3.6,-0.500000000000016,0,0.51,0.515 +3646,100,100,,1,1,[1],3.6,-0.40000000000001634,0,0.58,0.51 +3647,100,100,,1,1,[1],3.6,-0.3000000000000167,0,0.51,0.575 +3648,100,100,,1,1,[1],3.6,-0.20000000000001705,0,0.52,0.46 +3649,100,100,,1,1,[1],3.6,-0.10000000000001741,0,0.5,0.5 +3650,100,100,,1,1,[1],3.6,-1.7763568394002505e-14,0,0.51,0.455 +3651,100,100,,1,1,[1],3.6,0.09999999999998188,0,0.55,0.575 +3652,100,100,,1,1,[1],3.6,0.19999999999998153,0,0.51,0.485 +3653,100,100,,1,1,[1],3.6,0.29999999999998117,0,0.65,0.605 +3654,100,100,,1,1,[1],3.6,0.3999999999999808,0,0.51,0.455 +3655,100,100,,1,1,[1],3.6,0.49999999999998046,0,0.54,0.44 +3656,100,100,,1,1,[1],3.6,0.5999999999999801,0,0.55,0.395 +3657,100,100,,1,1,[1],3.6,0.6999999999999797,0,0.51,0.445 +3658,100,100,,1,1,[1],3.6,0.7999999999999794,0,0.5,0.44 +3659,100,100,,1,1,[1],3.6,0.899999999999979,0,0.61,0.375 +3660,100,100,,1,1,[1],3.6,0.9999999999999787,0,0.52,0.48 +3661,100,100,,1,1,[1],3.6,1.0999999999999783,0,0.55,0.405 +3662,100,100,,1,1,[1],3.6,1.199999999999978,0,0.59,0.415 +3663,100,100,,1,1,[1],3.6,1.2999999999999776,0,0.6,0.36 +3664,100,100,,1,1,[1],3.6,1.3999999999999773,0,0.53,0.415 +3665,100,100,,1,1,[1],3.6,1.499999999999977,0,0.64,0.39 +3666,100,100,,1,1,[1],3.6,1.5999999999999766,0,0.55,0.385 +3667,100,100,,1,1,[1],3.6,1.6999999999999762,0,0.57,0.345 +3668,100,100,,1,1,[1],3.6,1.7999999999999758,0,0.66,0.36 +3669,100,100,,1,1,[1],3.6,1.8999999999999755,0,0.55,0.355 +3670,100,100,,1,1,[1],3.6,1.9999999999999751,0,0.59,0.295 +3671,100,100,,1,1,[1],3.6,2.0999999999999748,0,0.58,0.3 +3672,100,100,,1,1,[1],3.6,2.1999999999999744,0,0.58,0.28 +3673,100,100,,1,1,[1],3.6,2.299999999999974,0,0.63,0.255 +3674,100,100,,1,1,[1],3.6,2.3999999999999737,0,0.69,0.235 +3675,100,100,,1,1,[1],3.6,2.4999999999999734,0,0.64,0.26 +3676,100,100,,1,1,[1],3.6,2.599999999999973,0,0.76,0.16 +3677,100,100,,1,1,[1],3.6,2.6999999999999726,0,0.7,0.24 +3678,100,100,,1,1,[1],3.6,2.7999999999999723,0,0.6,0.28 +3679,100,100,,1,1,[1],3.6,2.899999999999972,0,0.72,0.2 +3680,100,100,,1,1,[1],3.6,2.9999999999999716,0,0.72,0.19 +3681,100,100,,1,1,[1],3.6,3.0999999999999712,0,0.73,0.135 +3682,100,100,,1,1,[1],3.6,3.199999999999971,0,0.7,0.19 +3683,100,100,,1,1,[1],3.6,3.2999999999999705,0,0.7,0.22 +3684,100,100,,1,1,[1],3.6,3.39999999999997,0,0.69,0.195 +3685,100,100,,1,1,[1],3.6,3.49999999999997,0,0.7,0.18 +3686,100,100,,1,1,[1],3.6,3.5999999999999694,0,0.83,0.135 +3687,100,100,,1,1,[1],3.6,3.699999999999969,0,0.67,0.195 +3688,100,100,,1,1,[1],3.6,3.7999999999999687,0,0.64,0.2 +3689,100,100,,1,1,[1],3.6,3.8999999999999684,0,0.81,0.145 +3690,100,100,,1,1,[1],3.6,3.999999999999968,0,0.86,0.1 +3691,100,100,,1,1,[1],3.6,4.099999999999968,0,0.78,0.13 +3692,100,100,,1,1,[1],3.6,4.199999999999967,0,0.78,0.13 +3693,100,100,,1,1,[1],3.6,4.299999999999967,0,0.87,0.095 +3694,100,100,,1,1,[1],3.6,4.399999999999967,0,0.8,0.16 +3695,100,100,,1,1,[1],3.6,4.499999999999966,0,0.76,0.13 +3696,100,100,,1,1,[1],3.6,4.599999999999966,0,0.77,0.115 +3697,100,100,,1,1,[1],3.6,4.6999999999999655,0,0.73,0.155 +3698,100,100,,1,1,[1],3.6,4.799999999999965,0,0.84,0.11 +3699,100,100,,1,1,[1],3.6,4.899999999999965,0,0.78,0.13 +3700,100,100,,1,1,[1],3.7,-5.0,0,0.82,0.89 +3701,100,100,,1,1,[1],3.7,-4.9,0,0.89,0.945 +3702,100,100,,1,1,[1],3.7,-4.800000000000001,0,0.83,0.905 +3703,100,100,,1,1,[1],3.7,-4.700000000000001,0,0.75,0.855 +3704,100,100,,1,1,[1],3.7,-4.600000000000001,0,0.7,0.82 +3705,100,100,,1,1,[1],3.7,-4.500000000000002,0,0.82,0.9 +3706,100,100,,1,1,[1],3.7,-4.400000000000002,0,0.75,0.825 +3707,100,100,,1,1,[1],3.7,-4.3000000000000025,0,0.79,0.865 +3708,100,100,,1,1,[1],3.7,-4.200000000000003,0,0.79,0.875 +3709,100,100,,1,1,[1],3.7,-4.100000000000003,0,0.81,0.855 +3710,100,100,,1,1,[1],3.7,-4.0000000000000036,0,0.71,0.835 +3711,100,100,,1,1,[1],3.7,-3.900000000000004,0,0.71,0.835 +3712,100,100,,1,1,[1],3.7,-3.8000000000000043,0,0.73,0.845 +3713,100,100,,1,1,[1],3.7,-3.7000000000000046,0,0.78,0.84 +3714,100,100,,1,1,[1],3.7,-3.600000000000005,0,0.68,0.77 +3715,100,100,,1,1,[1],3.7,-3.5000000000000053,0,0.78,0.83 +3716,100,100,,1,1,[1],3.7,-3.4000000000000057,0,0.69,0.815 +3717,100,100,,1,1,[1],3.7,-3.300000000000006,0,0.7,0.79 +3718,100,100,,1,1,[1],3.7,-3.2000000000000064,0,0.66,0.74 +3719,100,100,,1,1,[1],3.7,-3.1000000000000068,0,0.76,0.83 +3720,100,100,,1,1,[1],3.7,-3.000000000000007,0,0.61,0.745 +3721,100,100,,1,1,[1],3.7,-2.9000000000000075,0,0.63,0.695 +3722,100,100,,1,1,[1],3.7,-2.800000000000008,0,0.68,0.78 +3723,100,100,,1,1,[1],3.7,-2.700000000000008,0,0.62,0.76 +3724,100,100,,1,1,[1],3.7,-2.6000000000000085,0,0.65,0.785 +3725,100,100,,1,1,[1],3.7,-2.500000000000009,0,0.76,0.81 +3726,100,100,,1,1,[1],3.7,-2.4000000000000092,0,0.61,0.695 +3727,100,100,,1,1,[1],3.7,-2.3000000000000096,0,0.69,0.765 +3728,100,100,,1,1,[1],3.7,-2.20000000000001,0,0.6,0.71 +3729,100,100,,1,1,[1],3.7,-2.1000000000000103,0,0.64,0.76 +3730,100,100,,1,1,[1],3.7,-2.0000000000000107,0,0.7,0.76 +3731,100,100,,1,1,[1],3.7,-1.900000000000011,0,0.57,0.685 +3732,100,100,,1,1,[1],3.7,-1.8000000000000114,0,0.6,0.69 +3733,100,100,,1,1,[1],3.7,-1.7000000000000117,0,0.54,0.62 +3734,100,100,,1,1,[1],3.7,-1.600000000000012,0,0.55,0.645 +3735,100,100,,1,1,[1],3.7,-1.5000000000000124,0,0.52,0.62 +3736,100,100,,1,1,[1],3.7,-1.4000000000000128,0,0.54,0.66 +3737,100,100,,1,1,[1],3.7,-1.3000000000000131,0,0.6,0.67 +3738,100,100,,1,1,[1],3.7,-1.2000000000000135,0,0.47,0.615 +3739,100,100,,1,1,[1],3.7,-1.1000000000000139,0,0.57,0.595 +3740,100,100,,1,1,[1],3.7,-1.0000000000000142,0,0.6,0.59 +3741,100,100,,1,1,[1],3.7,-0.9000000000000146,0,0.59,0.605 +3742,100,100,,1,1,[1],3.7,-0.8000000000000149,0,0.59,0.675 +3743,100,100,,1,1,[1],3.7,-0.7000000000000153,0,0.62,0.56 +3744,100,100,,1,1,[1],3.7,-0.6000000000000156,0,0.52,0.54 +3745,100,100,,1,1,[1],3.7,-0.500000000000016,0,0.6,0.6 +3746,100,100,,1,1,[1],3.7,-0.40000000000001634,0,0.53,0.505 +3747,100,100,,1,1,[1],3.7,-0.3000000000000167,0,0.47,0.505 +3748,100,100,,1,1,[1],3.7,-0.20000000000001705,0,0.61,0.515 +3749,100,100,,1,1,[1],3.7,-0.10000000000001741,0,0.55,0.475 +3750,100,100,,1,1,[1],3.7,-1.7763568394002505e-14,0,0.53,0.455 +3751,100,100,,1,1,[1],3.7,0.09999999999998188,0,0.53,0.535 +3752,100,100,,1,1,[1],3.7,0.19999999999998153,0,0.59,0.465 +3753,100,100,,1,1,[1],3.7,0.29999999999998117,0,0.57,0.475 +3754,100,100,,1,1,[1],3.7,0.3999999999999808,0,0.58,0.46 +3755,100,100,,1,1,[1],3.7,0.49999999999998046,0,0.58,0.45 +3756,100,100,,1,1,[1],3.7,0.5999999999999801,0,0.55,0.405 +3757,100,100,,1,1,[1],3.7,0.6999999999999797,0,0.6,0.48 +3758,100,100,,1,1,[1],3.7,0.7999999999999794,0,0.61,0.455 +3759,100,100,,1,1,[1],3.7,0.899999999999979,0,0.52,0.39 +3760,100,100,,1,1,[1],3.7,0.9999999999999787,0,0.48,0.4 +3761,100,100,,1,1,[1],3.7,1.0999999999999783,0,0.59,0.345 +3762,100,100,,1,1,[1],3.7,1.199999999999978,0,0.54,0.4 +3763,100,100,,1,1,[1],3.7,1.2999999999999776,0,0.65,0.335 +3764,100,100,,1,1,[1],3.7,1.3999999999999773,0,0.59,0.385 +3765,100,100,,1,1,[1],3.7,1.499999999999977,0,0.62,0.33 +3766,100,100,,1,1,[1],3.7,1.5999999999999766,0,0.58,0.3 +3767,100,100,,1,1,[1],3.7,1.6999999999999762,0,0.62,0.3 +3768,100,100,,1,1,[1],3.7,1.7999999999999758,0,0.62,0.33 +3769,100,100,,1,1,[1],3.7,1.8999999999999755,0,0.6,0.32 +3770,100,100,,1,1,[1],3.7,1.9999999999999751,0,0.58,0.3 +3771,100,100,,1,1,[1],3.7,2.0999999999999748,0,0.63,0.295 +3772,100,100,,1,1,[1],3.7,2.1999999999999744,0,0.67,0.265 +3773,100,100,,1,1,[1],3.7,2.299999999999974,0,0.61,0.325 +3774,100,100,,1,1,[1],3.7,2.3999999999999737,0,0.61,0.275 +3775,100,100,,1,1,[1],3.7,2.4999999999999734,0,0.6,0.32 +3776,100,100,,1,1,[1],3.7,2.599999999999973,0,0.65,0.235 +3777,100,100,,1,1,[1],3.7,2.6999999999999726,0,0.66,0.3 +3778,100,100,,1,1,[1],3.7,2.7999999999999723,0,0.64,0.27 +3779,100,100,,1,1,[1],3.7,2.899999999999972,0,0.59,0.235 +3780,100,100,,1,1,[1],3.7,2.9999999999999716,0,0.68,0.21 +3781,100,100,,1,1,[1],3.7,3.0999999999999712,0,0.76,0.19 +3782,100,100,,1,1,[1],3.7,3.199999999999971,0,0.79,0.165 +3783,100,100,,1,1,[1],3.7,3.2999999999999705,0,0.7,0.16 +3784,100,100,,1,1,[1],3.7,3.39999999999997,0,0.62,0.26 +3785,100,100,,1,1,[1],3.7,3.49999999999997,0,0.75,0.175 +3786,100,100,,1,1,[1],3.7,3.5999999999999694,0,0.77,0.155 +3787,100,100,,1,1,[1],3.7,3.699999999999969,0,0.63,0.205 +3788,100,100,,1,1,[1],3.7,3.7999999999999687,0,0.72,0.16 +3789,100,100,,1,1,[1],3.7,3.8999999999999684,0,0.7,0.21 +3790,100,100,,1,1,[1],3.7,3.999999999999968,0,0.87,0.075 +3791,100,100,,1,1,[1],3.7,4.099999999999968,0,0.82,0.11 +3792,100,100,,1,1,[1],3.7,4.199999999999967,0,0.76,0.14 +3793,100,100,,1,1,[1],3.7,4.299999999999967,0,0.78,0.13 +3794,100,100,,1,1,[1],3.7,4.399999999999967,0,0.7,0.17 +3795,100,100,,1,1,[1],3.7,4.499999999999966,0,0.85,0.095 +3796,100,100,,1,1,[1],3.7,4.599999999999966,0,0.76,0.13 +3797,100,100,,1,1,[1],3.7,4.6999999999999655,0,0.77,0.125 +3798,100,100,,1,1,[1],3.7,4.799999999999965,0,0.88,0.07 +3799,100,100,,1,1,[1],3.7,4.899999999999965,0,0.82,0.11 +3800,100,100,,1,1,[1],3.8000000000000003,-5.0,0,0.78,0.89 +3801,100,100,,1,1,[1],3.8000000000000003,-4.9,0,0.75,0.855 +3802,100,100,,1,1,[1],3.8000000000000003,-4.800000000000001,0,0.85,0.895 +3803,100,100,,1,1,[1],3.8000000000000003,-4.700000000000001,0,0.84,0.91 +3804,100,100,,1,1,[1],3.8000000000000003,-4.600000000000001,0,0.83,0.915 +3805,100,100,,1,1,[1],3.8000000000000003,-4.500000000000002,0,0.85,0.915 +3806,100,100,,1,1,[1],3.8000000000000003,-4.400000000000002,0,0.82,0.89 +3807,100,100,,1,1,[1],3.8000000000000003,-4.3000000000000025,0,0.79,0.855 +3808,100,100,,1,1,[1],3.8000000000000003,-4.200000000000003,0,0.72,0.8 +3809,100,100,,1,1,[1],3.8000000000000003,-4.100000000000003,0,0.68,0.79 +3810,100,100,,1,1,[1],3.8000000000000003,-4.0000000000000036,0,0.75,0.835 +3811,100,100,,1,1,[1],3.8000000000000003,-3.900000000000004,0,0.69,0.825 +3812,100,100,,1,1,[1],3.8000000000000003,-3.8000000000000043,0,0.73,0.805 +3813,100,100,,1,1,[1],3.8000000000000003,-3.7000000000000046,0,0.75,0.845 +3814,100,100,,1,1,[1],3.8000000000000003,-3.600000000000005,0,0.65,0.795 +3815,100,100,,1,1,[1],3.8000000000000003,-3.5000000000000053,0,0.75,0.835 +3816,100,100,,1,1,[1],3.8000000000000003,-3.4000000000000057,0,0.66,0.77 +3817,100,100,,1,1,[1],3.8000000000000003,-3.300000000000006,0,0.66,0.82 +3818,100,100,,1,1,[1],3.8000000000000003,-3.2000000000000064,0,0.65,0.765 +3819,100,100,,1,1,[1],3.8000000000000003,-3.1000000000000068,0,0.67,0.775 +3820,100,100,,1,1,[1],3.8000000000000003,-3.000000000000007,0,0.7,0.79 +3821,100,100,,1,1,[1],3.8000000000000003,-2.9000000000000075,0,0.73,0.795 +3822,100,100,,1,1,[1],3.8000000000000003,-2.800000000000008,0,0.73,0.765 +3823,100,100,,1,1,[1],3.8000000000000003,-2.700000000000008,0,0.71,0.785 +3824,100,100,,1,1,[1],3.8000000000000003,-2.6000000000000085,0,0.67,0.775 +3825,100,100,,1,1,[1],3.8000000000000003,-2.500000000000009,0,0.62,0.76 +3826,100,100,,1,1,[1],3.8000000000000003,-2.4000000000000092,0,0.64,0.72 +3827,100,100,,1,1,[1],3.8000000000000003,-2.3000000000000096,0,0.61,0.725 +3828,100,100,,1,1,[1],3.8000000000000003,-2.20000000000001,0,0.62,0.67 +3829,100,100,,1,1,[1],3.8000000000000003,-2.1000000000000103,0,0.57,0.665 +3830,100,100,,1,1,[1],3.8000000000000003,-2.0000000000000107,0,0.52,0.65 +3831,100,100,,1,1,[1],3.8000000000000003,-1.900000000000011,0,0.53,0.615 +3832,100,100,,1,1,[1],3.8000000000000003,-1.8000000000000114,0,0.58,0.67 +3833,100,100,,1,1,[1],3.8000000000000003,-1.7000000000000117,0,0.52,0.63 +3834,100,100,,1,1,[1],3.8000000000000003,-1.600000000000012,0,0.59,0.615 +3835,100,100,,1,1,[1],3.8000000000000003,-1.5000000000000124,0,0.58,0.64 +3836,100,100,,1,1,[1],3.8000000000000003,-1.4000000000000128,0,0.63,0.625 +3837,100,100,,1,1,[1],3.8000000000000003,-1.3000000000000131,0,0.52,0.59 +3838,100,100,,1,1,[1],3.8000000000000003,-1.2000000000000135,0,0.52,0.63 +3839,100,100,,1,1,[1],3.8000000000000003,-1.1000000000000139,0,0.62,0.61 +3840,100,100,,1,1,[1],3.8000000000000003,-1.0000000000000142,0,0.5,0.56 +3841,100,100,,1,1,[1],3.8000000000000003,-0.9000000000000146,0,0.48,0.58 +3842,100,100,,1,1,[1],3.8000000000000003,-0.8000000000000149,0,0.49,0.595 +3843,100,100,,1,1,[1],3.8000000000000003,-0.7000000000000153,0,0.51,0.575 +3844,100,100,,1,1,[1],3.8000000000000003,-0.6000000000000156,0,0.44,0.59 +3845,100,100,,1,1,[1],3.8000000000000003,-0.500000000000016,0,0.61,0.575 +3846,100,100,,1,1,[1],3.8000000000000003,-0.40000000000001634,0,0.55,0.545 +3847,100,100,,1,1,[1],3.8000000000000003,-0.3000000000000167,0,0.45,0.555 +3848,100,100,,1,1,[1],3.8000000000000003,-0.20000000000001705,0,0.61,0.525 +3849,100,100,,1,1,[1],3.8000000000000003,-0.10000000000001741,0,0.51,0.545 +3850,100,100,,1,1,[1],3.8000000000000003,-1.7763568394002505e-14,0,0.59,0.495 +3851,100,100,,1,1,[1],3.8000000000000003,0.09999999999998188,0,0.4,0.45 +3852,100,100,,1,1,[1],3.8000000000000003,0.19999999999998153,0,0.5,0.52 +3853,100,100,,1,1,[1],3.8000000000000003,0.29999999999998117,0,0.55,0.415 +3854,100,100,,1,1,[1],3.8000000000000003,0.3999999999999808,0,0.56,0.5 +3855,100,100,,1,1,[1],3.8000000000000003,0.49999999999998046,0,0.57,0.355 +3856,100,100,,1,1,[1],3.8000000000000003,0.5999999999999801,0,0.59,0.485 +3857,100,100,,1,1,[1],3.8000000000000003,0.6999999999999797,0,0.45,0.425 +3858,100,100,,1,1,[1],3.8000000000000003,0.7999999999999794,0,0.45,0.435 +3859,100,100,,1,1,[1],3.8000000000000003,0.899999999999979,0,0.43,0.435 +3860,100,100,,1,1,[1],3.8000000000000003,0.9999999999999787,0,0.6,0.4 +3861,100,100,,1,1,[1],3.8000000000000003,1.0999999999999783,0,0.51,0.365 +3862,100,100,,1,1,[1],3.8000000000000003,1.199999999999978,0,0.53,0.425 +3863,100,100,,1,1,[1],3.8000000000000003,1.2999999999999776,0,0.47,0.405 +3864,100,100,,1,1,[1],3.8000000000000003,1.3999999999999773,0,0.59,0.305 +3865,100,100,,1,1,[1],3.8000000000000003,1.499999999999977,0,0.58,0.42 +3866,100,100,,1,1,[1],3.8000000000000003,1.5999999999999766,0,0.63,0.355 +3867,100,100,,1,1,[1],3.8000000000000003,1.6999999999999762,0,0.57,0.335 +3868,100,100,,1,1,[1],3.8000000000000003,1.7999999999999758,0,0.58,0.35 +3869,100,100,,1,1,[1],3.8000000000000003,1.8999999999999755,0,0.66,0.34 +3870,100,100,,1,1,[1],3.8000000000000003,1.9999999999999751,0,0.69,0.335 +3871,100,100,,1,1,[1],3.8000000000000003,2.0999999999999748,0,0.59,0.335 +3872,100,100,,1,1,[1],3.8000000000000003,2.1999999999999744,0,0.6,0.32 +3873,100,100,,1,1,[1],3.8000000000000003,2.299999999999974,0,0.59,0.275 +3874,100,100,,1,1,[1],3.8000000000000003,2.3999999999999737,0,0.66,0.25 +3875,100,100,,1,1,[1],3.8000000000000003,2.4999999999999734,0,0.66,0.24 +3876,100,100,,1,1,[1],3.8000000000000003,2.599999999999973,0,0.6,0.23 +3877,100,100,,1,1,[1],3.8000000000000003,2.6999999999999726,0,0.67,0.235 +3878,100,100,,1,1,[1],3.8000000000000003,2.7999999999999723,0,0.66,0.21 +3879,100,100,,1,1,[1],3.8000000000000003,2.899999999999972,0,0.73,0.195 +3880,100,100,,1,1,[1],3.8000000000000003,2.9999999999999716,0,0.63,0.215 +3881,100,100,,1,1,[1],3.8000000000000003,3.0999999999999712,0,0.7,0.2 +3882,100,100,,1,1,[1],3.8000000000000003,3.199999999999971,0,0.74,0.19 +3883,100,100,,1,1,[1],3.8000000000000003,3.2999999999999705,0,0.79,0.205 +3884,100,100,,1,1,[1],3.8000000000000003,3.39999999999997,0,0.68,0.21 +3885,100,100,,1,1,[1],3.8000000000000003,3.49999999999997,0,0.74,0.17 +3886,100,100,,1,1,[1],3.8000000000000003,3.5999999999999694,0,0.64,0.2 +3887,100,100,,1,1,[1],3.8000000000000003,3.699999999999969,0,0.71,0.205 +3888,100,100,,1,1,[1],3.8000000000000003,3.7999999999999687,0,0.74,0.17 +3889,100,100,,1,1,[1],3.8000000000000003,3.8999999999999684,0,0.73,0.175 +3890,100,100,,1,1,[1],3.8000000000000003,3.999999999999968,0,0.72,0.18 +3891,100,100,,1,1,[1],3.8000000000000003,4.099999999999968,0,0.74,0.15 +3892,100,100,,1,1,[1],3.8000000000000003,4.199999999999967,0,0.7,0.17 +3893,100,100,,1,1,[1],3.8000000000000003,4.299999999999967,0,0.79,0.135 +3894,100,100,,1,1,[1],3.8000000000000003,4.399999999999967,0,0.75,0.125 +3895,100,100,,1,1,[1],3.8000000000000003,4.499999999999966,0,0.77,0.145 +3896,100,100,,1,1,[1],3.8000000000000003,4.599999999999966,0,0.78,0.14 +3897,100,100,,1,1,[1],3.8000000000000003,4.6999999999999655,0,0.83,0.105 +3898,100,100,,1,1,[1],3.8000000000000003,4.799999999999965,0,0.79,0.115 +3899,100,100,,1,1,[1],3.8000000000000003,4.899999999999965,0,0.87,0.085 +3900,100,100,,1,1,[1],3.9000000000000004,-5.0,0,0.84,0.92 +3901,100,100,,1,1,[1],3.9000000000000004,-4.9,0,0.77,0.875 +3902,100,100,,1,1,[1],3.9000000000000004,-4.800000000000001,0,0.74,0.85 +3903,100,100,,1,1,[1],3.9000000000000004,-4.700000000000001,0,0.78,0.86 +3904,100,100,,1,1,[1],3.9000000000000004,-4.600000000000001,0,0.82,0.91 +3905,100,100,,1,1,[1],3.9000000000000004,-4.500000000000002,0,0.77,0.865 +3906,100,100,,1,1,[1],3.9000000000000004,-4.400000000000002,0,0.79,0.865 +3907,100,100,,1,1,[1],3.9000000000000004,-4.3000000000000025,0,0.77,0.845 +3908,100,100,,1,1,[1],3.9000000000000004,-4.200000000000003,0,0.74,0.81 +3909,100,100,,1,1,[1],3.9000000000000004,-4.100000000000003,0,0.72,0.83 +3910,100,100,,1,1,[1],3.9000000000000004,-4.0000000000000036,0,0.78,0.88 +3911,100,100,,1,1,[1],3.9000000000000004,-3.900000000000004,0,0.66,0.79 +3912,100,100,,1,1,[1],3.9000000000000004,-3.8000000000000043,0,0.66,0.76 +3913,100,100,,1,1,[1],3.9000000000000004,-3.7000000000000046,0,0.75,0.835 +3914,100,100,,1,1,[1],3.9000000000000004,-3.600000000000005,0,0.78,0.85 +3915,100,100,,1,1,[1],3.9000000000000004,-3.5000000000000053,0,0.68,0.77 +3916,100,100,,1,1,[1],3.9000000000000004,-3.4000000000000057,0,0.69,0.815 +3917,100,100,,1,1,[1],3.9000000000000004,-3.300000000000006,0,0.67,0.775 +3918,100,100,,1,1,[1],3.9000000000000004,-3.2000000000000064,0,0.77,0.795 +3919,100,100,,1,1,[1],3.9000000000000004,-3.1000000000000068,0,0.69,0.775 +3920,100,100,,1,1,[1],3.9000000000000004,-3.000000000000007,0,0.59,0.735 +3921,100,100,,1,1,[1],3.9000000000000004,-2.9000000000000075,0,0.66,0.7 +3922,100,100,,1,1,[1],3.9000000000000004,-2.800000000000008,0,0.65,0.745 +3923,100,100,,1,1,[1],3.9000000000000004,-2.700000000000008,0,0.62,0.75 +3924,100,100,,1,1,[1],3.9000000000000004,-2.6000000000000085,0,0.72,0.76 +3925,100,100,,1,1,[1],3.9000000000000004,-2.500000000000009,0,0.64,0.72 +3926,100,100,,1,1,[1],3.9000000000000004,-2.4000000000000092,0,0.62,0.72 +3927,100,100,,1,1,[1],3.9000000000000004,-2.3000000000000096,0,0.61,0.685 +3928,100,100,,1,1,[1],3.9000000000000004,-2.20000000000001,0,0.63,0.705 +3929,100,100,,1,1,[1],3.9000000000000004,-2.1000000000000103,0,0.63,0.725 +3930,100,100,,1,1,[1],3.9000000000000004,-2.0000000000000107,0,0.66,0.74 +3931,100,100,,1,1,[1],3.9000000000000004,-1.900000000000011,0,0.65,0.625 +3932,100,100,,1,1,[1],3.9000000000000004,-1.8000000000000114,0,0.56,0.65 +3933,100,100,,1,1,[1],3.9000000000000004,-1.7000000000000117,0,0.49,0.615 +3934,100,100,,1,1,[1],3.9000000000000004,-1.600000000000012,0,0.57,0.655 +3935,100,100,,1,1,[1],3.9000000000000004,-1.5000000000000124,0,0.59,0.675 +3936,100,100,,1,1,[1],3.9000000000000004,-1.4000000000000128,0,0.48,0.58 +3937,100,100,,1,1,[1],3.9000000000000004,-1.3000000000000131,0,0.54,0.62 +3938,100,100,,1,1,[1],3.9000000000000004,-1.2000000000000135,0,0.6,0.58 +3939,100,100,,1,1,[1],3.9000000000000004,-1.1000000000000139,0,0.56,0.6 +3940,100,100,,1,1,[1],3.9000000000000004,-1.0000000000000142,0,0.51,0.635 +3941,100,100,,1,1,[1],3.9000000000000004,-0.9000000000000146,0,0.62,0.57 +3942,100,100,,1,1,[1],3.9000000000000004,-0.8000000000000149,0,0.46,0.49 +3943,100,100,,1,1,[1],3.9000000000000004,-0.7000000000000153,0,0.61,0.555 +3944,100,100,,1,1,[1],3.9000000000000004,-0.6000000000000156,0,0.67,0.565 +3945,100,100,,1,1,[1],3.9000000000000004,-0.500000000000016,0,0.46,0.55 +3946,100,100,,1,1,[1],3.9000000000000004,-0.40000000000001634,0,0.56,0.54 +3947,100,100,,1,1,[1],3.9000000000000004,-0.3000000000000167,0,0.45,0.545 +3948,100,100,,1,1,[1],3.9000000000000004,-0.20000000000001705,0,0.62,0.54 +3949,100,100,,1,1,[1],3.9000000000000004,-0.10000000000001741,0,0.55,0.475 +3950,100,100,,1,1,[1],3.9000000000000004,-1.7763568394002505e-14,0,0.42,0.52 +3951,100,100,,1,1,[1],3.9000000000000004,0.09999999999998188,0,0.46,0.47 +3952,100,100,,1,1,[1],3.9000000000000004,0.19999999999998153,0,0.53,0.445 +3953,100,100,,1,1,[1],3.9000000000000004,0.29999999999998117,0,0.56,0.51 +3954,100,100,,1,1,[1],3.9000000000000004,0.3999999999999808,0,0.56,0.41 +3955,100,100,,1,1,[1],3.9000000000000004,0.49999999999998046,0,0.51,0.435 +3956,100,100,,1,1,[1],3.9000000000000004,0.5999999999999801,0,0.58,0.46 +3957,100,100,,1,1,[1],3.9000000000000004,0.6999999999999797,0,0.5,0.39 +3958,100,100,,1,1,[1],3.9000000000000004,0.7999999999999794,0,0.59,0.415 +3959,100,100,,1,1,[1],3.9000000000000004,0.899999999999979,0,0.58,0.36 +3960,100,100,,1,1,[1],3.9000000000000004,0.9999999999999787,0,0.51,0.415 +3961,100,100,,1,1,[1],3.9000000000000004,1.0999999999999783,0,0.57,0.415 +3962,100,100,,1,1,[1],3.9000000000000004,1.199999999999978,0,0.57,0.395 +3963,100,100,,1,1,[1],3.9000000000000004,1.2999999999999776,0,0.62,0.38 +3964,100,100,,1,1,[1],3.9000000000000004,1.3999999999999773,0,0.65,0.425 +3965,100,100,,1,1,[1],3.9000000000000004,1.499999999999977,0,0.66,0.33 +3966,100,100,,1,1,[1],3.9000000000000004,1.5999999999999766,0,0.54,0.41 +3967,100,100,,1,1,[1],3.9000000000000004,1.6999999999999762,0,0.51,0.335 +3968,100,100,,1,1,[1],3.9000000000000004,1.7999999999999758,0,0.58,0.34 +3969,100,100,,1,1,[1],3.9000000000000004,1.8999999999999755,0,0.65,0.345 +3970,100,100,,1,1,[1],3.9000000000000004,1.9999999999999751,0,0.6,0.33 +3971,100,100,,1,1,[1],3.9000000000000004,2.0999999999999748,0,0.69,0.235 +3972,100,100,,1,1,[1],3.9000000000000004,2.1999999999999744,0,0.59,0.335 +3973,100,100,,1,1,[1],3.9000000000000004,2.299999999999974,0,0.53,0.305 +3974,100,100,,1,1,[1],3.9000000000000004,2.3999999999999737,0,0.68,0.24 +3975,100,100,,1,1,[1],3.9000000000000004,2.4999999999999734,0,0.58,0.32 +3976,100,100,,1,1,[1],3.9000000000000004,2.599999999999973,0,0.7,0.28 +3977,100,100,,1,1,[1],3.9000000000000004,2.6999999999999726,0,0.67,0.225 +3978,100,100,,1,1,[1],3.9000000000000004,2.7999999999999723,0,0.57,0.265 +3979,100,100,,1,1,[1],3.9000000000000004,2.899999999999972,0,0.58,0.24 +3980,100,100,,1,1,[1],3.9000000000000004,2.9999999999999716,0,0.62,0.26 +3981,100,100,,1,1,[1],3.9000000000000004,3.0999999999999712,0,0.73,0.235 +3982,100,100,,1,1,[1],3.9000000000000004,3.199999999999971,0,0.69,0.225 +3983,100,100,,1,1,[1],3.9000000000000004,3.2999999999999705,0,0.7,0.26 +3984,100,100,,1,1,[1],3.9000000000000004,3.39999999999997,0,0.63,0.285 +3985,100,100,,1,1,[1],3.9000000000000004,3.49999999999997,0,0.76,0.17 +3986,100,100,,1,1,[1],3.9000000000000004,3.5999999999999694,0,0.75,0.175 +3987,100,100,,1,1,[1],3.9000000000000004,3.699999999999969,0,0.72,0.16 +3988,100,100,,1,1,[1],3.9000000000000004,3.7999999999999687,0,0.71,0.205 +3989,100,100,,1,1,[1],3.9000000000000004,3.8999999999999684,0,0.75,0.155 +3990,100,100,,1,1,[1],3.9000000000000004,3.999999999999968,0,0.73,0.175 +3991,100,100,,1,1,[1],3.9000000000000004,4.099999999999968,0,0.79,0.145 +3992,100,100,,1,1,[1],3.9000000000000004,4.199999999999967,0,0.75,0.175 +3993,100,100,,1,1,[1],3.9000000000000004,4.299999999999967,0,0.78,0.14 +3994,100,100,,1,1,[1],3.9000000000000004,4.399999999999967,0,0.73,0.155 +3995,100,100,,1,1,[1],3.9000000000000004,4.499999999999966,0,0.74,0.17 +3996,100,100,,1,1,[1],3.9000000000000004,4.599999999999966,0,0.77,0.165 +3997,100,100,,1,1,[1],3.9000000000000004,4.6999999999999655,0,0.78,0.15 +3998,100,100,,1,1,[1],3.9000000000000004,4.799999999999965,0,0.79,0.135 +3999,100,100,,1,1,[1],3.9000000000000004,4.899999999999965,0,0.8,0.1 +4000,100,100,,1,1,[1],4.0,-5.0,0,0.81,0.895 +4001,100,100,,1,1,[1],4.0,-4.9,0,0.76,0.87 +4002,100,100,,1,1,[1],4.0,-4.800000000000001,0,0.79,0.885 +4003,100,100,,1,1,[1],4.0,-4.700000000000001,0,0.8,0.88 +4004,100,100,,1,1,[1],4.0,-4.600000000000001,0,0.66,0.81 +4005,100,100,,1,1,[1],4.0,-4.500000000000002,0,0.73,0.855 +4006,100,100,,1,1,[1],4.0,-4.400000000000002,0,0.77,0.885 +4007,100,100,,1,1,[1],4.0,-4.3000000000000025,0,0.76,0.87 +4008,100,100,,1,1,[1],4.0,-4.200000000000003,0,0.74,0.8 +4009,100,100,,1,1,[1],4.0,-4.100000000000003,0,0.73,0.805 +4010,100,100,,1,1,[1],4.0,-4.0000000000000036,0,0.75,0.835 +4011,100,100,,1,1,[1],4.0,-3.900000000000004,0,0.76,0.81 +4012,100,100,,1,1,[1],4.0,-3.8000000000000043,0,0.75,0.835 +4013,100,100,,1,1,[1],4.0,-3.7000000000000046,0,0.7,0.8 +4014,100,100,,1,1,[1],4.0,-3.600000000000005,0,0.62,0.78 +4015,100,100,,1,1,[1],4.0,-3.5000000000000053,0,0.68,0.78 +4016,100,100,,1,1,[1],4.0,-3.4000000000000057,0,0.63,0.795 +4017,100,100,,1,1,[1],4.0,-3.300000000000006,0,0.66,0.75 +4018,100,100,,1,1,[1],4.0,-3.2000000000000064,0,0.73,0.795 +4019,100,100,,1,1,[1],4.0,-3.1000000000000068,0,0.69,0.775 +4020,100,100,,1,1,[1],4.0,-3.000000000000007,0,0.68,0.79 +4021,100,100,,1,1,[1],4.0,-2.9000000000000075,0,0.69,0.755 +4022,100,100,,1,1,[1],4.0,-2.800000000000008,0,0.59,0.685 +4023,100,100,,1,1,[1],4.0,-2.700000000000008,0,0.65,0.745 +4024,100,100,,1,1,[1],4.0,-2.6000000000000085,0,0.58,0.73 +4025,100,100,,1,1,[1],4.0,-2.500000000000009,0,0.6,0.73 +4026,100,100,,1,1,[1],4.0,-2.4000000000000092,0,0.63,0.715 +4027,100,100,,1,1,[1],4.0,-2.3000000000000096,0,0.64,0.7 +4028,100,100,,1,1,[1],4.0,-2.20000000000001,0,0.6,0.71 +4029,100,100,,1,1,[1],4.0,-2.1000000000000103,0,0.57,0.675 +4030,100,100,,1,1,[1],4.0,-2.0000000000000107,0,0.58,0.65 +4031,100,100,,1,1,[1],4.0,-1.900000000000011,0,0.6,0.69 +4032,100,100,,1,1,[1],4.0,-1.8000000000000114,0,0.63,0.725 +4033,100,100,,1,1,[1],4.0,-1.7000000000000117,0,0.63,0.655 +4034,100,100,,1,1,[1],4.0,-1.600000000000012,0,0.6,0.64 +4035,100,100,,1,1,[1],4.0,-1.5000000000000124,0,0.51,0.635 +4036,100,100,,1,1,[1],4.0,-1.4000000000000128,0,0.58,0.6 +4037,100,100,,1,1,[1],4.0,-1.3000000000000131,0,0.56,0.64 +4038,100,100,,1,1,[1],4.0,-1.2000000000000135,0,0.53,0.565 +4039,100,100,,1,1,[1],4.0,-1.1000000000000139,0,0.59,0.565 +4040,100,100,,1,1,[1],4.0,-1.0000000000000142,0,0.46,0.55 +4041,100,100,,1,1,[1],4.0,-0.9000000000000146,0,0.55,0.545 +4042,100,100,,1,1,[1],4.0,-0.8000000000000149,0,0.53,0.565 +4043,100,100,,1,1,[1],4.0,-0.7000000000000153,0,0.44,0.53 +4044,100,100,,1,1,[1],4.0,-0.6000000000000156,0,0.52,0.53 +4045,100,100,,1,1,[1],4.0,-0.500000000000016,0,0.5,0.49 +4046,100,100,,1,1,[1],4.0,-0.40000000000001634,0,0.55,0.515 +4047,100,100,,1,1,[1],4.0,-0.3000000000000167,0,0.55,0.515 +4048,100,100,,1,1,[1],4.0,-0.20000000000001705,0,0.61,0.545 +4049,100,100,,1,1,[1],4.0,-0.10000000000001741,0,0.62,0.55 +4050,100,100,,1,1,[1],4.0,-1.7763568394002505e-14,0,0.51,0.475 +4051,100,100,,1,1,[1],4.0,0.09999999999998188,0,0.5,0.46 +4052,100,100,,1,1,[1],4.0,0.19999999999998153,0,0.54,0.47 +4053,100,100,,1,1,[1],4.0,0.29999999999998117,0,0.49,0.485 +4054,100,100,,1,1,[1],4.0,0.3999999999999808,0,0.5,0.46 +4055,100,100,,1,1,[1],4.0,0.49999999999998046,0,0.47,0.445 +4056,100,100,,1,1,[1],4.0,0.5999999999999801,0,0.53,0.455 +4057,100,100,,1,1,[1],4.0,0.6999999999999797,0,0.55,0.455 +4058,100,100,,1,1,[1],4.0,0.7999999999999794,0,0.56,0.39 +4059,100,100,,1,1,[1],4.0,0.899999999999979,0,0.52,0.39 +4060,100,100,,1,1,[1],4.0,0.9999999999999787,0,0.52,0.38 +4061,100,100,,1,1,[1],4.0,1.0999999999999783,0,0.57,0.395 +4062,100,100,,1,1,[1],4.0,1.199999999999978,0,0.58,0.35 +4063,100,100,,1,1,[1],4.0,1.2999999999999776,0,0.62,0.33 +4064,100,100,,1,1,[1],4.0,1.3999999999999773,0,0.57,0.445 +4065,100,100,,1,1,[1],4.0,1.499999999999977,0,0.51,0.385 +4066,100,100,,1,1,[1],4.0,1.5999999999999766,0,0.55,0.365 +4067,100,100,,1,1,[1],4.0,1.6999999999999762,0,0.53,0.375 +4068,100,100,,1,1,[1],4.0,1.7999999999999758,0,0.54,0.32 +4069,100,100,,1,1,[1],4.0,1.8999999999999755,0,0.58,0.34 +4070,100,100,,1,1,[1],4.0,1.9999999999999751,0,0.56,0.26 +4071,100,100,,1,1,[1],4.0,2.0999999999999748,0,0.63,0.295 +4072,100,100,,1,1,[1],4.0,2.1999999999999744,0,0.6,0.38 +4073,100,100,,1,1,[1],4.0,2.299999999999974,0,0.62,0.29 +4074,100,100,,1,1,[1],4.0,2.3999999999999737,0,0.59,0.305 +4075,100,100,,1,1,[1],4.0,2.4999999999999734,0,0.58,0.33 +4076,100,100,,1,1,[1],4.0,2.599999999999973,0,0.63,0.225 +4077,100,100,,1,1,[1],4.0,2.6999999999999726,0,0.57,0.325 +4078,100,100,,1,1,[1],4.0,2.7999999999999723,0,0.62,0.27 +4079,100,100,,1,1,[1],4.0,2.899999999999972,0,0.66,0.23 +4080,100,100,,1,1,[1],4.0,2.9999999999999716,0,0.64,0.23 +4081,100,100,,1,1,[1],4.0,3.0999999999999712,0,0.74,0.21 +4082,100,100,,1,1,[1],4.0,3.199999999999971,0,0.62,0.26 +4083,100,100,,1,1,[1],4.0,3.2999999999999705,0,0.62,0.3 +4084,100,100,,1,1,[1],4.0,3.39999999999997,0,0.71,0.175 +4085,100,100,,1,1,[1],4.0,3.49999999999997,0,0.66,0.2 +4086,100,100,,1,1,[1],4.0,3.5999999999999694,0,0.73,0.185 +4087,100,100,,1,1,[1],4.0,3.699999999999969,0,0.69,0.185 +4088,100,100,,1,1,[1],4.0,3.7999999999999687,0,0.71,0.175 +4089,100,100,,1,1,[1],4.0,3.8999999999999684,0,0.72,0.2 +4090,100,100,,1,1,[1],4.0,3.999999999999968,0,0.7,0.18 +4091,100,100,,1,1,[1],4.0,4.099999999999968,0,0.7,0.2 +4092,100,100,,1,1,[1],4.0,4.199999999999967,0,0.73,0.175 +4093,100,100,,1,1,[1],4.0,4.299999999999967,0,0.72,0.16 +4094,100,100,,1,1,[1],4.0,4.399999999999967,0,0.78,0.12 +4095,100,100,,1,1,[1],4.0,4.499999999999966,0,0.74,0.13 +4096,100,100,,1,1,[1],4.0,4.599999999999966,0,0.78,0.13 +4097,100,100,,1,1,[1],4.0,4.6999999999999655,0,0.79,0.135 +4098,100,100,,1,1,[1],4.0,4.799999999999965,0,0.79,0.115 +4099,100,100,,1,1,[1],4.0,4.899999999999965,0,0.8,0.11 +4100,100,100,,1,1,[1],4.1000000000000005,-5.0,0,0.79,0.895 +4101,100,100,,1,1,[1],4.1000000000000005,-4.9,0,0.77,0.815 +4102,100,100,,1,1,[1],4.1000000000000005,-4.800000000000001,0,0.76,0.84 +4103,100,100,,1,1,[1],4.1000000000000005,-4.700000000000001,0,0.83,0.875 +4104,100,100,,1,1,[1],4.1000000000000005,-4.600000000000001,0,0.76,0.82 +4105,100,100,,1,1,[1],4.1000000000000005,-4.500000000000002,0,0.78,0.84 +4106,100,100,,1,1,[1],4.1000000000000005,-4.400000000000002,0,0.74,0.85 +4107,100,100,,1,1,[1],4.1000000000000005,-4.3000000000000025,0,0.74,0.85 +4108,100,100,,1,1,[1],4.1000000000000005,-4.200000000000003,0,0.77,0.825 +4109,100,100,,1,1,[1],4.1000000000000005,-4.100000000000003,0,0.68,0.8 +4110,100,100,,1,1,[1],4.1000000000000005,-4.0000000000000036,0,0.73,0.825 +4111,100,100,,1,1,[1],4.1000000000000005,-3.900000000000004,0,0.69,0.785 +4112,100,100,,1,1,[1],4.1000000000000005,-3.8000000000000043,0,0.72,0.82 +4113,100,100,,1,1,[1],4.1000000000000005,-3.7000000000000046,0,0.67,0.805 +4114,100,100,,1,1,[1],4.1000000000000005,-3.600000000000005,0,0.74,0.77 +4115,100,100,,1,1,[1],4.1000000000000005,-3.5000000000000053,0,0.69,0.795 +4116,100,100,,1,1,[1],4.1000000000000005,-3.4000000000000057,0,0.7,0.78 +4117,100,100,,1,1,[1],4.1000000000000005,-3.300000000000006,0,0.6,0.76 +4118,100,100,,1,1,[1],4.1000000000000005,-3.2000000000000064,0,0.74,0.77 +4119,100,100,,1,1,[1],4.1000000000000005,-3.1000000000000068,0,0.67,0.805 +4120,100,100,,1,1,[1],4.1000000000000005,-3.000000000000007,0,0.63,0.765 +4121,100,100,,1,1,[1],4.1000000000000005,-2.9000000000000075,0,0.59,0.715 +4122,100,100,,1,1,[1],4.1000000000000005,-2.800000000000008,0,0.65,0.745 +4123,100,100,,1,1,[1],4.1000000000000005,-2.700000000000008,0,0.71,0.785 +4124,100,100,,1,1,[1],4.1000000000000005,-2.6000000000000085,0,0.6,0.75 +4125,100,100,,1,1,[1],4.1000000000000005,-2.500000000000009,0,0.56,0.72 +4126,100,100,,1,1,[1],4.1000000000000005,-2.4000000000000092,0,0.64,0.72 +4127,100,100,,1,1,[1],4.1000000000000005,-2.3000000000000096,0,0.58,0.67 +4128,100,100,,1,1,[1],4.1000000000000005,-2.20000000000001,0,0.65,0.705 +4129,100,100,,1,1,[1],4.1000000000000005,-2.1000000000000103,0,0.61,0.685 +4130,100,100,,1,1,[1],4.1000000000000005,-2.0000000000000107,0,0.56,0.66 +4131,100,100,,1,1,[1],4.1000000000000005,-1.900000000000011,0,0.67,0.705 +4132,100,100,,1,1,[1],4.1000000000000005,-1.8000000000000114,0,0.59,0.645 +4133,100,100,,1,1,[1],4.1000000000000005,-1.7000000000000117,0,0.6,0.61 +4134,100,100,,1,1,[1],4.1000000000000005,-1.600000000000012,0,0.6,0.66 +4135,100,100,,1,1,[1],4.1000000000000005,-1.5000000000000124,0,0.52,0.65 +4136,100,100,,1,1,[1],4.1000000000000005,-1.4000000000000128,0,0.61,0.585 +4137,100,100,,1,1,[1],4.1000000000000005,-1.3000000000000131,0,0.58,0.64 +4138,100,100,,1,1,[1],4.1000000000000005,-1.2000000000000135,0,0.57,0.615 +4139,100,100,,1,1,[1],4.1000000000000005,-1.1000000000000139,0,0.62,0.58 +4140,100,100,,1,1,[1],4.1000000000000005,-1.0000000000000142,0,0.57,0.595 +4141,100,100,,1,1,[1],4.1000000000000005,-0.9000000000000146,0,0.53,0.605 +4142,100,100,,1,1,[1],4.1000000000000005,-0.8000000000000149,0,0.55,0.585 +4143,100,100,,1,1,[1],4.1000000000000005,-0.7000000000000153,0,0.53,0.535 +4144,100,100,,1,1,[1],4.1000000000000005,-0.6000000000000156,0,0.58,0.56 +4145,100,100,,1,1,[1],4.1000000000000005,-0.500000000000016,0,0.54,0.54 +4146,100,100,,1,1,[1],4.1000000000000005,-0.40000000000001634,0,0.62,0.55 +4147,100,100,,1,1,[1],4.1000000000000005,-0.3000000000000167,0,0.51,0.505 +4148,100,100,,1,1,[1],4.1000000000000005,-0.20000000000001705,0,0.55,0.545 +4149,100,100,,1,1,[1],4.1000000000000005,-0.10000000000001741,0,0.49,0.515 +4150,100,100,,1,1,[1],4.1000000000000005,-1.7763568394002505e-14,0,0.55,0.465 +4151,100,100,,1,1,[1],4.1000000000000005,0.09999999999998188,0,0.49,0.535 +4152,100,100,,1,1,[1],4.1000000000000005,0.19999999999998153,0,0.54,0.5 +4153,100,100,,1,1,[1],4.1000000000000005,0.29999999999998117,0,0.52,0.53 +4154,100,100,,1,1,[1],4.1000000000000005,0.3999999999999808,0,0.66,0.46 +4155,100,100,,1,1,[1],4.1000000000000005,0.49999999999998046,0,0.56,0.46 +4156,100,100,,1,1,[1],4.1000000000000005,0.5999999999999801,0,0.49,0.485 +4157,100,100,,1,1,[1],4.1000000000000005,0.6999999999999797,0,0.6,0.48 +4158,100,100,,1,1,[1],4.1000000000000005,0.7999999999999794,0,0.45,0.385 +4159,100,100,,1,1,[1],4.1000000000000005,0.899999999999979,0,0.53,0.405 +4160,100,100,,1,1,[1],4.1000000000000005,0.9999999999999787,0,0.46,0.4 +4161,100,100,,1,1,[1],4.1000000000000005,1.0999999999999783,0,0.6,0.34 +4162,100,100,,1,1,[1],4.1000000000000005,1.199999999999978,0,0.56,0.44 +4163,100,100,,1,1,[1],4.1000000000000005,1.2999999999999776,0,0.57,0.385 +4164,100,100,,1,1,[1],4.1000000000000005,1.3999999999999773,0,0.54,0.4 +4165,100,100,,1,1,[1],4.1000000000000005,1.499999999999977,0,0.53,0.385 +4166,100,100,,1,1,[1],4.1000000000000005,1.5999999999999766,0,0.61,0.435 +4167,100,100,,1,1,[1],4.1000000000000005,1.6999999999999762,0,0.58,0.3 +4168,100,100,,1,1,[1],4.1000000000000005,1.7999999999999758,0,0.55,0.335 +4169,100,100,,1,1,[1],4.1000000000000005,1.8999999999999755,0,0.53,0.345 +4170,100,100,,1,1,[1],4.1000000000000005,1.9999999999999751,0,0.63,0.345 +4171,100,100,,1,1,[1],4.1000000000000005,2.0999999999999748,0,0.57,0.355 +4172,100,100,,1,1,[1],4.1000000000000005,2.1999999999999744,0,0.64,0.31 +4173,100,100,,1,1,[1],4.1000000000000005,2.299999999999974,0,0.6,0.31 +4174,100,100,,1,1,[1],4.1000000000000005,2.3999999999999737,0,0.7,0.26 +4175,100,100,,1,1,[1],4.1000000000000005,2.4999999999999734,0,0.66,0.28 +4176,100,100,,1,1,[1],4.1000000000000005,2.599999999999973,0,0.62,0.26 +4177,100,100,,1,1,[1],4.1000000000000005,2.6999999999999726,0,0.62,0.28 +4178,100,100,,1,1,[1],4.1000000000000005,2.7999999999999723,0,0.64,0.28 +4179,100,100,,1,1,[1],4.1000000000000005,2.899999999999972,0,0.64,0.28 +4180,100,100,,1,1,[1],4.1000000000000005,2.9999999999999716,0,0.61,0.235 +4181,100,100,,1,1,[1],4.1000000000000005,3.0999999999999712,0,0.66,0.24 +4182,100,100,,1,1,[1],4.1000000000000005,3.199999999999971,0,0.67,0.245 +4183,100,100,,1,1,[1],4.1000000000000005,3.2999999999999705,0,0.64,0.22 +4184,100,100,,1,1,[1],4.1000000000000005,3.39999999999997,0,0.62,0.28 +4185,100,100,,1,1,[1],4.1000000000000005,3.49999999999997,0,0.72,0.19 +4186,100,100,,1,1,[1],4.1000000000000005,3.5999999999999694,0,0.67,0.215 +4187,100,100,,1,1,[1],4.1000000000000005,3.699999999999969,0,0.66,0.23 +4188,100,100,,1,1,[1],4.1000000000000005,3.7999999999999687,0,0.72,0.17 +4189,100,100,,1,1,[1],4.1000000000000005,3.8999999999999684,0,0.68,0.19 +4190,100,100,,1,1,[1],4.1000000000000005,3.999999999999968,0,0.7,0.17 +4191,100,100,,1,1,[1],4.1000000000000005,4.099999999999968,0,0.82,0.18 +4192,100,100,,1,1,[1],4.1000000000000005,4.199999999999967,0,0.73,0.145 +4193,100,100,,1,1,[1],4.1000000000000005,4.299999999999967,0,0.75,0.165 +4194,100,100,,1,1,[1],4.1000000000000005,4.399999999999967,0,0.72,0.22 +4195,100,100,,1,1,[1],4.1000000000000005,4.499999999999966,0,0.78,0.13 +4196,100,100,,1,1,[1],4.1000000000000005,4.599999999999966,0,0.8,0.13 +4197,100,100,,1,1,[1],4.1000000000000005,4.6999999999999655,0,0.79,0.125 +4198,100,100,,1,1,[1],4.1000000000000005,4.799999999999965,0,0.73,0.135 +4199,100,100,,1,1,[1],4.1000000000000005,4.899999999999965,0,0.86,0.1 +4200,100,100,,1,1,[1],4.2,-5.0,0,0.86,0.9 +4201,100,100,,1,1,[1],4.2,-4.9,0,0.77,0.855 +4202,100,100,,1,1,[1],4.2,-4.800000000000001,0,0.77,0.855 +4203,100,100,,1,1,[1],4.2,-4.700000000000001,0,0.76,0.83 +4204,100,100,,1,1,[1],4.2,-4.600000000000001,0,0.81,0.885 +4205,100,100,,1,1,[1],4.2,-4.500000000000002,0,0.79,0.885 +4206,100,100,,1,1,[1],4.2,-4.400000000000002,0,0.76,0.85 +4207,100,100,,1,1,[1],4.2,-4.3000000000000025,0,0.7,0.83 +4208,100,100,,1,1,[1],4.2,-4.200000000000003,0,0.76,0.86 +4209,100,100,,1,1,[1],4.2,-4.100000000000003,0,0.63,0.775 +4210,100,100,,1,1,[1],4.2,-4.0000000000000036,0,0.79,0.845 +4211,100,100,,1,1,[1],4.2,-3.900000000000004,0,0.72,0.84 +4212,100,100,,1,1,[1],4.2,-3.8000000000000043,0,0.71,0.795 +4213,100,100,,1,1,[1],4.2,-3.7000000000000046,0,0.66,0.74 +4214,100,100,,1,1,[1],4.2,-3.600000000000005,0,0.74,0.81 +4215,100,100,,1,1,[1],4.2,-3.5000000000000053,0,0.64,0.78 +4216,100,100,,1,1,[1],4.2,-3.4000000000000057,0,0.69,0.785 +4217,100,100,,1,1,[1],4.2,-3.300000000000006,0,0.67,0.765 +4218,100,100,,1,1,[1],4.2,-3.2000000000000064,0,0.7,0.79 +4219,100,100,,1,1,[1],4.2,-3.1000000000000068,0,0.69,0.775 +4220,100,100,,1,1,[1],4.2,-3.000000000000007,0,0.58,0.74 +4221,100,100,,1,1,[1],4.2,-2.9000000000000075,0,0.64,0.73 +4222,100,100,,1,1,[1],4.2,-2.800000000000008,0,0.67,0.725 +4223,100,100,,1,1,[1],4.2,-2.700000000000008,0,0.71,0.795 +4224,100,100,,1,1,[1],4.2,-2.6000000000000085,0,0.68,0.74 +4225,100,100,,1,1,[1],4.2,-2.500000000000009,0,0.62,0.67 +4226,100,100,,1,1,[1],4.2,-2.4000000000000092,0,0.62,0.72 +4227,100,100,,1,1,[1],4.2,-2.3000000000000096,0,0.56,0.66 +4228,100,100,,1,1,[1],4.2,-2.20000000000001,0,0.59,0.625 +4229,100,100,,1,1,[1],4.2,-2.1000000000000103,0,0.64,0.72 +4230,100,100,,1,1,[1],4.2,-2.0000000000000107,0,0.56,0.72 +4231,100,100,,1,1,[1],4.2,-1.900000000000011,0,0.62,0.68 +4232,100,100,,1,1,[1],4.2,-1.8000000000000114,0,0.56,0.67 +4233,100,100,,1,1,[1],4.2,-1.7000000000000117,0,0.52,0.61 +4234,100,100,,1,1,[1],4.2,-1.600000000000012,0,0.51,0.625 +4235,100,100,,1,1,[1],4.2,-1.5000000000000124,0,0.57,0.635 +4236,100,100,,1,1,[1],4.2,-1.4000000000000128,0,0.53,0.625 +4237,100,100,,1,1,[1],4.2,-1.3000000000000131,0,0.6,0.66 +4238,100,100,,1,1,[1],4.2,-1.2000000000000135,0,0.62,0.59 +4239,100,100,,1,1,[1],4.2,-1.1000000000000139,0,0.63,0.625 +4240,100,100,,1,1,[1],4.2,-1.0000000000000142,0,0.58,0.54 +4241,100,100,,1,1,[1],4.2,-0.9000000000000146,0,0.54,0.56 +4242,100,100,,1,1,[1],4.2,-0.8000000000000149,0,0.52,0.57 +4243,100,100,,1,1,[1],4.2,-0.7000000000000153,0,0.66,0.57 +4244,100,100,,1,1,[1],4.2,-0.6000000000000156,0,0.54,0.59 +4245,100,100,,1,1,[1],4.2,-0.500000000000016,0,0.5,0.54 +4246,100,100,,1,1,[1],4.2,-0.40000000000001634,0,0.5,0.57 +4247,100,100,,1,1,[1],4.2,-0.3000000000000167,0,0.46,0.5 +4248,100,100,,1,1,[1],4.2,-0.20000000000001705,0,0.58,0.55 +4249,100,100,,1,1,[1],4.2,-0.10000000000001741,0,0.56,0.5 +4250,100,100,,1,1,[1],4.2,-1.7763568394002505e-14,0,0.56,0.53 +4251,100,100,,1,1,[1],4.2,0.09999999999998188,0,0.54,0.51 +4252,100,100,,1,1,[1],4.2,0.19999999999998153,0,0.58,0.53 +4253,100,100,,1,1,[1],4.2,0.29999999999998117,0,0.57,0.505 +4254,100,100,,1,1,[1],4.2,0.3999999999999808,0,0.53,0.445 +4255,100,100,,1,1,[1],4.2,0.49999999999998046,0,0.48,0.47 +4256,100,100,,1,1,[1],4.2,0.5999999999999801,0,0.56,0.46 +4257,100,100,,1,1,[1],4.2,0.6999999999999797,0,0.54,0.4 +4258,100,100,,1,1,[1],4.2,0.7999999999999794,0,0.5,0.4 +4259,100,100,,1,1,[1],4.2,0.899999999999979,0,0.54,0.39 +4260,100,100,,1,1,[1],4.2,0.9999999999999787,0,0.54,0.4 +4261,100,100,,1,1,[1],4.2,1.0999999999999783,0,0.56,0.39 +4262,100,100,,1,1,[1],4.2,1.199999999999978,0,0.54,0.39 +4263,100,100,,1,1,[1],4.2,1.2999999999999776,0,0.51,0.395 +4264,100,100,,1,1,[1],4.2,1.3999999999999773,0,0.51,0.335 +4265,100,100,,1,1,[1],4.2,1.499999999999977,0,0.55,0.365 +4266,100,100,,1,1,[1],4.2,1.5999999999999766,0,0.62,0.37 +4267,100,100,,1,1,[1],4.2,1.6999999999999762,0,0.52,0.4 +4268,100,100,,1,1,[1],4.2,1.7999999999999758,0,0.64,0.35 +4269,100,100,,1,1,[1],4.2,1.8999999999999755,0,0.64,0.32 +4270,100,100,,1,1,[1],4.2,1.9999999999999751,0,0.62,0.34 +4271,100,100,,1,1,[1],4.2,2.0999999999999748,0,0.6,0.29 +4272,100,100,,1,1,[1],4.2,2.1999999999999744,0,0.63,0.315 +4273,100,100,,1,1,[1],4.2,2.299999999999974,0,0.64,0.33 +4274,100,100,,1,1,[1],4.2,2.3999999999999737,0,0.6,0.28 +4275,100,100,,1,1,[1],4.2,2.4999999999999734,0,0.66,0.24 +4276,100,100,,1,1,[1],4.2,2.599999999999973,0,0.71,0.275 +4277,100,100,,1,1,[1],4.2,2.6999999999999726,0,0.63,0.285 +4278,100,100,,1,1,[1],4.2,2.7999999999999723,0,0.59,0.335 +4279,100,100,,1,1,[1],4.2,2.899999999999972,0,0.67,0.205 +4280,100,100,,1,1,[1],4.2,2.9999999999999716,0,0.62,0.23 +4281,100,100,,1,1,[1],4.2,3.0999999999999712,0,0.68,0.2 +4282,100,100,,1,1,[1],4.2,3.199999999999971,0,0.59,0.285 +4283,100,100,,1,1,[1],4.2,3.2999999999999705,0,0.67,0.245 +4284,100,100,,1,1,[1],4.2,3.39999999999997,0,0.67,0.235 +4285,100,100,,1,1,[1],4.2,3.49999999999997,0,0.74,0.18 +4286,100,100,,1,1,[1],4.2,3.5999999999999694,0,0.72,0.18 +4287,100,100,,1,1,[1],4.2,3.699999999999969,0,0.62,0.2 +4288,100,100,,1,1,[1],4.2,3.7999999999999687,0,0.75,0.175 +4289,100,100,,1,1,[1],4.2,3.8999999999999684,0,0.72,0.17 +4290,100,100,,1,1,[1],4.2,3.999999999999968,0,0.7,0.18 +4291,100,100,,1,1,[1],4.2,4.099999999999968,0,0.77,0.125 +4292,100,100,,1,1,[1],4.2,4.199999999999967,0,0.73,0.175 +4293,100,100,,1,1,[1],4.2,4.299999999999967,0,0.77,0.185 +4294,100,100,,1,1,[1],4.2,4.399999999999967,0,0.77,0.135 +4295,100,100,,1,1,[1],4.2,4.499999999999966,0,0.75,0.145 +4296,100,100,,1,1,[1],4.2,4.599999999999966,0,0.78,0.14 +4297,100,100,,1,1,[1],4.2,4.6999999999999655,0,0.69,0.195 +4298,100,100,,1,1,[1],4.2,4.799999999999965,0,0.74,0.16 +4299,100,100,,1,1,[1],4.2,4.899999999999965,0,0.81,0.125 +4300,100,100,,1,1,[1],4.3,-5.0,0,0.73,0.815 +4301,100,100,,1,1,[1],4.3,-4.9,0,0.76,0.83 +4302,100,100,,1,1,[1],4.3,-4.800000000000001,0,0.72,0.81 +4303,100,100,,1,1,[1],4.3,-4.700000000000001,0,0.8,0.89 +4304,100,100,,1,1,[1],4.3,-4.600000000000001,0,0.75,0.855 +4305,100,100,,1,1,[1],4.3,-4.500000000000002,0,0.76,0.83 +4306,100,100,,1,1,[1],4.3,-4.400000000000002,0,0.74,0.84 +4307,100,100,,1,1,[1],4.3,-4.3000000000000025,0,0.72,0.86 +4308,100,100,,1,1,[1],4.3,-4.200000000000003,0,0.72,0.81 +4309,100,100,,1,1,[1],4.3,-4.100000000000003,0,0.68,0.8 +4310,100,100,,1,1,[1],4.3,-4.0000000000000036,0,0.65,0.775 +4311,100,100,,1,1,[1],4.3,-3.900000000000004,0,0.66,0.81 +4312,100,100,,1,1,[1],4.3,-3.8000000000000043,0,0.69,0.765 +4313,100,100,,1,1,[1],4.3,-3.7000000000000046,0,0.85,0.815 +4314,100,100,,1,1,[1],4.3,-3.600000000000005,0,0.7,0.8 +4315,100,100,,1,1,[1],4.3,-3.5000000000000053,0,0.73,0.825 +4316,100,100,,1,1,[1],4.3,-3.4000000000000057,0,0.67,0.775 +4317,100,100,,1,1,[1],4.3,-3.300000000000006,0,0.64,0.76 +4318,100,100,,1,1,[1],4.3,-3.2000000000000064,0,0.66,0.75 +4319,100,100,,1,1,[1],4.3,-3.1000000000000068,0,0.58,0.71 +4320,100,100,,1,1,[1],4.3,-3.000000000000007,0,0.63,0.735 +4321,100,100,,1,1,[1],4.3,-2.9000000000000075,0,0.6,0.72 +4322,100,100,,1,1,[1],4.3,-2.800000000000008,0,0.64,0.74 +4323,100,100,,1,1,[1],4.3,-2.700000000000008,0,0.69,0.735 +4324,100,100,,1,1,[1],4.3,-2.6000000000000085,0,0.56,0.67 +4325,100,100,,1,1,[1],4.3,-2.500000000000009,0,0.61,0.685 +4326,100,100,,1,1,[1],4.3,-2.4000000000000092,0,0.63,0.705 +4327,100,100,,1,1,[1],4.3,-2.3000000000000096,0,0.51,0.645 +4328,100,100,,1,1,[1],4.3,-2.20000000000001,0,0.53,0.645 +4329,100,100,,1,1,[1],4.3,-2.1000000000000103,0,0.55,0.685 +4330,100,100,,1,1,[1],4.3,-2.0000000000000107,0,0.62,0.64 +4331,100,100,,1,1,[1],4.3,-1.900000000000011,0,0.6,0.67 +4332,100,100,,1,1,[1],4.3,-1.8000000000000114,0,0.6,0.69 +4333,100,100,,1,1,[1],4.3,-1.7000000000000117,0,0.65,0.645 +4334,100,100,,1,1,[1],4.3,-1.600000000000012,0,0.66,0.65 +4335,100,100,,1,1,[1],4.3,-1.5000000000000124,0,0.56,0.56 +4336,100,100,,1,1,[1],4.3,-1.4000000000000128,0,0.56,0.61 +4337,100,100,,1,1,[1],4.3,-1.3000000000000131,0,0.58,0.6 +4338,100,100,,1,1,[1],4.3,-1.2000000000000135,0,0.54,0.65 +4339,100,100,,1,1,[1],4.3,-1.1000000000000139,0,0.45,0.505 +4340,100,100,,1,1,[1],4.3,-1.0000000000000142,0,0.55,0.615 +4341,100,100,,1,1,[1],4.3,-0.9000000000000146,0,0.54,0.58 +4342,100,100,,1,1,[1],4.3,-0.8000000000000149,0,0.51,0.515 +4343,100,100,,1,1,[1],4.3,-0.7000000000000153,0,0.46,0.53 +4344,100,100,,1,1,[1],4.3,-0.6000000000000156,0,0.59,0.555 +4345,100,100,,1,1,[1],4.3,-0.500000000000016,0,0.55,0.575 +4346,100,100,,1,1,[1],4.3,-0.40000000000001634,0,0.58,0.57 +4347,100,100,,1,1,[1],4.3,-0.3000000000000167,0,0.48,0.52 +4348,100,100,,1,1,[1],4.3,-0.20000000000001705,0,0.5,0.55 +4349,100,100,,1,1,[1],4.3,-0.10000000000001741,0,0.57,0.425 +4350,100,100,,1,1,[1],4.3,-1.7763568394002505e-14,0,0.49,0.485 +4351,100,100,,1,1,[1],4.3,0.09999999999998188,0,0.5,0.54 +4352,100,100,,1,1,[1],4.3,0.19999999999998153,0,0.54,0.52 +4353,100,100,,1,1,[1],4.3,0.29999999999998117,0,0.5,0.48 +4354,100,100,,1,1,[1],4.3,0.3999999999999808,0,0.5,0.47 +4355,100,100,,1,1,[1],4.3,0.49999999999998046,0,0.52,0.42 +4356,100,100,,1,1,[1],4.3,0.5999999999999801,0,0.57,0.425 +4357,100,100,,1,1,[1],4.3,0.6999999999999797,0,0.63,0.445 +4358,100,100,,1,1,[1],4.3,0.7999999999999794,0,0.61,0.445 +4359,100,100,,1,1,[1],4.3,0.899999999999979,0,0.53,0.505 +4360,100,100,,1,1,[1],4.3,0.9999999999999787,0,0.59,0.395 +4361,100,100,,1,1,[1],4.3,1.0999999999999783,0,0.61,0.315 +4362,100,100,,1,1,[1],4.3,1.199999999999978,0,0.5,0.35 +4363,100,100,,1,1,[1],4.3,1.2999999999999776,0,0.51,0.345 +4364,100,100,,1,1,[1],4.3,1.3999999999999773,0,0.55,0.415 +4365,100,100,,1,1,[1],4.3,1.499999999999977,0,0.56,0.4 +4366,100,100,,1,1,[1],4.3,1.5999999999999766,0,0.55,0.385 +4367,100,100,,1,1,[1],4.3,1.6999999999999762,0,0.64,0.31 +4368,100,100,,1,1,[1],4.3,1.7999999999999758,0,0.59,0.375 +4369,100,100,,1,1,[1],4.3,1.8999999999999755,0,0.51,0.355 +4370,100,100,,1,1,[1],4.3,1.9999999999999751,0,0.62,0.34 +4371,100,100,,1,1,[1],4.3,2.0999999999999748,0,0.53,0.325 +4372,100,100,,1,1,[1],4.3,2.1999999999999744,0,0.62,0.24 +4373,100,100,,1,1,[1],4.3,2.299999999999974,0,0.62,0.32 +4374,100,100,,1,1,[1],4.3,2.3999999999999737,0,0.54,0.33 +4375,100,100,,1,1,[1],4.3,2.4999999999999734,0,0.59,0.265 +4376,100,100,,1,1,[1],4.3,2.599999999999973,0,0.63,0.255 +4377,100,100,,1,1,[1],4.3,2.6999999999999726,0,0.61,0.265 +4378,100,100,,1,1,[1],4.3,2.7999999999999723,0,0.52,0.33 +4379,100,100,,1,1,[1],4.3,2.899999999999972,0,0.56,0.31 +4380,100,100,,1,1,[1],4.3,2.9999999999999716,0,0.64,0.29 +4381,100,100,,1,1,[1],4.3,3.0999999999999712,0,0.67,0.255 +4382,100,100,,1,1,[1],4.3,3.199999999999971,0,0.61,0.245 +4383,100,100,,1,1,[1],4.3,3.2999999999999705,0,0.61,0.255 +4384,100,100,,1,1,[1],4.3,3.39999999999997,0,0.64,0.22 +4385,100,100,,1,1,[1],4.3,3.49999999999997,0,0.64,0.24 +4386,100,100,,1,1,[1],4.3,3.5999999999999694,0,0.7,0.21 +4387,100,100,,1,1,[1],4.3,3.699999999999969,0,0.76,0.17 +4388,100,100,,1,1,[1],4.3,3.7999999999999687,0,0.72,0.15 +4389,100,100,,1,1,[1],4.3,3.8999999999999684,0,0.73,0.145 +4390,100,100,,1,1,[1],4.3,3.999999999999968,0,0.68,0.2 +4391,100,100,,1,1,[1],4.3,4.099999999999968,0,0.71,0.155 +4392,100,100,,1,1,[1],4.3,4.199999999999967,0,0.66,0.22 +4393,100,100,,1,1,[1],4.3,4.299999999999967,0,0.82,0.1 +4394,100,100,,1,1,[1],4.3,4.399999999999967,0,0.72,0.16 +4395,100,100,,1,1,[1],4.3,4.499999999999966,0,0.78,0.14 +4396,100,100,,1,1,[1],4.3,4.599999999999966,0,0.73,0.135 +4397,100,100,,1,1,[1],4.3,4.6999999999999655,0,0.75,0.165 +4398,100,100,,1,1,[1],4.3,4.799999999999965,0,0.82,0.1 +4399,100,100,,1,1,[1],4.3,4.899999999999965,0,0.75,0.165 +4400,100,100,,1,1,[1],4.4,-5.0,0,0.81,0.875 +4401,100,100,,1,1,[1],4.4,-4.9,0,0.8,0.85 +4402,100,100,,1,1,[1],4.4,-4.800000000000001,0,0.73,0.845 +4403,100,100,,1,1,[1],4.4,-4.700000000000001,0,0.73,0.865 +4404,100,100,,1,1,[1],4.4,-4.600000000000001,0,0.71,0.815 +4405,100,100,,1,1,[1],4.4,-4.500000000000002,0,0.73,0.795 +4406,100,100,,1,1,[1],4.4,-4.400000000000002,0,0.72,0.82 +4407,100,100,,1,1,[1],4.4,-4.3000000000000025,0,0.7,0.83 +4408,100,100,,1,1,[1],4.4,-4.200000000000003,0,0.7,0.82 +4409,100,100,,1,1,[1],4.4,-4.100000000000003,0,0.66,0.8 +4410,100,100,,1,1,[1],4.4,-4.0000000000000036,0,0.64,0.76 +4411,100,100,,1,1,[1],4.4,-3.900000000000004,0,0.64,0.77 +4412,100,100,,1,1,[1],4.4,-3.8000000000000043,0,0.63,0.765 +4413,100,100,,1,1,[1],4.4,-3.7000000000000046,0,0.68,0.78 +4414,100,100,,1,1,[1],4.4,-3.600000000000005,0,0.62,0.77 +4415,100,100,,1,1,[1],4.4,-3.5000000000000053,0,0.68,0.75 +4416,100,100,,1,1,[1],4.4,-3.4000000000000057,0,0.61,0.765 +4417,100,100,,1,1,[1],4.4,-3.300000000000006,0,0.69,0.765 +4418,100,100,,1,1,[1],4.4,-3.2000000000000064,0,0.62,0.7 +4419,100,100,,1,1,[1],4.4,-3.1000000000000068,0,0.64,0.77 +4420,100,100,,1,1,[1],4.4,-3.000000000000007,0,0.79,0.805 +4421,100,100,,1,1,[1],4.4,-2.9000000000000075,0,0.62,0.7 +4422,100,100,,1,1,[1],4.4,-2.800000000000008,0,0.64,0.72 +4423,100,100,,1,1,[1],4.4,-2.700000000000008,0,0.55,0.745 +4424,100,100,,1,1,[1],4.4,-2.6000000000000085,0,0.63,0.745 +4425,100,100,,1,1,[1],4.4,-2.500000000000009,0,0.65,0.745 +4426,100,100,,1,1,[1],4.4,-2.4000000000000092,0,0.64,0.71 +4427,100,100,,1,1,[1],4.4,-2.3000000000000096,0,0.74,0.75 +4428,100,100,,1,1,[1],4.4,-2.20000000000001,0,0.62,0.69 +4429,100,100,,1,1,[1],4.4,-2.1000000000000103,0,0.61,0.665 +4430,100,100,,1,1,[1],4.4,-2.0000000000000107,0,0.6,0.7 +4431,100,100,,1,1,[1],4.4,-1.900000000000011,0,0.6,0.73 +4432,100,100,,1,1,[1],4.4,-1.8000000000000114,0,0.6,0.65 +4433,100,100,,1,1,[1],4.4,-1.7000000000000117,0,0.6,0.63 +4434,100,100,,1,1,[1],4.4,-1.600000000000012,0,0.58,0.65 +4435,100,100,,1,1,[1],4.4,-1.5000000000000124,0,0.65,0.665 +4436,100,100,,1,1,[1],4.4,-1.4000000000000128,0,0.55,0.595 +4437,100,100,,1,1,[1],4.4,-1.3000000000000131,0,0.44,0.64 +4438,100,100,,1,1,[1],4.4,-1.2000000000000135,0,0.56,0.61 +4439,100,100,,1,1,[1],4.4,-1.1000000000000139,0,0.57,0.605 +4440,100,100,,1,1,[1],4.4,-1.0000000000000142,0,0.51,0.615 +4441,100,100,,1,1,[1],4.4,-0.9000000000000146,0,0.55,0.515 +4442,100,100,,1,1,[1],4.4,-0.8000000000000149,0,0.6,0.62 +4443,100,100,,1,1,[1],4.4,-0.7000000000000153,0,0.54,0.6 +4444,100,100,,1,1,[1],4.4,-0.6000000000000156,0,0.53,0.555 +4445,100,100,,1,1,[1],4.4,-0.500000000000016,0,0.49,0.505 +4446,100,100,,1,1,[1],4.4,-0.40000000000001634,0,0.48,0.55 +4447,100,100,,1,1,[1],4.4,-0.3000000000000167,0,0.57,0.515 +4448,100,100,,1,1,[1],4.4,-0.20000000000001705,0,0.6,0.56 +4449,100,100,,1,1,[1],4.4,-0.10000000000001741,0,0.5,0.45 +4450,100,100,,1,1,[1],4.4,-1.7763568394002505e-14,0,0.53,0.485 +4451,100,100,,1,1,[1],4.4,0.09999999999998188,0,0.53,0.445 +4452,100,100,,1,1,[1],4.4,0.19999999999998153,0,0.57,0.415 +4453,100,100,,1,1,[1],4.4,0.29999999999998117,0,0.46,0.51 +4454,100,100,,1,1,[1],4.4,0.3999999999999808,0,0.49,0.505 +4455,100,100,,1,1,[1],4.4,0.49999999999998046,0,0.59,0.425 +4456,100,100,,1,1,[1],4.4,0.5999999999999801,0,0.52,0.47 +4457,100,100,,1,1,[1],4.4,0.6999999999999797,0,0.47,0.535 +4458,100,100,,1,1,[1],4.4,0.7999999999999794,0,0.52,0.4 +4459,100,100,,1,1,[1],4.4,0.899999999999979,0,0.58,0.45 +4460,100,100,,1,1,[1],4.4,0.9999999999999787,0,0.53,0.405 +4461,100,100,,1,1,[1],4.4,1.0999999999999783,0,0.59,0.365 +4462,100,100,,1,1,[1],4.4,1.199999999999978,0,0.51,0.415 +4463,100,100,,1,1,[1],4.4,1.2999999999999776,0,0.56,0.39 +4464,100,100,,1,1,[1],4.4,1.3999999999999773,0,0.56,0.36 +4465,100,100,,1,1,[1],4.4,1.499999999999977,0,0.59,0.255 +4466,100,100,,1,1,[1],4.4,1.5999999999999766,0,0.58,0.36 +4467,100,100,,1,1,[1],4.4,1.6999999999999762,0,0.57,0.335 +4468,100,100,,1,1,[1],4.4,1.7999999999999758,0,0.56,0.34 +4469,100,100,,1,1,[1],4.4,1.8999999999999755,0,0.57,0.395 +4470,100,100,,1,1,[1],4.4,1.9999999999999751,0,0.57,0.365 +4471,100,100,,1,1,[1],4.4,2.0999999999999748,0,0.56,0.33 +4472,100,100,,1,1,[1],4.4,2.1999999999999744,0,0.58,0.37 +4473,100,100,,1,1,[1],4.4,2.299999999999974,0,0.59,0.305 +4474,100,100,,1,1,[1],4.4,2.3999999999999737,0,0.6,0.31 +4475,100,100,,1,1,[1],4.4,2.4999999999999734,0,0.66,0.29 +4476,100,100,,1,1,[1],4.4,2.599999999999973,0,0.64,0.27 +4477,100,100,,1,1,[1],4.4,2.6999999999999726,0,0.6,0.29 +4478,100,100,,1,1,[1],4.4,2.7999999999999723,0,0.62,0.29 +4479,100,100,,1,1,[1],4.4,2.899999999999972,0,0.63,0.235 +4480,100,100,,1,1,[1],4.4,2.9999999999999716,0,0.55,0.285 +4481,100,100,,1,1,[1],4.4,3.0999999999999712,0,0.59,0.255 +4482,100,100,,1,1,[1],4.4,3.199999999999971,0,0.66,0.24 +4483,100,100,,1,1,[1],4.4,3.2999999999999705,0,0.75,0.225 +4484,100,100,,1,1,[1],4.4,3.39999999999997,0,0.68,0.23 +4485,100,100,,1,1,[1],4.4,3.49999999999997,0,0.64,0.25 +4486,100,100,,1,1,[1],4.4,3.5999999999999694,0,0.67,0.195 +4487,100,100,,1,1,[1],4.4,3.699999999999969,0,0.7,0.21 +4488,100,100,,1,1,[1],4.4,3.7999999999999687,0,0.7,0.2 +4489,100,100,,1,1,[1],4.4,3.8999999999999684,0,0.76,0.16 +4490,100,100,,1,1,[1],4.4,3.999999999999968,0,0.68,0.19 +4491,100,100,,1,1,[1],4.4,4.099999999999968,0,0.74,0.14 +4492,100,100,,1,1,[1],4.4,4.199999999999967,0,0.73,0.195 +4493,100,100,,1,1,[1],4.4,4.299999999999967,0,0.68,0.19 +4494,100,100,,1,1,[1],4.4,4.399999999999967,0,0.75,0.175 +4495,100,100,,1,1,[1],4.4,4.499999999999966,0,0.73,0.175 +4496,100,100,,1,1,[1],4.4,4.599999999999966,0,0.73,0.145 +4497,100,100,,1,1,[1],4.4,4.6999999999999655,0,0.76,0.16 +4498,100,100,,1,1,[1],4.4,4.799999999999965,0,0.73,0.165 +4499,100,100,,1,1,[1],4.4,4.899999999999965,0,0.73,0.185 +4500,100,100,,1,1,[1],4.5,-5.0,0,0.77,0.865 +4501,100,100,,1,1,[1],4.5,-4.9,0,0.75,0.855 +4502,100,100,,1,1,[1],4.5,-4.800000000000001,0,0.73,0.855 +4503,100,100,,1,1,[1],4.5,-4.700000000000001,0,0.79,0.835 +4504,100,100,,1,1,[1],4.5,-4.600000000000001,0,0.73,0.845 +4505,100,100,,1,1,[1],4.5,-4.500000000000002,0,0.79,0.885 +4506,100,100,,1,1,[1],4.5,-4.400000000000002,0,0.64,0.8 +4507,100,100,,1,1,[1],4.5,-4.3000000000000025,0,0.75,0.815 +4508,100,100,,1,1,[1],4.5,-4.200000000000003,0,0.72,0.84 +4509,100,100,,1,1,[1],4.5,-4.100000000000003,0,0.68,0.81 +4510,100,100,,1,1,[1],4.5,-4.0000000000000036,0,0.74,0.81 +4511,100,100,,1,1,[1],4.5,-3.900000000000004,0,0.73,0.745 +4512,100,100,,1,1,[1],4.5,-3.8000000000000043,0,0.71,0.785 +4513,100,100,,1,1,[1],4.5,-3.7000000000000046,0,0.73,0.825 +4514,100,100,,1,1,[1],4.5,-3.600000000000005,0,0.62,0.75 +4515,100,100,,1,1,[1],4.5,-3.5000000000000053,0,0.66,0.72 +4516,100,100,,1,1,[1],4.5,-3.4000000000000057,0,0.67,0.745 +4517,100,100,,1,1,[1],4.5,-3.300000000000006,0,0.71,0.805 +4518,100,100,,1,1,[1],4.5,-3.2000000000000064,0,0.64,0.76 +4519,100,100,,1,1,[1],4.5,-3.1000000000000068,0,0.6,0.71 +4520,100,100,,1,1,[1],4.5,-3.000000000000007,0,0.74,0.81 +4521,100,100,,1,1,[1],4.5,-2.9000000000000075,0,0.6,0.76 +4522,100,100,,1,1,[1],4.5,-2.800000000000008,0,0.68,0.71 +4523,100,100,,1,1,[1],4.5,-2.700000000000008,0,0.66,0.71 +4524,100,100,,1,1,[1],4.5,-2.6000000000000085,0,0.65,0.735 +4525,100,100,,1,1,[1],4.5,-2.500000000000009,0,0.61,0.735 +4526,100,100,,1,1,[1],4.5,-2.4000000000000092,0,0.56,0.69 +4527,100,100,,1,1,[1],4.5,-2.3000000000000096,0,0.6,0.64 +4528,100,100,,1,1,[1],4.5,-2.20000000000001,0,0.58,0.66 +4529,100,100,,1,1,[1],4.5,-2.1000000000000103,0,0.62,0.64 +4530,100,100,,1,1,[1],4.5,-2.0000000000000107,0,0.61,0.635 +4531,100,100,,1,1,[1],4.5,-1.900000000000011,0,0.66,0.67 +4532,100,100,,1,1,[1],4.5,-1.8000000000000114,0,0.53,0.655 +4533,100,100,,1,1,[1],4.5,-1.7000000000000117,0,0.56,0.59 +4534,100,100,,1,1,[1],4.5,-1.600000000000012,0,0.58,0.63 +4535,100,100,,1,1,[1],4.5,-1.5000000000000124,0,0.56,0.57 +4536,100,100,,1,1,[1],4.5,-1.4000000000000128,0,0.48,0.63 +4537,100,100,,1,1,[1],4.5,-1.3000000000000131,0,0.54,0.6 +4538,100,100,,1,1,[1],4.5,-1.2000000000000135,0,0.47,0.575 +4539,100,100,,1,1,[1],4.5,-1.1000000000000139,0,0.58,0.59 +4540,100,100,,1,1,[1],4.5,-1.0000000000000142,0,0.5,0.57 +4541,100,100,,1,1,[1],4.5,-0.9000000000000146,0,0.5,0.6 +4542,100,100,,1,1,[1],4.5,-0.8000000000000149,0,0.52,0.59 +4543,100,100,,1,1,[1],4.5,-0.7000000000000153,0,0.48,0.58 +4544,100,100,,1,1,[1],4.5,-0.6000000000000156,0,0.5,0.57 +4545,100,100,,1,1,[1],4.5,-0.500000000000016,0,0.59,0.515 +4546,100,100,,1,1,[1],4.5,-0.40000000000001634,0,0.54,0.54 +4547,100,100,,1,1,[1],4.5,-0.3000000000000167,0,0.5,0.51 +4548,100,100,,1,1,[1],4.5,-0.20000000000001705,0,0.5,0.4 +4549,100,100,,1,1,[1],4.5,-0.10000000000001741,0,0.46,0.54 +4550,100,100,,1,1,[1],4.5,-1.7763568394002505e-14,0,0.5,0.56 +4551,100,100,,1,1,[1],4.5,0.09999999999998188,0,0.54,0.42 +4552,100,100,,1,1,[1],4.5,0.19999999999998153,0,0.54,0.51 +4553,100,100,,1,1,[1],4.5,0.29999999999998117,0,0.53,0.525 +4554,100,100,,1,1,[1],4.5,0.3999999999999808,0,0.47,0.525 +4555,100,100,,1,1,[1],4.5,0.49999999999998046,0,0.47,0.505 +4556,100,100,,1,1,[1],4.5,0.5999999999999801,0,0.49,0.485 +4557,100,100,,1,1,[1],4.5,0.6999999999999797,0,0.58,0.49 +4558,100,100,,1,1,[1],4.5,0.7999999999999794,0,0.48,0.36 +4559,100,100,,1,1,[1],4.5,0.899999999999979,0,0.48,0.47 +4560,100,100,,1,1,[1],4.5,0.9999999999999787,0,0.47,0.415 +4561,100,100,,1,1,[1],4.5,1.0999999999999783,0,0.54,0.37 +4562,100,100,,1,1,[1],4.5,1.199999999999978,0,0.64,0.39 +4563,100,100,,1,1,[1],4.5,1.2999999999999776,0,0.54,0.42 +4564,100,100,,1,1,[1],4.5,1.3999999999999773,0,0.57,0.365 +4565,100,100,,1,1,[1],4.5,1.499999999999977,0,0.58,0.34 +4566,100,100,,1,1,[1],4.5,1.5999999999999766,0,0.53,0.355 +4567,100,100,,1,1,[1],4.5,1.6999999999999762,0,0.55,0.385 +4568,100,100,,1,1,[1],4.5,1.7999999999999758,0,0.5,0.34 +4569,100,100,,1,1,[1],4.5,1.8999999999999755,0,0.56,0.36 +4570,100,100,,1,1,[1],4.5,1.9999999999999751,0,0.56,0.27 +4571,100,100,,1,1,[1],4.5,2.0999999999999748,0,0.65,0.335 +4572,100,100,,1,1,[1],4.5,2.1999999999999744,0,0.6,0.32 +4573,100,100,,1,1,[1],4.5,2.299999999999974,0,0.65,0.285 +4574,100,100,,1,1,[1],4.5,2.3999999999999737,0,0.65,0.305 +4575,100,100,,1,1,[1],4.5,2.4999999999999734,0,0.61,0.295 +4576,100,100,,1,1,[1],4.5,2.599999999999973,0,0.6,0.24 +4577,100,100,,1,1,[1],4.5,2.6999999999999726,0,0.65,0.275 +4578,100,100,,1,1,[1],4.5,2.7999999999999723,0,0.7,0.21 +4579,100,100,,1,1,[1],4.5,2.899999999999972,0,0.65,0.305 +4580,100,100,,1,1,[1],4.5,2.9999999999999716,0,0.66,0.24 +4581,100,100,,1,1,[1],4.5,3.0999999999999712,0,0.7,0.24 +4582,100,100,,1,1,[1],4.5,3.199999999999971,0,0.67,0.235 +4583,100,100,,1,1,[1],4.5,3.2999999999999705,0,0.63,0.245 +4584,100,100,,1,1,[1],4.5,3.39999999999997,0,0.63,0.255 +4585,100,100,,1,1,[1],4.5,3.49999999999997,0,0.64,0.25 +4586,100,100,,1,1,[1],4.5,3.5999999999999694,0,0.7,0.2 +4587,100,100,,1,1,[1],4.5,3.699999999999969,0,0.69,0.195 +4588,100,100,,1,1,[1],4.5,3.7999999999999687,0,0.73,0.195 +4589,100,100,,1,1,[1],4.5,3.8999999999999684,0,0.72,0.21 +4590,100,100,,1,1,[1],4.5,3.999999999999968,0,0.71,0.205 +4591,100,100,,1,1,[1],4.5,4.099999999999968,0,0.72,0.19 +4592,100,100,,1,1,[1],4.5,4.199999999999967,0,0.72,0.19 +4593,100,100,,1,1,[1],4.5,4.299999999999967,0,0.73,0.145 +4594,100,100,,1,1,[1],4.5,4.399999999999967,0,0.67,0.205 +4595,100,100,,1,1,[1],4.5,4.499999999999966,0,0.76,0.17 +4596,100,100,,1,1,[1],4.5,4.599999999999966,0,0.78,0.14 +4597,100,100,,1,1,[1],4.5,4.6999999999999655,0,0.76,0.15 +4598,100,100,,1,1,[1],4.5,4.799999999999965,0,0.75,0.155 +4599,100,100,,1,1,[1],4.5,4.899999999999965,0,0.72,0.19 +4600,100,100,,1,1,[1],4.6000000000000005,-5.0,0,0.66,0.78 +4601,100,100,,1,1,[1],4.6000000000000005,-4.9,0,0.82,0.88 +4602,100,100,,1,1,[1],4.6000000000000005,-4.800000000000001,0,0.69,0.775 +4603,100,100,,1,1,[1],4.6000000000000005,-4.700000000000001,0,0.74,0.86 +4604,100,100,,1,1,[1],4.6000000000000005,-4.600000000000001,0,0.8,0.87 +4605,100,100,,1,1,[1],4.6000000000000005,-4.500000000000002,0,0.7,0.77 +4606,100,100,,1,1,[1],4.6000000000000005,-4.400000000000002,0,0.72,0.85 +4607,100,100,,1,1,[1],4.6000000000000005,-4.3000000000000025,0,0.7,0.8 +4608,100,100,,1,1,[1],4.6000000000000005,-4.200000000000003,0,0.7,0.82 +4609,100,100,,1,1,[1],4.6000000000000005,-4.100000000000003,0,0.73,0.795 +4610,100,100,,1,1,[1],4.6000000000000005,-4.0000000000000036,0,0.72,0.78 +4611,100,100,,1,1,[1],4.6000000000000005,-3.900000000000004,0,0.63,0.765 +4612,100,100,,1,1,[1],4.6000000000000005,-3.8000000000000043,0,0.73,0.815 +4613,100,100,,1,1,[1],4.6000000000000005,-3.7000000000000046,0,0.68,0.79 +4614,100,100,,1,1,[1],4.6000000000000005,-3.600000000000005,0,0.67,0.785 +4615,100,100,,1,1,[1],4.6000000000000005,-3.5000000000000053,0,0.72,0.78 +4616,100,100,,1,1,[1],4.6000000000000005,-3.4000000000000057,0,0.68,0.81 +4617,100,100,,1,1,[1],4.6000000000000005,-3.300000000000006,0,0.78,0.81 +4618,100,100,,1,1,[1],4.6000000000000005,-3.2000000000000064,0,0.56,0.74 +4619,100,100,,1,1,[1],4.6000000000000005,-3.1000000000000068,0,0.6,0.74 +4620,100,100,,1,1,[1],4.6000000000000005,-3.000000000000007,0,0.65,0.705 +4621,100,100,,1,1,[1],4.6000000000000005,-2.9000000000000075,0,0.57,0.755 +4622,100,100,,1,1,[1],4.6000000000000005,-2.800000000000008,0,0.59,0.715 +4623,100,100,,1,1,[1],4.6000000000000005,-2.700000000000008,0,0.58,0.72 +4624,100,100,,1,1,[1],4.6000000000000005,-2.6000000000000085,0,0.6,0.7 +4625,100,100,,1,1,[1],4.6000000000000005,-2.500000000000009,0,0.64,0.7 +4626,100,100,,1,1,[1],4.6000000000000005,-2.4000000000000092,0,0.66,0.73 +4627,100,100,,1,1,[1],4.6000000000000005,-2.3000000000000096,0,0.57,0.685 +4628,100,100,,1,1,[1],4.6000000000000005,-2.20000000000001,0,0.49,0.665 +4629,100,100,,1,1,[1],4.6000000000000005,-2.1000000000000103,0,0.57,0.695 +4630,100,100,,1,1,[1],4.6000000000000005,-2.0000000000000107,0,0.48,0.63 +4631,100,100,,1,1,[1],4.6000000000000005,-1.900000000000011,0,0.6,0.6 +4632,100,100,,1,1,[1],4.6000000000000005,-1.8000000000000114,0,0.62,0.66 +4633,100,100,,1,1,[1],4.6000000000000005,-1.7000000000000117,0,0.53,0.635 +4634,100,100,,1,1,[1],4.6000000000000005,-1.600000000000012,0,0.59,0.665 +4635,100,100,,1,1,[1],4.6000000000000005,-1.5000000000000124,0,0.6,0.65 +4636,100,100,,1,1,[1],4.6000000000000005,-1.4000000000000128,0,0.51,0.585 +4637,100,100,,1,1,[1],4.6000000000000005,-1.3000000000000131,0,0.53,0.575 +4638,100,100,,1,1,[1],4.6000000000000005,-1.2000000000000135,0,0.56,0.6 +4639,100,100,,1,1,[1],4.6000000000000005,-1.1000000000000139,0,0.51,0.565 +4640,100,100,,1,1,[1],4.6000000000000005,-1.0000000000000142,0,0.59,0.625 +4641,100,100,,1,1,[1],4.6000000000000005,-0.9000000000000146,0,0.5,0.56 +4642,100,100,,1,1,[1],4.6000000000000005,-0.8000000000000149,0,0.48,0.62 +4643,100,100,,1,1,[1],4.6000000000000005,-0.7000000000000153,0,0.58,0.55 +4644,100,100,,1,1,[1],4.6000000000000005,-0.6000000000000156,0,0.52,0.53 +4645,100,100,,1,1,[1],4.6000000000000005,-0.500000000000016,0,0.46,0.5 +4646,100,100,,1,1,[1],4.6000000000000005,-0.40000000000001634,0,0.55,0.555 +4647,100,100,,1,1,[1],4.6000000000000005,-0.3000000000000167,0,0.57,0.515 +4648,100,100,,1,1,[1],4.6000000000000005,-0.20000000000001705,0,0.5,0.49 +4649,100,100,,1,1,[1],4.6000000000000005,-0.10000000000001741,0,0.57,0.495 +4650,100,100,,1,1,[1],4.6000000000000005,-1.7763568394002505e-14,0,0.52,0.47 +4651,100,100,,1,1,[1],4.6000000000000005,0.09999999999998188,0,0.5,0.52 +4652,100,100,,1,1,[1],4.6000000000000005,0.19999999999998153,0,0.5,0.49 +4653,100,100,,1,1,[1],4.6000000000000005,0.29999999999998117,0,0.59,0.545 +4654,100,100,,1,1,[1],4.6000000000000005,0.3999999999999808,0,0.44,0.46 +4655,100,100,,1,1,[1],4.6000000000000005,0.49999999999998046,0,0.55,0.445 +4656,100,100,,1,1,[1],4.6000000000000005,0.5999999999999801,0,0.5,0.41 +4657,100,100,,1,1,[1],4.6000000000000005,0.6999999999999797,0,0.55,0.435 +4658,100,100,,1,1,[1],4.6000000000000005,0.7999999999999794,0,0.5,0.45 +4659,100,100,,1,1,[1],4.6000000000000005,0.899999999999979,0,0.53,0.375 +4660,100,100,,1,1,[1],4.6000000000000005,0.9999999999999787,0,0.54,0.43 +4661,100,100,,1,1,[1],4.6000000000000005,1.0999999999999783,0,0.48,0.39 +4662,100,100,,1,1,[1],4.6000000000000005,1.199999999999978,0,0.52,0.38 +4663,100,100,,1,1,[1],4.6000000000000005,1.2999999999999776,0,0.57,0.395 +4664,100,100,,1,1,[1],4.6000000000000005,1.3999999999999773,0,0.55,0.365 +4665,100,100,,1,1,[1],4.6000000000000005,1.499999999999977,0,0.54,0.37 +4666,100,100,,1,1,[1],4.6000000000000005,1.5999999999999766,0,0.6,0.3 +4667,100,100,,1,1,[1],4.6000000000000005,1.6999999999999762,0,0.53,0.355 +4668,100,100,,1,1,[1],4.6000000000000005,1.7999999999999758,0,0.51,0.375 +4669,100,100,,1,1,[1],4.6000000000000005,1.8999999999999755,0,0.47,0.375 +4670,100,100,,1,1,[1],4.6000000000000005,1.9999999999999751,0,0.59,0.315 +4671,100,100,,1,1,[1],4.6000000000000005,2.0999999999999748,0,0.55,0.355 +4672,100,100,,1,1,[1],4.6000000000000005,2.1999999999999744,0,0.53,0.365 +4673,100,100,,1,1,[1],4.6000000000000005,2.299999999999974,0,0.48,0.39 +4674,100,100,,1,1,[1],4.6000000000000005,2.3999999999999737,0,0.65,0.325 +4675,100,100,,1,1,[1],4.6000000000000005,2.4999999999999734,0,0.61,0.265 +4676,100,100,,1,1,[1],4.6000000000000005,2.599999999999973,0,0.55,0.255 +4677,100,100,,1,1,[1],4.6000000000000005,2.6999999999999726,0,0.51,0.335 +4678,100,100,,1,1,[1],4.6000000000000005,2.7999999999999723,0,0.55,0.275 +4679,100,100,,1,1,[1],4.6000000000000005,2.899999999999972,0,0.64,0.34 +4680,100,100,,1,1,[1],4.6000000000000005,2.9999999999999716,0,0.69,0.235 +4681,100,100,,1,1,[1],4.6000000000000005,3.0999999999999712,0,0.64,0.27 +4682,100,100,,1,1,[1],4.6000000000000005,3.199999999999971,0,0.69,0.245 +4683,100,100,,1,1,[1],4.6000000000000005,3.2999999999999705,0,0.63,0.265 +4684,100,100,,1,1,[1],4.6000000000000005,3.39999999999997,0,0.69,0.245 +4685,100,100,,1,1,[1],4.6000000000000005,3.49999999999997,0,0.54,0.31 +4686,100,100,,1,1,[1],4.6000000000000005,3.5999999999999694,0,0.62,0.23 +4687,100,100,,1,1,[1],4.6000000000000005,3.699999999999969,0,0.55,0.275 +4688,100,100,,1,1,[1],4.6000000000000005,3.7999999999999687,0,0.6,0.23 +4689,100,100,,1,1,[1],4.6000000000000005,3.8999999999999684,0,0.61,0.235 +4690,100,100,,1,1,[1],4.6000000000000005,3.999999999999968,0,0.72,0.18 +4691,100,100,,1,1,[1],4.6000000000000005,4.099999999999968,0,0.64,0.23 +4692,100,100,,1,1,[1],4.6000000000000005,4.199999999999967,0,0.73,0.205 +4693,100,100,,1,1,[1],4.6000000000000005,4.299999999999967,0,0.72,0.19 +4694,100,100,,1,1,[1],4.6000000000000005,4.399999999999967,0,0.79,0.135 +4695,100,100,,1,1,[1],4.6000000000000005,4.499999999999966,0,0.76,0.17 +4696,100,100,,1,1,[1],4.6000000000000005,4.599999999999966,0,0.82,0.11 +4697,100,100,,1,1,[1],4.6000000000000005,4.6999999999999655,0,0.74,0.16 +4698,100,100,,1,1,[1],4.6000000000000005,4.799999999999965,0,0.75,0.175 +4699,100,100,,1,1,[1],4.6000000000000005,4.899999999999965,0,0.75,0.125 +4700,100,100,,1,1,[1],4.7,-5.0,0,0.83,0.905 +4701,100,100,,1,1,[1],4.7,-4.9,0,0.74,0.86 +4702,100,100,,1,1,[1],4.7,-4.800000000000001,0,0.69,0.795 +4703,100,100,,1,1,[1],4.7,-4.700000000000001,0,0.77,0.795 +4704,100,100,,1,1,[1],4.7,-4.600000000000001,0,0.7,0.82 +4705,100,100,,1,1,[1],4.7,-4.500000000000002,0,0.79,0.855 +4706,100,100,,1,1,[1],4.7,-4.400000000000002,0,0.61,0.755 +4707,100,100,,1,1,[1],4.7,-4.3000000000000025,0,0.72,0.83 +4708,100,100,,1,1,[1],4.7,-4.200000000000003,0,0.67,0.805 +4709,100,100,,1,1,[1],4.7,-4.100000000000003,0,0.65,0.795 +4710,100,100,,1,1,[1],4.7,-4.0000000000000036,0,0.74,0.8 +4711,100,100,,1,1,[1],4.7,-3.900000000000004,0,0.69,0.795 +4712,100,100,,1,1,[1],4.7,-3.8000000000000043,0,0.77,0.825 +4713,100,100,,1,1,[1],4.7,-3.7000000000000046,0,0.66,0.76 +4714,100,100,,1,1,[1],4.7,-3.600000000000005,0,0.61,0.705 +4715,100,100,,1,1,[1],4.7,-3.5000000000000053,0,0.7,0.81 +4716,100,100,,1,1,[1],4.7,-3.4000000000000057,0,0.61,0.735 +4717,100,100,,1,1,[1],4.7,-3.300000000000006,0,0.56,0.72 +4718,100,100,,1,1,[1],4.7,-3.2000000000000064,0,0.58,0.69 +4719,100,100,,1,1,[1],4.7,-3.1000000000000068,0,0.62,0.74 +4720,100,100,,1,1,[1],4.7,-3.000000000000007,0,0.57,0.685 +4721,100,100,,1,1,[1],4.7,-2.9000000000000075,0,0.6,0.72 +4722,100,100,,1,1,[1],4.7,-2.800000000000008,0,0.66,0.79 +4723,100,100,,1,1,[1],4.7,-2.700000000000008,0,0.58,0.75 +4724,100,100,,1,1,[1],4.7,-2.6000000000000085,0,0.57,0.645 +4725,100,100,,1,1,[1],4.7,-2.500000000000009,0,0.62,0.72 +4726,100,100,,1,1,[1],4.7,-2.4000000000000092,0,0.59,0.685 +4727,100,100,,1,1,[1],4.7,-2.3000000000000096,0,0.65,0.655 +4728,100,100,,1,1,[1],4.7,-2.20000000000001,0,0.55,0.685 +4729,100,100,,1,1,[1],4.7,-2.1000000000000103,0,0.63,0.675 +4730,100,100,,1,1,[1],4.7,-2.0000000000000107,0,0.57,0.665 +4731,100,100,,1,1,[1],4.7,-1.900000000000011,0,0.56,0.66 +4732,100,100,,1,1,[1],4.7,-1.8000000000000114,0,0.58,0.61 +4733,100,100,,1,1,[1],4.7,-1.7000000000000117,0,0.62,0.59 +4734,100,100,,1,1,[1],4.7,-1.600000000000012,0,0.62,0.56 +4735,100,100,,1,1,[1],4.7,-1.5000000000000124,0,0.58,0.57 +4736,100,100,,1,1,[1],4.7,-1.4000000000000128,0,0.61,0.665 +4737,100,100,,1,1,[1],4.7,-1.3000000000000131,0,0.66,0.62 +4738,100,100,,1,1,[1],4.7,-1.2000000000000135,0,0.49,0.565 +4739,100,100,,1,1,[1],4.7,-1.1000000000000139,0,0.59,0.595 +4740,100,100,,1,1,[1],4.7,-1.0000000000000142,0,0.51,0.545 +4741,100,100,,1,1,[1],4.7,-0.9000000000000146,0,0.49,0.525 +4742,100,100,,1,1,[1],4.7,-0.8000000000000149,0,0.57,0.515 +4743,100,100,,1,1,[1],4.7,-0.7000000000000153,0,0.55,0.545 +4744,100,100,,1,1,[1],4.7,-0.6000000000000156,0,0.49,0.555 +4745,100,100,,1,1,[1],4.7,-0.500000000000016,0,0.55,0.525 +4746,100,100,,1,1,[1],4.7,-0.40000000000001634,0,0.51,0.585 +4747,100,100,,1,1,[1],4.7,-0.3000000000000167,0,0.42,0.45 +4748,100,100,,1,1,[1],4.7,-0.20000000000001705,0,0.42,0.48 +4749,100,100,,1,1,[1],4.7,-0.10000000000001741,0,0.56,0.52 +4750,100,100,,1,1,[1],4.7,-1.7763568394002505e-14,0,0.56,0.6 +4751,100,100,,1,1,[1],4.7,0.09999999999998188,0,0.47,0.485 +4752,100,100,,1,1,[1],4.7,0.19999999999998153,0,0.46,0.46 +4753,100,100,,1,1,[1],4.7,0.29999999999998117,0,0.55,0.495 +4754,100,100,,1,1,[1],4.7,0.3999999999999808,0,0.52,0.46 +4755,100,100,,1,1,[1],4.7,0.49999999999998046,0,0.48,0.54 +4756,100,100,,1,1,[1],4.7,0.5999999999999801,0,0.57,0.445 +4757,100,100,,1,1,[1],4.7,0.6999999999999797,0,0.53,0.475 +4758,100,100,,1,1,[1],4.7,0.7999999999999794,0,0.47,0.375 +4759,100,100,,1,1,[1],4.7,0.899999999999979,0,0.48,0.44 +4760,100,100,,1,1,[1],4.7,0.9999999999999787,0,0.54,0.41 +4761,100,100,,1,1,[1],4.7,1.0999999999999783,0,0.55,0.485 +4762,100,100,,1,1,[1],4.7,1.199999999999978,0,0.45,0.425 +4763,100,100,,1,1,[1],4.7,1.2999999999999776,0,0.57,0.465 +4764,100,100,,1,1,[1],4.7,1.3999999999999773,0,0.59,0.425 +4765,100,100,,1,1,[1],4.7,1.499999999999977,0,0.51,0.375 +4766,100,100,,1,1,[1],4.7,1.5999999999999766,0,0.47,0.425 +4767,100,100,,1,1,[1],4.7,1.6999999999999762,0,0.6,0.4 +4768,100,100,,1,1,[1],4.7,1.7999999999999758,0,0.56,0.34 +4769,100,100,,1,1,[1],4.7,1.8999999999999755,0,0.58,0.32 +4770,100,100,,1,1,[1],4.7,1.9999999999999751,0,0.59,0.365 +4771,100,100,,1,1,[1],4.7,2.0999999999999748,0,0.54,0.42 +4772,100,100,,1,1,[1],4.7,2.1999999999999744,0,0.5,0.34 +4773,100,100,,1,1,[1],4.7,2.299999999999974,0,0.57,0.345 +4774,100,100,,1,1,[1],4.7,2.3999999999999737,0,0.5,0.37 +4775,100,100,,1,1,[1],4.7,2.4999999999999734,0,0.63,0.245 +4776,100,100,,1,1,[1],4.7,2.599999999999973,0,0.6,0.29 +4777,100,100,,1,1,[1],4.7,2.6999999999999726,0,0.57,0.295 +4778,100,100,,1,1,[1],4.7,2.7999999999999723,0,0.6,0.3 +4779,100,100,,1,1,[1],4.7,2.899999999999972,0,0.62,0.29 +4780,100,100,,1,1,[1],4.7,2.9999999999999716,0,0.64,0.25 +4781,100,100,,1,1,[1],4.7,3.0999999999999712,0,0.57,0.305 +4782,100,100,,1,1,[1],4.7,3.199999999999971,0,0.61,0.295 +4783,100,100,,1,1,[1],4.7,3.2999999999999705,0,0.65,0.235 +4784,100,100,,1,1,[1],4.7,3.39999999999997,0,0.69,0.215 +4785,100,100,,1,1,[1],4.7,3.49999999999997,0,0.56,0.28 +4786,100,100,,1,1,[1],4.7,3.5999999999999694,0,0.64,0.23 +4787,100,100,,1,1,[1],4.7,3.699999999999969,0,0.56,0.27 +4788,100,100,,1,1,[1],4.7,3.7999999999999687,0,0.7,0.18 +4789,100,100,,1,1,[1],4.7,3.8999999999999684,0,0.77,0.125 +4790,100,100,,1,1,[1],4.7,3.999999999999968,0,0.66,0.21 +4791,100,100,,1,1,[1],4.7,4.099999999999968,0,0.7,0.19 +4792,100,100,,1,1,[1],4.7,4.199999999999967,0,0.71,0.185 +4793,100,100,,1,1,[1],4.7,4.299999999999967,0,0.74,0.17 +4794,100,100,,1,1,[1],4.7,4.399999999999967,0,0.64,0.21 +4795,100,100,,1,1,[1],4.7,4.499999999999966,0,0.79,0.155 +4796,100,100,,1,1,[1],4.7,4.599999999999966,0,0.69,0.175 +4797,100,100,,1,1,[1],4.7,4.6999999999999655,0,0.79,0.115 +4798,100,100,,1,1,[1],4.7,4.799999999999965,0,0.77,0.175 +4799,100,100,,1,1,[1],4.7,4.899999999999965,0,0.76,0.16 +4800,100,100,,1,1,[1],4.800000000000001,-5.0,0,0.74,0.85 +4801,100,100,,1,1,[1],4.800000000000001,-4.9,0,0.74,0.85 +4802,100,100,,1,1,[1],4.800000000000001,-4.800000000000001,0,0.68,0.81 +4803,100,100,,1,1,[1],4.800000000000001,-4.700000000000001,0,0.79,0.885 +4804,100,100,,1,1,[1],4.800000000000001,-4.600000000000001,0,0.6,0.78 +4805,100,100,,1,1,[1],4.800000000000001,-4.500000000000002,0,0.76,0.84 +4806,100,100,,1,1,[1],4.800000000000001,-4.400000000000002,0,0.73,0.805 +4807,100,100,,1,1,[1],4.800000000000001,-4.3000000000000025,0,0.65,0.765 +4808,100,100,,1,1,[1],4.800000000000001,-4.200000000000003,0,0.72,0.82 +4809,100,100,,1,1,[1],4.800000000000001,-4.100000000000003,0,0.64,0.75 +4810,100,100,,1,1,[1],4.800000000000001,-4.0000000000000036,0,0.65,0.765 +4811,100,100,,1,1,[1],4.800000000000001,-3.900000000000004,0,0.67,0.785 +4812,100,100,,1,1,[1],4.800000000000001,-3.8000000000000043,0,0.71,0.815 +4813,100,100,,1,1,[1],4.800000000000001,-3.7000000000000046,0,0.61,0.715 +4814,100,100,,1,1,[1],4.800000000000001,-3.600000000000005,0,0.67,0.785 +4815,100,100,,1,1,[1],4.800000000000001,-3.5000000000000053,0,0.67,0.745 +4816,100,100,,1,1,[1],4.800000000000001,-3.4000000000000057,0,0.62,0.74 +4817,100,100,,1,1,[1],4.800000000000001,-3.300000000000006,0,0.62,0.71 +4818,100,100,,1,1,[1],4.800000000000001,-3.2000000000000064,0,0.56,0.7 +4819,100,100,,1,1,[1],4.800000000000001,-3.1000000000000068,0,0.58,0.67 +4820,100,100,,1,1,[1],4.800000000000001,-3.000000000000007,0,0.58,0.72 +4821,100,100,,1,1,[1],4.800000000000001,-2.9000000000000075,0,0.62,0.74 +4822,100,100,,1,1,[1],4.800000000000001,-2.800000000000008,0,0.62,0.69 +4823,100,100,,1,1,[1],4.800000000000001,-2.700000000000008,0,0.62,0.69 +4824,100,100,,1,1,[1],4.800000000000001,-2.6000000000000085,0,0.6,0.69 +4825,100,100,,1,1,[1],4.800000000000001,-2.500000000000009,0,0.59,0.715 +4826,100,100,,1,1,[1],4.800000000000001,-2.4000000000000092,0,0.54,0.68 +4827,100,100,,1,1,[1],4.800000000000001,-2.3000000000000096,0,0.49,0.615 +4828,100,100,,1,1,[1],4.800000000000001,-2.20000000000001,0,0.5,0.65 +4829,100,100,,1,1,[1],4.800000000000001,-2.1000000000000103,0,0.67,0.675 +4830,100,100,,1,1,[1],4.800000000000001,-2.0000000000000107,0,0.58,0.65 +4831,100,100,,1,1,[1],4.800000000000001,-1.900000000000011,0,0.61,0.585 +4832,100,100,,1,1,[1],4.800000000000001,-1.8000000000000114,0,0.61,0.635 +4833,100,100,,1,1,[1],4.800000000000001,-1.7000000000000117,0,0.49,0.585 +4834,100,100,,1,1,[1],4.800000000000001,-1.600000000000012,0,0.56,0.6 +4835,100,100,,1,1,[1],4.800000000000001,-1.5000000000000124,0,0.44,0.58 +4836,100,100,,1,1,[1],4.800000000000001,-1.4000000000000128,0,0.55,0.665 +4837,100,100,,1,1,[1],4.800000000000001,-1.3000000000000131,0,0.57,0.605 +4838,100,100,,1,1,[1],4.800000000000001,-1.2000000000000135,0,0.54,0.58 +4839,100,100,,1,1,[1],4.800000000000001,-1.1000000000000139,0,0.57,0.655 +4840,100,100,,1,1,[1],4.800000000000001,-1.0000000000000142,0,0.43,0.545 +4841,100,100,,1,1,[1],4.800000000000001,-0.9000000000000146,0,0.56,0.59 +4842,100,100,,1,1,[1],4.800000000000001,-0.8000000000000149,0,0.58,0.6 +4843,100,100,,1,1,[1],4.800000000000001,-0.7000000000000153,0,0.52,0.59 +4844,100,100,,1,1,[1],4.800000000000001,-0.6000000000000156,0,0.55,0.585 +4845,100,100,,1,1,[1],4.800000000000001,-0.500000000000016,0,0.57,0.575 +4846,100,100,,1,1,[1],4.800000000000001,-0.40000000000001634,0,0.61,0.595 +4847,100,100,,1,1,[1],4.800000000000001,-0.3000000000000167,0,0.42,0.49 +4848,100,100,,1,1,[1],4.800000000000001,-0.20000000000001705,0,0.58,0.49 +4849,100,100,,1,1,[1],4.800000000000001,-0.10000000000001741,0,0.46,0.5 +4850,100,100,,1,1,[1],4.800000000000001,-1.7763568394002505e-14,0,0.57,0.445 +4851,100,100,,1,1,[1],4.800000000000001,0.09999999999998188,0,0.52,0.48 +4852,100,100,,1,1,[1],4.800000000000001,0.19999999999998153,0,0.5,0.52 +4853,100,100,,1,1,[1],4.800000000000001,0.29999999999998117,0,0.54,0.45 +4854,100,100,,1,1,[1],4.800000000000001,0.3999999999999808,0,0.63,0.465 +4855,100,100,,1,1,[1],4.800000000000001,0.49999999999998046,0,0.47,0.515 +4856,100,100,,1,1,[1],4.800000000000001,0.5999999999999801,0,0.46,0.45 +4857,100,100,,1,1,[1],4.800000000000001,0.6999999999999797,0,0.52,0.4 +4858,100,100,,1,1,[1],4.800000000000001,0.7999999999999794,0,0.52,0.39 +4859,100,100,,1,1,[1],4.800000000000001,0.899999999999979,0,0.43,0.415 +4860,100,100,,1,1,[1],4.800000000000001,0.9999999999999787,0,0.64,0.42 +4861,100,100,,1,1,[1],4.800000000000001,1.0999999999999783,0,0.57,0.425 +4862,100,100,,1,1,[1],4.800000000000001,1.199999999999978,0,0.48,0.41 +4863,100,100,,1,1,[1],4.800000000000001,1.2999999999999776,0,0.57,0.365 +4864,100,100,,1,1,[1],4.800000000000001,1.3999999999999773,0,0.53,0.465 +4865,100,100,,1,1,[1],4.800000000000001,1.499999999999977,0,0.61,0.395 +4866,100,100,,1,1,[1],4.800000000000001,1.5999999999999766,0,0.51,0.445 +4867,100,100,,1,1,[1],4.800000000000001,1.6999999999999762,0,0.57,0.335 +4868,100,100,,1,1,[1],4.800000000000001,1.7999999999999758,0,0.58,0.41 +4869,100,100,,1,1,[1],4.800000000000001,1.8999999999999755,0,0.52,0.41 +4870,100,100,,1,1,[1],4.800000000000001,1.9999999999999751,0,0.54,0.36 +4871,100,100,,1,1,[1],4.800000000000001,2.0999999999999748,0,0.51,0.315 +4872,100,100,,1,1,[1],4.800000000000001,2.1999999999999744,0,0.54,0.33 +4873,100,100,,1,1,[1],4.800000000000001,2.299999999999974,0,0.62,0.31 +4874,100,100,,1,1,[1],4.800000000000001,2.3999999999999737,0,0.6,0.33 +4875,100,100,,1,1,[1],4.800000000000001,2.4999999999999734,0,0.62,0.29 +4876,100,100,,1,1,[1],4.800000000000001,2.599999999999973,0,0.6,0.29 +4877,100,100,,1,1,[1],4.800000000000001,2.6999999999999726,0,0.65,0.295 +4878,100,100,,1,1,[1],4.800000000000001,2.7999999999999723,0,0.59,0.275 +4879,100,100,,1,1,[1],4.800000000000001,2.899999999999972,0,0.66,0.22 +4880,100,100,,1,1,[1],4.800000000000001,2.9999999999999716,0,0.69,0.205 +4881,100,100,,1,1,[1],4.800000000000001,3.0999999999999712,0,0.65,0.245 +4882,100,100,,1,1,[1],4.800000000000001,3.199999999999971,0,0.6,0.3 +4883,100,100,,1,1,[1],4.800000000000001,3.2999999999999705,0,0.59,0.305 +4884,100,100,,1,1,[1],4.800000000000001,3.39999999999997,0,0.67,0.255 +4885,100,100,,1,1,[1],4.800000000000001,3.49999999999997,0,0.68,0.25 +4886,100,100,,1,1,[1],4.800000000000001,3.5999999999999694,0,0.57,0.265 +4887,100,100,,1,1,[1],4.800000000000001,3.699999999999969,0,0.67,0.215 +4888,100,100,,1,1,[1],4.800000000000001,3.7999999999999687,0,0.72,0.23 +4889,100,100,,1,1,[1],4.800000000000001,3.8999999999999684,0,0.74,0.26 +4890,100,100,,1,1,[1],4.800000000000001,3.999999999999968,0,0.64,0.28 +4891,100,100,,1,1,[1],4.800000000000001,4.099999999999968,0,0.62,0.26 +4892,100,100,,1,1,[1],4.800000000000001,4.199999999999967,0,0.74,0.16 +4893,100,100,,1,1,[1],4.800000000000001,4.299999999999967,0,0.67,0.185 +4894,100,100,,1,1,[1],4.800000000000001,4.399999999999967,0,0.71,0.175 +4895,100,100,,1,1,[1],4.800000000000001,4.499999999999966,0,0.77,0.125 +4896,100,100,,1,1,[1],4.800000000000001,4.599999999999966,0,0.74,0.15 +4897,100,100,,1,1,[1],4.800000000000001,4.6999999999999655,0,0.66,0.2 +4898,100,100,,1,1,[1],4.800000000000001,4.799999999999965,0,0.77,0.165 +4899,100,100,,1,1,[1],4.800000000000001,4.899999999999965,0,0.73,0.155 +4900,100,100,,1,1,[1],4.9,-5.0,0,0.79,0.855 +4901,100,100,,1,1,[1],4.9,-4.9,0,0.73,0.825 +4902,100,100,,1,1,[1],4.9,-4.800000000000001,0,0.8,0.84 +4903,100,100,,1,1,[1],4.9,-4.700000000000001,0,0.69,0.815 +4904,100,100,,1,1,[1],4.9,-4.600000000000001,0,0.77,0.845 +4905,100,100,,1,1,[1],4.9,-4.500000000000002,0,0.71,0.815 +4906,100,100,,1,1,[1],4.9,-4.400000000000002,0,0.71,0.795 +4907,100,100,,1,1,[1],4.9,-4.3000000000000025,0,0.71,0.755 +4908,100,100,,1,1,[1],4.9,-4.200000000000003,0,0.66,0.78 +4909,100,100,,1,1,[1],4.9,-4.100000000000003,0,0.7,0.77 +4910,100,100,,1,1,[1],4.9,-4.0000000000000036,0,0.65,0.745 +4911,100,100,,1,1,[1],4.9,-3.900000000000004,0,0.65,0.765 +4912,100,100,,1,1,[1],4.9,-3.8000000000000043,0,0.67,0.775 +4913,100,100,,1,1,[1],4.9,-3.7000000000000046,0,0.72,0.78 +4914,100,100,,1,1,[1],4.9,-3.600000000000005,0,0.61,0.735 +4915,100,100,,1,1,[1],4.9,-3.5000000000000053,0,0.68,0.81 +4916,100,100,,1,1,[1],4.9,-3.4000000000000057,0,0.69,0.755 +4917,100,100,,1,1,[1],4.9,-3.300000000000006,0,0.7,0.79 +4918,100,100,,1,1,[1],4.9,-3.2000000000000064,0,0.67,0.765 +4919,100,100,,1,1,[1],4.9,-3.1000000000000068,0,0.65,0.695 +4920,100,100,,1,1,[1],4.9,-3.000000000000007,0,0.68,0.69 +4921,100,100,,1,1,[1],4.9,-2.9000000000000075,0,0.6,0.72 +4922,100,100,,1,1,[1],4.9,-2.800000000000008,0,0.66,0.69 +4923,100,100,,1,1,[1],4.9,-2.700000000000008,0,0.64,0.74 +4924,100,100,,1,1,[1],4.9,-2.6000000000000085,0,0.64,0.7 +4925,100,100,,1,1,[1],4.9,-2.500000000000009,0,0.55,0.715 +4926,100,100,,1,1,[1],4.9,-2.4000000000000092,0,0.53,0.635 +4927,100,100,,1,1,[1],4.9,-2.3000000000000096,0,0.5,0.68 +4928,100,100,,1,1,[1],4.9,-2.20000000000001,0,0.57,0.685 +4929,100,100,,1,1,[1],4.9,-2.1000000000000103,0,0.58,0.63 +4930,100,100,,1,1,[1],4.9,-2.0000000000000107,0,0.58,0.64 +4931,100,100,,1,1,[1],4.9,-1.900000000000011,0,0.59,0.615 +4932,100,100,,1,1,[1],4.9,-1.8000000000000114,0,0.62,0.63 +4933,100,100,,1,1,[1],4.9,-1.7000000000000117,0,0.5,0.62 +4934,100,100,,1,1,[1],4.9,-1.600000000000012,0,0.54,0.6 +4935,100,100,,1,1,[1],4.9,-1.5000000000000124,0,0.56,0.56 +4936,100,100,,1,1,[1],4.9,-1.4000000000000128,0,0.53,0.605 +4937,100,100,,1,1,[1],4.9,-1.3000000000000131,0,0.58,0.56 +4938,100,100,,1,1,[1],4.9,-1.2000000000000135,0,0.63,0.605 +4939,100,100,,1,1,[1],4.9,-1.1000000000000139,0,0.46,0.55 +4940,100,100,,1,1,[1],4.9,-1.0000000000000142,0,0.57,0.595 +4941,100,100,,1,1,[1],4.9,-0.9000000000000146,0,0.62,0.61 +4942,100,100,,1,1,[1],4.9,-0.8000000000000149,0,0.49,0.565 +4943,100,100,,1,1,[1],4.9,-0.7000000000000153,0,0.51,0.555 +4944,100,100,,1,1,[1],4.9,-0.6000000000000156,0,0.49,0.575 +4945,100,100,,1,1,[1],4.9,-0.500000000000016,0,0.39,0.535 +4946,100,100,,1,1,[1],4.9,-0.40000000000001634,0,0.52,0.56 +4947,100,100,,1,1,[1],4.9,-0.3000000000000167,0,0.62,0.53 +4948,100,100,,1,1,[1],4.9,-0.20000000000001705,0,0.46,0.51 +4949,100,100,,1,1,[1],4.9,-0.10000000000001741,0,0.49,0.485 +4950,100,100,,1,1,[1],4.9,-1.7763568394002505e-14,0,0.51,0.495 +4951,100,100,,1,1,[1],4.9,0.09999999999998188,0,0.53,0.455 +4952,100,100,,1,1,[1],4.9,0.19999999999998153,0,0.44,0.48 +4953,100,100,,1,1,[1],4.9,0.29999999999998117,0,0.55,0.485 +4954,100,100,,1,1,[1],4.9,0.3999999999999808,0,0.48,0.39 +4955,100,100,,1,1,[1],4.9,0.49999999999998046,0,0.63,0.395 +4956,100,100,,1,1,[1],4.9,0.5999999999999801,0,0.6,0.49 +4957,100,100,,1,1,[1],4.9,0.6999999999999797,0,0.52,0.34 +4958,100,100,,1,1,[1],4.9,0.7999999999999794,0,0.55,0.405 +4959,100,100,,1,1,[1],4.9,0.899999999999979,0,0.52,0.47 +4960,100,100,,1,1,[1],4.9,0.9999999999999787,0,0.52,0.42 +4961,100,100,,1,1,[1],4.9,1.0999999999999783,0,0.48,0.43 +4962,100,100,,1,1,[1],4.9,1.199999999999978,0,0.58,0.37 +4963,100,100,,1,1,[1],4.9,1.2999999999999776,0,0.58,0.44 +4964,100,100,,1,1,[1],4.9,1.3999999999999773,0,0.55,0.415 +4965,100,100,,1,1,[1],4.9,1.499999999999977,0,0.59,0.415 +4966,100,100,,1,1,[1],4.9,1.5999999999999766,0,0.61,0.395 +4967,100,100,,1,1,[1],4.9,1.6999999999999762,0,0.5,0.32 +4968,100,100,,1,1,[1],4.9,1.7999999999999758,0,0.58,0.34 +4969,100,100,,1,1,[1],4.9,1.8999999999999755,0,0.6,0.34 +4970,100,100,,1,1,[1],4.9,1.9999999999999751,0,0.51,0.355 +4971,100,100,,1,1,[1],4.9,2.0999999999999748,0,0.62,0.35 +4972,100,100,,1,1,[1],4.9,2.1999999999999744,0,0.58,0.35 +4973,100,100,,1,1,[1],4.9,2.299999999999974,0,0.55,0.345 +4974,100,100,,1,1,[1],4.9,2.3999999999999737,0,0.54,0.37 +4975,100,100,,1,1,[1],4.9,2.4999999999999734,0,0.54,0.34 +4976,100,100,,1,1,[1],4.9,2.599999999999973,0,0.57,0.355 +4977,100,100,,1,1,[1],4.9,2.6999999999999726,0,0.65,0.295 +4978,100,100,,1,1,[1],4.9,2.7999999999999723,0,0.61,0.295 +4979,100,100,,1,1,[1],4.9,2.899999999999972,0,0.49,0.385 +4980,100,100,,1,1,[1],4.9,2.9999999999999716,0,0.58,0.28 +4981,100,100,,1,1,[1],4.9,3.0999999999999712,0,0.68,0.22 +4982,100,100,,1,1,[1],4.9,3.199999999999971,0,0.58,0.31 +4983,100,100,,1,1,[1],4.9,3.2999999999999705,0,0.66,0.25 +4984,100,100,,1,1,[1],4.9,3.39999999999997,0,0.64,0.2 +4985,100,100,,1,1,[1],4.9,3.49999999999997,0,0.68,0.2 +4986,100,100,,1,1,[1],4.9,3.5999999999999694,0,0.68,0.22 +4987,100,100,,1,1,[1],4.9,3.699999999999969,0,0.63,0.225 +4988,100,100,,1,1,[1],4.9,3.7999999999999687,0,0.7,0.21 +4989,100,100,,1,1,[1],4.9,3.8999999999999684,0,0.67,0.215 +4990,100,100,,1,1,[1],4.9,3.999999999999968,0,0.62,0.28 +4991,100,100,,1,1,[1],4.9,4.099999999999968,0,0.69,0.185 +4992,100,100,,1,1,[1],4.9,4.199999999999967,0,0.63,0.195 +4993,100,100,,1,1,[1],4.9,4.299999999999967,0,0.7,0.17 +4994,100,100,,1,1,[1],4.9,4.399999999999967,0,0.69,0.195 +4995,100,100,,1,1,[1],4.9,4.499999999999966,0,0.81,0.105 +4996,100,100,,1,1,[1],4.9,4.599999999999966,0,0.73,0.155 +4997,100,100,,1,1,[1],4.9,4.6999999999999655,0,0.77,0.145 +4998,100,100,,1,1,[1],4.9,4.799999999999965,0,0.82,0.11 +4999,100,100,,1,1,[1],4.9,4.899999999999965,0,0.75,0.175 +5000,100,100,,1,1,[1],5.0,-5.0,0,0.76,0.85 +5001,100,100,,1,1,[1],5.0,-4.9,0,0.81,0.855 +5002,100,100,,1,1,[1],5.0,-4.800000000000001,0,0.69,0.795 +5003,100,100,,1,1,[1],5.0,-4.700000000000001,0,0.73,0.845 +5004,100,100,,1,1,[1],5.0,-4.600000000000001,0,0.61,0.795 +5005,100,100,,1,1,[1],5.0,-4.500000000000002,0,0.71,0.795 +5006,100,100,,1,1,[1],5.0,-4.400000000000002,0,0.69,0.825 +5007,100,100,,1,1,[1],5.0,-4.3000000000000025,0,0.69,0.785 +5008,100,100,,1,1,[1],5.0,-4.200000000000003,0,0.71,0.785 +5009,100,100,,1,1,[1],5.0,-4.100000000000003,0,0.67,0.825 +5010,100,100,,1,1,[1],5.0,-4.0000000000000036,0,0.68,0.77 +5011,100,100,,1,1,[1],5.0,-3.900000000000004,0,0.62,0.78 +5012,100,100,,1,1,[1],5.0,-3.8000000000000043,0,0.68,0.77 +5013,100,100,,1,1,[1],5.0,-3.7000000000000046,0,0.57,0.715 +5014,100,100,,1,1,[1],5.0,-3.600000000000005,0,0.67,0.725 +5015,100,100,,1,1,[1],5.0,-3.5000000000000053,0,0.66,0.76 +5016,100,100,,1,1,[1],5.0,-3.4000000000000057,0,0.72,0.78 +5017,100,100,,1,1,[1],5.0,-3.300000000000006,0,0.69,0.765 +5018,100,100,,1,1,[1],5.0,-3.2000000000000064,0,0.58,0.74 +5019,100,100,,1,1,[1],5.0,-3.1000000000000068,0,0.64,0.74 +5020,100,100,,1,1,[1],5.0,-3.000000000000007,0,0.55,0.745 +5021,100,100,,1,1,[1],5.0,-2.9000000000000075,0,0.57,0.695 +5022,100,100,,1,1,[1],5.0,-2.800000000000008,0,0.53,0.685 +5023,100,100,,1,1,[1],5.0,-2.700000000000008,0,0.55,0.615 +5024,100,100,,1,1,[1],5.0,-2.6000000000000085,0,0.55,0.685 +5025,100,100,,1,1,[1],5.0,-2.500000000000009,0,0.66,0.68 +5026,100,100,,1,1,[1],5.0,-2.4000000000000092,0,0.57,0.715 +5027,100,100,,1,1,[1],5.0,-2.3000000000000096,0,0.61,0.685 +5028,100,100,,1,1,[1],5.0,-2.20000000000001,0,0.56,0.7 +5029,100,100,,1,1,[1],5.0,-2.1000000000000103,0,0.58,0.67 +5030,100,100,,1,1,[1],5.0,-2.0000000000000107,0,0.61,0.685 +5031,100,100,,1,1,[1],5.0,-1.900000000000011,0,0.56,0.61 +5032,100,100,,1,1,[1],5.0,-1.8000000000000114,0,0.6,0.7 +5033,100,100,,1,1,[1],5.0,-1.7000000000000117,0,0.62,0.62 +5034,100,100,,1,1,[1],5.0,-1.600000000000012,0,0.57,0.595 +5035,100,100,,1,1,[1],5.0,-1.5000000000000124,0,0.51,0.595 +5036,100,100,,1,1,[1],5.0,-1.4000000000000128,0,0.51,0.575 +5037,100,100,,1,1,[1],5.0,-1.3000000000000131,0,0.52,0.61 +5038,100,100,,1,1,[1],5.0,-1.2000000000000135,0,0.59,0.625 +5039,100,100,,1,1,[1],5.0,-1.1000000000000139,0,0.52,0.59 +5040,100,100,,1,1,[1],5.0,-1.0000000000000142,0,0.55,0.565 +5041,100,100,,1,1,[1],5.0,-0.9000000000000146,0,0.59,0.555 +5042,100,100,,1,1,[1],5.0,-0.8000000000000149,0,0.45,0.615 +5043,100,100,,1,1,[1],5.0,-0.7000000000000153,0,0.54,0.55 +5044,100,100,,1,1,[1],5.0,-0.6000000000000156,0,0.58,0.54 +5045,100,100,,1,1,[1],5.0,-0.500000000000016,0,0.55,0.565 +5046,100,100,,1,1,[1],5.0,-0.40000000000001634,0,0.52,0.57 +5047,100,100,,1,1,[1],5.0,-0.3000000000000167,0,0.54,0.5 +5048,100,100,,1,1,[1],5.0,-0.20000000000001705,0,0.54,0.54 +5049,100,100,,1,1,[1],5.0,-0.10000000000001741,0,0.53,0.515 +5050,100,100,,1,1,[1],5.0,-1.7763568394002505e-14,0,0.55,0.515 +5051,100,100,,1,1,[1],5.0,0.09999999999998188,0,0.55,0.575 +5052,100,100,,1,1,[1],5.0,0.19999999999998153,0,0.45,0.445 +5053,100,100,,1,1,[1],5.0,0.29999999999998117,0,0.58,0.45 +5054,100,100,,1,1,[1],5.0,0.3999999999999808,0,0.57,0.435 +5055,100,100,,1,1,[1],5.0,0.49999999999998046,0,0.47,0.515 +5056,100,100,,1,1,[1],5.0,0.5999999999999801,0,0.5,0.45 +5057,100,100,,1,1,[1],5.0,0.6999999999999797,0,0.51,0.435 +5058,100,100,,1,1,[1],5.0,0.7999999999999794,0,0.52,0.56 +5059,100,100,,1,1,[1],5.0,0.899999999999979,0,0.51,0.435 +5060,100,100,,1,1,[1],5.0,0.9999999999999787,0,0.56,0.39 +5061,100,100,,1,1,[1],5.0,1.0999999999999783,0,0.66,0.38 +5062,100,100,,1,1,[1],5.0,1.199999999999978,0,0.54,0.39 +5063,100,100,,1,1,[1],5.0,1.2999999999999776,0,0.52,0.39 +5064,100,100,,1,1,[1],5.0,1.3999999999999773,0,0.37,0.395 +5065,100,100,,1,1,[1],5.0,1.499999999999977,0,0.54,0.37 +5066,100,100,,1,1,[1],5.0,1.5999999999999766,0,0.6,0.33 +5067,100,100,,1,1,[1],5.0,1.6999999999999762,0,0.6,0.36 +5068,100,100,,1,1,[1],5.0,1.7999999999999758,0,0.6,0.43 +5069,100,100,,1,1,[1],5.0,1.8999999999999755,0,0.63,0.375 +5070,100,100,,1,1,[1],5.0,1.9999999999999751,0,0.59,0.355 +5071,100,100,,1,1,[1],5.0,2.0999999999999748,0,0.52,0.38 +5072,100,100,,1,1,[1],5.0,2.1999999999999744,0,0.61,0.385 +5073,100,100,,1,1,[1],5.0,2.299999999999974,0,0.56,0.31 +5074,100,100,,1,1,[1],5.0,2.3999999999999737,0,0.6,0.34 +5075,100,100,,1,1,[1],5.0,2.4999999999999734,0,0.44,0.31 +5076,100,100,,1,1,[1],5.0,2.599999999999973,0,0.53,0.325 +5077,100,100,,1,1,[1],5.0,2.6999999999999726,0,0.59,0.285 +5078,100,100,,1,1,[1],5.0,2.7999999999999723,0,0.65,0.325 +5079,100,100,,1,1,[1],5.0,2.899999999999972,0,0.61,0.295 +5080,100,100,,1,1,[1],5.0,2.9999999999999716,0,0.56,0.3 +5081,100,100,,1,1,[1],5.0,3.0999999999999712,0,0.66,0.24 +5082,100,100,,1,1,[1],5.0,3.199999999999971,0,0.58,0.27 +5083,100,100,,1,1,[1],5.0,3.2999999999999705,0,0.59,0.255 +5084,100,100,,1,1,[1],5.0,3.39999999999997,0,0.63,0.235 +5085,100,100,,1,1,[1],5.0,3.49999999999997,0,0.7,0.27 +5086,100,100,,1,1,[1],5.0,3.5999999999999694,0,0.63,0.225 +5087,100,100,,1,1,[1],5.0,3.699999999999969,0,0.62,0.29 +5088,100,100,,1,1,[1],5.0,3.7999999999999687,0,0.68,0.25 +5089,100,100,,1,1,[1],5.0,3.8999999999999684,0,0.54,0.25 +5090,100,100,,1,1,[1],5.0,3.999999999999968,0,0.62,0.21 +5091,100,100,,1,1,[1],5.0,4.099999999999968,0,0.7,0.18 +5092,100,100,,1,1,[1],5.0,4.199999999999967,0,0.72,0.19 +5093,100,100,,1,1,[1],5.0,4.299999999999967,0,0.65,0.225 +5094,100,100,,1,1,[1],5.0,4.399999999999967,0,0.73,0.185 +5095,100,100,,1,1,[1],5.0,4.499999999999966,0,0.67,0.215 +5096,100,100,,1,1,[1],5.0,4.599999999999966,0,0.66,0.21 +5097,100,100,,1,1,[1],5.0,4.6999999999999655,0,0.8,0.16 +5098,100,100,,1,1,[1],5.0,4.799999999999965,0,0.73,0.175 +5099,100,100,,1,1,[1],5.0,4.899999999999965,0,0.71,0.165 diff --git a/python/new_sim.ipynb b/python/new_sim.ipynb index 9ee7e2a..9f9f808 100644 --- a/python/new_sim.ipynb +++ b/python/new_sim.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "e99fe799", + "id": "2dd1ed60", "metadata": {}, "source": [ "# Simulation Experiment" @@ -11,7 +11,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "25ef725a", + "id": "58a4c6ba", "metadata": { "ExecuteTime": { "end_time": "2024-01-18T13:37:38.559326Z", @@ -38,7 +38,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "12b04338", + "id": "25579328", "metadata": { "ExecuteTime": { "end_time": "2024-01-18T13:37:49.595623Z", @@ -94,7 +94,7 @@ }, { "cell_type": "markdown", - "id": "b2a8e69b", + "id": "fd7b1e24", "metadata": {}, "source": [ "## generate trials and responses" @@ -102,7 +102,7 @@ }, { "cell_type": "markdown", - "id": "93deb009", + "id": "e2254d3c", "metadata": {}, "source": [ "### with IN" @@ -111,7 +111,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "c63479f5", + "id": "56ec6410", "metadata": { "ExecuteTime": { "end_time": "2024-01-09T11:51:05.326379Z", @@ -407,7 +407,7 @@ }, { "cell_type": "markdown", - "id": "95614290", + "id": "299bc835", "metadata": {}, "source": [ "### without IN" @@ -416,7 +416,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "600f94be", + "id": "eb167922", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T13:48:42.038219Z", @@ -734,7 +734,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "d7e6f0ef", + "id": "54b03eab", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T13:56:41.339132Z", @@ -802,7 +802,7 @@ { "cell_type": "code", "execution_count": 27, - "id": "df82ef23", + "id": "0fe51e96", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T14:13:00.797724Z", @@ -1058,7 +1058,7 @@ }, { "cell_type": "markdown", - "id": "dcd35e0e", + "id": "c41676a5", "metadata": {}, "source": [ "## CI kernel computaion with palin" @@ -1067,7 +1067,7 @@ { "cell_type": "code", "execution_count": 51, - "id": "a1c2acec", + "id": "bac4b454", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T10:48:37.990321Z", @@ -1191,7 +1191,7 @@ { "cell_type": "code", "execution_count": 52, - "id": "0d581ad6", + "id": "84292476", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T10:50:16.700639Z", @@ -1388,7 +1388,7 @@ }, { "cell_type": "markdown", - "id": "e669651c", + "id": "226365e2", "metadata": {}, "source": [ "## Simulate participant w/ CI kernel and IN 0 (graphs)" @@ -1397,7 +1397,7 @@ { "cell_type": "code", "execution_count": 92, - "id": "c60393c8", + "id": "388a033c", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T13:33:09.670157Z", @@ -1507,7 +1507,7 @@ }, { "cell_type": "markdown", - "id": "7a218f2c", + "id": "2b1d7155", "metadata": {}, "source": [ "## Graphs " @@ -1515,7 +1515,7 @@ }, { "cell_type": "markdown", - "id": "b0045be8", + "id": "8fe92b13", "metadata": {}, "source": [ "### random kernel visualization" @@ -1524,7 +1524,7 @@ { "cell_type": "code", "execution_count": 100, - "id": "da3bfa43", + "id": "47d88d7c", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T14:00:48.775953Z", @@ -1620,7 +1620,7 @@ { "cell_type": "code", "execution_count": 93, - "id": "2a59b2a0", + "id": "2f72fecd", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T13:33:34.410827Z", @@ -1650,7 +1650,7 @@ }, { "cell_type": "markdown", - "id": "8e391534", + "id": "90d8c41c", "metadata": {}, "source": [ "### Kernel value Evolution" @@ -1659,7 +1659,7 @@ { "cell_type": "code", "execution_count": 95, - "id": "59a5af6e", + "id": "7d4ab019", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T13:34:39.290061Z", @@ -1847,7 +1847,7 @@ { "cell_type": "code", "execution_count": 99, - "id": "83d9d01a", + "id": "255f7d5d", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T14:00:29.686409Z", @@ -2030,7 +2030,7 @@ { "cell_type": "code", "execution_count": 97, - "id": "12951875", + "id": "98d79a54", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T13:35:06.438482Z", @@ -2226,7 +2226,7 @@ { "cell_type": "code", "execution_count": 84, - "id": "eead7e97", + "id": "41919892", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T12:56:27.559484Z", @@ -2407,7 +2407,7 @@ }, { "cell_type": "markdown", - "id": "1160fd60", + "id": "3e18dd39", "metadata": {}, "source": [ "### correlation with participant random kernel" @@ -2416,7 +2416,7 @@ { "cell_type": "code", "execution_count": 102, - "id": "3d440806", + "id": "7ceff7bd", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T14:04:33.150155Z", @@ -2492,7 +2492,7 @@ { "cell_type": "code", "execution_count": 98, - "id": "c5ff4a70", + "id": "c954b35d", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T13:55:15.633617Z", @@ -2530,7 +2530,7 @@ { "cell_type": "code", "execution_count": 70, - "id": "ad3c31b7", + "id": "da9f630f", "metadata": { "ExecuteTime": { "end_time": "2024-01-11T12:34:32.110896Z", @@ -2579,7 +2579,7 @@ { "cell_type": "code", "execution_count": 36, - "id": "b7cf4832", + "id": "5b134ada", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T14:38:54.912560Z", @@ -2618,7 +2618,7 @@ }, { "cell_type": "markdown", - "id": "2c09a8f3", + "id": "e935609b", "metadata": {}, "source": [ "## different values of IN and Criteria" @@ -2627,7 +2627,7 @@ { "cell_type": "code", "execution_count": 27, - "id": "7a46844b", + "id": "3f12ad2b", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T10:46:43.760310Z", @@ -2696,7 +2696,7 @@ { "cell_type": "code", "execution_count": null, - "id": "29009e30", + "id": "c4cbf32d", "metadata": {}, "outputs": [], "source": [ @@ -2759,7 +2759,7 @@ { "cell_type": "code", "execution_count": 28, - "id": "5e9a3d7c", + "id": "a1713c77", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T10:46:51.758548Z", @@ -2991,7 +2991,7 @@ { "cell_type": "code", "execution_count": 29, - "id": "6e4fa100", + "id": "17cf5ec9", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T10:47:14.696339Z", @@ -3189,7 +3189,7 @@ { "cell_type": "code", "execution_count": 34, - "id": "14cfea33", + "id": "5f8eea4b", "metadata": { "ExecuteTime": { "end_time": "2024-01-10T11:13:25.877519Z", @@ -3267,7 +3267,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "a95aa8e0", + "id": "0e0922c0", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T14:58:54.514751Z", @@ -3285,7 +3285,7 @@ { "cell_type": "code", "execution_count": 147, - "id": "ed8bf8d5", + "id": "8e715ca8", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T16:04:45.627539Z", @@ -3472,7 +3472,7 @@ { "cell_type": "code", "execution_count": 148, - "id": "8cbba7ef", + "id": "0657ae75", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T16:04:57.636887Z", @@ -3511,7 +3511,7 @@ { "cell_type": "code", "execution_count": 149, - "id": "86bc796d", + "id": "7de45c91", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T16:05:03.546637Z", @@ -3689,7 +3689,7 @@ { "cell_type": "code", "execution_count": 178, - "id": "55f1c3a0", + "id": "138348de", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T16:29:43.229712Z", @@ -3776,7 +3776,7 @@ { "cell_type": "code", "execution_count": 137, - "id": "dbd37577", + "id": "60504c48", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T15:36:50.667399Z", @@ -3794,7 +3794,7 @@ { "cell_type": "code", "execution_count": 138, - "id": "82fe1272", + "id": "7bbbdb44", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T15:36:54.065249Z", @@ -3820,7 +3820,7 @@ { "cell_type": "code", "execution_count": 86, - "id": "2d995dc4", + "id": "3d24da73", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:16:30.123735Z", @@ -4061,7 +4061,7 @@ { "cell_type": "code", "execution_count": null, - "id": "95f1f085", + "id": "39cdd026", "metadata": {}, "outputs": [], "source": [ @@ -4143,7 +4143,7 @@ { "cell_type": "code", "execution_count": 87, - "id": "3ac37b58", + "id": "7e69bb8a", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:19:29.722626Z", @@ -4432,7 +4432,7 @@ { "cell_type": "code", "execution_count": 59, - "id": "30fa36bf", + "id": "19e5f4c0", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T09:57:26.120796Z", @@ -4457,7 +4457,7 @@ { "cell_type": "code", "execution_count": 60, - "id": "17efce54", + "id": "8f224379", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T09:57:26.951351Z", @@ -4486,7 +4486,7 @@ { "cell_type": "code", "execution_count": 88, - "id": "da7d3dac", + "id": "3092d4fa", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:20:56.141439Z", @@ -4552,7 +4552,7 @@ { "cell_type": "code", "execution_count": null, - "id": "235143ae", + "id": "6b098b91", "metadata": {}, "outputs": [], "source": [ @@ -4684,7 +4684,7 @@ { "cell_type": "code", "execution_count": 62, - "id": "44e7690d", + "id": "2d699e4f", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T09:57:40.477337Z", @@ -4817,7 +4817,7 @@ { "cell_type": "code", "execution_count": 46, - "id": "1fda96e6", + "id": "caa4272f", "metadata": { "ExecuteTime": { "end_time": "2023-12-21T21:31:26.672299Z", @@ -4998,7 +4998,7 @@ { "cell_type": "code", "execution_count": 186, - "id": "a38e4822", + "id": "4f78c81d", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T16:32:49.165346Z", @@ -5036,7 +5036,7 @@ { "cell_type": "code", "execution_count": 187, - "id": "a3b326aa", + "id": "e5afe516", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T16:32:49.908428Z", @@ -5244,7 +5244,7 @@ { "cell_type": "code", "execution_count": 89, - "id": "5a09b1c4", + "id": "99afc16c", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:21:19.872108Z", @@ -5420,7 +5420,7 @@ { "cell_type": "code", "execution_count": 65, - "id": "bdce1492", + "id": "fd7ed80e", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T09:57:51.619598Z", @@ -5579,7 +5579,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fd8f2de7", + "id": "7308b3fa", "metadata": {}, "outputs": [], "source": [ @@ -5638,7 +5638,7 @@ { "cell_type": "code", "execution_count": null, - "id": "9768764e", + "id": "c1a8f7af", "metadata": {}, "outputs": [], "source": [ @@ -5648,7 +5648,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7f71bf08", + "id": "8da80e92", "metadata": {}, "outputs": [], "source": [ @@ -5665,7 +5665,7 @@ { "cell_type": "code", "execution_count": null, - "id": "a31c7ec0", + "id": "578871f8", "metadata": {}, "outputs": [], "source": [ @@ -5721,7 +5721,7 @@ { "cell_type": "code", "execution_count": 92, - "id": "4513b1da", + "id": "a0926d68", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:21:52.587637Z", @@ -5830,7 +5830,7 @@ { "cell_type": "code", "execution_count": 80, - "id": "5f1dc0ae", + "id": "ae56dee6", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:09:46.311424Z", @@ -5911,7 +5911,7 @@ { "cell_type": "code", "execution_count": 94, - "id": "c727988c", + "id": "4f504fb9", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:23:53.589811Z", @@ -5999,7 +5999,7 @@ { "cell_type": "code", "execution_count": 93, - "id": "a3a9af36", + "id": "b9c20834", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:22:00.580704Z", @@ -6028,7 +6028,7 @@ { "cell_type": "code", "execution_count": 90, - "id": "cecf7185", + "id": "6ee4dec9", "metadata": { "ExecuteTime": { "end_time": "2023-12-22T10:21:32.745907Z", @@ -6060,7 +6060,7 @@ { "cell_type": "code", "execution_count": null, - "id": "ec589710", + "id": "6c1bd6ae", "metadata": {}, "outputs": [], "source": [] diff --git a/python/palin/internal_noise/double_pass.py b/python/palin/internal_noise/double_pass.py index 6fdec7a..acfa0c1 100644 --- a/python/palin/internal_noise/double_pass.py +++ b/python/palin/internal_noise/double_pass.py @@ -18,7 +18,7 @@ from ..simulation.double_pass_experiment import DoublePassExperiment from ..simulation.trial import Int2Trial, Int1Trial from ..simulation.linear_observer import LinearObserver -from ..simulation.double_pass_statistics import DoublePassStatistics +from ..simulation import double_pass_statistics as dps from ..simulation.simulation import Simulation as Sim @@ -149,12 +149,12 @@ def build_model(cls,internal_noise_range=np.arange(0,5,.1),criteria_range=np.ara sim = Sim(DoublePassExperiment, experiment_params, LinearObserver, observer_params, - DoublePassStatistics, analyser_params) + dps.DoublePassStatistics, analyser_params) sim_df = sim.run_all(n_runs=n_runs, verbose=True) # average measures over all runs - sim_df.groupby(['internal_noise_std','criteria'])[DoublePassStatistics.get_metric_names()].mean() + sim_df.groupby(['internal_noise_std','criteria'])[dps.DoublePassStatistics.get_metric_names()].mean() return sim_df \ No newline at end of file diff --git a/python/palin/internal_noise/internal_noise_extractor.py b/python/palin/internal_noise/internal_noise_extractor.py index be6fbb6..1365dec 100644 --- a/python/palin/internal_noise/internal_noise_extractor.py +++ b/python/palin/internal_noise/internal_noise_extractor.py @@ -18,10 +18,10 @@ def extract_single_internal_noise(cls,data_df, trial_id = 'trial_id', feature_id raise NotImplementedError() @classmethod - def extract_internal_noise(cls,data_df, group_ids, trial_id, feature_id, value_id, response_id, normalize = True): + def extract_internal_noise(cls,data_df, group_ids, trial_id, feature_id, value_id, response_id, model_file): # for each level in group, extract internal_noise return data_df.groupby(group_ids).apply(lambda group: cls.extract_single_internal_noise(group, - trial_id, feature_id, value_id, response_id)).reset_index() + trial_id, feature_id, value_id, response_id, model_file)).reset_index() \ No newline at end of file diff --git a/python/palin/simulation/__pycache__/simulation.cpython-38.pyc b/python/palin/simulation/__pycache__/simulation.cpython-38.pyc index 1db8caf2783210af54ba6e2e1344e1c9199434d0..701fe27c51ea86ac60cbca128dcd0d6689389b0c 100644 GIT binary patch delta 1921 zcmb7EOK%)S5T4ofj(2ChyM7>>U>+S4J6U2mLE>eSIK;$BIDnC3Zb(+|POme`Y|o^6 z#=&N#Rq%-$QeOxsI3Y_22_bRFg#&+pOD^*R_zOrNA*y<2A5w%OcGcf*S65Y6)mPQO zul#wT{zg!0K=0kPbhK&};BL>qfE#PUwad0s7@;mzkNZcz zx-9?P6jA_>v2HvFSUc>te92=!l!}EN7IENR5erbP17VlNcLeH46+_aFLpZC(G}hSA z=@xI_A#+q$WH9FRfgc2$tR5>B_uj=!%^oyX>i+kQ6*OcadtNhTR2a&35n z{<6AmFX-Q@OY;kuCOnUjx|aiA#duw`@xK1Mddpta*QZW@Fh>ehHE0k}ky2Or-93|? zN^LK74tS6V1;*FQq(u&424NkSGQ;5LAE*Ah$s^mchH>m9GA~?~g2Ji@50hg`1f8`k zv;3kpX6lm3^rOm$yJnAhp}vZ_Z2N|YPzp9^yH!TJQ3o?FJtG?Q7CWbeVDF)mW>y{j zd10|1hm13i$Gk)QU1EX=f$#zIk!Pyps&Ui~gQSa0o2YXd#u!~CO(v6WOMuZI^dSSG zk|0)NlpoFRBvSfvpDlY#|5CeP&+0#FD`!qq9nT}A4v!)sy|fT{Y2`Y`c7tMTR$xwF ztY5UxYhIsUG6akmox}k4urY5C2}=l;qaW4(>GPd&5In-7b#GU`VN6Q7AoZ@erF?7bf25&?pV+IcBz#RhDrO zdE1LP0g4=Z3OV)LG@Kj`X})kY!Ef(LtmC_;gONNR#%a-CH?F=z^=#T^1Wt5kPfp~=~!4yGFZ_K<^Tg1Q3dKTR!{cz^~+h^(U3PS2+d8Z|la~6w<$_yi2OJ`L_^j(gUWT4RFn{w5lwu!T8}Q?x#w8=yx3wzu~k}My+$GrAx%F?!cidg zB#`+Xf8yWA)S;J$l6X_P(NvloOh-Kkxy&J^(PUBXqJJguqiCB-t{^lfew2P;$xgX* zn{*yigUk%LjFx0aa0TBp25QEOOm-_6^yiy+Dn6F^+9Fsj;4X$hhwwK5?xDFax|O}% zg_5=e|5H9gC$|tL{%uXyJPWQwy&ut{Fkd6rIU5R*;?LXJQg|EY&}(rU%yU>b#Oh8A}< I@x5034QE}pI{*Lx diff --git a/python/palin/simulation/kernel_distance.py b/python/palin/simulation/kernel_distance.py index 6140879..87734f9 100644 --- a/python/palin/simulation/kernel_distance.py +++ b/python/palin/simulation/kernel_distance.py @@ -9,7 +9,7 @@ def __init__(self, kernel_extractor, distance='CORR'): self.distance = distance def get_metric_names(self): - return [distance.lower()] + return [self.distance.lower()] def analyse(self, experiment, participant, participant_responses): @@ -36,7 +36,7 @@ def normalize_kernel(self, kernel): return self.kernel_extractor.normalize_kernel(kernel) def compute_distance(self, kernel_1, kernel_2): - return me.kernel_distance(kernel_1, kernel_2, type=self.distance) + return [me.kernel_distance(kernel_1, kernel_2, type=self.distance)] \ No newline at end of file diff --git a/python/palin/simulation/simulation.py b/python/palin/simulation/simulation.py index d0cb543..2a39dc4 100644 --- a/python/palin/simulation/simulation.py +++ b/python/palin/simulation/simulation.py @@ -115,7 +115,7 @@ def run(self, config_param): metrics = ana.get_metric_names() values = ana.analyse(exp, obs, responses) - + # return the metrics as a dict of name:value pairs results = {} for metric,value in zip(metrics,values): diff --git a/python/sandbox.ipynb b/python/sandbox.ipynb index 40c5f81..fc307f4 100644 --- a/python/sandbox.ipynb +++ b/python/sandbox.ipynb @@ -2,24 +2,15 @@ "cells": [ { "cell_type": "code", - "execution_count": 51, - "id": "87dd4fb9", + "execution_count": 1, + "id": "dd024a9f", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T12:37:25.098785Z", - "start_time": "2024-04-10T12:37:25.041938Z" + "end_time": "2024-04-22T14:17:28.832662Z", + "start_time": "2024-04-22T14:17:28.792726Z" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The autoreload extension is already loaded. To reload it, use:\n", - " %reload_ext autoreload\n" - ] - } - ], + "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" @@ -27,12 +18,12 @@ }, { "cell_type": "code", - "execution_count": 179, - "id": "ab35c09e", + "execution_count": 2, + "id": "af003d60", "metadata": { "ExecuteTime": { - "end_time": "2024-04-11T04:19:40.595606Z", - "start_time": "2024-04-11T04:19:40.530803Z" + "end_time": "2024-04-22T14:17:39.480077Z", + "start_time": "2024-04-22T14:17:38.354348Z" } }, "outputs": [], @@ -45,12 +36,12 @@ }, { "cell_type": "code", - "execution_count": 53, - "id": "6a76823c", + "execution_count": 3, + "id": "c00cdd7b", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T12:37:27.663173Z", - "start_time": "2024-04-10T12:37:27.618292Z" + "end_time": "2024-04-22T14:17:42.091684Z", + "start_time": "2024-04-22T14:17:42.039629Z" } }, "outputs": [], @@ -60,12 +51,12 @@ }, { "cell_type": "code", - "execution_count": 208, - "id": "29b09a91", + "execution_count": 6, + "id": "1d4cca24", "metadata": { "ExecuteTime": { - "end_time": "2024-04-11T11:24:47.119855Z", - "start_time": "2024-04-11T11:24:47.063798Z" + "end_time": "2024-04-22T14:56:26.656143Z", + "start_time": "2024-04-22T14:56:26.596523Z" } }, "outputs": [], @@ -85,7 +76,7 @@ }, { "cell_type": "markdown", - "id": "31bb6aee", + "id": "a54e142f", "metadata": {}, "source": [ "## Simulate with internal noise" @@ -93,7 +84,7 @@ }, { "cell_type": "markdown", - "id": "cd63729b", + "id": "0296d613", "metadata": {}, "source": [ "Single run" @@ -101,34 +92,34 @@ }, { "cell_type": "code", - "execution_count": 189, - "id": "63e53f77", + "execution_count": 20, + "id": "9802f955", "metadata": { "ExecuteTime": { - "end_time": "2024-04-11T04:53:29.899499Z", - "start_time": "2024-04-11T04:53:29.371264Z" + "end_time": "2024-04-22T14:59:47.009015Z", + "start_time": "2024-04-22T14:59:46.740731Z" } }, "outputs": [ { "data": { "text/plain": [ - "(0.1, 1)" + "(2.1, 1.7999999999999758)" ] }, - "execution_count": 189, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# single run: \n", - "exp = DoublePassExperiment(n_trials = 100, n_repeated=50,\n", + "exp = DoublePassExperiment(n_trials = 1000, n_repeated=50,\n", " trial_type = Int2Trial, \n", " n_features = 5, \n", " external_noise_std = 100)\n", - "obs = Obs.with_random_kernel(n_features = exp.n_features, \n", - " internal_noise_std = 0, \n", + "obs = LinearObserver.with_random_kernel(n_features = exp.n_features, \n", + " internal_noise_std = 1, \n", " criteria = 1)\n", "responses = obs.respond_to_experiment(exp)\n", "ana = InternalNoiseValue(internal_noise_extractor = DoublePass, model_file='model.csv')\n", @@ -137,7 +128,7 @@ }, { "cell_type": "markdown", - "id": "d90d2366", + "id": "01c2f4d3", "metadata": {}, "source": [ "Simulation" @@ -145,12 +136,12 @@ }, { "cell_type": "code", - "execution_count": 200, - "id": "fc511049", + "execution_count": 26, + "id": "b0d2e495", "metadata": { "ExecuteTime": { - "end_time": "2024-04-11T06:57:34.621971Z", - "start_time": "2024-04-11T06:00:58.596353Z" + "end_time": "2024-04-22T15:10:31.367464Z", + "start_time": "2024-04-22T15:10:01.475677Z" }, "scrolled": false }, @@ -159,138 +150,79 @@ "name": "stdout", "output_type": "stream", "text": [ - "Running 1 configs\n", - "{'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 100, 'kernel': [1], 'internal_noise_std': 0, 'criteria': 0, 'internal_noise_extractor': , 'model_file': 'model_large.csv', 'rebuild_model': False, 'internal_noise_range': array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. , 1.1, 1.2,\n", - " 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1, 2.2, 2.3, 2.4, 2.5,\n", - " 2.6, 2.7, 2.8, 2.9, 3. , 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,\n", - " 3.9, 4. , 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5. ]), 'criteria_range': array([-5.00000000e+00, -4.90000000e+00, -4.80000000e+00, -4.70000000e+00,\n", - " -4.60000000e+00, -4.50000000e+00, -4.40000000e+00, -4.30000000e+00,\n", - " -4.20000000e+00, -4.10000000e+00, -4.00000000e+00, -3.90000000e+00,\n", - " -3.80000000e+00, -3.70000000e+00, -3.60000000e+00, -3.50000000e+00,\n", - " -3.40000000e+00, -3.30000000e+00, -3.20000000e+00, -3.10000000e+00,\n", - " -3.00000000e+00, -2.90000000e+00, -2.80000000e+00, -2.70000000e+00,\n", - " -2.60000000e+00, -2.50000000e+00, -2.40000000e+00, -2.30000000e+00,\n", - " -2.20000000e+00, -2.10000000e+00, -2.00000000e+00, -1.90000000e+00,\n", - " -1.80000000e+00, -1.70000000e+00, -1.60000000e+00, -1.50000000e+00,\n", - " -1.40000000e+00, -1.30000000e+00, -1.20000000e+00, -1.10000000e+00,\n", - " -1.00000000e+00, -9.00000000e-01, -8.00000000e-01, -7.00000000e-01,\n", - " -6.00000000e-01, -5.00000000e-01, -4.00000000e-01, -3.00000000e-01,\n", - " -2.00000000e-01, -1.00000000e-01, -1.77635684e-14, 1.00000000e-01,\n", - " 2.00000000e-01, 3.00000000e-01, 4.00000000e-01, 5.00000000e-01,\n", - " 6.00000000e-01, 7.00000000e-01, 8.00000000e-01, 9.00000000e-01,\n", - " 1.00000000e+00, 1.10000000e+00, 1.20000000e+00, 1.30000000e+00,\n", - " 1.40000000e+00, 1.50000000e+00, 1.60000000e+00, 1.70000000e+00,\n", - " 1.80000000e+00, 1.90000000e+00, 2.00000000e+00, 2.10000000e+00,\n", - " 2.20000000e+00, 2.30000000e+00, 2.40000000e+00, 2.50000000e+00,\n", - " 2.60000000e+00, 2.70000000e+00, 2.80000000e+00, 2.90000000e+00,\n", - " 3.00000000e+00, 3.10000000e+00, 3.20000000e+00, 3.30000000e+00,\n", - " 3.40000000e+00, 3.50000000e+00, 3.60000000e+00, 3.70000000e+00,\n", - " 3.80000000e+00, 3.90000000e+00, 4.00000000e+00, 4.10000000e+00,\n", - " 4.20000000e+00, 4.30000000e+00, 4.40000000e+00, 4.50000000e+00,\n", - " 4.60000000e+00, 4.70000000e+00, 4.80000000e+00, 4.90000000e+00]), 'n_runs': 2}\n", - ".Rebuilding double-pass model\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "Cell \u001b[1;32mIn[200], line 19\u001b[0m\n\u001b[0;32m 9\u001b[0m analyser_params \u001b[38;5;241m=\u001b[39m {\u001b[38;5;124m'\u001b[39m\u001b[38;5;124minternal_noise_extractor\u001b[39m\u001b[38;5;124m'\u001b[39m:[DoublePass], \n\u001b[0;32m 10\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmodel_file\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmodel_large.csv\u001b[39m\u001b[38;5;124m'\u001b[39m], \n\u001b[0;32m 11\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrebuild_model\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;28;01mFalse\u001b[39;00m],\n\u001b[0;32m 12\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124minternal_noise_range\u001b[39m\u001b[38;5;124m'\u001b[39m:[np\u001b[38;5;241m.\u001b[39marange(\u001b[38;5;241m0\u001b[39m,\u001b[38;5;241m5.1\u001b[39m,\u001b[38;5;241m0.1\u001b[39m)],\n\u001b[0;32m 13\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcriteria_range\u001b[39m\u001b[38;5;124m'\u001b[39m:[np\u001b[38;5;241m.\u001b[39marange(\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m5\u001b[39m,\u001b[38;5;241m5\u001b[39m,\u001b[38;5;241m0.1\u001b[39m)],\n\u001b[0;32m 14\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mn_runs\u001b[39m\u001b[38;5;124m'\u001b[39m:[\u001b[38;5;241m2\u001b[39m]}\n\u001b[0;32m 16\u001b[0m sim \u001b[38;5;241m=\u001b[39m Sim(DoublePassExperiment, experiment_params, \n\u001b[0;32m 17\u001b[0m LinearObserver, observer_params, \n\u001b[0;32m 18\u001b[0m InternalNoiseValue, analyser_params)\n\u001b[1;32m---> 19\u001b[0m sim_df \u001b[38;5;241m=\u001b[39m \u001b[43msim\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_all\u001b[49m\u001b[43m(\u001b[49m\u001b[43mn_runs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\simulation.py:45\u001b[0m, in \u001b[0;36mSimulation.run_all\u001b[1;34m(self, n_runs, verbose)\u001b[0m\n\u001b[0;32m 43\u001b[0m run_res \u001b[38;5;241m=\u001b[39m config_param\u001b[38;5;241m.\u001b[39mcopy() \n\u001b[0;32m 44\u001b[0m run_res\u001b[38;5;241m.\u001b[39mupdate({\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrun\u001b[39m\u001b[38;5;124m'\u001b[39m:run}) \n\u001b[1;32m---> 45\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconfig_param\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 46\u001b[0m run_res\u001b[38;5;241m.\u001b[39mupdate(results)\n\u001b[0;32m 47\u001b[0m runs\u001b[38;5;241m.\u001b[39mappend(run_res)\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\simulation.py:67\u001b[0m, in \u001b[0;36mSimulation.run\u001b[1;34m(self, config_param)\u001b[0m\n\u001b[0;32m 64\u001b[0m responses \u001b[38;5;241m=\u001b[39m obs\u001b[38;5;241m.\u001b[39mrespond_to_experiment(exp)\n\u001b[0;32m 66\u001b[0m metrics \u001b[38;5;241m=\u001b[39m ana\u001b[38;5;241m.\u001b[39mget_metric_names()\n\u001b[1;32m---> 67\u001b[0m values \u001b[38;5;241m=\u001b[39m \u001b[43mana\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mobs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponses\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 69\u001b[0m \u001b[38;5;66;03m# return the metrics as a dict of name:value pairs\u001b[39;00m\n\u001b[0;32m 70\u001b[0m results \u001b[38;5;241m=\u001b[39m {}\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\internal_noise_value.py:21\u001b[0m, in \u001b[0;36mInternalNoiseValue.analyse\u001b[1;34m(self, experiment, participant, participant_responses)\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21manalyse\u001b[39m(\u001b[38;5;28mself\u001b[39m, experiment, participant, participant_responses): \n\u001b[1;32m---> 21\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mestimate_internal_noise\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexperiment\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparticipant_responses\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\internal_noise_value.py:27\u001b[0m, in \u001b[0;36mInternalNoiseValue.estimate_internal_noise\u001b[1;34m(self, experiment, participant_responses)\u001b[0m\n\u001b[0;32m 23\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mestimate_internal_noise\u001b[39m(\u001b[38;5;28mself\u001b[39m, experiment, participant_responses): \n\u001b[0;32m 25\u001b[0m responses_df \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mto_df(experiment, participant_responses)\n\u001b[1;32m---> 27\u001b[0m internal_noise, criteria \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minternal_noise_extractor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mextract_single_internal_noise\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata_df\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mresponses_df\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 28\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrial_id\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtrial\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstim_id\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mstim\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfeature_id\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mfeature\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mvalue_id\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mvalue\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_id\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mresponse\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel_file\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmodel_file\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 29\u001b[0m \u001b[43m \u001b[49m\u001b[43minternal_noise_range\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minternal_noise_range\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcriteria_range\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcriteria_range\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_repeated_trials\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_repeated_trials\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_runs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mn_runs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 31\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m internal_noise, criteria\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:46\u001b[0m, in \u001b[0;36mDoublePass.extract_single_internal_noise\u001b[1;34m(cls, data_df, trial_id, stim_id, feature_id, value_id, response_id, model_file, rebuild_model, internal_noise_range, criteria_range, n_repeated_trials, n_runs)\u001b[0m\n\u001b[0;32m 43\u001b[0m \u001b[38;5;66;03m# compute probability of choosing first response option\u001b[39;00m\n\u001b[0;32m 44\u001b[0m prob_first \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39mcompute_prob_first(data_df, trial_id\u001b[38;5;241m=\u001b[39mtrial_id, response_id\u001b[38;5;241m=\u001b[39mresponse_id, stim_id\u001b[38;5;241m=\u001b[39mstim_id, double_pass_id\u001b[38;5;241m=\u001b[39mdouble_pass_id)\n\u001b[1;32m---> 46\u001b[0m internal_noise, criteria \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mestimate_noise_criteria\u001b[49m\u001b[43m(\u001b[49m\u001b[43mprob_agree\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mprob_first\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodel_file\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrebuild_model\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minternal_noise_range\u001b[49m\u001b[43m,\u001b[49m\u001b[43mcriteria_range\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_repeated_trials\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_runs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 48\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m internal_noise,criteria\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:122\u001b[0m, in \u001b[0;36mDoublePass.estimate_noise_criteria\u001b[1;34m(cls, prob_agree, prob_first, model_file, rebuild_model, internal_noise_range, criteria_range, n_repeated_trials, n_runs)\u001b[0m\n\u001b[0;32m 120\u001b[0m model_df \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mread_csv(model_file, index_col\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m)\n\u001b[0;32m 121\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 122\u001b[0m model_df \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbuild_model\u001b[49m\u001b[43m(\u001b[49m\u001b[43minternal_noise_range\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcriteria_range\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_repeated_trials\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mn_runs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 123\u001b[0m model_df\u001b[38;5;241m.\u001b[39mto_csv(model_file)\n\u001b[0;32m 125\u001b[0m \u001b[38;5;66;03m# find internal_noise & criteria settings that minimizes distance to prob_agree and prob_first \u001b[39;00m\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:154\u001b[0m, in \u001b[0;36mDoublePass.build_model\u001b[1;34m(cls, internal_noise_range, criteria_range, n_repeated_trials, n_runs)\u001b[0m\n\u001b[0;32m 148\u001b[0m analyser_params \u001b[38;5;241m=\u001b[39m {}\n\u001b[0;32m 150\u001b[0m sim \u001b[38;5;241m=\u001b[39m Sim(DoublePassExperiment, experiment_params,\n\u001b[0;32m 151\u001b[0m LinearObserver, observer_params, \n\u001b[0;32m 152\u001b[0m DoublePassStatistics, analyser_params)\n\u001b[1;32m--> 154\u001b[0m sim_df \u001b[38;5;241m=\u001b[39m \u001b[43msim\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_all\u001b[49m\u001b[43m(\u001b[49m\u001b[43mn_runs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mn_runs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverbose\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[0;32m 156\u001b[0m \u001b[38;5;66;03m# average measures over all runs\u001b[39;00m\n\u001b[0;32m 157\u001b[0m sim_df\u001b[38;5;241m.\u001b[39mgroupby([\u001b[38;5;124m'\u001b[39m\u001b[38;5;124minternal_noise_std\u001b[39m\u001b[38;5;124m'\u001b[39m,\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mcriteria\u001b[39m\u001b[38;5;124m'\u001b[39m])[DoublePassStatistics\u001b[38;5;241m.\u001b[39mget_metric_names]\u001b[38;5;241m.\u001b[39mmean()\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\simulation.py:45\u001b[0m, in \u001b[0;36mSimulation.run_all\u001b[1;34m(self, n_runs, verbose)\u001b[0m\n\u001b[0;32m 43\u001b[0m run_res \u001b[38;5;241m=\u001b[39m config_param\u001b[38;5;241m.\u001b[39mcopy() \n\u001b[0;32m 44\u001b[0m run_res\u001b[38;5;241m.\u001b[39mupdate({\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrun\u001b[39m\u001b[38;5;124m'\u001b[39m:run}) \n\u001b[1;32m---> 45\u001b[0m results \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconfig_param\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 46\u001b[0m run_res\u001b[38;5;241m.\u001b[39mupdate(results)\n\u001b[0;32m 47\u001b[0m runs\u001b[38;5;241m.\u001b[39mappend(run_res)\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\simulation.py:67\u001b[0m, in \u001b[0;36mSimulation.run\u001b[1;34m(self, config_param)\u001b[0m\n\u001b[0;32m 64\u001b[0m responses \u001b[38;5;241m=\u001b[39m obs\u001b[38;5;241m.\u001b[39mrespond_to_experiment(exp)\n\u001b[0;32m 66\u001b[0m metrics \u001b[38;5;241m=\u001b[39m ana\u001b[38;5;241m.\u001b[39mget_metric_names()\n\u001b[1;32m---> 67\u001b[0m values \u001b[38;5;241m=\u001b[39m \u001b[43mana\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43manalyse\u001b[49m\u001b[43m(\u001b[49m\u001b[43mexp\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mobs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponses\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 69\u001b[0m \u001b[38;5;66;03m# return the metrics as a dict of name:value pairs\u001b[39;00m\n\u001b[0;32m 70\u001b[0m results \u001b[38;5;241m=\u001b[39m {}\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\simulation\\double_pass_statistics.py:19\u001b[0m, in \u001b[0;36mDoublePassStatistics.analyse\u001b[1;34m(self, experiment, participant, participant_responses)\u001b[0m\n\u001b[0;32m 15\u001b[0m responses_df \u001b[38;5;241m=\u001b[39m DoublePass\u001b[38;5;241m.\u001b[39mindex_double_pass_trials(data_df \u001b[38;5;241m=\u001b[39m responses_df, \n\u001b[0;32m 16\u001b[0m trial_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrial\u001b[39m\u001b[38;5;124m'\u001b[39m,value_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mvalue\u001b[39m\u001b[38;5;124m'\u001b[39m, double_pass_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdouble_pass_id\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m 18\u001b[0m \u001b[38;5;66;03m# compute probability of agreement over double pass\u001b[39;00m\n\u001b[1;32m---> 19\u001b[0m prob_agree \u001b[38;5;241m=\u001b[39m \u001b[43mDoublePass\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcompute_prob_agreement\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresponses_df\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrial_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mtrial\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mresponse\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdouble_pass_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mdouble_pass_id\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 20\u001b[0m \u001b[38;5;66;03m# compute probability of choosing first response option\u001b[39;00m\n\u001b[0;32m 21\u001b[0m prob_first \u001b[38;5;241m=\u001b[39m DoublePass\u001b[38;5;241m.\u001b[39mcompute_prob_first(responses_df, trial_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrial\u001b[39m\u001b[38;5;124m'\u001b[39m, response_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mresponse\u001b[39m\u001b[38;5;124m'\u001b[39m, stim_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mstim\u001b[39m\u001b[38;5;124m'\u001b[39m, double_pass_id\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdouble_pass_id\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:92\u001b[0m, in \u001b[0;36mDoublePass.compute_prob_agreement\u001b[1;34m(cls, data_df, trial_id, response_id, double_pass_id)\u001b[0m\n\u001b[0;32m 90\u001b[0m d \u001b[38;5;241m=\u001b[39m group\u001b[38;5;241m.\u001b[39mgroupby(trial_id)\u001b[38;5;241m.\u001b[39magg({response_id: \u001b[38;5;28;01mlambda\u001b[39;00m group: \u001b[38;5;28mtuple\u001b[39m(group)})\u001b[38;5;241m.\u001b[39mreset_index()\n\u001b[0;32m 91\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m d\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mnunique()\u001b[38;5;241m==\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[1;32m---> 92\u001b[0m agrees \u001b[38;5;241m=\u001b[39m \u001b[43mdata_df\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgroupby\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdouble_pass_id\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43;01mlambda\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[43msame_answer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrial_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_id\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 94\u001b[0m \u001b[38;5;66;03m# return agreement probability\u001b[39;00m\n\u001b[0;32m 95\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m agrees\u001b[38;5;241m.\u001b[39msum()\u001b[38;5;241m/\u001b[39m\u001b[38;5;28mlen\u001b[39m(agrees)\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\groupby.py:1567\u001b[0m, in \u001b[0;36mGroupBy.apply\u001b[1;34m(self, func, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1559\u001b[0m new_msg \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 1560\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThe operation \u001b[39m\u001b[38;5;132;01m{\u001b[39;00morig_func\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m failed on a column. If any error is \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1561\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mraised, this will raise an exception in a future version \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1562\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mof pandas. Drop these columns to avoid this warning.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 1563\u001b[0m )\n\u001b[0;32m 1564\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m rewrite_warning(\n\u001b[0;32m 1565\u001b[0m old_msg, \u001b[38;5;167;01mFutureWarning\u001b[39;00m, new_msg\n\u001b[0;32m 1566\u001b[0m ) \u001b[38;5;28;01mif\u001b[39;00m is_np_func \u001b[38;5;28;01melse\u001b[39;00m nullcontext():\n\u001b[1;32m-> 1567\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_python_apply_general\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_selected_obj\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1568\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[0;32m 1569\u001b[0m \u001b[38;5;66;03m# gh-20949\u001b[39;00m\n\u001b[0;32m 1570\u001b[0m \u001b[38;5;66;03m# try again, with .apply acting as a filtering\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1574\u001b[0m \u001b[38;5;66;03m# fails on *some* columns, e.g. a numeric operation\u001b[39;00m\n\u001b[0;32m 1575\u001b[0m \u001b[38;5;66;03m# on a string grouper column\u001b[39;00m\n\u001b[0;32m 1577\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_group_selection_context():\n\u001b[0;32m 1578\u001b[0m \u001b[38;5;66;03m# GH#50538\u001b[39;00m\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\groupby.py:1629\u001b[0m, in \u001b[0;36mGroupBy._python_apply_general\u001b[1;34m(self, f, data, not_indexed_same, is_transform, is_agg)\u001b[0m\n\u001b[0;32m 1592\u001b[0m \u001b[38;5;129m@final\u001b[39m\n\u001b[0;32m 1593\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_python_apply_general\u001b[39m(\n\u001b[0;32m 1594\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1599\u001b[0m is_agg: \u001b[38;5;28mbool\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mFalse\u001b[39;00m,\n\u001b[0;32m 1600\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NDFrameT:\n\u001b[0;32m 1601\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m 1602\u001b[0m \u001b[38;5;124;03m Apply function f in python space\u001b[39;00m\n\u001b[0;32m 1603\u001b[0m \n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1627\u001b[0m \u001b[38;5;124;03m data after applying f\u001b[39;00m\n\u001b[0;32m 1628\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[1;32m-> 1629\u001b[0m values, mutated \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgrouper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1630\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m not_indexed_same \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 1631\u001b[0m not_indexed_same \u001b[38;5;241m=\u001b[39m mutated \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmutated\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\ops.py:839\u001b[0m, in \u001b[0;36mBaseGrouper.apply\u001b[1;34m(self, f, data, axis)\u001b[0m\n\u001b[0;32m 837\u001b[0m \u001b[38;5;66;03m# group might be modified\u001b[39;00m\n\u001b[0;32m 838\u001b[0m group_axes \u001b[38;5;241m=\u001b[39m group\u001b[38;5;241m.\u001b[39maxes\n\u001b[1;32m--> 839\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[43mf\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 840\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m mutated \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m _is_indexed_like(res, group_axes, axis):\n\u001b[0;32m 841\u001b[0m mutated \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:92\u001b[0m, in \u001b[0;36mDoublePass.compute_prob_agreement..\u001b[1;34m(group)\u001b[0m\n\u001b[0;32m 90\u001b[0m d \u001b[38;5;241m=\u001b[39m group\u001b[38;5;241m.\u001b[39mgroupby(trial_id)\u001b[38;5;241m.\u001b[39magg({response_id: \u001b[38;5;28;01mlambda\u001b[39;00m group: \u001b[38;5;28mtuple\u001b[39m(group)})\u001b[38;5;241m.\u001b[39mreset_index()\n\u001b[0;32m 91\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m d\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mnunique()\u001b[38;5;241m==\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[1;32m---> 92\u001b[0m agrees \u001b[38;5;241m=\u001b[39m data_df\u001b[38;5;241m.\u001b[39mgroupby(double_pass_id)\u001b[38;5;241m.\u001b[39mapply(\u001b[38;5;28;01mlambda\u001b[39;00m group: \u001b[43msame_answer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrial_id\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mresponse_id\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[0;32m 94\u001b[0m \u001b[38;5;66;03m# return agreement probability\u001b[39;00m\n\u001b[0;32m 95\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m agrees\u001b[38;5;241m.\u001b[39msum()\u001b[38;5;241m/\u001b[39m\u001b[38;5;28mlen\u001b[39m(agrees)\n", - "File \u001b[1;32mE:\\WORK\\DO\\2022\\palin\\python\\palin\\internal_noise\\double_pass.py:90\u001b[0m, in \u001b[0;36mDoublePass.compute_prob_agreement..same_answer\u001b[1;34m(group, trial_id, response_id)\u001b[0m\n\u001b[0;32m 89\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21msame_answer\u001b[39m(group, trial_id, response_id): \n\u001b[1;32m---> 90\u001b[0m d \u001b[38;5;241m=\u001b[39m \u001b[43mgroup\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgroupby\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtrial_id\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magg\u001b[49m\u001b[43m(\u001b[49m\u001b[43m{\u001b[49m\u001b[43mresponse_id\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mlambda\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m:\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mtuple\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m)\u001b[49m\u001b[43m}\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mreset_index()\n\u001b[0;32m 91\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m d\u001b[38;5;241m.\u001b[39mresponse\u001b[38;5;241m.\u001b[39mnunique()\u001b[38;5;241m==\u001b[39m\u001b[38;5;241m1\u001b[39m\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\generic.py:895\u001b[0m, in \u001b[0;36mDataFrameGroupBy.aggregate\u001b[1;34m(self, func, engine, engine_kwargs, *args, **kwargs)\u001b[0m\n\u001b[0;32m 892\u001b[0m func \u001b[38;5;241m=\u001b[39m maybe_mangle_lambdas(func)\n\u001b[0;32m 894\u001b[0m op \u001b[38;5;241m=\u001b[39m GroupByApply(\u001b[38;5;28mself\u001b[39m, func, args, kwargs)\n\u001b[1;32m--> 895\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mop\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magg\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 896\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_dict_like(func) \u001b[38;5;129;01mand\u001b[39;00m result \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 897\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\apply.py:172\u001b[0m, in \u001b[0;36mApply.agg\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 169\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mapply_str()\n\u001b[0;32m 171\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_dict_like(arg):\n\u001b[1;32m--> 172\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magg_dict_like\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 173\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m is_list_like(arg):\n\u001b[0;32m 174\u001b[0m \u001b[38;5;66;03m# we require a list, but not a 'str'\u001b[39;00m\n\u001b[0;32m 175\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39magg_list_like()\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\apply.py:504\u001b[0m, in \u001b[0;36mApply.agg_dict_like\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 501\u001b[0m results \u001b[38;5;241m=\u001b[39m {key: colg\u001b[38;5;241m.\u001b[39magg(how) \u001b[38;5;28;01mfor\u001b[39;00m key, how \u001b[38;5;129;01min\u001b[39;00m arg\u001b[38;5;241m.\u001b[39mitems()}\n\u001b[0;32m 502\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 503\u001b[0m \u001b[38;5;66;03m# key used for column selection and output\u001b[39;00m\n\u001b[1;32m--> 504\u001b[0m results \u001b[38;5;241m=\u001b[39m {\n\u001b[0;32m 505\u001b[0m key: obj\u001b[38;5;241m.\u001b[39m_gotitem(key, ndim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\u001b[38;5;241m.\u001b[39magg(how) \u001b[38;5;28;01mfor\u001b[39;00m key, how \u001b[38;5;129;01min\u001b[39;00m arg\u001b[38;5;241m.\u001b[39mitems()\n\u001b[0;32m 506\u001b[0m }\n\u001b[0;32m 508\u001b[0m \u001b[38;5;66;03m# set the final keys\u001b[39;00m\n\u001b[0;32m 509\u001b[0m keys \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(arg\u001b[38;5;241m.\u001b[39mkeys())\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\apply.py:505\u001b[0m, in \u001b[0;36m\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m 501\u001b[0m results \u001b[38;5;241m=\u001b[39m {key: colg\u001b[38;5;241m.\u001b[39magg(how) \u001b[38;5;28;01mfor\u001b[39;00m key, how \u001b[38;5;129;01min\u001b[39;00m arg\u001b[38;5;241m.\u001b[39mitems()}\n\u001b[0;32m 502\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 503\u001b[0m \u001b[38;5;66;03m# key used for column selection and output\u001b[39;00m\n\u001b[0;32m 504\u001b[0m results \u001b[38;5;241m=\u001b[39m {\n\u001b[1;32m--> 505\u001b[0m key: \u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_gotitem\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mndim\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43magg\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhow\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m key, how \u001b[38;5;129;01min\u001b[39;00m arg\u001b[38;5;241m.\u001b[39mitems()\n\u001b[0;32m 506\u001b[0m }\n\u001b[0;32m 508\u001b[0m \u001b[38;5;66;03m# set the final keys\u001b[39;00m\n\u001b[0;32m 509\u001b[0m keys \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(arg\u001b[38;5;241m.\u001b[39mkeys())\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\generic.py:297\u001b[0m, in \u001b[0;36mSeriesGroupBy.aggregate\u001b[1;34m(self, func, engine, engine_kwargs, *args, **kwargs)\u001b[0m\n\u001b[0;32m 294\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_python_agg_general(func, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m 296\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m--> 297\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_python_agg_general\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 298\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m:\n\u001b[0;32m 299\u001b[0m \u001b[38;5;66;03m# TODO: KeyError is raised in _python_agg_general,\u001b[39;00m\n\u001b[0;32m 300\u001b[0m \u001b[38;5;66;03m# see test_groupby.test_basic\u001b[39;00m\n\u001b[0;32m 301\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_aggregate_named(func, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\groupby.py:1673\u001b[0m, in \u001b[0;36mGroupBy._python_agg_general\u001b[1;34m(self, func, raise_on_typeerror, *args, **kwargs)\u001b[0m\n\u001b[0;32m 1670\u001b[0m \u001b[38;5;66;03m# iterate through \"columns\" ex exclusions to populate output dict\u001b[39;00m\n\u001b[0;32m 1671\u001b[0m output: \u001b[38;5;28mdict\u001b[39m[base\u001b[38;5;241m.\u001b[39mOutputKey, ArrayLike] \u001b[38;5;241m=\u001b[39m {}\n\u001b[1;32m-> 1673\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mngroups\u001b[49m \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[0;32m 1674\u001b[0m \u001b[38;5;66;03m# agg_series below assumes ngroups > 0\u001b[39;00m\n\u001b[0;32m 1675\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_python_apply_general(f, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_selected_obj, is_agg\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\n\u001b[0;32m 1677\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m idx, obj \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28menumerate\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_iterate_slices()):\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\groupby.py:677\u001b[0m, in \u001b[0;36mBaseGroupBy.ngroups\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 674\u001b[0m \u001b[38;5;129m@final\u001b[39m\n\u001b[0;32m 675\u001b[0m \u001b[38;5;129m@property\u001b[39m\n\u001b[0;32m 676\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mngroups\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mint\u001b[39m:\n\u001b[1;32m--> 677\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgrouper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mngroups\u001b[49m\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\_libs\\properties.pyx:36\u001b[0m, in \u001b[0;36mpandas._libs.properties.CachedProperty.__get__\u001b[1;34m()\u001b[0m\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\ops.py:982\u001b[0m, in \u001b[0;36mBaseGrouper.ngroups\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 979\u001b[0m \u001b[38;5;129m@final\u001b[39m\n\u001b[0;32m 980\u001b[0m \u001b[38;5;129m@cache_readonly\u001b[39m\n\u001b[0;32m 981\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mngroups\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28mint\u001b[39m:\n\u001b[1;32m--> 982\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult_index\u001b[49m)\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\_libs\\properties.pyx:36\u001b[0m, in \u001b[0;36mpandas._libs.properties.CachedProperty.__get__\u001b[1;34m()\u001b[0m\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\ops.py:993\u001b[0m, in \u001b[0;36mBaseGrouper.result_index\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 990\u001b[0m \u001b[38;5;129m@cache_readonly\u001b[39m\n\u001b[0;32m 991\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mresult_index\u001b[39m(\u001b[38;5;28mself\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Index:\n\u001b[0;32m 992\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgroupings) \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m--> 993\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgroupings\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresult_index\u001b[49m\u001b[38;5;241m.\u001b[39mrename(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnames[\u001b[38;5;241m0\u001b[39m])\n\u001b[0;32m 995\u001b[0m codes \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mreconstructed_codes\n\u001b[0;32m 996\u001b[0m levels \u001b[38;5;241m=\u001b[39m [ping\u001b[38;5;241m.\u001b[39mresult_index \u001b[38;5;28;01mfor\u001b[39;00m ping \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgroupings]\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\_libs\\properties.pyx:36\u001b[0m, in \u001b[0;36mpandas._libs.properties.CachedProperty.__get__\u001b[1;34m()\u001b[0m\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\grouper.py:647\u001b[0m, in \u001b[0;36mGrouping.result_index\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 645\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(group_idx, CategoricalIndex)\n\u001b[0;32m 646\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m recode_from_groupby(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_all_grouper, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_sort, group_idx)\n\u001b[1;32m--> 647\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgroup_index\u001b[49m\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\_libs\\properties.pyx:36\u001b[0m, in \u001b[0;36mpandas._libs.properties.CachedProperty.__get__\u001b[1;34m()\u001b[0m\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\grouper.py:655\u001b[0m, in \u001b[0;36mGrouping.group_index\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 651\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_group_index \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 652\u001b[0m \u001b[38;5;66;03m# _group_index is set in __init__ for MultiIndex cases\u001b[39;00m\n\u001b[0;32m 653\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_group_index\n\u001b[1;32m--> 655\u001b[0m uniques \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_codes_and_uniques\u001b[49m[\u001b[38;5;241m1\u001b[39m]\n\u001b[0;32m 656\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m Index\u001b[38;5;241m.\u001b[39m_with_infer(uniques, name\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mname)\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\_libs\\properties.pyx:36\u001b[0m, in \u001b[0;36mpandas._libs.properties.CachedProperty.__get__\u001b[1;34m()\u001b[0m\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\groupby\\grouper.py:692\u001b[0m, in \u001b[0;36mGrouping._codes_and_uniques\u001b[1;34m(self)\u001b[0m\n\u001b[0;32m 685\u001b[0m uniques \u001b[38;5;241m=\u001b[39m (\n\u001b[0;32m 686\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mgrouping_vector\u001b[38;5;241m.\u001b[39mresult_index\u001b[38;5;241m.\u001b[39m_values \u001b[38;5;66;03m# type: ignore[assignment]\u001b[39;00m\n\u001b[0;32m 687\u001b[0m )\n\u001b[0;32m 688\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 689\u001b[0m \u001b[38;5;66;03m# GH35667, replace dropna=False with use_na_sentinel=False\u001b[39;00m\n\u001b[0;32m 690\u001b[0m \u001b[38;5;66;03m# error: Incompatible types in assignment (expression has type \"Union[\u001b[39;00m\n\u001b[0;32m 691\u001b[0m \u001b[38;5;66;03m# ndarray[Any, Any], Index]\", variable has type \"Categorical\")\u001b[39;00m\n\u001b[1;32m--> 692\u001b[0m codes, uniques \u001b[38;5;241m=\u001b[39m \u001b[43malgorithms\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfactorize\u001b[49m\u001b[43m(\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[assignment]\u001b[39;49;00m\n\u001b[0;32m 693\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgrouping_vector\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msort\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_sort\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43muse_na_sentinel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dropna\u001b[49m\n\u001b[0;32m 694\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 695\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m codes, uniques\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\algorithms.py:832\u001b[0m, in \u001b[0;36mfactorize\u001b[1;34m(values, sort, na_sentinel, use_na_sentinel, size_hint)\u001b[0m\n\u001b[0;32m 829\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m na_sentinel \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 830\u001b[0m \u001b[38;5;66;03m# TODO: Can remove when na_sentinel=na_sentinel as in TODO above\u001b[39;00m\n\u001b[0;32m 831\u001b[0m na_sentinel \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[1;32m--> 832\u001b[0m uniques, codes \u001b[38;5;241m=\u001b[39m \u001b[43msafe_sort\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 833\u001b[0m \u001b[43m \u001b[49m\u001b[43muniques\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcodes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mna_sentinel\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mna_sentinel\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43massume_unique\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mverify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\n\u001b[0;32m 834\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 836\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m dropna \u001b[38;5;129;01mand\u001b[39;00m sort:\n\u001b[0;32m 837\u001b[0m \u001b[38;5;66;03m# TODO: Can remove entire block when na_sentinel=na_sentinel as in TODO above\u001b[39;00m\n\u001b[0;32m 838\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m na_sentinel \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "File \u001b[1;32m~\\AppData\\Roaming\\Python\\Python38\\site-packages\\pandas\\core\\algorithms.py:1875\u001b[0m, in \u001b[0;36msafe_sort\u001b[1;34m(values, codes, na_sentinel, assume_unique, verify)\u001b[0m\n\u001b[0;32m 1873\u001b[0m ordered \u001b[38;5;241m=\u001b[39m original_values\u001b[38;5;241m.\u001b[39mtake(sorter)\n\u001b[0;32m 1874\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m-> 1875\u001b[0m ordered \u001b[38;5;241m=\u001b[39m \u001b[43mvalues\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtake\u001b[49m\u001b[43m(\u001b[49m\u001b[43msorter\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1876\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m:\n\u001b[0;32m 1877\u001b[0m \u001b[38;5;66;03m# Previous sorters failed or were not applicable, try `_sort_mixed`\u001b[39;00m\n\u001b[0;32m 1878\u001b[0m \u001b[38;5;66;03m# which would work, but which fails for special case of 1d arrays\u001b[39;00m\n\u001b[0;32m 1879\u001b[0m \u001b[38;5;66;03m# with tuples.\u001b[39;00m\n\u001b[0;32m 1880\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m values\u001b[38;5;241m.\u001b[39msize \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(values[\u001b[38;5;241m0\u001b[39m], \u001b[38;5;28mtuple\u001b[39m):\n", - "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + "Running 3 configs\n", + "0 : {'n_trials': 100, 'n_repeated': 1000, 'trial_type': , 'n_features': 5, 'external_noise_std': 100, 'kernel': [0, 0, 0, 0, 10], 'internal_noise_std': 0, 'criteria': 0, 'internal_noise_extractor': , 'model_file': 'model.csv', 'rebuild_model': False}\n", + "..........;\n", + "1 : {'n_trials': 500, 'n_repeated': 1000, 'trial_type': , 'n_features': 5, 'external_noise_std': 100, 'kernel': [0, 0, 0, 0, 10], 'internal_noise_std': 0, 'criteria': 0, 'internal_noise_extractor': , 'model_file': 'model.csv', 'rebuild_model': False}\n", + "..........;\n", + "2 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 5, 'external_noise_std': 100, 'kernel': [0, 0, 0, 0, 10], 'internal_noise_std': 0, 'criteria': 0, 'internal_noise_extractor': , 'model_file': 'model.csv', 'rebuild_model': False}\n", + "..........;\n" ] } ], "source": [ - "observer_params = {'kernel':[[1]],\n", + "observer_params = {'kernel':[[0,0,0,0,10]],\n", " 'internal_noise_std':[0], \n", " 'criteria':[0]}\n", - "experiment_params = {'n_trials':[1000],#np.arange(1,1000,100),\n", + "experiment_params = {'n_trials':[100,500,1000], #np.arange(1,1000,100),\n", " 'n_repeated':[1000],\n", " 'trial_type': [Int2Trial],\n", - " 'n_features': [1],\n", + " 'n_features': [5],\n", " 'external_noise_std': [100]}\n", "analyser_params = {'internal_noise_extractor':[DoublePass], \n", - " 'model_file': ['model_large.csv'], \n", - " 'rebuild_model': [False],\n", - " 'internal_noise_range':[np.arange(0,5.1,0.1)],\n", - " 'criteria_range':[np.arange(-5,5,0.1)],\n", - " 'n_runs':[2]}\n", + " 'model_file': ['model.csv'], \n", + " 'rebuild_model': [False]}\n", + " #'internal_noise_range':[np.arange(0,5.1,0.1)],\n", + " #'criteria_range':[np.arange(-5,5,0.1)],\n", + " #'n_runs':[2]}\n", " \n", "sim = Sim(DoublePassExperiment, experiment_params, \n", " LinearObserver, observer_params, \n", " InternalNoiseValue, analyser_params)\n", - "sim_df = sim.run_all(n_runs=1)\n", + "sim_df = sim.run_all(n_runs=10)\n", "\n" ] }, { "cell_type": "code", - "execution_count": 216, - "id": "d36ad464", + "execution_count": 29, + "id": "126511b3", "metadata": { "ExecuteTime": { - "end_time": "2024-04-11T11:28:06.869895Z", - "start_time": "2024-04-11T11:28:06.817000Z" + "end_time": "2024-04-22T15:12:06.333448Z", + "start_time": "2024-04-22T15:12:06.055674Z" } }, "outputs": [ { "data": { "text/plain": [ - "palin.simulation.simple_experiment.SimpleExperiment" + "" ] }, - "execution_count": 216, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGxCAYAAACKvAkXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABE+klEQVR4nO3de1yUdf7//+dwBhUwUUYNRc0TiuAhCS3tgGJZG5qH1E8auba1HUzMYyr2sU9YqV8r3VjbWt1uWWYZtWWkYZYmaaJ4KszMxBN4BBQFhLl+f/hrdifIYBwYYB73221uy7zf72vmde3taubp+3rPdZkMwzAEAADgQtycXQAAAEBNIwABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5Xg4u4DayGKx6Pjx42rUqJFMJpOzywEAAJVgGIbOnz+vFi1ayM3t6nM8BKAKHD9+XCEhIc4uAwAA2OHIkSO6/vrrrzqGAFSBRo0aSbryf6C/v7+TqwEAAJVRUFCgkJAQ6/f41RCAKvDraS9/f38CEAAAdUxllq+wCBoAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4nFoRgJYuXarQ0FD5+PgoKipK27Ztu+r41atXq1OnTvLx8VF4eLjWrl1bbswPP/ygP/3pTwoICFCDBg104403Kjs7u7p2AQAA1CFOD0CrVq1SQkKCEhMTtWPHDkVERCg2NlYnT56scPyWLVs0atQojR8/Xjt37lRcXJzi4uK0d+9e65iDBw/q5ptvVqdOnbRx40bt3r1bs2fPlo+PT03tFgAAqMVMhmEYziwgKipKN954o5YsWSJJslgsCgkJ0RNPPKHp06eXGz9y5EgVFhbqk08+sbbddNNNioyMVHJysiTp/vvvl6enp9566y27aiooKFBAQIDy8/O5FxgAAHVEVb6/nToDVFJSooyMDMXExFjb3NzcFBMTo/T09Aq3SU9PtxkvSbGxsdbxFotFn376qTp06KDY2Fg1a9ZMUVFRSklJqbb9AFA3DHtti/rO36C+8zdo2GtbnF0OIInj0lmcGoBOnz6tsrIyBQcH27QHBwcrJyenwm1ycnKuOv7kyZO6cOGC5s+fr0GDBmndunUaMmSIhg4dqq+++qrC1ywuLlZBQYHNA0D9cyK/SMfyLulY3iWdyC9ydjmAJI5LZ/FwdgGOZrFYJEn33nuvJk2aJEmKjIzUli1blJycrP79+5fbJikpSc8++2yN1gkAAJzHqTNAQUFBcnd3V25urk17bm6uzGZzhduYzearjg8KCpKHh4fCwsJsxnTu3Pl3fwU2Y8YM5efnWx9Hjhyxd5cAAEAd4NQA5OXlpZ49eyotLc3aZrFYlJaWpujo6Aq3iY6OthkvSevXr7eO9/Ly0o033qj9+/fbjPnxxx/VunXrCl/T29tb/v7+Ng8AAFB/Of0UWEJCgsaNG6devXqpd+/eWrx4sQoLCxUfHy9JGjt2rFq2bKmkpCRJ0sSJE9W/f38tXLhQgwcP1rvvvqvt27dr2bJl1tecMmWKRo4cqX79+um2225Tamqq/v3vf2vjxo3O2EUAAFDLOD0AjRw5UqdOndKcOXOUk5OjyMhIpaamWhc6Z2dny83tPxNVffr00cqVKzVr1izNnDlT7du3V0pKirp27WodM2TIECUnJyspKUlPPvmkOnbsqA8++EA333xzje8fAACofZx+HaDaiOsAAfVT3/kbdCzvkiSpZaCvvpl+u5MrAjguHanOXAcIAADAGQhAAADA5RCAAACAyyEAAQAAl0MAAgAALocABAAAXA4BCAAAuBwCEAAAcDkEIAAA4HIIQAAAwOUQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5RCAAACAyyEAAQAAl0MAAgAALocABAAAXA4BCAAAuBwCEAAAcDkEIAAA4HIIQAAAwOUQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAup1YEoKVLlyo0NFQ+Pj6KiorStm3brjp+9erV6tSpk3x8fBQeHq61a9fa9D/44IMymUw2j0GDBlXnLgAAgDrE6QFo1apVSkhIUGJionbs2KGIiAjFxsbq5MmTFY7fsmWLRo0apfHjx2vnzp2Ki4tTXFyc9u7dazNu0KBBOnHihPXxzjvv1MTuAACAOsDpAWjRokWaMGGC4uPjFRYWpuTkZPn5+enNN9+scPzLL7+sQYMGacqUKercubPmzZunHj16aMmSJTbjvL29ZTabrY/GjRvXxO4AAIA6wKkBqKSkRBkZGYqJibG2ubm5KSYmRunp6RVuk56ebjNekmJjY8uN37hxo5o1a6aOHTvq0Ucf1ZkzZxy/AwAAoE7ycOabnz59WmVlZQoODrZpDw4OVlZWVoXb5OTkVDg+JyfH+nzQoEEaOnSo2rRpo4MHD2rmzJm68847lZ6eLnd393KvWVxcrOLiYuvzgoKCa9ktAABQyzk1AFWX+++/3/p3eHi4unXrpnbt2mnjxo264447yo1PSkrSs88+W5MlAgAAJ3LqKbCgoCC5u7srNzfXpj03N1dms7nCbcxmc5XGS1Lbtm0VFBSkn376qcL+GTNmKD8/3/o4cuRIFfcEAADUJU4NQF5eXurZs6fS0tKsbRaLRWlpaYqOjq5wm+joaJvxkrR+/frfHS9JR48e1ZkzZ9S8efMK+729veXv72/zAAAA9ZfTfwWWkJCg119/XStWrNAPP/ygRx99VIWFhYqPj5ckjR07VjNmzLCOnzhxolJTU7Vw4UJlZWVp7ty52r59ux5//HFJ0oULFzRlyhR9++23+uWXX5SWlqZ7771XN9xwg2JjY52yjwAAoHZx+hqgkSNH6tSpU5ozZ45ycnIUGRmp1NRU60Ln7Oxsubn9J6f16dNHK1eu1KxZszRz5ky1b99eKSkp6tq1qyTJ3d1du3fv1ooVK5SXl6cWLVpo4MCBmjdvnry9vZ2yjwAAoHYxGYZhOLuI2qagoEABAQHKz8/ndBhQj/Sdv0HH8i5JkloG+uqb6bc7uSKA49KRqvL97fRTYAAAADWNAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5RCAAACAyyEAAQAAl0MAAgAALocABAAAXA4BCAAAuBwCEAAAcDkEIAAA4HLsDkClpaX64osv9Pe//13nz5+XJB0/flwXLlxwWHEAAADVwcOejQ4fPqxBgwYpOztbxcXFGjBggBo1aqQXXnhBxcXFSk5OdnSdAAAADmPXDNDEiRPVq1cvnTt3Tr6+vtb2IUOGKC0tzWHFAQAAVAe7ZoA2bdqkLVu2yMvLy6Y9NDRUx44dc0hhAAAA1cWuGSCLxaKysrJy7UePHlWjRo2uuSgAAIDqZFcAGjhwoBYvXmx9bjKZdOHCBSUmJuquu+5yVG0AAADVwq5TYAsXLlRsbKzCwsJUVFSk0aNH68CBAwoKCtI777zj6BoBAAAcyq4AdP3112vXrl1atWqVdu3apQsXLmj8+PEaM2aMzaJoAACA2siuACRJHh4eGjNmjMaMGePIegAAAKqdXWuAVqxYoU8//dT6fOrUqQoMDFSfPn10+PBhhxUHAABQHewKQM8//7z1VFd6erqWLFmiF198UUFBQZo0aZJDCwQAAHA0u06BHTlyRDfccIMkKSUlRcOGDdPDDz+svn376tZbb3VkfQAAAA5n1wxQw4YNdebMGUnSunXrNGDAAEmSj4+PLl265LjqAAAAqoFdM0ADBgzQn//8Z3Xv3l0//vij9do/+/btU2hoqCPrAwAAcDi7ZoCWLl2q6OhonTp1Sh988IGaNGkiScrIyNCoUaMcWiAAAICj2TUDFBgYqCVLlpRrf/bZZ6+5IAAAgOpW6QC0e/dude3aVW5ubtq9e/dVx3br1u2aCwMAAKgulQ5AkZGRysnJUbNmzRQZGSmTySTDMKz9vz43mUwV3igVAACgtqh0ADp06JCaNm1q/RsAAKCuqnQAat26dYV/AwAA1DV23wvs4MGDWrx4sX744QdJUlhYmCZOnKh27do5rDgAAIDqYNfP4D///HOFhYVp27Zt6tatm7p166atW7eqS5cuWr9+vaNrBAAAcCi7ZoCmT5+uSZMmaf78+eXap02bZr0yNAAAQG1k1wzQDz/8oPHjx5drf+ihh/T9999fc1EAAADVya4A1LRpU2VmZpZrz8zMVLNmzar8ekuXLlVoaKh8fHwUFRWlbdu2XXX86tWr1alTJ/n4+Cg8PFxr16793bGPPPKITCaTFi9eXOW6AABA/WRXAJowYYIefvhhvfDCC9q0aZM2bdqk+fPn6y9/+YsmTJhQpddatWqVEhISlJiYqB07digiIkKxsbE6efJkheO3bNmiUaNGafz48dq5c6fi4uIUFxenvXv3lhv74Ycf6ttvv1WLFi3s2U0AAFBP2RWAZs+erTlz5ujVV19V//791b9/fy1ZskRz587VrFmzqvRaixYt0oQJExQfH6+wsDAlJyfLz89Pb775ZoXjX375ZQ0aNEhTpkxR586dNW/ePPXo0aPcrTmOHTumJ554Qm+//bY8PT3t2U0AAFBP2RWATCaTJk2apKNHjyo/P1/5+fk6evSoJk6cKJPJVOnXKSkpUUZGhmJiYv5TkJubYmJilJ6eXuE26enpNuMlKTY21ma8xWLRAw88oClTpqhLly5V3DsAAFDf2X0doF81atTI7m1Pnz6tsrIyBQcH27QHBwcrKyurwm1ycnIqHJ+Tk2N9/sILL8jDw0NPPvlkpeooLi5WcXGx9XlBQUFldwEAANRBds0A5ebm6oEHHlCLFi3k4eEhd3d3m4czZWRk6OWXX9by5csrPRuVlJSkgIAA6yMkJKSaqwQAAM5k1wzQgw8+qOzsbM2ePVvNmzev0mmv/xYUFCR3d3fl5ubatOfm5spsNle4jdlsvur4TZs26eTJk2rVqpW1v6ysTJMnT9bixYv1yy+/lHvNGTNmKCEhwfq8oKCAEAQAQD1mVwDavHmzNm3apMjIyGt6cy8vL/Xs2VNpaWmKi4uTdGX9Tlpamh5//PEKt4mOjlZaWpqeeuopa9v69esVHR0tSXrggQcqXCP0wAMPKD4+vsLX9Pb2lre39zXtCwAAqDvsCkAhISEyDMMhBSQkJGjcuHHq1auXevfurcWLF6uwsNAaVsaOHauWLVsqKSlJkjRx4kT1799fCxcu1ODBg/Xuu+9q+/btWrZsmSSpSZMmatKkic17eHp6ymw2q2PHjg6pGQAA1G12rQFavHixpk+fXuHppKoaOXKkFixYoDlz5igyMlKZmZlKTU21LnTOzs7WiRMnrOP79OmjlStXatmyZYqIiND777+vlJQUde3a9ZprAQAArsFk2DGV07hxY128eFGlpaXy8/Mrd52ds2fPOqxAZygoKFBAQIDy8/Pl7+/v7HIAOEjf+Rt0LO+SJKlloK++mX67kysCOC4dqSrf33adAuO2EgAAoC6zKwCNGzeuUuPmz5+vRx55RIGBgfa8DQAAQLWwaw1QZT3//PN1/nQYAACof6o1ADnql2IAAACOVK0BCAAAoDYiAAEAAJdDAAIAAC6HAAQAAFxOtQagW265Rb6+vtX5FgAAAFVW6esAFRQUVPpFf7364tq1a6teEQAAQDWrdAAKDAyUyWS66hjDMGQymVRWVnbNhQEAAFSXSgegL7/8sjrrAAAAqDGVDkD9+/evzjoAAABqjF33AvvVxYsXlZ2drZKSEpv2bt26XVNRAAAA1cmuAHTq1CnFx8frs88+q7CfNUAAAKA2s+tn8E899ZTy8vK0detW+fr6KjU1VStWrFD79u318ccfO7pGAAAAh7JrBmjDhg366KOP1KtXL7m5ual169YaMGCA/P39lZSUpMGDBzu6TgAAAIexawaosLBQzZo1kyQ1btxYp06dkiSFh4drx44djqsOAACgGtgVgDp27Kj9+/dLkiIiIvT3v/9dx44dU3Jyspo3b+7QAgEAABzNrlNgEydO1IkTJyRJiYmJGjRokN5++215eXlp+fLljqwPAADA4ewKQP/zP/9j/btnz546fPiwsrKy1KpVKwUFBTmsOAAAgOpwTdcB+pWfn5969OjhiJcCAACodnYFoLKyMi1fvlxpaWk6efKkLBaLTf+GDRscUhwAAEB1sHsN0PLlyzV48GB17dr1D2+SCgAAUJvYFYDeffddvffee7rrrrscXQ8AAEC1s+tn8F5eXrrhhhscXQsAAECNsCsATZ48WS+//LIMw3B0PQAAANXOrlNgmzdv1pdffqnPPvtMXbp0kaenp03/mjVrHFIcAABAdbArAAUGBmrIkCGOrgUAAKBGVDkAlZaW6rbbbtPAgQNlNpuroyYAAIBqVeU1QB4eHnrkkUdUXFxcHfUAAABUO7sWQffu3Vs7d+50dC0AAAA1wq41QH/96181efJkHT16VD179lSDBg1s+rt16+aQ4gAAAKqDXQHo/vvvlyQ9+eST1jaTySTDMGQymVRWVuaY6gAAAKqBXQHo0KFDjq4DAACgxtgVgFq3bu3oOgAAAGqMXYugJemtt95S37591aJFCx0+fFiStHjxYn300UcOKw4AAKA62BWAXnvtNSUkJOiuu+5SXl6edc1PYGCgFi9e7Mj6AAAAHM6uAPTqq6/q9ddf1zPPPCN3d3dre69evbRnzx6HFQcAAFAd7ApAhw4dUvfu3cu1e3t7q7Cw8JqLAgAAqE52BaA2bdooMzOzXHtqaqo6d+58rTUBAABUK7t+BZaQkKDHHntMRUVFMgxD27Zt0zvvvKOkpCT94x//cHSNAAAADmVXAPrzn/8sX19fzZo1SxcvXtTo0aPVokULvfzyy9aLJAIAANRWdgUgSRozZozGjBmjixcv6sKFC2rWrJkj6wIAh7MYhvXvy2UW69XrAWcpLi1TSel/3z3B+N2xcCy71gDdfvvtysvLkyT5+flZw09BQYFuv/12hxUHAI5w8NQFPbZyh07kF1nbTp4v1j1LNmvtnhNOrAyu6lJJmRau268+SRt06kKJtf1EfpEWrtuvSyXcUqq62RWANm7cqJKSknLtRUVF2rRpU5Vfb+nSpQoNDZWPj4+ioqK0bdu2q45fvXq1OnXqJB8fH4WHh2vt2rU2/XPnzlWnTp3UoEEDNW7cWDExMdq6dWuV6wJQ9+3IPqe4Jd/o093lg87eYwX669s7tPiLH51QGVzVheJSjf7Ht3p1w086U2j7XWoxpFc3/KTR//hWF4pLnVSha6hSANq9e7d2794tSfr++++tz3fv3q2dO3fqjTfeUMuWLatUwKpVq5SQkKDExETt2LFDERERio2N1cmTJyscv2XLFo0aNUrjx4/Xzp07FRcXp7i4OO3du9c6pkOHDlqyZIn27NmjzZs3KzQ0VAMHDtSpU6eqVBuAui3/0mVNWLFd5//gi2TxFwe0bl9ODVUFVzfrwz3amZ131TE7s/M060Ouq1edTIZhVPqEo5ubm/V8eUWb+fr66tVXX9VDDz1U6QKioqJ04403asmSJZIki8WikJAQPfHEE5o+fXq58SNHjlRhYaE++eQTa9tNN92kyMhIJScnV/geBQUFCggI0BdffKE77rjjD2v6dXx+fr78/f0rvS8Aapc3Nx/S/37yfaXGRlwfoNfH9armiuDqcvKLdO+Sbyq10sfNJG2adrtaBvpWe131RVW+v6u0CPrQoUMyDENt27bVtm3b1LRpU2ufl5eXmjVrZnNl6D9SUlKijIwMzZgxw9rm5uammJgYpaenV7hNenq6EhISbNpiY2OVkpLyu++xbNkyBQQEKCIiotK14doNe22Ldc1F8wAfvf9oHydXBFezZufRSo/ddTRfvf8vrRqrAarGYkgfZR7TX2+9wdml1EtVCkC/3gXeYrE45M1Pnz6tsrIyBQcH27QHBwcrKyurwm1ycnIqHJ+TYzt9/cknn+j+++/XxYsX1bx5c61fv15BQUEVvmZxcbGKi4utzwsKCuzZHfzGifwiHcu75Owy4MKOneP4Q93GMVx97P4Z/IEDB/Tll1/q5MmT5QLRnDlzrrmwa3XbbbcpMzNTp0+f1uuvv64RI0Zo69atFf5cPykpSc8++6wTqgRQnbw93CVddnYZgN28POz6rRIqwa4A9Prrr+vRRx9VUFCQzGazzXU0TCZTpQNQUFCQ3N3dlZuba9Oem5srs9lc4TZms7lS4xs0aKAbbrhBN9xwg2666Sa1b99eb7zxhs3ptl/NmDHD5rRaQUGBQkJCKrUPAGqnvIslcqvCJX7c3UwaGBYs96psBFTRifwiZRw+V+nxN4ZeV43VuDa7AtBzzz2n//u//9O0adOu6c29vLzUs2dPpaWlKS4uTtKV02tpaWl6/PHHK9wmOjpaaWlpeuqpp6xt69evV3R09FXfy2Kx2Jzm+m/e3t7y9va2ax8A1D4bsnI1/YM9Onm+4v/mKzKqd4ieiwuvxqqAKxfg7Dt/Q6WOzaaNvDUgLPgPx8E+ds2tnTt3TsOHD3dIAQkJCXr99de1YsUK/fDDD3r00UdVWFio+Ph4SdLYsWNtZm0mTpyo1NRULVy4UFlZWZo7d662b99uDUyFhYWaOXOmvv32Wx0+fFgZGRl66KGHdOzYMYfVDKB2Kii6rKnv79JDy7dXKfw0a+Stx29rX42VAVd4urtp9t1hlRo75+4webpzCqy62DUDNHz4cK1bt06PPPLINRcwcuRInTp1SnPmzFFOTo4iIyOVmppqXeicnZ0tN7f/HAB9+vTRypUrNWvWLM2cOVPt27dXSkqKunbtKklyd3dXVlaWVqxYodOnT6tJkya68cYbtWnTJnXp0uWa6wVQO20+cFpT39+l4/91tWfpyk+J2wQ10MFThRVu1+o6P735YC+ZA3xqokxA90S00KWSMs1K2auSsvI/KvJyd9NzcV11T0QLJ1TnOqp0HaBfJSUladGiRRo8eLDCw8Pl6elp0//kk086rEBn4DpAjtF3/gbrr8BaBvrqm+ncJgWOV1hcqvmfZemtbw+X62sb1EALRkSoe0igdmTn6YE3turi/3+LAW8PN82/L1x3hTf//xdLAzUrt6BI72zL1tIvf9LlsitfxY18PPRFQn8F+xPI7VFt1wH61bJly9SwYUN99dVX+uqrr2z6TCZTnQ9AAOqGbYfO6unVu5R99mK5vof6ttGU2I7y9boSbnq2bqzGfl66WHIllAc19NaQ7tfXaL3Afwv299FTMR20evtR6z8W/X08CT81xK4AdOjQIUfXAQCVVnS5TAs+3683vjmk385hh1znq5eGReimtk2cUxyAOsHu6wABgDNkHsnT5PcyK1zTMzqqlWbe1VkNvfloA3B1lf6USEhI0Lx589SgQYNyt6L4rUWLFl1zYQDw30pKLXol7YBe++qgyiy20z7NA3z0wn3d1K9D09/ZGgBsVToA7dy5U5cvX7b+/Xv++6KIAOAI3x8vUMJ7mcrKOV+u774e12vOPWEK8PWsYEsAqFilA9CXX35Z4d9Xc/ToUbVo0cLmZ+wAUFmlZRa9tvGgXtlwwPormV8FNfRW0tBwLhQHwC7VeqI8LCxMmZmZatu2bXW+DYB66EDueU1evUu7j+aX67u7W3P9771ddV0DLydUBqA+qNYAZMclhgC4uDKLoTc2/6wF635USantReIa+3lqXlxX3d2NC8QBuDb8VAJArfHL6UI9vXqXtldws8iYzsF6fmhXNWvENVIAXDsCEACns1gMvfXtYc3/LEuXLpfZ9DXy8dDce7poaI+W/MgCgMMQgAA41dFzFzX1/d3acvBMub5b2gfpxWHd1DzA1wmVAajPqjUA8a81AL/HMAyt+u6Invv0B10oLrXpa+DlrmcGh2lU7xA+RwBUCxZBA6hxuQVFmvbBbm3cf6pcX1Sb67RgeIRCrvNzQmUAXEW1BqDvv/9eLVrwaw0AVxiGoY8yj2vOR3tVUGQ76+Pt4abpd3bSuOhQubkx6wOgelU6AA0dOrTSL7pmzRpJUkhISNUrAlAvnb5QrGc+3KPP9+WW6+veKlALhkeoXdOGTqgMgCuqdAAKCAiw/m0Yhj788EMFBASoV69ekqSMjAzl5eVVKSgBcA2f7TmhZ1L26mxhiU27l7ubJg3ooIf7tZU7sz4AalClA9A///lP69/Tpk3TiBEjlJycLHd3d0lSWVmZ/vrXv8rf39/xVQKok/Iulijx4336KPN4ub4uLfy1aESkOpobOaEyAK7OrjVAb775pjZv3mwNP5Lk7u6uhIQE9enTRy+99JLDCgRQN23IytX0D/bo5Plim3YPN5Mev/0GPXbbDfJ05z6BAJzDrgBUWlqqrKwsdezY0aY9KytLFovld7YC4AoKii7ruU++13vbj5br6xDcUItGRKpry4AKtgSAmmNXAIqPj9f48eN18OBB9e7dW5K0detWzZ8/X/Hx8Q4tEEDdsfnAaU19f5eO5xfZtLuZpL/0b6enYtrL28P9d7YGgJpjVwBasGCBzGazFi5cqBMnTkiSmjdvrilTpmjy5MkOLRBA7VdYXKr5n2XprW8Pl+trG9RAC0ZEqEerxk6oDAAqZlcAcnNz09SpUzV16lQVFBRIEoufARe17dBZPb16l7LPXizX91DfNpoS21G+Xsz6AKhd7L4QYmlpqTZu3KiDBw9q9OjRkqTjx4/L399fDRtyLQ+gviu6XKYFn+/XG98c0m8v+n59Y1+9NCxC0e2aOKc4APgDdgWgw4cPa9CgQcrOzlZxcbEGDBigRo0a6YUXXlBxcbGSk5MdXSeAWiTzSJ4mv5epg6cKy/WNjmqlmXd1VkNv7rUMoPay6xNq4sSJ6tWrl3bt2qUmTf7zL7whQ4ZowoQJDisOQO1SUmrRK2kH9LeNP8nym1kfs7+PXhjWTf07NHVOcQBQBXYFoE2bNmnLli3y8vKyaQ8NDdWxY8ccUhiA2uX74wVKeC9TWTnny/Xd1+N6zbknTAG+nk6oDACqzq4AZLFYVFZWVq796NGjatSIq7oC9UlpmUWvbTyoVzYc0OUy22mfoIbeShoargFhwU6qDgDsY9dlWAcOHKjFixdbn5tMJl24cEGJiYm66667HFUbACc7kHteQ1/booXrfywXfu7u1lzrJvUj/ACok+yaAVq4cKFiY2MVFhamoqIijR49WgcOHFBQUJDeeecdR9cIoIaVWQy9sflnLVj3o0pKba/u3tjPU/Piuurubi2cVB0AXDu7AtD111+vXbt2adWqVdq1a5cuXLig8ePHa8yYMfL19XV0jQBq0C+nC/X06l3afvhcub6YzsF6fmhXNWvk44TKAMBx7ApAX3/9tfr06aMxY8ZozJgx1vbS0lJ9/fXX6tevn8MKBFAzLBZDb317WPM/y9Kly7Zr/Br5eGjuPV00tEdLmUwmJ1UIAI5jVwC67bbbdOLECTVr1symPT8/X7fddluFC6QB1F5Hz13U1Pd3a8vBM+X6bmkfpBeHdVPzAGZ3AdQfdgUgwzAq/FfgmTNn1KBBg2suCkDNMAxDq747ouc+/UEXiktt+vy83DVrcJhG9Q5h1gdAvVOlADR06FBJV3719eCDD8rb29vaV1ZWpt27d6tPnz6OrRBAtcgtKNK0D3Zr4/5T5fqi2lynl4ZFqFUTPydUBgDVr0oBKCAgQNKVfzU2atTIZsGzl5eXbrrpJq4EDdRyhmEoJfOYEj/ap4Ii21kfbw83TRvUSQ/2CZWbG7M+AOqvKgWgf/7zn5KuXPH56aef5nQXUMecvlCsZz7co8/35Zbr694qUAuGR6hdU25mDKD+s2sNUGJioqPrAFDNPttzQs+k7NXZwhKbdi93N00a0EEP92srd2Z9ALgIu2/X/P777+u9995Tdna2SkpsP1B37NhxzYUBcIy8iyVK/HifPso8Xq6vSwt/LRoRqY5mbmEDwLXYdSuMV155RfHx8QoODtbOnTvVu3dvNWnSRD///LPuvPNOR9cIwE4bsnI18P99XS78eLiZ9FRMe6U81pfwA8Al2TUD9Le//U3Lli3TqFGjtHz5ck2dOlVt27bVnDlzdPbsWUfXCKCKCoou67lPvtd724+W6+sQ3FCLRkSqa8sAJ1QGALWDXTNA2dnZ1p+7+/r66vz585KkBx54gHuBAU62+cBpDfp/X5cLP24m6dFb2+nfT9xM+AHg8uyaATKbzTp79qxat26tVq1a6dtvv1VERIQOHTokwzD++AUAOFxhcanmf5alt749XK6vbVADLRgRoR6tGjuhMgCofewKQLfffrs+/vhjde/eXfHx8Zo0aZLef/99bd++3XqxRAA1Z9uhs3p69S5ln71Yri++b6imxnaSr5e7EyoDgNrJrgC0bNkyWSwWSdJjjz2mJk2aaMuWLfrTn/6kv/zlLw4tEMDvK7pcpgWf79cb3xzSbydfr2/sq5eGRSi6XRPnFAcAtZhdAcjNzU1ubv9ZPnT//ffr/vvvd1hRAP5Y5pE8TX4vUwdPFZbrGx3VSjPv6qyG3nZf6QIA6jW7FkFLUlFRkbZt26ZPPvlEH3/8sc2jqpYuXarQ0FD5+PgoKipK27Ztu+r41atXq1OnTvLx8VF4eLjWrl1r7bt8+bKmTZum8PBwNWjQQC1atNDYsWN1/Hj5a6AAdVFxaZle+jxLQ//2TbnwY/b30YqHeuv5IeGEHwC4Crs+IVNTUzV27FidPn26XJ/JZFJZWVmlX2vVqlVKSEhQcnKyoqKitHjxYsXGxmr//v1q1qxZufFbtmzRqFGjlJSUpLvvvlsrV65UXFycduzYoa5du+rixYvasWOHZs+erYiICJ07d04TJ07Un/70J23fvt2e3QVqje+PFyjhvUxl5Zwv13dfj+s1554wBfh6OqEyAKhb7JoBeuKJJzR8+HCdOHFCFovF5lGV8CNJixYt0oQJExQfH6+wsDAlJyfLz89Pb775ZoXjX375ZQ0aNEhTpkxR586dNW/ePPXo0UNLliyRdOWGrevXr9eIESPUsWNH3XTTTVqyZIkyMjKUnZ1tz+4CTldaZtGraQd079LN5cJPUENvvT62lxaOiCD8AEAl2RWAcnNzlZCQoODg4Gt685KSEmVkZCgmJuY/Bbm5KSYmRunp6RVuk56ebjNekmJjY393vCTl5+fLZDIpMDDwmuoFnOFA7nkNfW2LFq7/UZfLbFc6392tudZN6qcBYdf23yIAuBq7ToENGzZMGzduVLt27a7pzU+fPq2ysrJyQSo4OFhZWVkVbpOTk1Ph+JycnArHFxUVadq0aRo1apT8/f0rHFNcXKzi4mLr84KCgqrsBlAtyiyG3tj8sxas+1ElpRabvsZ+npoX11V3d2vhpOoAoG6zKwAtWbJEw4cP16ZNmxQeHi5PT9tp9yeffNIhxV2ry5cva8SIETIMQ6+99trvjktKStKzzz5bg5UBV/fL6UI9vXqXth8+V64vpnOwnh/aVc0a+TihMgCoH+wKQO+8847WrVsnHx8fbdy4USaTydpnMpkqHYCCgoLk7u6u3Nxcm/bc3FyZzeYKtzGbzZUa/2v4OXz4sDZs2PC7sz+SNGPGDCUkJFifFxQUKCQkpFL7ADiSxWLorW8Pa/5nWbp02XY9XSMfDyXe00X39Whp898cAKDq7FoD9Mwzz+jZZ59Vfn6+fvnlFx06dMj6+Pnnnyv9Ol5eXurZs6fS0tKsbRaLRWlpaYqOjq5wm+joaJvxkrR+/Xqb8b+GnwMHDuiLL75QkyZXvxCct7e3/P39bR5ATTt67qL+542tSvx4X7nwc0v7IK2b1E/Del5P+AEAB7BrBqikpEQjR460uRiivRISEjRu3Dj16tVLvXv31uLFi1VYWKj4+HhJ0tixY9WyZUslJSVJkiZOnKj+/ftr4cKFGjx4sN59911t375dy5Ytk3Ql/AwbNkw7duzQJ598orKyMuv6oOuuu05eXl7XXDPgSIZhaNV3R/Tcpz/oQnGpTZ+fl7ueGdxZo3u3IvgAgAPZFYDGjRunVatWaebMmddcwMiRI3Xq1CnNmTNHOTk5ioyMVGpqqnWhc3Z2tk3Q6tOnj1auXKlZs2Zp5syZat++vVJSUtS1a1dJ0rFjx6wXY4yMjLR5ry+//FK33nrrNdcMOEpuQZGmfbBbG/efKtcX1eY6vTQsQq2a+DmhMgCo3+wKQGVlZXrxxRf1+eefq1u3buUWQS9atKhKr/f444/r8ccfr7Bv48aN5dqGDx+u4cOHVzg+NDSUO9Kj1jMMQymZx5T40T4VFNnO+nh7uGnaoE56sE+o3NyY9QGA6mBXANqzZ4+6d+8uSdq7d69NH9P0wNWdvlCsZz7co8/35Zbr694qUAuGR6hd04ZOqAwAXIddAejLL790dB2AS/hszwk9k7JXZwtLbNq93N00aUAHPdyvrdyZ9QGAasfdEoEakHexRIkf79NHmeVvytulhb8WjYhUR3MjJ1QGAK6p0gFo6NChWr58ufz9/TV06NCrjl2zZs01FwbUFxuycjX9gz06eb7Ypt3DzaTHb79Bj912gzzdr/0XlQCAyqt0AAoICLCu7/H392etD/AHCoou67lPvtd724+W6+sQ3FCLRkSqa8sAJ1QGAKh0APrnP/9p/Xv58uXVUQtQb2w+cFpT39+l4/lFNu1uJunhfu00aUB7eXu4O6k6AIBd8+6333678vLyyrUXFBTo9ttvv9aagDqrsLhUs1P26n/e2Fou/LQJaqDVj/TR9Ds7EX4AwMnsWgS9ceNGlZSUlGsvKirSpk2brrkooC7aduisnl69S9lnL5bri+8bqqmxneTrRfABgNqgSgFo9+7d1r+///576y0mpCsXR0xNTVXLli0dVx1QBxRdLtOCz/frjW8O6bfX4Ly+sa9eGhah6HZXvx8dAKBmVSkARUZGymQyyWQyVXiqy9fXV6+++qrDigNqu8wjeZr8XqYOnios1zc6qpVm3tVZDb252gQA1DZV+mQ+dOiQDMNQ27ZttW3bNjVt2tTa5+XlpWbNmsndnSl+1H/FpWV6Je2AXtt4UJbfzPqY/X30wrBu6t+hacUbAwCcrkoBqHXr1pIki8VSLcUAdcG+4/ma/N4uZeWcL9d3X4/rNeeeMAX4elawJQCgtrDrV2ArVqzQp59+an0+depUBQYGqk+fPjp8+LDDigNqk9Iyi15NO6B7l3xTLvwENfTW62N7aeGICMIPANQBdgWg559/Xr6+vpKk9PR0LVmyRC+++KKCgoI0adIkhxYI1AYHcs9r6GtbtHD9jyr9zTmvwd2aa92kfhoQFuyk6gAAVWXX6swjR47ohhtukCSlpKRo2LBhevjhh9W3b1/deuutjqwPcKoyi6E3Nv+sBet+VEmp7anfQD9Pzbu3q+6JaOGk6gAA9rIrADVs2FBnzpxRq1attG7dOiUkJEiSfHx8dOnSJYcWCDjLL6cL9fTqXdp++Fy5vpjOwXp+aFc1a+TjhMoAANfKrgA0YMAA/fnPf1b37t31448/6q677pIk7du3z7pQGqirLBZDb317WPM/y9Kly2U2fY18PJR4Txfd16Ml98MDgDrMrgC0dOlSzZ49W0eOHNGaNWvUpMmVi7xlZGRo9OjRDi0QqElHz13U1Pd3a8vBM+X6bmkfpBeHdVPzAF8nVAYAcCS7FkEHBgZq+PDhatCggebOnatjx45Jktq1a6f+/fs7tECgJhiGoXe3ZWvQ4k3lwo+fl7v+b0hX/euh3oQfAKgn7ApAH3zwgQYNGiQ/Pz/t3LlTxcXFkq7cDPX55593aIFAdcstKFL88u80fc0eXSgutemLanOdUif205io1pzyAoB6xK4A9Nxzzyk5OVmvv/66PD3/c82Tvn37aseOHQ4rDqhOhmHow51HNWDRV9q4/5RNn7eHm+bcHaZ3JtykVk38nFQhAKC62LUGaP/+/erXr1+59oCAAOXl5V1rTUC1O32hWM98uEef78st19e9VaAWDI9Qu6YNnVAZAKAm2BWAzGazfvrpJ4WGhtq0b968WW3btnVEXUC1WbvnhGal7NXZwhKbdi93N00a0EEP92srdzdOdwFAfWZXAJowYYImTpyoN998UyaTScePH1d6erqefvppzZ4929E1Ag6Rd7FEcz7ap493HS/X16WFvxaNiFRHcyMnVAYAqGl2BaDp06fLYrHojjvu0MWLF9WvXz95e3vr6aef1hNPPOHoGoFrtiErV9M/2KOT54tt2j3cTHrsthv0+O03yNPdriVxAIA6yK4AZDKZ9Mwzz2jKlCn66aefdOHCBYWFhalhQ9ZMoHYpKLqs5z75Xu9tP1qur0NwQy0cHqnw6wOcUBkAwJnsCkC/8vLyUlhYmKNqARxq84HTmvr+Lh3PL7JpdzNJD/drp0kD2svbw91J1QEAnOmaAhBQGxUWl2r+Z1l669vD5fraBDXQguER6tm6sRMqAwDUFgQg1CvbDp3V06t3KfvsxXJ98X1DNTW2k3y9mPUBAFdHAEK9UHS5TAs+3683vjkkw7Dtu76xr14aFqHodk2cUxwAoNYhAKHOyzySp8nvZergqcJyfaOjWmnmXZ3V0JtDHQDwH3wroM4qLi3TK2kH9NrGg7L8ZtbH7O+jF4Z1U/8OTZ1THACgViMAoU7adzxfk9/bpayc8+X6hvZoqcR7uijA17OCLQEAIAChjrlcZtFrGw/qlbQDKv3NtE9QQy89PyRcA7uYnVQdAKCuIAChzjiQe16TV+/S7qP55foGd2uuefd21XUNvJxQGQCgriEAodYrsxh6Y/PPWrDuR5WUWmz6Av08Ne/erronooWTqgMA1EUEINRqv5wu1NOrd2n74XPl+mI6B+v5oV3VrJGPEyoDANRlBCDUShaLobe+Paz5n2Xp0uUym75GPh5KvKeL7uvRUiaTyUkVAgDqMgIQap2j5y5q6vu7teXgmXJ9t7QP0ovDuql5gK8TKgMA1BcEINQahmFo1XdH9NynP+hCcalNn5+Xu54Z3Fmje7di1gcAcM0IQKgVcguKNO2D3dq4/1S5vqg21+mlYRFq1cTPCZUBAOojAhCcyjAMpWQeU+JH+1RQZDvr4+3hpmmDOunBPqFyc2PWBwDgOAQgOM3pC8V65sM9+nxfbrm+7q0CtWB4hNo1beiEygAA9R0BCNXCMAxdLvvPNXssv7lF+9o9JzQrZa/OFpbYtHu5u+mpAe318C1t5eHuViO1AgBcDwEIDrd2zwn9beNPOnm+2Np2Ir9Ij63cofF922j5ll/08a7j5bbr0sJfi0ZEqqO5UU2WCwBwQbXin9hLly5VaGiofHx8FBUVpW3btl11/OrVq9WpUyf5+PgoPDxca9eutelfs2aNBg4cqCZNmshkMikzM7Maq8d/e/mLA/rr2zu091hBub5Pd5/Qfa9tKRd+PNxMmnhHe6U81pfwAwCoEU4PQKtWrVJCQoISExO1Y8cORUREKDY2VidPnqxw/JYtWzRq1CiNHz9eO3fuVFxcnOLi4rR3717rmMLCQt1888164YUXamo3IGn997n6f1/8eNUxxm+edwhuqA//2leTBnSQJ6e8AAA1xOnfOIsWLdKECRMUHx+vsLAwJScny8/PT2+++WaF419++WUNGjRIU6ZMUefOnTVv3jz16NFDS5YssY554IEHNGfOHMXExNTUbkDS3786WOmxJkmP9G+nfz9xs8KvD6i+ogAAqIBTA1BJSYkyMjJsgoqbm5tiYmKUnp5e4Tbp6enlgk1sbOzvjkfNOHymsML7df2e0CA/Tb+zk7w93KuxKgAAKubURdCnT59WWVmZgoODbdqDg4OVlZVV4TY5OTkVjs/JybG7juLiYhUX/2fBbkFB+fUruLpj5y5VaXzexcvVVAkAAH/M6afAaoOkpCQFBARYHyEhIc4uqc7x9qzaoeTlwaEHAHAep34LBQUFyd3dXbm5thfCy83NldlsrnAbs9lcpfGVMWPGDOXn51sfR44csfu1XFUns78aeFX+dFav1tdVYzUAAFydUwOQl5eXevbsqbS0NGubxWJRWlqaoqOjK9wmOjraZrwkrV+//nfHV4a3t7f8/f1tHqiaBt4eGtKjZaXHj7mpVTVWAwDA1Tn9QogJCQkaN26cevXqpd69e2vx4sUqLCxUfHy8JGns2LFq2bKlkpKSJEkTJ05U//79tXDhQg0ePFjvvvuutm/frmXLlllf8+zZs8rOztbx41euN7N//35JV2aPrmWmCFf3+G3ttW5frs0FECtyV7hZ0W2b1FBVAACU5/SFGCNHjtSCBQs0Z84cRUZGKjMzU6mpqdaFztnZ2Tpx4oR1fJ8+fbRy5UotW7ZMERERev/995WSkqKuXbtax3z88cfq3r27Bg8eLEm6//771b17dyUnJ9fszrkYc4CPVk64Sa2u+/27tt/drbkWjYiUycTNTQEAzmMyDOO316ZzeQUFBQoICFB+fj6nw+xQXFqmz/bkaNoHu1VceuV+YH5e7nprfJR6tAok/MBp+s7foGN5V36x2DLQV99Mv93JFQEcl45Ule9vp88Aof7x9nBXXPeWCmrobW1r7Oelnq0bE34AALUCAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5RCAAACAyyEAAQAAl0MAAgAALocABAAAXA4BCAAAuBwCEAAAcDkEIAAA4HIIQAAAwOUQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcDgEIAAC4HAIQAABwOQQgAADgcghAAADA5RCAAACAyyEAAQAAl0MAAgAALocABAAAXA4BCAAAuBwCEAAAcDkEIAAA4HIIQAAAwOXUigC0dOlShYaGysfHR1FRUdq2bdtVx69evVqdOnWSj4+PwsPDtXbtWpt+wzA0Z84cNW/eXL6+voqJidGBAweqcxcAAEAd4vQAtGrVKiUkJCgxMVE7duxQRESEYmNjdfLkyQrHb9myRaNGjdL48eO1c+dOxcXFKS4uTnv37rWOefHFF/XKK68oOTlZW7duVYMGDRQbG6uioqKa2i0AAFCLOT0ALVq0SBMmTFB8fLzCwsKUnJwsPz8/vfnmmxWOf/nllzVo0CBNmTJFnTt31rx589SjRw8tWbJE0pXZn8WLF2vWrFm699571a1bN/3rX//S8ePHlZKSUoN7BgAAaiunBqCSkhJlZGQoJibG2ubm5qaYmBilp6dXuE16errNeEmKjY21jj906JBycnJsxgQEBCgqKup3XxMAALgWD2e++enTp1VWVqbg4GCb9uDgYGVlZVW4TU5OToXjc3JyrP2/tv3emN8qLi5WcXGx9XlBQUHVdgQAANQpTj8FVhskJSUpICDA+ggJCXF2SQAAoBo5NQAFBQXJ3d1dubm5Nu25ubkym80VbmM2m686/tf/rcprzpgxQ/n5+dbHkSNH7Nof2Goe4KOWgb5qGeir5gE+zi4H4JhErcRx6RxOPQXm5eWlnj17Ki0tTXFxcZIki8WitLQ0Pf744xVuEx0drbS0ND311FPWtvXr1ys6OlqS1KZNG5nNZqWlpSkyMlLSlVNaW7du1aOPPlrha3p7e8vb29th+4Ur3n+0j7NLAGxwTKI24rh0DqcGIElKSEjQuHHj1KtXL/Xu3VuLFy9WYWGh4uPjJUljx45Vy5YtlZSUJEmaOHGi+vfvr4ULF2rw4MF69913tX37di1btkySZDKZ9NRTT+m5555T+/bt1aZNG82ePVstWrSwhiwAAODanB6ARo4cqVOnTmnOnDnKyclRZGSkUlNTrYuYs7Oz5eb2nzN1ffr00cqVKzVr1izNnDlT7du3V0pKirp27WodM3XqVBUWFurhhx9WXl6ebr75ZqWmpsrHh6lFAAAgmQzDMJxdRG1TUFCggIAA5efny9/f39nlAACASqjK9ze/AgMAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAAAOByCEAAAMDlEIAAAIDLIQABAACXQwACAAAuhwAEAABcjtPvBVYb/Xp3kIKCAidXAgAAKuvX7+3K3OWLAFSB8+fPS5JCQkKcXAkAAKiq8+fPKyAg4KpjuBlqBSwWi44fP65GjRrJZDI5u5w6raCgQCEhITpy5Ag3lkWtwDGJ2ojj0jEMw9D58+fVokULubldfZUPM0AVcHNz0/XXX+/sMuoVf39//qNGrcIxidqI4/La/dHMz69YBA0AAFwOAQgAALgcAhCqlbe3txITE+Xt7e3sUgBJHJOonTguax6LoAEAgMthBggAALgcAhAAAHA5BCAAAOByCECosq+//lr33HOPWrRoIZPJpJSUFJt+wzA0Z84cNW/eXL6+voqJidGBAwdsxpw9e1ZjxoyRv7+/AgMDNX78eF24cKEG9wL1ydy5c2UymWwenTp1svYXFRXpscceU5MmTdSwYUPdd999ys3NtXmN7OxsDR48WH5+fmrWrJmmTJmi0tLSmt4V1GE19dm4e/du3XLLLfLx8VFISIhefPHF6t61eokAhCorLCxURESEli5dWmH/iy++qFdeeUXJycnaunWrGjRooNjYWBUVFVnHjBkzRvv27dP69ev1ySef6Ouvv9bDDz9cU7uAeqhLly46ceKE9bF582Zr36RJk/Tvf/9bq1ev1ldffaXjx49r6NCh1v6ysjINHjxYJSUl2rJli1asWKHly5drzpw5ztgV1FE18dlYUFCggQMHqnXr1srIyNBLL72kuXPnatmyZdW+f/WOAVwDScaHH35ofW6xWAyz2Wy89NJL1ra8vDzD29vbeOeddwzDMIzvv//ekGR899131jGfffaZYTKZjGPHjtVY7ag/EhMTjYiIiAr78vLyDE9PT2P16tXWth9++MGQZKSnpxuGYRhr16413NzcjJycHOuY1157zfD39zeKi4urtXbUT9X12fi3v/3NaNy4sc1xOW3aNKNjx47VvEf1DzNAcKhDhw4pJydHMTEx1raAgABFRUUpPT1dkpSenq7AwED16tXLOiYmJkZubm7aunVrjdeM+uHAgQNq0aKF2rZtqzFjxig7O1uSlJGRocuXL9sck506dVKrVq1sjsnw8HAFBwdbx8TGxqqgoED79u2r2R1BveSoz8b09HT169dPXl5e1jGxsbHav3+/zp07V0N7Uz8QgOBQOTk5kmTzRfLr81/7cnJy1KxZM5t+Dw8PXXfdddYxQFVERUVp+fLlSk1N1WuvvaZDhw7plltu0fnz55WTkyMvLy8FBgbabPPbY7KiY/bXPuBaOeqzkWPVcbgZKoA6784777T+3a1bN0VFRal169Z677335Ovr68TKANRWzADBocxmsySV+4VNbm6utc9sNuvkyZM2/aWlpTp79qx1DHAtAgMD1aFDB/30008ym80qKSlRXl6ezZjfHpMVHbO/9gHXylGfjRyrjkMAgkO1adNGZrNZaWlp1raCggJt3bpV0dHRkqTo6Gjl5eUpIyPDOmbDhg2yWCyKioqq8ZpR/1y4cEEHDx5U8+bN1bNnT3l6etock/v371d2drbNMblnzx6bL5/169fL399fYWFhNV4/6h9HfTZGR0fr66+/1uXLl61j1q9fr44dO6px48Y1tDf1hLNXYaPuOX/+vLFz505j586dhiRj0aJFxs6dO43Dhw8bhmEY8+fPNwIDA42PPvrI2L17t3Hvvfcabdq0MS5dumR9jUGDBhndu3c3tm7damzevNlo3769MWrUKGftEuq4yZMnGxs3bjQOHTpkfPPNN0ZMTIwRFBRknDx50jAMw3jkkUeMVq1aGRs2bDC2b99uREdHG9HR0dbtS0tLja5duxoDBw40MjMzjdTUVKNp06bGjBkznLVLqINq4rMxLy/PCA4ONh544AFj7969xrvvvmv4+fkZf//732t8f+s6AhCq7MsvvzQklXuMGzfOMIwrP/ecPXu2ERwcbHh7ext33HGHsX//fpvXOHPmjDFq1CijYcOGhr+/vxEfH2+cP3/eCXuD+mDkyJFG8+bNDS8vL6Nly5bGyJEjjZ9++snaf+nSJeOvf/2r0bhxY8PPz88YMmSIceLECZvX+OWXX4w777zT8PX1NYKCgozJkycbly9fruldQR1WU5+Nu3btMm6++WbD29vbaNmypTF//vya2sV6hbvBAwAAl8MaIAAA4HIIQAAAwOUQgAAAgMshAAEAAJdDAAIAAC6HAAQAAFwOAQgAALgcAhAAAHA5BCAALuvWW2/VU089VenxGzdulMlkKndjVQB1j4ezCwAARzKZTPrwww8VFxf3h2PXrFkjT0/P6i8KQK1DAALgckpKSuTl5aXrrrvO2aUAcBJOgQGodW699VY9+eSTmjp1qq677jqZzWbNnTv3D7cLDQ2VJA0ZMkQmk8n6fO7cuYqMjNQ//vEPtWnTRj4+Ptb3+e9TYG+99ZZ69eqlRo0ayWw2a/To0Tp58uTvvt/hw4d1zz33qHHjxmrQoIG6dOmitWvX2rvbAGoQAQhArbRixQo1aNBAW7du1Ysvvqj//d//1fr166+6zXfffSdJ+uc//6kTJ05Yn0vSTz/9pA8++EBr1qxRZmZmhdtfvnxZ8+bN065du5SSkqJffvlFDz744O++32OPPabi4mJ9/fXX2rNnj1544QU1bNiwyvsKoOZxCgxArdStWzclJiZKktq3b68lS5YoLS1NAwYM+N1tmjZtKkkKDAyU2Wy26SspKdG//vUv65iKPPTQQ9a/27Ztq1deeUU33nijLly4UGGwyc7O1n333afw8HDrNgDqBmaAANRK3bp1s3nevHnzq56O+iOtW7e+aviRpIyMDN1zzz1q1aqVGjVqpP79+0u6EnQq8uSTT+q5555T3759lZiYqN27d9tdH4CaRQACUCv99tdZJpNJFovF7tdr0KDBVfsLCwsVGxsrf39/vf322/ruu+/04YcfSroye1SRP//5z/r555/1wAMPaM+ePerVq5deffVVu2sEUHMIQADqFU9PT5WVlVV5u6ysLJ05c0bz58/XLbfcok6dOlVqxikkJESPPPKI1qxZo8mTJ+v111+3p2wANYwABKBeCQ0NVVpamnJycnTu3LlKb9eqVSt5eXnp1Vdf1c8//6yPP/5Y8+bNu+o2Tz31lD7//HMdOnRIO3bs0JdffqnOnTtf6y4AqAEEIAD1ysKFC7V+/XqFhISoe/fuld6uadOmWr58uVavXq2wsDDNnz9fCxYsuOo2ZWVleuyxx9S5c2cNGjRIHTp00N/+9rdr3QUANcBkGIbh7CIAAABqEjNAAADA5RCAANQZb7/9tho2bFjho0uXLs4uD0AdwikwAHXG+fPnlZubW2Gfp6enWrduXcMVAairCEAAAMDlcAoMAAC4HAIQAABwOQQgAADgcghAAADA5RCAAACAyyEAAQAAl0MAAgAALocABAAAXM7/B4M4u/S1rXi2AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "SimpleExperiment" + "sns.pointplot(data=sim_df, x='n_trials', y='estimated_internal_noise')" ] }, { "cell_type": "code", "execution_count": 219, - "id": "7aea1f12", + "id": "b64a77c2", "metadata": { "ExecuteTime": { "end_time": "2024-04-11T20:09:16.840733Z", @@ -1749,13 +1681,7 @@ "..........;\n", "670 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 0.0}\n", "..........;\n", - "671 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 0.5}\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "671 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 0.5}\n", "..........;\n", "672 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 3.3000000000000003, 'criteria': 1.0}\n", "..........;\n", @@ -2311,13 +2237,7 @@ "..........;\n", "930 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 0.0}\n", "..........;\n", - "931 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 0.5}\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ + "931 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 0.5}\n", "..........;\n", "932 : {'n_trials': 1000, 'n_repeated': 1000, 'trial_type': , 'n_features': 1, 'external_noise_std': 1, 'kernel': [1], 'internal_noise_std': 4.6000000000000005, 'criteria': 1.0}\n", "..........;\n", @@ -2485,7 +2405,7 @@ { "cell_type": "code", "execution_count": null, - "id": "94a3c61d", + "id": "da967fc0", "metadata": {}, "outputs": [], "source": [ @@ -2494,7 +2414,7 @@ }, { "cell_type": "markdown", - "id": "f217823b", + "id": "47c4c0c5", "metadata": {}, "source": [ "## Simulate with kernels" @@ -2502,7 +2422,7 @@ }, { "cell_type": "markdown", - "id": "26ee88e2", + "id": "b6d62245", "metadata": {}, "source": [ "Single run" @@ -2510,48 +2430,48 @@ }, { "cell_type": "code", - "execution_count": 104, - "id": "986cc8b8", + "execution_count": 32, + "id": "17c7e065", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T12:41:07.781836Z", - "start_time": "2024-04-10T12:41:07.728949Z" + "end_time": "2024-04-22T15:16:15.983628Z", + "start_time": "2024-04-22T15:16:15.907873Z" } }, "outputs": [ { "data": { "text/plain": [ - "0.948432263142621" + "0.9799297710374408" ] }, - "execution_count": 104, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# single run: \n", - "exp = Exp(n_trials = 100,\n", + "exp = SimpleExperiment(n_trials = 100,\n", " trial_type = Int2Trial, \n", " n_features = 5, \n", " external_noise_std = 100)\n", - "obs = Obs.with_random_kernel(n_features = 5, \n", + "obs = LinearObserver.with_random_kernel(n_features = 5, \n", " internal_noise_std = 1, \n", " criteria = 0)\n", "responses = obs.respond_to_experiment(exp)\n", - "ka = Analyser(ClassificationImage)\n", + "ka = KernelDistance(ClassificationImage)\n", "ka.analyse(exp, obs, responses)" ] }, { "cell_type": "code", - "execution_count": 15, - "id": "85ac8a46", + "execution_count": 41, + "id": "dc9c6a70", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T04:42:23.899935Z", - "start_time": "2024-04-10T04:42:23.752329Z" + "end_time": "2024-04-22T15:23:19.385125Z", + "start_time": "2024-04-22T15:23:19.185663Z" }, "scrolled": false }, @@ -2560,23 +2480,39 @@ "name": "stdout", "output_type": "stream", "text": [ - "generated 8 runs\n", - "{'n_trials': 100, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", - ".\n", - "{'n_trials': 100, 'trial_type': , 'n_features': 3, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", - ".\n", - "{'n_trials': 100, 'trial_type': , 'n_features': 4, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", - ".\n", - "{'n_trials': 100, 'trial_type': , 'n_features': 5, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", - ".\n", - "{'n_trials': 100, 'trial_type': , 'n_features': 6, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", - ".\n", - "{'n_trials': 100, 'trial_type': , 'n_features': 7, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", - ".\n", - "{'n_trials': 100, 'trial_type': , 'n_features': 8, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", - ".\n", - "{'n_trials': 100, 'trial_type': , 'n_features': 9, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", - ".\n" + "Running 8 configs\n", + "0 : {'n_trials': 100, 'trial_type': , 'n_features': 2, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".['corr']\n", + "[1.0]\n", + ";\n", + "1 : {'n_trials': 100, 'trial_type': , 'n_features': 3, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".['corr']\n", + "[0.9997584847350102]\n", + ";\n", + "2 : {'n_trials': 100, 'trial_type': , 'n_features': 4, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".['corr']\n", + "[0.9948042864707103]\n", + ";\n", + "3 : {'n_trials': 100, 'trial_type': , 'n_features': 5, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".['corr']\n", + "[0.9713583847649068]\n", + ";\n", + "4 : {'n_trials': 100, 'trial_type': , 'n_features': 6, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".['corr']\n", + "[0.8998782407812661]\n", + ";\n", + "5 : {'n_trials': 100, 'trial_type': , 'n_features': 7, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".['corr']\n", + "[0.9226774771188183]\n", + ";\n", + "6 : {'n_trials': 100, 'trial_type': , 'n_features': 8, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".['corr']\n", + "[0.9693352107369663]\n", + ";\n", + "7 : {'n_trials': 100, 'trial_type': , 'n_features': 9, 'external_noise_std': 100, 'kernel': 'random', 'internal_noise_std': 1, 'criteria': 0, 'kernel_extractor': , 'distance': 'CORR'}\n", + ".['corr']\n", + "[0.9457780982693152]\n", + ";\n" ] } ], @@ -2594,10 +2530,10 @@ " 'distance':['CORR']}\n", "\n", "\n", - "sim = Sim(Exp, experiment_params, \n", - " Obs, observer_params, \n", - " Analyser, analyser_params)\n", - "sim_df = sim.run_all(n_samples=1)\n", + "sim = Sim(SimpleExperiment, experiment_params, \n", + " LinearObserver, observer_params, \n", + " KernelDistance, analyser_params)\n", + "sim_df = sim.run_all(n_runs=1)\n", "\n", "\n", "\n", @@ -2606,12 +2542,12 @@ }, { "cell_type": "code", - "execution_count": 147, - "id": "1e0c8a43", + "execution_count": 42, + "id": "2115ae57", "metadata": { "ExecuteTime": { - "end_time": "2024-04-10T15:36:24.243659Z", - "start_time": "2024-04-10T15:36:24.180798Z" + "end_time": "2024-04-22T15:23:23.748491Z", + "start_time": "2024-04-22T15:23:23.682656Z" } }, "outputs": [ @@ -2637,246 +2573,168 @@ " \n", " \n", " n_trials\n", - " n_repeated\n", " trial_type\n", " n_features\n", " external_noise_std\n", " kernel\n", " internal_noise_std\n", " criteria\n", - " sample\n", - " metric\n", - " dist\n", - " prob_agree\n", - " prob_first\n", + " kernel_extractor\n", + " distance\n", + " run\n", + " corr\n", " \n", " \n", " \n", " \n", " 0\n", " 100\n", - " 50\n", " <class 'palin.simulation.trial.Int2Trial'>\n", - " 1\n", + " 2\n", " 100\n", - " [1]\n", - " 0.0\n", - " -5\n", + " random\n", + " 1\n", " 0\n", - " (1.0, 1.0)\n", - " 0.2900\n", - " 0.8\n", - " 0.5\n", + " <class 'palin.kernels.classification_images.Cl...\n", + " CORR\n", + " 0\n", + " 1.000000\n", " \n", " \n", " 1\n", " 100\n", - " 50\n", " <class 'palin.simulation.trial.Int2Trial'>\n", - " 1\n", + " 3\n", " 100\n", - " [1]\n", - " 0.0\n", - " -4\n", + " random\n", + " 1\n", + " 0\n", + " <class 'palin.kernels.classification_images.Cl...\n", + " CORR\n", " 0\n", - " (1.0, 1.0)\n", - " 0.2900\n", - " 0.8\n", - " 0.5\n", + " 0.999758\n", " \n", " \n", " 2\n", " 100\n", - " 50\n", " <class 'palin.simulation.trial.Int2Trial'>\n", - " 1\n", + " 4\n", " 100\n", - " [1]\n", - " 0.0\n", - " -3\n", + " random\n", + " 1\n", + " 0\n", + " <class 'palin.kernels.classification_images.Cl...\n", + " CORR\n", " 0\n", - " (1.0, 1.0)\n", - " 0.2900\n", - " 0.8\n", - " 0.5\n", + " 0.994804\n", " \n", " \n", " 3\n", " 100\n", - " 50\n", " <class 'palin.simulation.trial.Int2Trial'>\n", - " 1\n", + " 5\n", " 100\n", - " [1]\n", - " 0.0\n", - " -2\n", + " random\n", + " 1\n", + " 0\n", + " <class 'palin.kernels.classification_images.Cl...\n", + " CORR\n", " 0\n", - " (1.0, 0.88)\n", - " 0.1844\n", - " 0.8\n", - " 0.5\n", + " 0.971358\n", " \n", " \n", " 4\n", " 100\n", - " 50\n", " <class 'palin.simulation.trial.Int2Trial'>\n", - " 1\n", + " 6\n", " 100\n", - " [1]\n", - " 0.0\n", - " -1\n", - " 0\n", - " (1.0, 0.68)\n", - " 0.0724\n", - " 0.8\n", - " 0.5\n", - " \n", - " \n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " ...\n", - " \n", - " \n", - " 495\n", - " 100\n", - " 50\n", - " <class 'palin.simulation.trial.Int2Trial'>\n", + " random\n", " 1\n", - " 100\n", - " [1]\n", - " 4.9\n", " 0\n", + " <class 'palin.kernels.classification_images.Cl...\n", + " CORR\n", " 0\n", - " (0.56, 0.5)\n", - " 0.0576\n", - " 0.8\n", - " 0.5\n", + " 0.899878\n", " \n", " \n", - " 496\n", + " 5\n", " 100\n", - " 50\n", " <class 'palin.simulation.trial.Int2Trial'>\n", - " 1\n", + " 7\n", " 100\n", - " [1]\n", - " 4.9\n", + " random\n", " 1\n", " 0\n", - " (0.56, 0.34)\n", - " 0.0832\n", - " 0.8\n", - " 0.5\n", - " \n", - " \n", - " 497\n", - " 100\n", - " 50\n", - " <class 'palin.simulation.trial.Int2Trial'>\n", - " 1\n", - " 100\n", - " [1]\n", - " 4.9\n", - " 2\n", + " <class 'palin.kernels.classification_images.Cl...\n", + " CORR\n", " 0\n", - " (0.54, 0.41)\n", - " 0.0757\n", - " 0.8\n", - " 0.5\n", + " 0.922677\n", " \n", " \n", - " 498\n", + " 6\n", " 100\n", - " 50\n", " <class 'palin.simulation.trial.Int2Trial'>\n", - " 1\n", + " 8\n", " 100\n", - " [1]\n", - " 4.9\n", - " 3\n", + " random\n", + " 1\n", " 0\n", - " (0.62, 0.23)\n", - " 0.1053\n", - " 0.8\n", - " 0.5\n", + " <class 'palin.kernels.classification_images.Cl...\n", + " CORR\n", + " 0\n", + " 0.969335\n", " \n", " \n", - " 499\n", + " 7\n", " 100\n", - " 50\n", " <class 'palin.simulation.trial.Int2Trial'>\n", - " 1\n", + " 9\n", " 100\n", - " [1]\n", - " 4.9\n", - " 4\n", + " random\n", + " 1\n", + " 0\n", + " <class 'palin.kernels.classification_images.Cl...\n", + " CORR\n", " 0\n", - " (0.72, 0.16)\n", - " 0.1220\n", - " 0.8\n", - " 0.5\n", + " 0.945778\n", " \n", " \n", "\n", - "

500 rows × 13 columns

\n", "" ], "text/plain": [ - " n_trials n_repeated trial_type \\\n", - "0 100 50 \n", - "1 100 50 \n", - "2 100 50 \n", - "3 100 50 \n", - "4 100 50 \n", - ".. ... ... ... \n", - "495 100 50 \n", - "496 100 50 \n", - "497 100 50 \n", - "498 100 50 \n", - "499 100 50 \n", - "\n", - " n_features external_noise_std kernel internal_noise_std criteria \\\n", - "0 1 100 [1] 0.0 -5 \n", - "1 1 100 [1] 0.0 -4 \n", - "2 1 100 [1] 0.0 -3 \n", - "3 1 100 [1] 0.0 -2 \n", - "4 1 100 [1] 0.0 -1 \n", - ".. ... ... ... ... ... \n", - "495 1 100 [1] 4.9 0 \n", - "496 1 100 [1] 4.9 1 \n", - "497 1 100 [1] 4.9 2 \n", - "498 1 100 [1] 4.9 3 \n", - "499 1 100 [1] 4.9 4 \n", + " n_trials trial_type n_features \\\n", + "0 100 2 \n", + "1 100 3 \n", + "2 100 4 \n", + "3 100 5 \n", + "4 100 6 \n", + "5 100 7 \n", + "6 100 8 \n", + "7 100 9 \n", "\n", - " sample metric dist prob_agree prob_first \n", - "0 0 (1.0, 1.0) 0.2900 0.8 0.5 \n", - "1 0 (1.0, 1.0) 0.2900 0.8 0.5 \n", - "2 0 (1.0, 1.0) 0.2900 0.8 0.5 \n", - "3 0 (1.0, 0.88) 0.1844 0.8 0.5 \n", - "4 0 (1.0, 0.68) 0.0724 0.8 0.5 \n", - ".. ... ... ... ... ... \n", - "495 0 (0.56, 0.5) 0.0576 0.8 0.5 \n", - "496 0 (0.56, 0.34) 0.0832 0.8 0.5 \n", - "497 0 (0.54, 0.41) 0.0757 0.8 0.5 \n", - "498 0 (0.62, 0.23) 0.1053 0.8 0.5 \n", - "499 0 (0.72, 0.16) 0.1220 0.8 0.5 \n", + " external_noise_std kernel internal_noise_std criteria \\\n", + "0 100 random 1 0 \n", + "1 100 random 1 0 \n", + "2 100 random 1 0 \n", + "3 100 random 1 0 \n", + "4 100 random 1 0 \n", + "5 100 random 1 0 \n", + "6 100 random 1 0 \n", + "7 100 random 1 0 \n", "\n", - "[500 rows x 13 columns]" + " kernel_extractor distance run corr \n", + "0 " + "" ] }, - "execution_count": 17, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGxCAYAAACKvAkXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiRUlEQVR4nO3deVxU5eIG8GdmYBa2YZVdEURREXBBQlt+FoVLZmZlZqmYdfW6ZNwySVKzW7bcTFNvWZaZZtnNpR0zSssyV0QMUREFRFaVGdaBmTm/P5SpSVxAmDPDPN/PZz73cjhzeA4pPL7nPe+RCIIggIiIiMiOSMUOQERERGRpLEBERERkd1iAiIiIyO6wABEREZHdYQEiIiIiu8MCRERERHaHBYiIiIjsDgsQERER2R0HsQNYI6PRiLNnz8LV1RUSiUTsOERERHQdBEFAVVUVAgICIJVefYyHBagZZ8+eRXBwsNgxiIiIqBUKCwsRFBR01X1YgJrh6uoK4OI30M3NTeQ0REREdD20Wi2Cg4NNv8evhgWoGU2Xvdzc3FiAiIiIbMz1TF/hJGgiIiKyOyxAREREZHdYgIiIiMjusAARERGR3WEBIiIiIrvDAkRERER2hwWIiIiI7A4LEBEREdkdFiAiIiKyO6IWoJ9//hkjR45EQEAAJBIJtm7des337NixA/369YNCoUC3bt3w4YcfXrbPypUrERISAqVSibi4OOzdu7ftwxMREZHNErUA1dTUIDo6GitXrryu/U+dOoURI0ZgyJAhOHToEGbPno0pU6Zg27Ztpn02btyI5ORkLFiwAAcPHkR0dDQSExNRVlbWXqdBRERENkYiCIIgdgjg4nM7tmzZgnvvvfeK+zz77LP45ptvcOTIEdO2hx56CJWVlUhLSwMAxMXFITY2FitWrAAAGI1GBAcHY+bMmZg7d+51ZdFqtVCr1dBoNHwWGBERkY1oye9vm5oDtHv3biQkJJhtS0xMxO7duwEADQ0NOHDggNk+UqkUCQkJpn3EVFGtw485pcgp0aKqvlHsOERERHbLpp4GX1JSAl9fX7Ntvr6+0Gq1qKurw4ULF2AwGJrdJycn54rH1el00Ol0po+1Wm3bBr9k/+nzmLr+oOljN6UDAtxVCPJQIcBdhUD3S//rcfH/+7goIJVe+4m2RERE1DI2VYDay+LFi/HCCy+0+9eRSaXoHeCGoso6VNY2Qluvh7akCjklVc3u7yiTwF/992KkRKC7EwI9VPBXK6F0lLV7biIioo7GpgqQn58fSktLzbaVlpbCzc0NKpUKMpkMMpms2X38/PyueNyUlBQkJyebPtZqtQgODm7b8ADu7OWLO3tdHJ2q0elxtrIORZdeZyvrUHShDmcr61FUWYcSbT0aDQIKztei4HztFY/p7aK4WIo8VAhQXyxJTaNJge4quDs5QiLhKBIREdFf2VQBio+Px7fffmu2bfv27YiPjwcAyOVy9O/fH+np6abJ1EajEenp6ZgxY8YVj6tQKKBQKNotd3OcFQ4I93VFuK9rs5/XG4wordKZilFTUbpYki7+/9oGAyqqdaio1iHzjKbZ4zjJZWaX1y5ebrs4ihTgroSfmxIOMpuaCkZERHTDRC1A1dXVyM3NNX186tQpHDp0CJ6enujcuTNSUlJQVFSEjz76CAAwdepUrFixAnPmzMHkyZPx448/4rPPPsM333xjOkZycjImTpyIAQMGYODAgVi6dClqamqQlJRk8fO7EQ4yqWkUJzbk8s8LggBNXSPO/KUQ/TmiVI+iC3WoqNahtsGA3LJq5JZVN/t1pBLAz01pmnfUdKktwF2FoEsfOytsqicTERFdk6i/2fbv348hQ4aYPm66DDVx4kR8+OGHKC4uRkFBgenzXbt2xTfffIOnnnoKy5YtQ1BQEFavXo3ExETTPmPHjkV5eTnmz5+PkpISxMTEIC0t7bKJ0bZOIpHA3UkOdyc5IgPVze5T32hAsabeNIp05q+X2jR1KK6sR4PBiLOaepzV1GMfLjR7HHcnR9PltUD3vxclJXxcFLzMRkRENsVq1gGyJvayDpDRKKCiWmdejMxGkWqhrddf8zhyB+mlUqT8sxw1vTxU8FMroXDgZG0iImpfLfn9zWsbdkwqlaCTmxKd3JTo19mj2X2q6htxtvLiKNJfi1LTJbdSbT0a9EacqqjBqYqaZo8hkQA+LgrTqFGYtzNuCvNCv84evIuNiIhEwRGgZtjLCFBbaDQYUaKpN7+TTVNnNjepvtHY7HvlDlIM6OKBwd28ER/mhahANSdkExFRq3EEiCzGUSZFsKcTgj2dmv28IAi4UNtodifbkSINfs2tQFmVDr+dPIffTp4DALgoHDCwqycGhXkhPswLPf3cuBAkERG1C44ANYMjQO1PEATkVdRcLEC5Fdiddw6VteaPB/FwckR8mBfiw7wxKMwLod7OnGxNRERX1JLf3yxAzWABsjyjUcDREi12XxoR2pN3DjUNBrN9fN0UGBR28XLZ4G7eCHRXiZSWiIisEQvQDWIBEl+jwYjDZzTYfbICv508h/35F9CgN59L1MXL6dLlMm/Eh3rBx9Wyi1kSEZF1YQG6QSxA1qe+0YCDBRew++Q5/JpbgcwzGhiM5n90u/u6YNCly2VxoV5QqxxFSktERGJgAbpBLEDWr1qnx75T5/HbpRGi7GIt/vonWSoBIgPViA/zwqAwb8SGeMBJzjn/REQdGQvQDWIBsj0Xahrwe965S3eVVeBkufmaRI4yCfoGe1wqRF6I6ezOxRmJiDoYFqAbxAJk+0q19ZcmVFfg19xzKKqsM/u80lGK2BBP0yWzyEA1ZLzlnojIprEA3SAWoI5FEAQUnq8zXS777eQ5VFTrzPZxVTogruvF0aFB3bzQw9eVt9wTEdkYFqAbxALUsQmCgNyyavyae7EQ/Z537rJnnnk5y03zhwaFeaGLlxMLERGRlWMBukEsQPbFYBSQfVZrGiHae+o86hrN1yAKUCsRH+aNwd0urlLtr+YaRERE1oYF6AaxANm3Br0RmWcq8VvuxTlEGQWVaDCYr0EU6u1sGiG6KdQTXi5cg4iISGwsQDeIBYj+qq7BgAP5F/DrpRGirDOV+NsSRIjwc8Xgbhcvlw3s6glXJdcgIiKyNBagG8QCRFejrW/E3rzzplvuc0qqzD4vk0rQJ1CNQZce2dG/iweUjrzlnoiovbEA3SAWIGqJimqdaQ2i3SfP4VSF+RpEcpkU/bq4myZURwe7w1EmFSktEVHHxQJ0g1iA6Eacray7+MiOkxXYffIcijX1Zp93UTjgrXExuD3CV6SEREQdU0t+f/PZAERtLMBdhTH9gzCmfxAEQcDpc7V/rkGUW4ELtY34bN8ZFiAiIhGxABG1I4lEgq7ezujq7YzxcV2w++Q5jHvvd2QVacSORkRk1zgRgciC+gSpIZEARZV1l61GTURElsMCRGRBLgoHhPm4AAAOn6kUNwwRkR1jASKysKggNQAgs5CXwYiIxMICRGRhUYEXCxBHgIiIxMMCRGRhUcHuAIDDZzTgKhREROJgASKysF7+bnCQSnCupgFFlXVixyEiskssQEQWpnSUoYefK4CLo0BERGR5LEBEIogKcgcAZHIeEBGRKFiAiEQQfelOsMO8E4yISBQsQEQiaBoBOlKkgdHIidBERJbGAkQkgu6+LlA6SlGl0yPvb0+PJyKi9scCRCQCB5kUvQMuXgbLKqoUNwwRkR0SvQCtXLkSISEhUCqViIuLw969e6+4b2NjIxYtWoSwsDAolUpER0cjLS3NbJ+qqirMnj0bXbp0gUqlwqBBg7Bv3772Pg2iFuOK0ERE4hG1AG3cuBHJyclYsGABDh48iOjoaCQmJqKsrKzZ/VNTU7Fq1SosX74c2dnZmDp1KkaPHo2MjAzTPlOmTMH27duxbt06ZGVl4a677kJCQgKKioosdVpE1yX60jwgrghNRGR5EkHEpWjj4uIQGxuLFStWAACMRiOCg4Mxc+ZMzJ0797L9AwICMG/ePEyfPt20bcyYMVCpVFi/fj3q6urg6uqKL774AiNGjDDt079/fwwbNgz//ve/ryuXVquFWq2GRqOBm5vbDZ4lUfNOllfjjjd2QuEgxZEXEuEoE31AlojIprXk97doP3EbGhpw4MABJCQk/BlGKkVCQgJ2797d7Ht0Oh2USqXZNpVKhV27dgEA9Ho9DAbDVfe50nG1Wq3Zi6i9dfVyhqvCATq9EcdLq8SOQ0RkV0QrQBUVFTAYDPD19TXb7uvri5KSkmbfk5iYiCVLluDEiRMwGo3Yvn07Nm/ejOLiYgCAq6sr4uPj8eKLL+Ls2bMwGAxYv349du/ebdqnOYsXL4ZarTa9goOD2+5Eia5AKpWgT9N6QFwRmojIomxqzH3ZsmUIDw9HREQE5HI5ZsyYgaSkJEilf57GunXrIAgCAgMDoVAo8NZbb2HcuHFm+/xdSkoKNBqN6VVYWGiJ0yEyrQfEeUBERJYlWgHy9vaGTCZDaWmp2fbS0lL4+fk1+x4fHx9s3boVNTU1yM/PR05ODlxcXBAaGmraJywsDDt37kR1dTUKCwuxd+9eNDY2mu3zdwqFAm5ubmYvIkuI5p1gRESiEK0AyeVy9O/fH+np6aZtRqMR6enpiI+Pv+p7lUolAgMDodfrsWnTJowaNeqyfZydneHv748LFy5g27Ztze5DJLaoYHcAwLHSKtQ3GsQNQ0RkRxzE/OLJycmYOHEiBgwYgIEDB2Lp0qWoqalBUlISAGDChAkIDAzE4sWLAQB79uxBUVERYmJiUFRUhIULF8JoNGLOnDmmY27btg2CIKBHjx7Izc3FM888g4iICNMxiaxJgFoJbxc5Kqob8MdZLfp38RA7EhGRXRC1AI0dOxbl5eWYP38+SkpKEBMTg7S0NNPE6IKCArO5O/X19UhNTUVeXh5cXFwwfPhwrFu3Du7u7qZ9NBoNUlJScObMGXh6emLMmDF46aWX4OjoaOnTI7omiUSCqCB3/JhThsNnKlmAiIgsRNR1gKwV1wEiS1r6w3Es/eEE7usbiCVjY8SOQ0Rks2xiHSAiuqhpRehM3glGRGQxLEBEImtaCyivogZV9Y0ipyEisg8sQEQi83ZRINBdBUEAsop4OzwRkSWwABFZgSiuCE1EZFEsQERWgCtCExFZFgsQkRXgitBERJbFAkRkBSIvFaCiyjqcq9aJnIaIqONjASKyAm5KR4T6OAPgPCAiIktgASKyElwPiIjIcliAiKwE7wQjIrIcFiAiK/HnnWAa8Ak1RETtiwWIyEr0DnCDg1SCimodijX1YschIurQWICIrITSUYbuvq4AuB4QEVF7YwEisiJN84AyOQ+IiKhdsQARWRGuCE1EZBksQERW5K93ghmNnAhNRNReWICIrEgPP1coHKSoqtfj9LkaseMQEXVYLEBEVsRRJkWvADcAXA+IiKg9sQARWRmuCE1E1P5YgIisDFeEJiJqfyxARFam6U6wP85qoDcYxQ1DRNRBsQARWZlQb2e4KhxQ32jEibJqseMQEXVILEBEVkYqlSAysOkyWKW4YYiIOigWICIrFBXMFaGJiNoTCxCRFYoKdAfAESAiovbCAkRkhZruBMsprkJ9o0HkNEREHQ8LEJEVCvJQwdNZDr1RwNFirdhxiIg6HBYgIiskkUi4HhARUTtiASKyUlFcEZqIqN2wABFZqWiOABERtRsWICIr1TQCdLK8GtU6vbhhiIg6GNEL0MqVKxESEgKlUom4uDjs3bv3ivs2NjZi0aJFCAsLg1KpRHR0NNLS0sz2MRgMeP7559G1a1eoVCqEhYXhxRdfhCAI7X0qRG3Kx1WBALUSggBkcRSIiKhNiVqANm7ciOTkZCxYsAAHDx5EdHQ0EhMTUVZW1uz+qampWLVqFZYvX47s7GxMnToVo0ePRkZGhmmfV199FW+//TZWrFiBo0eP4tVXX8Vrr72G5cuXW+q0iNpM0yhQVlGlqDmIiDoaiSDi0EhcXBxiY2OxYsUKAIDRaERwcDBmzpyJuXPnXrZ/QEAA5s2bh+nTp5u2jRkzBiqVCuvXrwcA3H333fD19cX7779/xX2uRavVQq1WQ6PRwM3N7UZOkeiG/HdHLl5LO4YRUf5Y+XA/seMQEVm1lvz+Fm0EqKGhAQcOHEBCQsKfYaRSJCQkYPfu3c2+R6fTQalUmm1TqVTYtWuX6eNBgwYhPT0dx48fBwBkZmZi165dGDZs2BWz6HQ6aLVasxeRNYi+NALEFaGJiNqWaAWooqICBoMBvr6+Ztt9fX1RUlLS7HsSExOxZMkSnDhxAkajEdu3b8fmzZtRXFxs2mfu3Ll46KGHEBERAUdHR/Tt2xezZ8/G+PHjr5hl8eLFUKvVpldwcHDbnCTRDWp6KGrh+Tqcr2kQOQ0RUcch+iTolli2bBnCw8MREREBuVyOGTNmICkpCVLpn6fx2Wef4eOPP8aGDRtw8OBBrF27Fv/5z3+wdu3aKx43JSUFGo3G9CosLLTE6RBdk1rliK7ezgA4CkRE1JZEK0De3t6QyWQoLS01215aWgo/P79m3+Pj44OtW7eipqYG+fn5yMnJgYuLC0JDQ037PPPMM6ZRoD59+uDRRx/FU089hcWLF18xi0KhgJubm9mLyFpwRWgiorYnWgGSy+Xo378/0tPTTduMRiPS09MRHx9/1fcqlUoEBgZCr9dj06ZNGDVqlOlztbW1ZiNCACCTyWA0Gtv2BIgsJIrzgIiI2pyDmF88OTkZEydOxIABAzBw4EAsXboUNTU1SEpKAgBMmDABgYGBptGbPXv2oKioCDExMSgqKsLChQthNBoxZ84c0zFHjhyJl156CZ07d0bv3r2RkZGBJUuWYPLkyaKcI9GNaloROvOMBoIgQCKRiJyIiMj2iVqAxo4di/LycsyfPx8lJSWIiYlBWlqaaWJ0QUGB2WhOfX09UlNTkZeXBxcXFwwfPhzr1q2Du7u7aZ/ly5fj+eefxz//+U+UlZUhICAA//jHPzB//nxLnx5Rm+gdoIZMKkF5lQ4l2nr4q1ViRyIisnmirgNkrbgOEFmboUt/Rk5JFd55pD+GRjY/R46IyN7ZxDpARHT9uB4QEVHbYgEisgFRwbwTjIioLbEAEdmAv44A8ao1EdGNYwEisgE9/Fwhd5BCW69H/rlaseMQEdk8FiAiG+Aok6KX/8UJfZmcB0REdMNYgIhsBFeEJiJqOyxARDaCK0ITEbUdFiAiG9G0IvSRIi30Bj7ahYjoRrAAEdmIUB8XOMtlqGs0ILe8Wuw4REQ2jQWIyEbIpBJEBl6aB1TIeUBERDeCBYjIhkQHuwPgnWBERDeKBYjIhvBOMCKitsECRGRDmlaEzinRQqc3iBuGiMiGsQAR2ZAgDxU8nBzRaBCQU1wldhwiaoXjpVX4LquYj7URGQsQkQ2RSCRcD4jIhmWd0WDUil8x7eOD2LC3QOw4do0FiMjGNK0HlMl5QEQ2paiyDpPX7kNd48XL14u/zUGxpk7kVPaLBYjIxvThCBCRzdHWNyJpzV6UV+kQ4eeK6GB3VOv0SN1yhJfCRMICRGRjmkaAcsuqUaPTi5yGiK6l0WDEP9cfxPHSanRyVeCDSbF4/f4oOMokSM8pw1eHi8WOaJdYgIhsTCc3JfzclDAKwJEiXgYjsmaCICB1yxHsyq2Ak1yGDybFIsBdhe6+rpgxJBwA8MKXf+BCTYPISe0PCxCRDeJ6QES24b87TmLj/kJIJcCKh/uaVnMHgGn/F4Yevq44V9OAF7/OFjGlfWIBIrJBXBGayPp9cagIr287BgB44Z7euD3C1+zzcgcpXhnTBxIJsDmjCDuOlYkR026xABHZII4AEVm3vafO45n/HQYATLm5Kx6ND2l2v76dPTB5cFcAwLwtR1DNeX0WwwJEZIOiAt0BAAXnazl3gMjK5JVX44l1+9FgMGJobz88N7znVff/113dEeypQlFlHV5Py7FQSmIBIrJBaidHhHg5AQAOcyI0kdU4V61D0of7UFnbiOhgd7w5NgZSqeSq73GSO2Dx6CgAwEe/52P/6fOWiGr3WICIbFTTitBZnAdEZBXqGw14Yt0B5J+rRbCnCqsnDIBKLruu994c7o0H+gdBEIBnNx1GfSOf9dfeWICIbFQUV4QmshpGo4B//S8TB/IvwE3pgDWTYuHjqmjRMVJH9IK3iwIny2uw8qfcdkpKTViAiGxU051gXBGaSHyvbTuGbw4Xw1EmwapHB6BbJ9cWH0Pt5IgXR/UGALy94ySOFmvbOib9BQsQkY3qHeAGqQQo1epQqq0XOw6R3dqwpwDv7DwJAHjt/ijEh3m1+ljD+vgjsbcv9EYBz246DL3B2FYx6W9YgIhslJPcAeGX/pWZWVgpbhgiO7XjWBme/+IIAGB2QjhG9w264WO+OCoSrkoHHD6jwZpfT9/w8ah5LEBENozrARGJJ/usFjM2ZMBgFHBfv0A8eUd4mxy3k5sSqSMu3jr/xvZjyD9X0ybHJXMsQEQ2LIorQhOJokRTj8kf7kO1To/4UC+8cl8UJJKr3+7eEg8OCMagMC/UNxoxd1MWnxjfDqyiAK1cuRIhISFQKpWIi4vD3r17r7hvY2MjFi1ahLCwMCiVSkRHRyMtLc1sn5CQEEgkkste06dPb+9TIbKopifDZxVp+AOSyEKqdXpM/nAfSrT16NbJBe880h9yh7b9dSqRSPDKfVFQOkqxO+8cNu4rbNPjkxUUoI0bNyI5ORkLFizAwYMHER0djcTERJSVNf9MlNTUVKxatQrLly9HdnY2pk6ditGjRyMjI8O0z759+1BcXGx6bd++HQDwwAMPWOSciCwlws8NcpkUlbWNKDhfK3Ycog5PbzBi5oaDyC7WwttFjjWTYqF2cmyXr9XZywn/urMHAOClb4/yZoc2JnoBWrJkCR5//HEkJSWhV69eeOedd+Dk5IQPPvig2f3XrVuH5557DsOHD0doaCimTZuG4cOH44033jDt4+PjAz8/P9Pr66+/RlhYGG677TZLnRaRRcgdpOjpf2kiNOcBEbUrQRCw8Ks/8NOxcigdpVg9MRbBnk7t+jWTBocgOkiNqno9nt96hCO9bUjUAtTQ0IADBw4gISHBtE0qlSIhIQG7d+9u9j06nQ5KpdJsm0qlwq5du674NdavX4/Jkye36fVZImvRtCL0Yd4JRtSuVv9yCut/L4BEAiwd2xcxl+bgtScHmRSvjImCg1SC77NL8d2Rknb/mvZC1AJUUVEBg8EAX19fs+2+vr4oKWn+P3JiYiKWLFmCEydOwGg0Yvv27di8eTOKi4ub3X/r1q2orKzEpEmTrphDp9NBq9WavYhshelOMD4TjKjdfJdVjJe+PQoAmDe8J4ZG+lnsa/f0d8M//y8MADD/iz9QWcsHILcF0S+BtdSyZcsQHh6OiIgIyOVyzJgxA0lJSZBKmz+V999/H8OGDUNAQMAVj7l48WKo1WrTKzg4uL3iE7W5phWhjxRpYDByeJyorR0suIDZGw8BACbGd8FjN3e1eIbpt3dDt04uqKjW4d/fHLX41++IRC1A3t7ekMlkKC0tNdteWloKP7/m27WPjw+2bt2Kmpoa5OfnIycnBy4uLggNDb1s3/z8fPzwww+YMmXKVXOkpKRAo9GYXoWFnG1PtiPMxwVOchlqGww4WV4tdhyiDqXgXC0eX7sfOr0Rd0R0wvyRvUWZTqFwkOHVMX0gkQCfHziDX06UWzxDRyNqAZLL5ejfvz/S09NN24xGI9LT0xEfH3/V9yqVSgQGBkKv12PTpk0YNWrUZfusWbMGnTp1wogRI656LIVCATc3N7MXka2QSSWIDLj0YFTOAyJqM5W1DZj04V6cq2lAZKAb3hrXFzKpeHNJ+3fxxMT4EABAyuYs1DboRcvSEYh+CSw5ORnvvfce1q5di6NHj2LatGmoqalBUlISAGDChAlISUkx7b9nzx5s3rwZeXl5+OWXXzB06FAYjUbMmTPH7LhGoxFr1qzBxIkT4eDgYNFzIrI0rghN1LZ0egP+se4A8sprEKBW4oOJsXBWiP+75JnEHgh0V+HMhTr8Z9txsePYNNH/a44dOxbl5eWYP38+SkpKEBMTg7S0NNPE6IKCArP5PfX19UhNTUVeXh5cXFwwfPhwrFu3Du7u7mbH/eGHH1BQUIDJkydb8nSIRBHFJ8MTtRlBEDB3Uxb2nDoPF4UDPkiKRSc35bXfaAHOCge8NDoSk9bsw5rfTuHuaH/06+whdiybJBG4qMBltFot1Go1NBoNL4eRTcg/V4PbXt8BuUyKIy8ktvmqtET2ZMn243gr/QQcpBKsSYrFLeE+Yke6TPLGQ9icUYTuvi74euYt/Dt/SUt+f/M7RtQBdPZ0gruTIxoMRuSUcBkHotb63/5CvJV+AgDw0uhIqyw/APD83b3g5SzH8dJq/HdHrthxbBILEFEHIJFI0Cfw0kRozgMiapVfcyuQsjkLADB9SBjGxnYWOdGVeTjLsfCe3gCAlT/l4nhplciJbA8LEFEHEc0VoYla7URpFaauPwC9UcDI6ADTM7is2d1R/kjo2QmNBgFzPj/MdcBaiAWIqIPgnWBErVNWVY9Ja/ahql6PAV088Pr9UZCKeLv79ZJIJHjx3ki4KhxwqLASa387LXYkm8ICRNRBNK0IfaKsiuuDEF2n2gY9pqzdj6LKOnT1dsa7EwZA6SgTO9Z181erMHd4BADg9W3HUHi+VuREtoMFiKiD8HVTwtdNAaMA/HGWE6GJrsVgFPDkp4dw+IwGHk6OWDMpFp7OcrFjtdi42M6I6+qJukYDntuSxSfGXycWIKIOpOnJ8FwRmujaXvrmKLZnl0LuIMV7EwYgxNtZ7EitIpVK8MqYKCgcpPjlRAU+P3BG7Eg2gQWIqAOJCuQ8IKLr8eGvp/DBr6cAAEsejMaAEE+RE92Yrt7OeOrO7gCAf39zFOVVOpETWT8WIKIOhCtCE13b9uxSLPo6GwDw7NAI3B0VIHKitjHl5q6IDHSDpq4RC7/8Q+w4Vo8FiKgDaRoBOn2uFpraRpHTEFmfrDMazPokA0YBGDcwGFNvCxU7UptxkEnx6pgoyKQSfJNVjG1/lIgdyaqxABF1IB7OcnT2dAIAHC6qFDcMkZU5c6EWk9fuQ12jAbeEe2PRqEhIJNZ/u3tL9A5Q4x+3Xix1z289Ak0d/yF0JSxARB0M1wMiupy2vhGTP9yH8iodIvxc8d/x/eAo65i/AmfdEY5Qb2eUVemw+NujYsexWh3zvz6RHYvmnWBEZhoNRvxz/UEcL62Gr5sCH0yKhavSUexY7UbpKMMrY6IAAJ/uK8RvuRUiJ7JOLEBEHQxHgIj+JAgC5m3Jwq7cCjjJZXh/YiwC3FVix2p3A7t64pGbLj7LbO7mLNQ1GEROZH1YgIg6mMhANaQSoERbjzJtvdhxiES18qdcfLb/DKQSYOXD/RB56UYBe/Ds0Aj4q5UoOF+LN384LnYcq8MCRNTBOCsc0K2TCwA+GZ7s2xeHivCf7y/+4n/hnt4YEtFJ5ESW5ap0xEujIwEAq3/J4/IYf9OqAjRr1iy89dZbl21fsWIFZs+efaOZiOgGNa0IncUfeGSn9p46j2f+dxgA8PgtXfFofIi4gURye4Qv7okOgFEA5nx+GI0Go9iRrEarCtCmTZswePDgy7YPGjQIn3/++Q2HIqIbE31pHhBHgMge5ZVX44l1+9FgMGJobz+kDOspdiRRLRjZCx5OjsgpqcKqnSfFjmM1WlWAzp07B7X68uuobm5uqKjgbHMisfW5NAJ0+EwlH4xIduVctQ5JH+5DZW0jYoLd8ebYGEilHWutn5byclFgwcjeAIC30nORW1YlciLr0KoC1K1bN6SlpV22/bvvvkNoaMdZVZPIVvX0d4WjTIILtY04c6FO7DhEFlHfaMDjH+1H/rlaBHuqsHriAKjkMrFjWYVRMQEY0sMHDQYjnt2UBaOR/zByaM2bkpOTMWPGDJSXl+P2228HAKSnp+ONN97A0qVL2zIfEbWCwkGGCD83ZBVpkHmmEsGXVocm6qiMRgH/+iwTBwsq4aZ0wJpJA+HtohA7ltWQSCT49+g+uGvJThzIv4B1v+dj4qAQsWOJqlUjQJMnT8Ybb7yB999/H0OGDMGQIUOwfv16vP3223j88cfbOiMRtQLXAyJ78uq2HHyTVQxHmQTvThhguhOS/hTorsLcYREAgNfSclBUad+jw62+DX7atGk4c+YMSktLodVqkZeXhwkTJrRlNiK6AVwRmuzFx3vysWpnHgDgtfujcFOol8iJrNf4uC6IDfFATYMB87Zk2fUcwRteB8jHxwcuLmzaRNYmKvjiCNCRIg0MvN5PHdSOY2WY/8UfAICnErpjdN8gkRNZN6lUgsX3RUEuk2LHsXJsPVQkdiTRXPccoH79+iE9PR0eHh7o27fvVZ+ge/DgwTYJR0St183HBSpHGWoaDMgrr0a4r6vYkYjaVPZZLaZ/fBAGo4Ax/YIw645uYkeyCd06ueDJhHC8vu0YFn2VjVvCfexyvtR1F6BRo0ZBobj4Dbr33nvbKw8RtREHmRSRgW7Yd/oCMs9oWICoQynR1GPyh/tQ02BAfKgXFt/X56r/MCdzT9waiq8PF+NosRYvfJWN5eP6ih3J4q67AC1YsAAAYDAYMGTIEERFRcHd3b29chFRG4gKcse+0xdw+Ewl7u/PSwPUMVTr9Ej6cB9KtPXo1skF7zzaH3IHPtmpJRxlUrw2JgqjVu7CV5lncW9MAO7o6St2LItq8Z8YmUyGu+66CxcuXGiPPETUhngnGHU0eoMRMzYcxNFiLbxd5FgzKRZqlaPYsWxSnyA1Hr/l4tp987YcQVV9o8iJLKtVlTkyMhJ5eXltnYWI2ljTnWDZxVo06PkMILJtgiBgwZd/YMexcigdpVg9MZZrXN2g2Qnd0cXLCSXaerzyXY7YcSyqVQXo3//+N55++ml8/fXXKC4uhlarNXsRkXXo4uUEN6UDGvRGHC/l8vdk2977JQ8f7ymARAIse6gvYoLdxY5k81RyGRbf1wcA8PGeAuzJOydyIstpVQEaPnw4MjMzcc899yAoKAgeHh7w8PCAu7s7PDw82jojEbWSRCIxPRk+k0+GJxv2bVYxXv724ghF6oheSOztJ3KijmNQmDfGDQwGAMzdnIX6RoPIiSyjVY/C+Omnn9o6BxG1k6ggNXblVuBwoQbj48ROQ9RyBwsu4KmNhwAAE+O7YPLgEFHzdERzh/XEjzllOFVRg2XpJ/Ds0AixI7W7Vo0Ade3aFbfeeituu+02s9ett96Krl27tuhYK1euREhICJRKJeLi4rB3794r7tvY2IhFixYhLCwMSqUS0dHRzT6UtaioCI888gi8vLygUqnQp08f7N+/v8XnSdQRcASIbFn+uRo8vnY/dHojEnp2wvyRvXm7eztQqxzx4qhIAMC7P+fhSFHHv3Gi1QWovLz8su3nz59vUQHauHEjkpOTsWDBAhw8eBDR0dFITExEWVlZs/unpqZi1apVWL58ObKzszF16lSMHj0aGRkZpn0uXLiAwYMHw9HREd999x2ys7Pxxhtv8NIc2a3oSytCnyirRl2DfQxtU8dQWduApA/34VxNAyID3bDsob6QSVl+2stdvf0wIsofBqOAZzcdht7QsW+ckAiteBCIVCpFaWkpfHx8zLbn5+ejV69eqKmpua7jxMXFITY2FitWrAAAGI1GBAcHY+bMmZg7d+5l+wcEBGDevHmYPn26aduYMWOgUqmwfv16AMDcuXPx66+/4pdffmnpaZlotVqo1WpoNBq4ubm1+jhE1kAQBAx8OR3lVTp8PjUeA0I8xY5EdE06vQGPvr8Xe0+dR4Baia3TB6OTm1LsWB1eeZUOCUt2QlPXiGeHRmDa/4WJHalFWvL7u0VzgJKTkwFcnFj5/PPPw8npz9sPDQYD9uzZg5iYmOs6VkNDAw4cOICUlBTTNqlUioSEBOzevbvZ9+h0OiiV5n8BVCoVdu3aZfr4yy+/RGJiIh544AHs3LkTgYGB+Oc//3nVp9TrdDrodDrTx7yTjToSiUSC6CA1fjhahswzGhYgsnqCIGDO54ex99R5uCoc8EFSLMuPhfi4KvD83b3w9P8y8eYPx5HY2xehPh3zeZ8tugSWkZGBjIwMCIKArKws08cZGRnIyclBdHQ0Pvzww+s6VkVFBQwGA3x9zVee9PX1RUlJSbPvSUxMxJIlS3DixAkYjUZs374dmzdvRnFxsWmfvLw8vP322wgPD8e2bdswbdo0zJo1C2vXrr1ilsWLF0OtVptewcHB13UORLaiaR7QYc4DIhvw5vbj+OLQWThIJfjvI/0Q4ceReEsa0y8Qt4R7o0FvxNzNWTB20Icpt2gEqOnur6SkJCxbtszil4eWLVuGxx9/HBEREZBIJAgLC0NSUhI++OAD0z5GoxEDBgzAyy+/DADo27cvjhw5gnfeeQcTJ05s9rgpKSmm0S3g4ggQSxB1JFwRmmzF//YX4q0fcwEAL42OxC3hPtd4B7U1iUSCl0f3QeLSn7H31Hls2FuAR27qInasNteqSdBr1qyBm5sbcnNzsW3bNtTV1QG4OGx5vby9vSGTyVBaWmq2vbS0FH5+za/v4OPjg61bt6Kmpgb5+fnIycmBi4sLQkNDTfv4+/ujV69eZu/r2bMnCgoKrphFoVDAzc3N7EXUkTSNAJ2qqIGmzr6Wuyfb8WtuBVI2ZwEApg8Jw9jYziInsl/Bnk54JrEHAOCV73JQrKkTOVHba1UBOn/+PO644w50794dw4cPN12Ceuyxx/Cvf/3ruo4hl8vRv39/pKenm7YZjUakp6cjPj7+qu9VKpUIDAyEXq/Hpk2bMGrUKNPnBg8ejGPHjpntf/z4cXTp0vHaK9H18nSWI9hTBQB2cXsr2Z7jpVWYuv4A9EYBI6MD8K87e4gdye5NiA9B387uqNbpkbrlSIsGOWxBqwrQ7Nmz4ejoiIKCArOJ0GPHjm12XZ4rSU5OxnvvvYe1a9fi6NGjmDZtGmpqapCUlAQAmDBhgtkk6T179mDz5s3Iy8vDL7/8gqFDh8JoNGLOnDmmfZ566in8/vvvePnll5Gbm4sNGzbg3XffNbtzjMgecT0gslZlVfVIWrMPVfV6xIZ44PX7oyDl7e6ik0kleG1MFOQyKdJzyvDV4eJrv8mGtGol6O+//x7btm1DUFCQ2fbw8HDk5+df93HGjh2L8vJyzJ8/HyUlJYiJiUFaWpppYnRBQQGk0j87Wn19PVJTU5GXlwcXFxcMHz4c69atg7u7u2mf2NhYbNmyBSkpKVi0aBG6du2KpUuXYvz48a05VaIOIypQjW8OF+NwIUeAyHrUNugxZe1+FFXWoau3M959dACUjjKxY9El4b6umD6kG9784The+PIP3NzNG57OcrFjtYlWrQPk6uqKgwcPIjw8HK6ursjMzERoaCj279+PxMREnDtn2w9T4zpA1BHtPnkO4977HQFqJX5LuUPsOEQwGAX8Y90B/HC0FB5Ojtjyz8EI8XYWOxb9TYPeiJHLd+FYaRVG9w3Em2NjxI50RS35/d2qS2C33HILPvroI9PHEokERqMRr732GoYMGdKaQxJRO+sTpIZEApzV1KO8SnftNxC1s39/k40fjpZC7iDF6okDWH6slNxBilfvj4JUAmzJKMJPx5p/WoOtaVUBeu211/Duu+9i2LBhaGhowJw5cxAZGYmff/4Zr776altnJKI24KJwQNilBc24HhCJbc2vp7Dm19MAgCUPRqN/Fy7Qac1igt2RNPjio67mbc5CtU4vcqIb16oCFBkZiWPHjuHmm2/GqFGjUFNTg/vuuw8ZGRkIC7OtZbOJ7EnTekCZXA+IRLQ9uxSLvs4GADw7NAJ3RwWInIiux7/u6o5gTxXOaurxelqO2HFuWKsmQQMXb0W/8847ER0dDaPx4gPT9u3bBwC455572iYdEbWp6CB3bD5YxBEgEs2B/POY9UkGBAEYNzAYU28LvfabyCo4yR2weHQUHnl/Dz76PR8jowNs+tE6rSpAaWlpePTRR3H+/PnL1gWQSCQwGPjEaSJr9NcVoQVBgETCW43Jcg6fqcSkD/ahrtGA27r7YNGoSP4ZtDE3h3vjgf5B+N+BM3h202F8M+sWm71rr1WXwGbOnIkHH3wQZ8+ehdFoNHux/BBZr57+bnCQSnC+pgFnLnS8lV3JemWf1eLR9/eiSqfHwK6eeOeR/nCUtepXEIksdUQv+LgqcLK8Bit/yhU7Tqu16k9faWkpkpOTL3uQKRFZN6WjDBH+rgCALK4ITRZyorQKj76/B5q6RvTt7I4PJsVCJbfNUQMC1E6OWHRPbwDA2ztO4mixVuRErdOqAnT//fdjx44dbRyFiCyBK0KTJZ2qqMH41XtwrqYBkYFu+DBpIFwUrZ5+SlZiWB9/DO3tB71RwLObDkNvMIodqcVa9adwxYoVeOCBB/DLL7+gT58+cHR0NPv8rFmz2iQcEbW96CA1NuwBV4Smdld4vhbj3/sdZVU6RPi5Yt3kOKhVjtd+I9mERaN647eTFTh8RoMPfj2FJ261rbvAW1WAPvnkE3z//fdQKpXYsWOH2SQ2iUTCAkRkxfoEugO4+FBUo1HgM5eoXRRr6vDw6t9xVlOPMB9nrHssDh4d5BEKdFEnNyVSR/TCnE2HsWT7cST29kMXL9tZzLJVl8DmzZuHF154ARqNBqdPn8apU6dMr7y8vLbOSERtqLuvC5SOUlTp9MirqBE7DnVAZVX1GP/eHhSer0MXLyd8POUm+LgqxI5F7eCBAUEY3M0L9Y1GzN2UZVNPjG9VAWpoaMDYsWPNHlRKRLbBQSZF74Cm2+ErxQ1DHc75mgY8snoP8ipqEOiuwsdT4uCnVoodi9qJRCLB4tFRUDpKsTvvHDbuKxQ70nVrVYOZOHEiNm7c2NZZiMhC/roeEFFb0dQ24pHVe3C8tBq+bgpseDwOQR5OYseidtbZywlP39UDAPDSt0dRqq0XOdH1adUcIIPBgNdeew3btm1DVFTUZZOglyxZ0ibhiKh9RPNOMGpjVfWNmLBmL7KLtfB2kePjKTfZ1HwQujFJg7viq8yzyDyjwfNbj2DVo/2tfpHLVhWgrKws9O3bFwBw5MgRs89Z+wkT0Z8jQNlntWg0GLkgHd2Q2gY9Jn+4D5mFlXB3csT6KXHo1slF7FhkQTKpBK/eH4W739qF77NL8d2REgzv4y92rKtqVQH66aef2joHEVlQiJczXJUOqKrX41hJFSID1WJHIhtV32jAlLX7se/0BbgqHbD+sThE+LmJHYtEEOHnhn/+Xxje+jEX87/4A4PCvODuZL13/vGffUR2SCqVcB4Q3TCd3oCp6w/gt5Pn4CyXYe3kgSzTdm767d3QrZMLKqp1+Pc3R8WOc1UsQER2qmlF6KyiSlFzkG1qNBgxc0MGdhwrh9JRig8mxaJfZw+xY5HIFA4yvDomChIJ8PmBM/jlRLnYka6IBYjITkVfGgHK5IrQ1EIGo4DkzzLxfXYp5A5SrJ4Qi7hQL7FjkZXo38UDE+NDAAApm7NQo9OLG+gKWICI7FTTCNCx0irUNxrEDUM2w2gUMOfzw/gq8ywcZRK880g/3BzuLXYssjLPJPZAoLsKZy7U4Y3vj4sdp1ksQER2yl+thLeLHAajgD/O2ubTnMmyBEFA6hdHsOngGcikEiwf1xe3R/iKHYuskLPCAS/f1wcAsOa3UzhYcEHkRJdjASKyUxKJxDQKxBWh6VoEQcCir7OxYU8BJBJgyYPRGBpp3bc5k7hu6+6D+/oFQhCAuZsOo0FvXU+MZwEismO8E4yuhyAIeG3bMaz59TQA4NUxURgVEyhuKLIJz4/oBS9nOY6XVuO/O3LFjmOGBYjIjnFFaLoeb6Xn4u0dJwEAL94biQcHBIuciGyFh7McC+/pDQBY+VMujpdWiZzoTyxARHasaQQor7wG2vpGkdOQNXpn50m8+cPFSaypI3ri0Zu6iJyIbM3dUf5I6OmLRsPFCfQGo3U8MZ4FiMiOebkoEOiuAgAc4WUw+ps1v57CK9/lALh4V8+UW0JFTkS2SCKR4N/3RsJV4YBDhZX48LfTYkcCwAJEZPeigy+tB8QCRH+xYU8BXvgqGwAw6/ZumD6km8iJyJb5qZVIGd4TAPCfbcdQeL5W5EQsQER2j3eC0d9tOnAG87ZmAQCeuDUUT93ZXeRE1BE8FBuMuK6eqGs04LktWRAEcS+FsQAR2TneCUZ/9VXmWTzzeSYEAZgY3wUpwyIgkUjEjkUdgFQqwStjoqBwkOKXExX4/MAZcfOI+tWJSHR9AtWQSICiyjqcq9aJHYdE9P0fJZi98RCMwsV/rS8Y2Zvlh9pUV29n04ji+j0Foo4COYj2lYnIKrgqHRHq7YyT5TU4fEaDIRGdxI5EIthxrAwzNmTAYBQwum8gXhrdB1Ipyw+1vSk3d4WDVIJHbuoiasG2ihGglStXIiQkBEqlEnFxcdi7d+8V921sbMSiRYsQFhYGpVKJ6OhopKWlme2zcOFCSCQSs1dERER7nwaRzYriekB27bfcCvxj3QE0GIwY0ccfr98fBRnLD7UTB5kUU24JhdJRJmoO0QvQxo0bkZycjAULFuDgwYOIjo5GYmIiysrKmt0/NTUVq1atwvLly5GdnY2pU6di9OjRyMjIMNuvd+/eKC4uNr127dplidMhskmcB2S/9p0+j8fW7odOb0RCz05Y+lAMHGSi/2oganei/ylfsmQJHn/8cSQlJaFXr15455134OTkhA8++KDZ/detW4fnnnsOw4cPR2hoKKZNm4bhw4fjjTfeMNvPwcEBfn5+ppe3N59WTHQlf70TTOw7M8hyDhVWImnNPtQ1GnBLuDdWPNwPjiw/ZCdE/ZPe0NCAAwcOICEhwbRNKpUiISEBu3fvbvY9Op0OSqXSbJtKpbpshOfEiRMICAhAaGgoxo8fj4KCgivm0Ol00Gq1Zi8ie9I7wA0OUgkqqhtwVlMvdhyygD/OajDh/T2o1ulxU6gn3n10gOiXJIgsSdQCVFFRAYPBAF9fX7Ptvr6+KCkpafY9iYmJWLJkCU6cOAGj0Yjt27dj8+bNKC4uNu0TFxeHDz/8EGlpaXj77bdx6tQp3HLLLaiqav4ZJIsXL4ZarTa9goP5nBuyL0pHGbr7ugIADhdWihuG2t3x0io8+v5eaOv16N/FA+9PjIVKzvJD9sXmxjqXLVuG8PBwREREQC6XY8aMGUhKSoJU+uepDBs2DA888ACioqKQmJiIb7/9FpWVlfjss8+aPWZKSgo0Go3pVVhYaKnTIbIaXBHaPuSVV+Ph9/bgfE0DooLUWJMUC2cFbwgm+yNqAfL29oZMJkNpaanZ9tLSUvj5+TX7Hh8fH2zduhU1NTXIz89HTk4OXFxcEBp65WfUuLu7o3v37sjNzW328wqFAm5ubmYvInvDFaE7vsLztRi/eg8qqnWI8HPFR5MHwk3pKHYsIlGIWoDkcjn69++P9PR00zaj0Yj09HTEx8df9b1KpRKBgYHQ6/XYtGkTRo0adcV9q6urcfLkSfj7+7dZdqKOpulOsKwzGhit5GnN1HbOVtZh3Hu/o1hTj26dXLB+ShzcneRixyISjeiXwJKTk/Hee+9h7dq1OHr0KKZNm4aamhokJSUBACZMmICUlBTT/nv27MHmzZuRl5eHX375BUOHDoXRaMScOXNM+zz99NPYuXMnTp8+jd9++w2jR4+GTCbDuHHjLH5+RLaiu68rFA5SVOn0OHWuRuw41IbKtPUYv3oPzlyoQ4iXEzZMiYO3i0LsWESiEv3C79ixY1FeXo758+ejpKQEMTExSEtLM02MLigoMJvfU19fj9TUVOTl5cHFxQXDhw/HunXr4O7ubtrnzJkzGDduHM6dOwcfHx/cfPPN+P333+Hj42Pp0yOyGY4yKXoHuOFgQSWyzmgQ5uMidiRqA+eqdRi/eg9OVdQg0F2Fjx+/CZ3clNd+I1EHJxG46MdltFot1Go1NBoN5wORXVn45R/48LfTSBocggUje4sdh25QZW0Dxr23B0eLtfBzU+Kzf8Sjs5eT2LGI2k1Lfn+LfgmMiKwHV4TuOLT1jZj4wV4cLdbC20WBjx+PY/kh+gsWICIyaboT7I+zGugNRnHDUKvV6PSYvGYfMs9o4OHkiI+nxPGSJtHfsAARkUmotzNcFQ6obzTieGm12HGoFeobDZiydj/251+Am9IB6x6LQw8/V7FjEVkdFiAiMpFKJYgMbLoMViluGGoxnd6AJ9YdwO68c3BROGDt5IGm/55EZI4FiIjMRHFFaJvUaDBi+scZ+Pl4OVSOMnwwKRZ9O3uIHYvIarEAEZGZaK4IbXP0BiNmf3oIPxwthdxBitUTB2BgV0+xYxFZNRYgIjLTdCfYsZIq1DcaRE5D12I0Cpjz+WF8k1UMR5kEqx7tj8HdvMWORWT1WICIyEyguwpeznLojQKyi7Vix6GrEAQB87ZmYXNGEWRSCZaP64chPTqJHYvIJrAAEZEZiUTy53pAhZXihqErEgQBL3yVjU/2FkIqAZaOjcHQyOYfIk1El2MBIqLLmJ4MX8SJ0NZIEAS88l0OPvztNADgtfujMTI6QNxQRDaGBYiILhMdzBWhrdmbP5zAqp/zAAAvjY7E/f2DRE5EZHtYgIjoMn0C3QEAJ8urUa3TixuGzPx3Ry7eSj8BAJh/dy+Mj+siciIi28QCRESX8XFVIECthCAAWRwFshrv7zqF19KOAQCeHRqByTd3FTkRke1iASKiZkVxPSCrsv73fLz4dTYA4Mk7wjHt/8JETkRk21iAiKhZUZwHZDX+t78QqVuPAAD+cVsoZieEi5yIyPaxABFRs5pWhM7kCJCovsw8i2c3HQYATBoUgrlDIyCRSERORWT7WICIqFlND9E8c6EO56p1IqexT2lHSvDUxkMwCsC4gZ2xYGQvlh+iNsICRETNUqscEertDIDrAYnhp5wyzPzkIAxGAff1C8RL90ay/BC1IRYgIrqiP1eEZgGypF0nKvCP9QfQaBAwIsofr42JglTK8kPUlliAiOiKeCeY5e09dR5TPtqHBr0Rd/byxdKxMXCQ8Uc1UVvj3yoiuiLTitBFGgiCIHKaju9gwQUkrdmL+kYjbuvugxUP94Ujyw9Ru+DfLCK6ol7+asikEpRX6VCirRc7Tod2pEiDiR/sRU2DAYPCvLDq0f5QOMjEjkXUYbEAEdEVqeQydPd1BQBkch5QuzlWUoVH39+Dqno9BnTxwOqJA6B0ZPkhak8sQER0VVGBTQsiVoobpIM6WV6N8at/x4XaRkQHu2NNUiyc5A5ixyLq8FiAiOiquCJ0+8k/V4OH3/sdFdUN6OXvho+SBsJV6Sh2LCK7wAJERFcV/Zc7wTgRuu0UVdbh4ff2oFSrQ3gnF6x7bCDUTiw/RJbCAkREV9XDzxVyBym09XqcPlcrdpwOoVRbj4ff+x1FlXXo6u2Mjx+Pg5eLQuxYRHaFBYiIrspRJkUvfzcAnAfUFiqqdXj4vd+Rf64WwZ4qbHg8Dp1clWLHIrI7LEBEdE3Rl1aE5p1gN0ZvMGLa+gM4WV4Df7USG6bcBH+1SuxYRHaJBYiIrokrQreN5T/mYt/pC3BROGD9lDgEezqJHYnIbrEAEdE1Na0IfeSsBnqDUeQ0tmnvqfNY/uMJAMBLoyMR5uMiciIi+2YVBWjlypUICQmBUqlEXFwc9u7de8V9GxsbsWjRIoSFhUGpVCI6OhppaWlX3P+VV16BRCLB7Nmz2yE5kX0I9XaBi8IB9Y1G5JZXix3H5mhqGzH70wwYBeC+foEYFRModiQiuyd6Adq4cSOSk5OxYMECHDx4ENHR0UhMTERZWVmz+6empmLVqlVYvnw5srOzMXXqVIwePRoZGRmX7btv3z6sWrUKUVFR7X0aRB2aVCpBZOClidCcB9QigiAgZcthnNXUI8TLCYtGRYodiYhgBQVoyZIlePzxx5GUlIRevXrhnXfegZOTEz744INm91+3bh2ee+45DB8+HKGhoZg2bRqGDx+ON954w2y/6upqjB8/Hu+99x48PDwscSpEHVrTekCZnAfUIhv3FeLbrBI4SCVY9lBfuCi4yjORNRC1ADU0NODAgQNISEgwbZNKpUhISMDu3bubfY9Op4NSaX7LqEqlwq5du8y2TZ8+HSNGjDA7NhG1Xp8grgjdUrllVVj41R8AgKcTeyA62F3cQERkIuo/RSoqKmAwGODr62u23dfXFzk5Oc2+JzExEUuWLMGtt96KsLAwpKenY/PmzTAYDKZ9Pv30Uxw8eBD79u27rhw6nQ46nc70sVarbcXZEHVsTSNAOSVa6PQGPqn8GuobDZj5ySHUNxpxczdvPHFLqNiRiOgvRL8E1lLLli1DeHg4IiIiIJfLMWPGDCQlJUEqvXgqhYWFePLJJ/Hxxx9fNlJ0JYsXL4ZarTa9goOD2/MUiGxSkIcKHk6OaDQIOFpcJXYcq/dqWg6OFmvh6SzHkgejIZVKxI5ERH8hagHy9vaGTCZDaWmp2fbS0lL4+fk1+x4fHx9s3boVNTU1yM/PR05ODlxcXBAaevFfVwcOHEBZWRn69esHBwcHODg4YOfOnXjrrbfg4OBgNlLUJCUlBRqNxvQqLCxs+5MlsnESiYTrAV2nn3LKsObX0wCA/zwQhU5uXOmZyNqIWoDkcjn69++P9PR00zaj0Yj09HTEx8df9b1KpRKBgYHQ6/XYtGkTRo0aBQC44447kJWVhUOHDpleAwYMwPjx43Ho0CHIZJcP2ysUCri5uZm9iOhyXBH62sq09Xj6f5kAgEmDQnB7hO813kFEYhD9doTk5GRMnDgRAwYMwMCBA7F06VLU1NQgKSkJADBhwgQEBgZi8eLFAIA9e/agqKgIMTExKCoqwsKFC2E0GjFnzhwAgKurKyIjzW8zdXZ2hpeX12XbiahlOAJ0dUajgH/9LxPnahrQ098Nc4dFiB2JiK5A9AI0duxYlJeXY/78+SgpKUFMTAzS0tJME6MLCgpM83sAoL6+HqmpqcjLy4OLiwuGDx+OdevWwd3dXaQzILIfUZdWhM4tr0a1Ts9buv9m9a48/HKiAkpHKZaPi4HSkRPFiayVRBAEQewQ1kar1UKtVkOj0fByGNHfxC9OR7GmHp8+cRNuCvUSO47VOHymEmPe/g2NBgEvj+6Dh+M6ix2JyO605Pe3zd0FRkTiiro0DyiL6wGZVOv0mPVJBhoNAoZF+mHcQN5JSmTtWICIqEWiuCL0ZRZ88QdOn6tFgFqJV+6LgkTCW96JrB0LEBG1SLRpIjRHgADgi0NF2HTwDKQSYOlDfaF2chQ7EhFdBxYgImqRPoEXL4EVnK/FhZoGkdOIq/B8LVK3HAEAzLg9HAO7eoqciIiuFwsQEbWI2skRIV5OAIDDRfY7CtRoMGLWpxmo0ukxoIsHZt3eTexIRNQCLEBE1GKm9YAKK0XNIaZlP5xARkElXJUOWPpQDBxk/HFKZEv4N5aIWqzpTrBMO50HtPvkOazckQsAWHxfHwR5OImciIhaigWIiFosOtgdgH2uCH2hpgFPbTwEQQDGDgjG3VEBYkciolZgASKiFusd4AapBCir0qFEUy92HIsRBAFzNh1GibYeoT7OWHBPL7EjEVErsQARUYs5yR3Q3dcVgH2tB7R+TwG2Z5dCLpPirYf6wknOR4EQ2SoWICJqlaZ5QPZyGexYSRX+/XU2AGDO0B6IvLQcABHZJhYgImqVKDtaELG+0YBZn2RApzfitu4+mDy4q9iRiOgGsQARUav8dUXojv5M5Ze/PYpjpVXwdlHgPw9EQyrloy6IbB0LEBG1Sg8/V8hlUmjqGlFwvlbsOO1me3YpPtqdDwB448Fo+LgqRE5ERG2BBYiIWkXuIEVP/6aJ0B3zMliJph5zPs8EADx+S1fc1t1H5ERE1FZYgIio1TryitAGo4CnNh7ChdpGRAa64ZnECLEjEVEbYgEiolb7806wjjcC9M7Ok9iddw5Ochneeqgv5A78cUnUkfBvNBG1WtOK0EfOamAwdpyJ0BkFF7Bk+3EAwMJ7eiPUx0XkRETU1liAiKjVwnxc4CSXobbBgNyyarHjtImq+kbM+jQDBqOAu6P88UD/ILEjEVE7YAEiolaTSSWmBQE7yorQz289gsLzdQh0V+Gl0X0gkfCWd6KOiAWIiG5IdAdaEXrzwTPYeugsZFIJ3hoXA7XKUexIRNROWICI6IZ0lBWhT1fU4PmtRwAAs+8IR/8uniInIqL2xAJERDekaUXoo8Va6PQGccO0UoPeiFmfZqCmwYC4rp7455BuYkcionbGAkRENyTYUwUPJ0c0GgQcK6kSO06rvLH9GA6f0UCtcsSbY2Mg46MuiDo8FiAiuiESiQR9Lo0C2eKK0LtOVGDVzjwAwKtjohDgrhI5ERFZAgsQEd2wqEt3gtnaitDnqnV46rNDAICH4zpjaKSfuIGIyGJYgIjohtniitCCIOCZzw+jvEqH8E4ueH5EL7EjEZEFsQAR0Q1rWhH6RFkVahv04oa5Tmt/O40fc8ogd5DirXF9oZLLxI5ERBbEAkREN8zXTQlfNwWMAnCkSCt2nGvKPqvFy9/lAADmDe+Jnv5uIiciIktjASKiNvHnekCVoua4lroGA2Z+chANeiMSenbChPguYkciIhGwABFRm2haEdra7wRb9HU2TpbXoJOrAq/dH81HXRDZKRYgImoTtjAClHakGJ/sLYBEArw5NgaeznKxIxGRSKyiAK1cuRIhISFQKpWIi4vD3r17r7hvY2MjFi1ahLCwMCiVSkRHRyMtLc1sn7fffhtRUVFwc3ODm5sb4uPj8d1337X3aRDZtaY7wfLP1aKytkHkNJc7W1mHZzdlAQD+cWsYBnfzFjkREYlJ9AK0ceNGJCcnY8GCBTh48CCio6ORmJiIsrKyZvdPTU3FqlWrsHz5cmRnZ2Pq1KkYPXo0MjIyTPsEBQXhlVdewYEDB7B//37cfvvtGDVqFP744w9LnRaR3XF3kqOLlxMA67sd3mAUMHvjIWjqGhEdpMa/7uoudiQiEplEEARBzABxcXGIjY3FihUrAABGoxHBwcGYOXMm5s6de9n+AQEBmDdvHqZPn27aNmbMGKhUKqxfv/6KX8fT0xOvv/46HnvssWtm0mq1UKvV0Gg0cHPj3SFE12vmJxn4KvMsnknsgelW9Dytt9JPYMn243CWy/Dtk7egi5ez2JGIqB205Pe3qCNADQ0NOHDgABISEkzbpFIpEhISsHv37mbfo9PpoFQqzbapVCrs2rWr2f0NBgM+/fRT1NTUID4+/orH1Gq1Zi8iajnTRGgrWhH6QP55LEs/AQD49+hIlh8iAiByAaqoqIDBYICvr6/Zdl9fX5SUlDT7nsTERCxZsgQnTpyA0WjE9u3bsXnzZhQXF5vtl5WVBRcXFygUCkydOhVbtmxBr17Nr/S6ePFiqNVq0ys4OLhtTpDIzvQJtK4VoTV1jZj1ySEYjAJG9w3E6L5BYkciIish+hygllq2bBnCw8MREREBuVyOGTNmICkpCVKp+an06NEDhw4dwp49ezBt2jRMnDgR2dnZzR4zJSUFGo3G9CosLLTEqRB1OJGBakglQIm2HmXaelGzCIKA57ZkoaiyDp09nbBoVG9R8xCRdRG1AHl7e0Mmk6G0tNRse2lpKfz8mn8ooY+PD7Zu3Yqamhrk5+cjJycHLi4uCA0NNdtPLpejW7du6N+/PxYvXozo6GgsW7as2WMqFArTHWNNLyJqOWeFA7p1cgEg/npA/9t/Bt8cLoaDVIK3xvWFq9JR1DxEZF1ELUByuRz9+/dHenq6aZvRaER6evoV5+s0USqVCAwMhF6vx6ZNmzBq1Kir7m80GqHT6dokNxFdmTWsB3SyvBoLvrx412fyXd0Rc+lZZURETRzEDpCcnIyJEydiwIABGDhwIJYuXYqamhokJSUBACZMmIDAwEAsXrwYALBnzx4UFRUhJiYGRUVFWLhwIYxGI+bMmWM6ZkpKCoYNG4bOnTujqqoKGzZswI4dO7Bt2zZRzpHInkQHqfH5gTOijQDp9AbM+iQDdY0GDArzwtRbw0TJQUTWTfQCNHbsWJSXl2P+/PkoKSlBTEwM0tLSTBOjCwoKzOb31NfXIzU1FXl5eXBxccHw4cOxbt06uLu7m/YpKyvDhAkTUFxcDLVajaioKGzbtg133nmnpU+PyO78dQRIEASLP2ri9bRj+OOsFh5OjnhzbAykUj7qgoguJ/o6QNaI6wARtZ5Ob0Dkgm1oNAj4+Zkh6HxpcURL2HGsDJPW7AMArJ4wAAm9fK/xDiLqSGxmHSAi6ngUDjL09L/4gyfTgvOAyqt0ePp/mQCAifFdWH6I6KpYgIiozTU9F8xSE6GNRgH/+l8mKqobEOHnipThPS3ydYnIdrEAEVGb+3MekGUmQn/w6yn8fLwcCgcplo/rC6WjzCJfl4hsFwsQEbW56EsF6EiRBgZj+04zPFKkwatpOQCA5+/uhXBf13b9ekTUMbAAEVGb69bJBSpHGWoaDMgrr263r1Oj02PWJxloNAi4q5cvxsd1brevRUQdCwsQEbU5mVSCyMCmidDtdxnsha/+QF5FDfzclHh1TJTFb7knItvFAkRE7aK9V4T++vBZfLb/DCQSYOlDMfBwlrfL1yGijokFiIjaRdOdYO0xAlR4vhYpm7MAADOGdMNNoV5t/jWIqGNjASKidtE0EfroWS0a9MY2O67eYMSTn2agql6Pfp3d8eQd4W12bCKyHyxARNQuung5Qa1yRIPBiGMlVW123LfST+BgQSVcFQ5Y9lBfOMj4Y4yIWo4/OYioXUgkkr9cBqtsk2PuyTuHFT/lAgBeuq8Pgj0t95gNIupYWICIqN205YrQlbUNmL3xEIwCcH//INwTHXDDxyQi+8UCRETtpq1WhBYEAXM3ZaFYU4+u3s544Z7ebZCOiOwZCxARtZumidDHS6tQ12Bo9XE+2VuItD9K4CiT4K2H+sJZ4dBGCYnIXrEAEVG78VMr0clVAaMA/HG2daNAJ0qrsOjrPwAAcxIj0OfSZTUiohvBAkRE7arpMlhr1gOqbzRg5icZqG804pZwbzx2c9c2TkdE9ooFiIja1Y1MhH7luxzklFTB20WONx6MhlTKR10QUdtgASKidvVnAWrZCFD60VJ8+NtpAMDrD0Sjk6uyraMRkR1jASKidtV0CexURQ00dY3X9Z4ybT2e+fwwAGDy4K4Y0qNTe8UjIjvFAkRE7crTWY5gTxUAIOs6RoGMRgHJn2XifE0Devm74dlhPdo7IhHZIRYgImp3f06Errzmvu/+kodduRVQOcrw1ri+UDjI2jccEdklFiAianfR1zkROrOwEv/ZdgwAsPCeXujWyaW9oxGRnWIBIqJ2dz0rQlfr9Jj1aQb0RgEj+vjjwQHBFkpHRPaIBYiI2l1koBoSCVCsqUdZVX2z+8zfegT552oR6K7Cy/f1gUTCW96JqP2wABFRu3NROKCbz8XLWYcLLx8F2ppRhM0ZRZBKgGUPxUCtcrR0RCKyMyxARGQRpstgReYFqOBcLVK3HgEAzLojHANCPC0djYjsEAsQEVlEdPDlE6EbDUbM/DQD1To9YkM8MGNIN5HSEZG9YQEiIovoE/jnitCCIAAA3tx+HJmFlXBTOmDpQ33hIOOPJCKyDAexAxCRfejp7wYHqQTnaxpw5kIdCs/X4u2dJwEAr4yJQqC7SuSERGRP+M8tIrIIpaMMEf6uAICdx8vx1GeHIAjAuIHBGN7HX+R0RGRvWICIyGKaJkIv+iobpVodwnyc8fzdvcQNRUR2ySoK0MqVKxESEgKlUom4uDjs3bv3ivs2NjZi0aJFCAsLg1KpRHR0NNLS0sz2Wbx4MWJjY+Hq6opOnTrh3nvvxbFjx9r7NIjoGppWhG4wGCGXSbF8XD84yXklnogsT/QCtHHjRiQnJ2PBggU4ePAgoqOjkZiYiLKysmb3T01NxapVq7B8+XJkZ2dj6tSpGD16NDIyMkz77Ny5E9OnT8fvv/+O7du3o7GxEXfddRdqamosdVpE1IymESAAmDssAr0C3MQLQ0R2TSI03Y4hkri4OMTGxmLFihUAAKPRiODgYMycORNz5869bP+AgADMmzcP06dPN20bM2YMVCoV1q9f3+zXKC8vR6dOnbBz507ceuut18yk1WqhVquh0Wjg5sYf0ERtRRAEzNt6BE6OMswb0ZOrPRNRm2rJ729Rx54bGhpw4MABpKSkmLZJpVIkJCRg9+7dzb5Hp9NBqVSabVOpVNi1a9cVv45Gc3HhNU9PLrBGJCaJRIKXR/cROwYRkbiXwCoqKmAwGODr62u23dfXFyUlJc2+JzExEUuWLMGJEydgNBqxfft2bN68GcXFxc3ubzQaMXv2bAwePBiRkZHN7qPT6aDVas1eRERE1HGJPgeopZYtW4bw8HBERERALpdjxowZSEpKglTa/KlMnz4dR44cwaeffnrFYy5evBhqtdr0Cg7mU6iJiIg6MlELkLe3N2QyGUpLS822l5aWws/Pr9n3+Pj4YOvWraipqUF+fj5ycnLg4uKC0NDQy/adMWMGvv76a/z0008ICgq6Yo6UlBRoNBrTq7Cw8MZOjIiIiKyaqAVILpejf//+SE9PN20zGo1IT09HfHz8Vd+rVCoRGBgIvV6PTZs2YdSoUabPCYKAGTNmYMuWLfjxxx/RtWvXqx5LoVDAzc3N7EVEREQdl+gLcCQnJ2PixIkYMGAABg4ciKVLl6KmpgZJSUkAgAkTJiAwMBCLFy8GAOzZswdFRUWIiYlBUVERFi5cCKPRiDlz5piOOX36dGzYsAFffPEFXF1dTfOJ1Go1VCout09ERGTvRC9AY8eORXl5OebPn4+SkhLExMQgLS3NNDG6oKDAbH5PfX09UlNTkZeXBxcXFwwfPhzr1q2Du7u7aZ+3334bAPB///d/Zl9rzZo1mDRpUnufEhEREVk50dcBskZcB4iIiMj2tOT3t83dBUZERER0o1iAiIiIyO6wABEREZHdYQEiIiIiu8MCRERERHaHBYiIiIjsDgsQERER2R3RF0K0Rk1LI/Gp8ERERLaj6ff29SxxyALUjKqqKgDgU+GJiIhsUFVVFdRq9VX34UrQzTAajTh79ixcXV0hkUja9NharRbBwcEoLCy0y1Wm7f38AX4PeP72ff4Avwf2fv5A+30PBEFAVVUVAgICzB6j1RyOADVDKpUiKCioXb+GvT913t7PH+D3gOdv3+cP8Htg7+cPtM/34FojP004CZqIiIjsDgsQERER2R0WIAtTKBRYsGABFAqF2FFEYe/nD/B7wPO37/MH+D2w9/MHrON7wEnQREREZHc4AkRERER2hwWIiIiI7A4LEBEREdkdFiALWLx4MWJjY+Hq6opOnTrh3nvvxbFjx8SOZVFvv/02oqKiTGs+xMfH47vvvhM7lmheeeUVSCQSzJ49W+woFrNw4UJIJBKzV0REhNixLKqoqAiPPPIIvLy8oFKp0KdPH+zfv1/sWBYTEhJy2Z8BiUSC6dOnix3NIgwGA55//nl07doVKpUKYWFhePHFF6/rsQ0dRVVVFWbPno0uXbpApVJh0KBB2LdvnyhZuBCiBezcuRPTp09HbGws9Ho9nnvuOdx1113Izs6Gs7Oz2PEsIigoCK+88grCw8MhCALWrl2LUaNGISMjA7179xY7nkXt27cPq1atQlRUlNhRLK5379744YcfTB87ONjPj6ALFy5g8ODBGDJkCL777jv4+PjgxIkT8PDwEDuaxezbtw8Gg8H08ZEjR3DnnXfigQceEDGV5bz66qt4++23sXbtWvTu3Rv79+9HUlIS1Go1Zs2aJXY8i5gyZQqOHDmCdevWISAgAOvXr0dCQgKys7MRGBho2TACWVxZWZkAQNi5c6fYUUTl4eEhrF69WuwYFlVVVSWEh4cL27dvF2677TbhySefFDuSxSxYsECIjo4WO4Zonn32WeHmm28WO4ZVefLJJ4WwsDDBaDSKHcUiRowYIUyePNls23333SeMHz9epESWVVtbK8hkMuHrr782296vXz9h3rx5Fs/DS2Ai0Gg0AABPT0+Rk4jDYDDg008/RU1NDeLj48WOY1HTp0/HiBEjkJCQIHYUUZw4cQIBAQEIDQ3F+PHjUVBQIHYki/nyyy8xYMAAPPDAA+jUqRP69u2L9957T+xYomloaMD69esxefLkNn/morUaNGgQ0tPTcfz4cQBAZmYmdu3ahWHDhomczDL0ej0MBgOUSqXZdpVKhV27dlk+kMUrl50zGAzCiBEjhMGDB4sdxeIOHz4sODs7CzKZTFCr1cI333wjdiSL+uSTT4TIyEihrq5OEATB7kaAvv32W+Gzzz4TMjMzhbS0NCE+Pl7o3LmzoNVqxY5mEQqFQlAoFEJKSopw8OBBYdWqVYJSqRQ+/PBDsaOJYuPGjYJMJhOKiorEjmIxBoNBePbZZwWJRCI4ODgIEolEePnll8WOZVHx8fHCbbfdJhQVFQl6vV5Yt26dIJVKhe7du1s8CwuQhU2dOlXo0qWLUFhYKHYUi9PpdMKJEyeE/fv3C3PnzhW8vb2FP/74Q+xYFlFQUCB06tRJyMzMNG2ztwL0dxcuXBDc3Nzs5jKoo6OjEB8fb7Zt5syZwk033SRSInHdddddwt133y12DIv65JNPhKCgIOGTTz4RDh8+LHz00UeCp6enXZXg3Nxc4dZbbxUACDKZTIiNjRXGjx8vREREWDwLC5AFTZ8+XQgKChLy8vLEjmIV7rjjDuGJJ54QO4ZFbNmyxfQXvukFQJBIJIJMJhP0er3YEUUxYMAAYe7cuWLHsIjOnTsLjz32mNm2//73v0JAQIBIicRz+vRpQSqVClu3bhU7ikUFBQUJK1asMNv24osvCj169BApkXiqq6uFs2fPCoIgCA8++KAwfPhwi2fgHCALEAQBM2bMwJYtW/Djjz+ia9euYkeyCkajETqdTuwYFnHHHXcgKysLhw4dMr0GDBiA8ePH49ChQ5DJZGJHtLjq6mqcPHkS/v7+YkexiMGDB1+2/MXx48fRpUsXkRKJZ82aNejUqRNGjBghdhSLqq2thVRq/mtXJpPBaDSKlEg8zs7O8Pf3x4ULF7Bt2zaMGjXK4hns5x5UEU2fPh0bNmzAF198AVdXV5SUlAAA1Go1VCqVyOksIyUlBcOGDUPnzp1RVVWFDRs2YMeOHdi2bZvY0SzC1dUVkZGRZtucnZ3h5eV12faO6umnn8bIkSPRpUsXnD17FgsWLIBMJsO4cePEjmYRTz31FAYNGoSXX34ZDz74IPbu3Yt3330X7777rtjRLMpoNGLNmjWYOHGiXS2DAAAjR47ESy+9hM6dO6N3797IyMjAkiVLMHnyZLGjWcy2bdsgCAJ69OiB3NxcPPPMM4iIiEBSUpLlw1h8zMkOAWj2tWbNGrGjWczkyZOFLl26CHK5XPDx8RHuuOMO4fvvvxc7lqjsbQ7Q2LFjBX9/f0EulwuBgYHC2LFjhdzcXLFjWdRXX30lREZGCgqFQoiIiBDeffddsSNZ3LZt2wQAwrFjx8SOYnFarVZ48sknhc6dOwtKpVIIDQ0V5s2bJ+h0OrGjWczGjRuF0NBQQS6XC35+fsL06dOFyspKUbLwafBERERkdzgHiIiIiOwOCxARERHZHRYgIiIisjssQERERGR3WICIiIjI7rAAERERkd1hASIiIiK7wwJEREREdocFiIisXklJCe688044OzvD3d1d7DhE1AGwABGR1XvzzTdRXFyMQ4cO4fjx42123JCQECxdurTNjkdEtsO+nkRHRDbp5MmT6N+/P8LDw8WO0qyGhgbI5XKxYxBRC3AEiIgs4v/+7/8wa9YszJkzB56envDz88PChQuv+b6QkBBs2rQJH330ESQSCSZNmgQAqKysxJQpU+Dj4wM3NzfcfvvtyMzMNL3v5MmTGDVqFHx9feHi4oLY2Fj88MMPZnny8/Px1FNPQSKRQCKRAAAWLlyImJgYswxLly5FSEiI6eNJkybh3nvvxUsvvYSAgAD06NEDAFBYWIgHH3wQ7u7u8PT0xKhRo3D69GnT+3bs2IGBAweaLuUNHjwY+fn5LftGElGbYAEiIotZu3YtnJ2dsWfPHrz22mtYtGgRtm/fftX37Nu3D0OHDsWDDz6I4uJiLFu2DADwwAMPoKysDN999x0OHDiAfv364Y477sD58+cBANXV1Rg+fDjS09ORkZGBoUOHYuTIkSgoKAAAbN68GUFBQVi0aBGKi4tRXFzconNJT0/HsWPHsH37dnz99ddobGxEYmIiXF1d8csvv+DXX3+Fi4sLhg4dioaGBuj1etx777247bbbcPjwYezevRtPPPGEqXgRkWXxEhgRWUxUVBQWLFgAAAgPD8eKFSuQnp6OO++884rv8fHxgUKhgEqlgp+fHwBg165d2Lt3L8rKyqBQKAAA//nPf7B161Z8/vnneOKJJxAdHY3o6GjTcV588UVs2bIFX375JWbMmAFPT0/IZDK4urqajtsSzs7OWL16tenS1/r162E0GrF69WpTqVmzZg3c3d2xY8cODBgwABqNBnfffTfCwsIAAD179mzx1yWitsERICKymKioKLOP/f39UVZW1uLjZGZmorq6Gl5eXnBxcTG9Tp06hZMnTwK4OAL09NNPo2fPnnB3d4eLiwuOHj1qGgG6UX369DGb95OZmYnc3Fy4urqa8nh6eqK+vh4nT56Ep6cnJk2ahMTERIwcORLLli1r8agTEbUdjgARkcU4OjqafSyRSGA0Glt8nOrqavj7+2PHjh2Xfa7pNvmnn34a27dvx3/+8x9069YNKpUK999/PxoaGq56bKlUCkEQzLY1NjZetp+zs/Nlmfr374+PP/74sn19fHwAXBwRmjVrFtLS0rBx40akpqZi+/btuOmmm66aiYjaHgsQEdmcfv36oaSkBA4ODmaTk//q119/xaRJkzB69GgAFwvKXyckA4BcLofBYDDb5uPjg5KSEgiCYLqUdejQoevKtHHjRnTq1Alubm5X3K9v377o27cvUlJSEB8fjw0bNrAAEYmAl8CIyOYkJCQgPj4e9957L77//nucPn0av/32G+bNm4f9+/cDuDjHaPPmzTh06BAyMzPx8MMPXzbaFBISgp9//hlFRUWoqKgAcPHusPLycrz22ms4efIkVq5cie++++6amcaPHw9vb2+MGjUKv/zyC06dOoUdO3Zg1qxZOHPmDE6dOoWUlBTs3r0b+fn5+P7773HixAnOAyISCQsQEdkciUSCb7/9FrfeeiuSkpLQvXt3PPTQQ8jPz4evry8AYMmSJfDw8MCgQYMwcuRIJCYmol+/fmbHWbRoEU6fPo2wsDDTZaqePXviv//9L1auXIno6Gjs3bsXTz/99DUzOTk54eeff0bnzp1x3333oWfPnnjsscdQX18PNzc3ODk5IScnB2PGjEH37t3xxBNPYPr06fjHP/7R9t8gIromifD3i91EREREHRxHgIiIiMjusAARkag+/vhjs1vZ//rq3bu32PGIqIPiJTAiElVVVRVKS0ub/ZyjoyO6dOli4UREZA9YgIiIiMju8BIYERER2R0WICIiIrI7LEBERERkd1iAiIiIyO6wABEREZHdYQEiIiIiu8MCRERERHaHBYiIiIjszv8DZgkN4fc4/zsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAGxCAYAAACKvAkXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABV1UlEQVR4nO3deVxU5eI/8M+ZgZlh3/dVkdwFWUTQdm+Y5U/N0solrSwLK/OW6VfTltu17uLVm94yu7fc05tmdbtZRtcSd0DcFxYFRHaQVbaZ8/sDmCQxBYZ5ZpjP+/WaVy8OZ858Dml8Ouc5zyPJsiyDiIiIyIIoRAcgIiIiMjYWICIiIrI4LEBERERkcViAiIiIyOKwABEREZHFYQEiIiIii8MCRERERBaHBYiIiIgsjpXoAKZIp9Ph8uXLcHBwgCRJouMQERHRLZBlGVVVVfD19YVC8dvXeFiA2nH58mUEBASIjkFERESdkJubC39//9/chwWoHQ4ODgCaf4COjo6C0xAREdGtqKysREBAgP73+G9hAWpH620vR0dHFiAiIiIzcyvDVzgImoiIiCwOCxARERFZHBYgIiIisjgsQERERGRxWICIiIjI4rAAERERkcVhASIiIiKLwwJEREREFocFiIiIiCyO0AL0888/Y+zYsfD19YUkSdi5c+dN37Nnzx5ERERArVajT58++PTTT6/bZ/Xq1QgODoZGo0FMTAwOHz5s+PBERERktoQWoJqaGoSFhWH16tW3tP+FCxfwwAMP4O6770ZaWhrmzp2Lp59+Gt99951+n61bt2LevHlYunQpUlNTERYWhvj4eBQVFXXXaRAREZGZkWRZlkWHAJrX7fjiiy8wfvz4G+7z2muv4ZtvvsHJkyf12x599FFcuXIFu3btAgDExMQgOjoaq1atAgDodDoEBATghRdewIIFC24pS2VlJZycnFBRUcG1wIiIiMxER35/m9ViqAcOHMCoUaPabIuPj8fcuXMBAA0NDUhJScHChQv131coFBg1ahQOHDhgzKjtKqqqw/mCaigUgFKSoFT88lK0fG2lkKBQSPrvK1q3te4vSVAqm/957XFuZeE3IiIiamZWBaigoABeXl5ttnl5eaGyshJXr15FeXk5tFptu/ucPXv2hsetr69HfX29/uvKykrDBm9xMKsML2452i3HVkhoU6T0L6mdEqWQoJAAK4WiuWz9qpDd6BjXlq9f9gOUCoX+GIr2Spx0zTaFBFc7FWJ7uyHA1bZbfhZEREQ3Y1YFqLssW7YMb775Zrd/joPGCv28HaDVydDKMnQ6GU265n9qZRlaHaCTZTRpddDJ0O+n1TW/fotOBnRaGYBJ3NG8Jf4uNogLcUNciDtiQ9zg5agRHYmIiCyEWRUgb29vFBYWttlWWFgIR0dH2NjYQKlUQqlUtruPt7f3DY+7cOFCzJs3T/91ZWUlAgICDBsewN19PXF3X89Ov1/3q0LUWqKu/Vqrk6HTAU06HXQtpeq67197jBuWsV9e+uPIMrRaHbRyO1la9tMf49fHbdm3SScjp7QWablXcKn8KrYlX8K25EsAgBAPO8SFuGNEHzfE9HKDi53KUD96IiKiNsyqAMXGxuK///1vm227d+9GbGwsAEClUiEyMhKJiYn6wdQ6nQ6JiYmYM2fODY+rVquhVqu7LbehKBQSFJBgrRSdpOtq6ptw5GIZDmSWYn9mKU5erkBmcQ0yi2uw4WA2JAkY4OOov0IU3csV9mqz+uNKREQmTOhvlOrqamRkZOi/vnDhAtLS0uDq6orAwEAsXLgQeXl5WL9+PQBg9uzZWLVqFebPn48nn3wSP/74I7Zt24ZvvvlGf4x58+bhiSeeQFRUFIYNG4YVK1agpqYGM2fONPr50Y3Zqa1wV19P3NVyRexKbQMOZpXhQGYJ9meWIr2oGqcuV+LU5Uqs3XsBSoWEMH8nxIW4Iy7EDRFBLtD0hCZIRERCCH0Mfs+ePbj77ruv2/7EE0/g008/xYwZM3Dx4kXs2bOnzXtefvllnD59Gv7+/nj99dcxY8aMNu9ftWoV/vznP6OgoADh4eH4+9//jpiYmFvOxcfgxSuqqsOBzFL9FaKcsto231dZKRAZ6NJ8haiPO4b4O8FayYnNiYgsWUd+f5vMPECmhAXI9OSW1eJAVnMh2pdRgqKq+jbft1MpMayXq35A9QAfRygUnBqAiMiSsAB1EQuQaZNlGZnFNfrbZQeySnGltrHNPs621hjeyw1xfdwQF+KGEA97zpVERNTDsQB1EQuQedHpZJwpqNTfLjuUVYqaBm2bfTwc1IgLccOIlitEnIOIiKjnYQHqIhYg89ao1eFEXkVLISpB8sVy1Dfp2uwT4GqDuN7uiOvjhtjebvDkHERERGaPBaiLWIB6lrpGLY7mXNHfMkvLvYKmX00s2cfTvuWRezcM7+0GZ1vOQUREZG5YgLqIBahnq24zB1EJTl2uxLV/CyQJGOjrqB9QHR3MOYiIiMwBC1AXsQBZlvbmILqWlUJCWIAz4kLcEBvihohAzkFERGSKWIC6iAXIst3KHERRQS4thcgdYf5OsOIcREREwrEAdRELEF2rdQ6i/RnNV4h+PQeRvdqqZQ6i5itE/b05BxERkQgsQF3EAkQ3cqtzEMX2dtNfIQrxsOMcRERERsAC1EUsQHSrbmUOIs+WOYjiOAcREVG3YgHqIhYg6qxbmYMo2M0Wfxg/GCND3QWlJCLqmViAuogFiAylrlGL1Jxy/RWiYy1zENmrrfDF83EI9XIQHZGIqMdgAeoiFiDqLtX1TXjq0yM4dKEMQW62+DJhBCddJCIykI78/uazu0RGZK+2wj+mRMDP2QbZpbWYs/komrS6m7+RiIgMigWIyMjc7NX4+Iko2KqUSMoowTv/PSM6EhGRxWEBIhKgv48jlk8KAwB8su8ith3JFZyIiMiysAARCTJ6kA/mjgoFACzaeQIp2WWCExERWQ4WICKBXrwnFPcP8kajVsazG1Jx+cpV0ZGIiCwCCxCRQAqFhL88EoZ+3g4oqa7HMxuScfVXEykSEZHhsQARCWantsLa6VFwtVPhZF4lXv38GDg7BRFR92IBIjIBAa62+GBKBKwUEv5zPB//2JMpOhIRUY/GAkRkImJ6u+HNcQMBAH/5/hx+OF0oOBERUc/FAkRkQqbEBGHq8EDIMvDSZ0dxvrBKdCQioh6JBYjIxCwdOxDDe7uipkGLWeuTcaW2QXQkIqIehwWIyMRYKxX4x5RI+Ls0L5eRsDmVy2UQERkYCxCRCXK1U+mXy9iXUYo/fMPlMoiIDIkFiMhE9fN2xPJJ4QCAT/dfxNYjOWIDERH1ICxARCZs9CBvvDzqNgDA4p0nkXyRy2UQERkCCxCRiXvhnj4YM7h5uYzZG1OQx+UyiIi6jAWIyMS1LpfR38cRJdUNeGY9l8sgIuoqFiAiM2CrssLa6ZFws1Ph1GUul0FE1FUsQERmwt/FFh9MjeRyGUREBsACRGRGhvVyxVvjBgEA/vzdOXx/qkBwIiIi88QCRGRmHo8JxPTYIADAy1vTcK6Ay2UQEXUUCxCRGXr9wQGI7e2mXy6jvIbLZRARdQQLEJEZslYqsHpKBAJcbZBT1rxcRiOXyyAiumUsQERmytVOhY+nR8NOpcT+zFK8w+UyiIhuGQsQkRnr6+2Av00OB9C8XMZnh7lcBhHRrWABIjJz9w30xu9/17xcxutfnsQRLpdBRHRTLEBEPcCce/rggcE+zctlbOByGUREN8MCRNQDSJKEPz8yBAN8HFFa04BZ65JR29AkOhYRkcliASLqIWxVVlj7RBTc7FQ4nV+JV/99nMtlEBHdAAsQUQ/i52yDD6dFwlop4ZsT+Vj1Y4boSEREJokFiKiHiQ52xdsty2X8dfd5LpdBRNQOFiCiHujRYYF44prlMs4WVApORERkWliAiHqoxQ8OQFzIL8tllHG5DCIiPRYgoh7KWqnA6scjEOhqi9yyq0jYxOUyiIhasQAR9WAudiqsnR4FO5USB7JK8fZ/TouORERkEliAiHq4vt4OWPHoUEgSsP5ANjYf4nIZREQsQEQW4HcDvPTLZSz58iQOX+ByGURk2ViAiCxEwt198OAQHzTpZDy3MQWXymtFRyIiEoYFiMhCSJKEPz8choG+LctlrE/hchlEZLFYgIgsiI1KiY+mR8HdXoUz+ZV45d/HuFwGEVkkFiAiC+PnbIMPpzYvl/HfEwV4n8tlEJEFYgEiskBRwa74w/jm5TKW7z6PXSe5XAYRWRYWICILNTk6EDPiggEA87ZxuQwisizCC9Dq1asRHBwMjUaDmJgYHD58+Ib7NjY24q233kJISAg0Gg3CwsKwa9euNvtotVq8/vrr6NWrF2xsbBASEoK3336b4xyI2rH4gf4Y0ccNtQ1aPL2Oy2UQkeUQWoC2bt2KefPmYenSpUhNTUVYWBji4+NRVFTU7v6LFy/GmjVr8P777+P06dOYPXs2JkyYgKNHj+r3ee+99/DBBx9g1apVOHPmDN577z386U9/wvvvv2+s0yIyG1ZKBVY9FoEgN1tcKr+K5zelcLkMIrIIkizw0khMTAyio6OxatUqAIBOp0NAQABeeOEFLFiw4Lr9fX19sWjRIiQkJOi3TZw4ETY2Nti4cSMA4MEHH4SXlxf++c9/3nCfm6msrISTkxMqKirg6OjYlVMkMgvnC6swYfU+1DRoMW14EN5uGR9ERGROOvL7W9gVoIaGBqSkpGDUqFG/hFEoMGrUKBw4cKDd99TX10Oj0bTZZmNjg6SkJP3XcXFxSExMxPnz5wEAx44dQ1JSEu6///5uOAuinuE2LwesbFkuY8PBbGw6lC06EhFRtxJWgEpKSqDVauHl5dVmu5eXFwoK2n8iJT4+HsuXL0d6ejp0Oh12796NHTt2ID8/X7/PggUL8Oijj6Jfv36wtrbG0KFDMXfuXEyZMuWGWerr61FZWdnmRWRpRg3wwiv39QUALP3yFA5llQpORETUfYQPgu6IlStXIjQ0FP369YNKpcKcOXMwc+ZMKBS/nMa2bduwadMmbN68GampqVi3bh3+8pe/YN26dTc87rJly+Dk5KR/BQQEGON0iEzO83eFYGyYb/NyGZtSkVvG5TKIqGcSVoDc3d2hVCpRWFjYZnthYSG8vb3bfY+Hhwd27tyJmpoaZGdn4+zZs7C3t0fv3r31+7z66qv6q0CDBw/GtGnT8PLLL2PZsmU3zLJw4UJUVFToX7m5uYY5SSIzI0kS/jRxCAb5OaKspgGz1iejpp7LZRBRzyOsAKlUKkRGRiIxMVG/TafTITExEbGxsb/5Xo1GAz8/PzQ1NWH79u0YN26c/nu1tbVtrggBgFKphE534ydb1Go1HB0d27yILJWNSomPpkXB3V6NswVVeOXfx6DTcRoJIupZhN4CmzdvHtauXYt169bhzJkzeO6551BTU4OZM2cCAKZPn46FCxfq9z906BB27NiBrKws7N27F6NHj4ZOp8P8+fP1+4wdOxbvvPMOvvnmG1y8eBFffPEFli9fjgkTJhj9/IjMla+zDdZMi4C1UsK3J7lcBhH1PFYiP3zy5MkoLi7GkiVLUFBQgPDwcOzatUs/MDonJ6fN1Zy6ujosXrwYWVlZsLe3x5gxY7BhwwY4Ozvr93n//ffx+uuv4/nnn0dRURF8fX3x7LPPYsmSJcY+PSKzFhnkinfGD8b87cfxtx/Oo6+3PUYP8hEdi4jIIITOA2SqOA8Q0S/e/PoUPtl3ETbWSux4Pg79ffh3gohMk1nMA0RE5mHRmP4Y2ccdVxubl8sora4XHYmIqMtYgIjoN1kpFVj1+FAEudki78pVPL8plctlEJHZYwEioptytlXh4+lRsFdb4dCFMrz59SnRkYiIuoQFiIhuSaiXA1Y+Gg5JAjYezMHGg1wug4jMFwsQEd2ye/t74dX45uUy3vjqFA5yuQwiMlMsQETUIc/dGYL/17pcxsYULpdBRGaJBYiIOkSSJPzp4SEY7OeE8tpGLpdBRGaJBYiIOkxjrcRH0yP1y2XM25bG5TKIyKywABFRp/g42WDNtEiolAp8d6oQKxPTRUciIrplLEBE1GmRQS74w4RBAICVien49kS+4ERERLeGBYiIumRSVACeHNELADBv2zGcvlwpOBER0c2xABFRl/3fmH64PbR5uYxZ67lcBhGZPhYgIuoyK6UCqx6LQHDLchnPbUpFQxOXyyAi08UCREQG4WRrjY+faF4u4/CFMrzB5TKIyISxABGRwfTxdMDfH2teLmPzoRxs4HIZRGSiWICIyKDu6eeF+fH9AABvfnUKBzK5XAYRmR4WICIyuNl39sa48OblMp7fxOUyiMj0sAARkcFJkoT3Jg7BEH8ul0FEpokFiIi6hcZaiY+mRcHDgctlEJHpYQEiom7j7aRps1zGCi6XQUQmggWIiLpVRKAL/vjQYADA3xPT8c1xLpdBROKxABFRt3s40h9Pj2xeLuOVfx/DqcsVghMRkaVjASIio1hw/y/LZSRsSuV4ICISigWIiIyidbkMW5USF0trcbagSnQkIrJgLEBEZDROttaI6eUKANiXUSI4DRFZMhYgIjKqEX3cAQB7WYCISCAWICIyqttDPQAAhy+Uoq5RKzgNEVkqFiAiMqrbvOzh6aBGXaMOqdnlouMQkYViASIio5IkCSNbboMl8TYYWaDCyjoczWH5F40FiIiMbgQLEFkonU7GlI8PYcI/9mPbkVzRcSwaCxARGd3I0OYCdCKvAuU1DYLTEBlPUkYJMoqqAQCLdp5ASnaZ4ESWiwWIiIzOy1GD27zsIcvA/sxS0XGIjGbjwWwAgJ1KiUatjGc3pCK/4qrgVJaJBYiIhBjZp/lpMN4GI0tx+cpV/HCmEACwedZw9PN2QEl1PZ7dkMInIgVgASIiIUaGugEAkjKKBSchMo7PDudAJwMxvVwRFuCMtdOj4GJrjeOXKrBg+3HIMpeHMSYWICISIqaXG6yVEnLLriK7tEZ0HKJu1ajVYUvLoOdpsUEAgABXW6yeEgGlQsLOtMv46OcskREtDgsQEQlhp7bC0EAXAMDedN4Go57t+1OFKK6qh7u9GvcN8NZvjwtxx5IHBwAA3t11FnvOFYmKaHFYgIhImNtbHofnumDU07UOfn40OgAqq7a/eqfHBuHR6ADIMvDClqPILK4WEdHisAARkTAjWh6H359ZCq2O4x+oZ8ooqsaBrFIoJOCxmMDrvi9JEt4cNxCRQS6oqmvCrPXJqKxrFJDUsrAAEZEwQ/yc4KCxQsXVRpzIqxAdh6hbbDrUfPXnnn5e8HO2aXcftZUSH06NhI+TBlnFNXhpy1H+T0E3YwEiImGslArEhbQ8DZbOp8Go56ltaMLnKZcAAFOHX3/151oeDmp8NC0KaisF/neuGH/+7pwxIlosFiAiEmpkKOcDop7r62OXUVXXhEBXW9zR8mf9twz2d8KfHh4CAPjwp0x8mZbX3REtFgsQEQnVujBqSnY5ahuaBKchMhxZlrGhZfDzlJhAKBTSLb1vXLgfZt8ZAgCY//lxnLjE28PdgQWIiIQKdrOFn7MNGrUyDl3gukjUcxy7VIGTeZVQWSnwSFRAh977anxf3N3XA/VNOjyzIRnFVfXdlNJysQARkVCSJOH2lqfBkjgfEPUgrY++PzjYB652qg69V6mQsPKxoejtYYf8ijo8tzEF9U1cLsOQWICISLjW1eE5HxD1FFdqG/D1scsAgCnDgzp1DEeNNdZOj4KDxgrJ2eVY+uUpLpdhQCxARCRcXIg7JAk4W1CFoqo60XGIuuzzlEuob9Khv48jIgKdO32cEA97/P2xoZAk4LMjufoxRdR1LEBEJJyrnQoDfR0B8CoQmT+dTsamQzkAgGnDgyBJtzb4+Ubu7uuJBaP7AQDe/Po09mfy74ghsAARkUkY2af5EWGuC0bmbn9mKS6U1MBebYVx4b4GOeYzd/TG+HBfaHUyEjalIres1iDHtWQsQERkEm6/ZhwQxzmQOdtw8CIA4KEIP9iprQxyTEmS8O7EIRjs54Ty2kbMWp+MmnpOG9EVLEBEZBIig1ygtlKgsLIeGUVcDJLMU0FFHX4407yi+9RODn6+EY21Eh9Nj4S7vRpnC6rwyr+PQcflMjqNBYiITILGWolhvVwB8DYYma8th3Og1ckY1ssVt3k5GPz4Pk42WDMtAiqlAt+eLMD7P2YY/DMsBQsQEZmM1lmhuSwGmaNGrQ5bDjcPfjb01Z9rRQa54g/jBwEA/vbDeew6WdBtn9WTsQARkclonQ/oYFYpGrU6wWmIOuaH04UoqqqHu70Kowd6d+tnTYoOwIy4YADAvG1pOFtQ2a2f1xOxABGRyejv7Qg3OxVqG7Q4mnNFdByiDtl4qHmOnsnRAVBZdf+v10UP9EdciBtqG7SYtT4Z5TUN3f6ZPQkLEBGZDIVCQlzrbbD0YsFpiG5dZnE19mWUQpKAx4YFGuUzrZUKrH48AgGuNsgtu4qEzalo4pXTW8YCREQm5faWArSX44DIjGw62Dz2556+nvB3sTXa57rYqbB2ehRsVUrszyzFH745Y7TPNncsQERkUka0jAM6lnsFlXWNgtMQ3dzVBi0+T8kFAEyN7b7BzzfSz9sRyyeFAwA+3X8R247kGj2DORJegFavXo3g4GBoNBrExMTg8OHDN9y3sbERb731FkJCQqDRaBAWFoZdu3Zdt19eXh6mTp0KNzc32NjYYPDgwUhOTu7O0yAiA/FztkFvdzvoZOBAZqnoOEQ39fXxy6isa0KAqw3uDPUQkmH0IG/MHRUKAFi08wRSssuE5DAnQgvQ1q1bMW/ePCxduhSpqakICwtDfHw8ioqK2t1/8eLFWLNmDd5//32cPn0as2fPxoQJE3D06FH9PuXl5RgxYgSsra3x7bff4vTp0/jrX/8KFxcXY50WEXVR69NgSZwPiMzAxpYFSh8fFgSFomvrfnXFi/eEYvRAbzRqZTy7IRX5FVeFZTEHkixwzvmYmBhER0dj1apVAACdToeAgAC88MILWLBgwXX7+/r6YtGiRUhISNBvmzhxImxsbLBx40YAwIIFC7Bv3z7s3bu307kqKyvh5OSEiooKODo6dvo4RNQ5358qwDMbUtDL3Q7/e+Uu0XGIbuj4pSv4f6v2QaVU4MDCe+Bmrxaap6a+CRM/2I+zBVUY4u+Ebc/GQmOtFJrJmDry+1vYFaCGhgakpKRg1KhRv4RRKDBq1CgcOHCg3ffU19dDo9G02WZjY4OkpCT911999RWioqLwyCOPwNPTE0OHDsXatWt/M0t9fT0qKyvbvIhInOEhblAqJFwoqcGlci76SKar9erPmMHewssPANiprbB2ehRcbK1x/FIFFmw/zrX1bkBYASopKYFWq4WXl1eb7V5eXigoaH9Wy/j4eCxfvhzp6enQ6XTYvXs3duzYgfz8fP0+WVlZ+OCDDxAaGorvvvsOzz33HF588UWsW7fuhlmWLVsGJycn/SsgIMAwJ0lEneKosUaYvxOA5sVRiUxRRW0jvjp2GUD3zvzcUQGutlg9JQJKhYSdaZfx0c9ZoiOZJOGDoDti5cqVCA0NRb9+/aBSqTBnzhzMnDkTCsUvp6HT6RAREYE//vGPGDp0KJ555hnMmjULH3744Q2Pu3DhQlRUVOhfubkcQU8k2siWwaRcF4xM1eepl1DXqEM/bwdEBpnWONO4EHcseXAAAODdXWex51z7Y2stmbAC5O7uDqVSicLCwjbbCwsL4e3d/hTiHh4e2LlzJ2pqapCdnY2zZ8/C3t4evXv31u/j4+ODAQMGtHlf//79kZOTc8MsarUajo6ObV5EJNbtLQOh92eWcsVrMjmyLGNTy+2vqcODIEniBj/fyPTYIDwaHQBZBl7YchSZxdWiI5kUYQVIpVIhMjISiYmJ+m06nQ6JiYmIjY39zfdqNBr4+fmhqakJ27dvx7hx4/TfGzFiBM6dO9dm//PnzyMoyHQuTxLRzYUHOMNOpURZTQNO53NcHpmW/ZmlyCqpgZ1KifFD/UTHaZckSXhz3EBEBrmgqq4Js9Ync26tawi9BTZv3jysXbsW69atw5kzZ/Dcc8+hpqYGM2fOBABMnz4dCxcu1O9/6NAh7NixA1lZWdi7dy9Gjx4NnU6H+fPn6/d5+eWXcfDgQfzxj39ERkYGNm/ejI8++qjNk2NEZPqslQoM7+0GgKvDk+lpHfz8UIQ/7NVWgtPcmNpKiQ+nRsLHSYOs4hq8tOUotLyiCkBwAZo8eTL+8pe/YMmSJQgPD0daWhp27dqlHxidk5PTZoBzXV0dFi9ejAEDBmDChAnw8/NDUlISnJ2d9ftER0fjiy++wJYtWzBo0CC8/fbbWLFiBaZMmWLs0yOiLuJ8QGSKCivr8P3p5uEbpjT4+UY8HNT4aFoU1FYK/O9cMf783bmbv8kCCJ0HyFRxHiAi05BRVIVRy3+GykqB40vvs6j5TMh0rfjhPFb8kI7oYBf8e3ac6Di37Mu0PLz0WRoAYOWj4RgXbpq37rrCLOYBIiK6mRAPe3g5qtHQpEPyxXLRcYjQpNXhs8Mt636ZwdWfa40L98PsO0MAAPM/P44TlyoEJxKLBYiITJYkSRjZp+Vx+IxiwWmIgB/OFKGgsg5udiqMHtT+E8um7NX4vri7rwfqm3R4ZkMyiqvqRUcShgWIiEza7RwHRCZk06Hmwc+TogOgtjK/W7JKhYSVjw1Fbw875FfU4bmNKahv0oqOJQQLEBGZtBF9mgvQqcuVKKtpEJyGLNmFkhrsTS+BJAGPDwsUHafTHDXWWDs9Cg4aKyRnl2Ppl6cscrkMFiAiMmkeDmr083YAwGUxSKzWiQ/v7uuJAFdbwWm6JsTDHn9/bCgkCfjsSC42tJybJWEBIiKTN7IPb4ORWHWNWvw75RIAYOpw8736c627+3piweh+AIA3vz6N/ZmW9feLBYiITJ5+PqCMEou8VE/ifX3sMiquNsLP2QZ33uYpOo7BPHNHb4wP94VWJyNhUypyy2pFRzIaFiAiMnnDerlCpVQg78pVXCy1nP9Ak+nYeKh5PckpwwOhVJjeul+dJUkS3p04BIP9nFBe24hZ65NRU98kOpZRsAARkcmzVVkhIsgZAJCUzsfhybhOXKrAsdwrsFZKmBQVIDqOwWmslfhoeiTc7dU4W1CFV/59zCIWIGYBIiKzcHtoy3xAHAdERta67tf9g3zgbq8WnKZ7+DjZYM20CKiUCnx7sgDv/5ghOlK3YwEiIrPQOhD6QGYpmrQ6wWnIUlRcbcSXx/IAANNizWvm546KDHLFH8YPAgD87Yfz2HWyQHCi7sUCRERmYZCfE5xsrFFV34TjeZY9hT8Zz47US6hr1KGvlwOiglxEx+l2k6IDMCMuGAAwb1sazhZUig3UjViAiMgsKBUS4kLcAPBxeDIOWZb1t7+mDg+EJPWcwc+/ZdED/REX4obaBi1mrU9GeQ+dgJQFiIjMxkgui0FGdCCrFJnFNbBTKTF+aM9bOf1GrJUKrH48AgGuNsgtu4qEzak98rZzhwtQU1MT1q9fj8LCwu7IQ0R0Q7e3LIyamlOOagt5VJfE2XSw+dH38UP94KCxFpzGuFzsVFg7PQq2KiX2Z5biD9+cER3J4DpcgKysrDB79mzU1dV1Rx4iohsKdLNFoKstmnQyDl8oFR2HerCiyjp8d6p5EPDU4T178PON9PN2xPJJ4QCAT/dfxLYjuWIDGVinboENGzYMaWlpBo5CRHRzrYuj8nF46k6fHclFk05GVJAL+vs4io4jzOhB3pg7KhQAsGjnCaRklwlOZDhWnXnT888/j3nz5iE3NxeRkZGws7Nr8/0hQ4YYJBwR0a/dHuqOLYdzOA6Iuk2TVocth5tvf1nq1Z9rvXhPKM7mV2HXqQI8uyEVX78wAj5ONqJjdVmnCtCjjz4KAHjxxRf12yRJgizLkCQJWq3WMOmIiH4lLsQNkgSkF1WjoKIO3k4a0ZGoh/nxbBHyK+rgaqfC/YO9RccRTqGQ8NdJYbj4QQ3OFlTh2Q0p2PZsLDTWStHRuqRTt8AuXLhw3SsrK0v/TyKi7uJsq8IQPycAwL4MXgUiw9vQ8uj7pKgAqK3M+5e8odiprbB2ehRcbK1x/FIFFmw/bvYLE3e4ADU2NuKee+5BbW0tgoKC2n0REXWn1nFASSxAZGAXS2qwN70EkgRMiQkUHcekBLjaYvWUCCgVEnamXcZHP5v3BY8OFyBra2s+AUZEQunnA8ooMfv/CyXTsrll7M+dt3kgwNVWcBrTExfijiUPDgAAvLvrLPacKxKcqPM6dQssISEB7733HpqaOA8HERlfZJALbKyVKK6qx7nCKtFxqIeoa9RiW3Lzo95TY3g340amxwbh0egAyDLwwpajyCyuFh2pUzo1CPrIkSNITEzE999/j8GDB1/3FNiOHTsMEo6IqD1qKyWG9XLFT+eLkZRegn7elvuYMhnON8fzcaW2EX7ONri7n6foOCZLkiS8OW4g0ouqkZJdjlnrk7EzYQQczWyyyE5dAXJ2dsbEiRMRHx8PX19fODk5tXkREXW3kRwHRAa28VDz4OfHYwKhVFjGul+dpbZS4sOpkfBx0iCruAYvbTkKrc68bkd36grQJ598YugcREQd0joO6FBWGeqbtHxah7rkZF4FjuZcgbVSwqSoANFxzIKHgxofTYvCwx/ux//OFePP353Dgvv7iY51y7q0GGpxcTGSkpKQlJSE4uJiQ2UiIrqpft4OcLdX42qjFqnZV0THITO3qeXqz+hBPvBwUAtOYz4G+zvhTw83T3784U+Z+DItT3CiW9epAlRTU4Mnn3wSPj4+uOOOO3DHHXfA19cXTz31FGpraw2dkYjoOpIkYWQfNwCcD4i6prKuETuPXgYATOWj7x02LtwPs+8MAQDM//w4TlyqEJzo1nSqAM2bNw8//fQTvv76a1y5cgVXrlzBl19+iZ9++gm///3vDZ2RiKhd+nXBWICoC3akXMLVRi1u87LHsF6uouOYpVfj++Luvh6ob9LhmQ3JKK6qFx3ppjpVgLZv345//vOfuP/+++Ho6AhHR0eMGTMGa9euxeeff27ojERE7bo91AMAcOLSFVTUNgpOQ+ZIlmVsPPTLul+SxMHPnaFUSFj52FD09rBDfkUdntuYgvom014Wq1MFqLa2Fl5eXtdt9/T05C0wIjIabycN+njaQycD+zN5FYg67tCFMmQUVcNWpcSEoX6i45g1R4011k6PgoPGCsnZ5Vj65SmTnqi0UwUoNjYWS5cubTMj9NWrV/Hmm28iNjbWYOGIiG6Gj8NTV7Su+zUu3A8OZjaPjSkK8bDH3x8bCkkCPjuSq//5mqJOFaAVK1Zg37598Pf3x7333ot7770XAQEB2LdvH1auXGnojEREN8QCRJ1VVFWH704WAACmDufgZ0O5u68nFoxufhz+za9Pm+zV2U4VoMGDByM9PR3Lli1DeHg4wsPD8e677yIjIwMDBw40dEYiohsaHuIGK4WE7NJa5JbxFjzdum1HctGkkxER6IyBvpzE15CeuaM3xof7QquTkbAp1ST/bnZqIsRly5bBy8sLs2bNarP9X//6F4qLi/Haa68ZJBwR0c3Yq60wNNAZRy6WIymjBI8N4//J081pdTI2XzP4mQxLkiS8O3EIMotrcCKvArPWJ2P7c3GwU3eqdnSLTl0BWrNmDfr1u362x4EDB+LDDz/scigioo4Y2af5abCkdNO81E6m58ezRbhcUQcXW2uMGewjOk6PpLFW4qPpkXC3V+NsQRV+v+0YdCa0XEanClBBQQF8fK7/A+Ph4YH8/PwuhyIi6oiRoS0TImaWmN16RCTGxpbBuZOiAqCx5jIq3cXHyQZrpkVApVRg16kCvP9jhuhIep0qQK0Dnn9t37598PX17XIoIqKOCPN3hoPaCldqG3HqsnnMQkviZJfW4Of05uWbHufMz90uMsgVfxg/CADwtx/OY1fLwHPROlWAZs2ahblz5+KTTz5BdnY2srOz8a9//Qsvv/zydeOCiIi6m5VSgeEhzVeB+DQY3czmQzmQZeDO2zwQ5GYnOo5FmBQdgBlxwQCAedvScLagUmwgdHIQ9KuvvorS0lI8//zzaGhoAABoNBq89tprWLhwoUEDEhHdittD3bH7dCGS0kvw/F19RMchE1XXqMW25FwAHPxsbIse6I/zhVXYn1mKWeuT8VXCSLjYqYTl6dQVIEmS8N5776G4uBgHDx7EsWPHUFZWhiVLlhg6HxHRLWldFyz5YjmuNpj2FPwkzrcn81Fe2whfJw3u6ecpOo5FsVYqsPrxCAS42iC37CoSNqcKHRTdqQLUyt7eHtHR0Rg0aBDUarWhMhERdVhvdzv4OmnQoNXh8MUy0XHIRG040Dz4+bFhgVAquO6XsbnYqbB2ehRc7VR4ONIfCoH/DrpUgIiITIUkSRgZ2nwVaB/HAVE7Tl+uRGrOFVgpJEweFiA6jsXq5+2IvfPvxkMR/kJzsAARUY8xsmV1+L2cD4jasfFQ89Wf+EHe8HTQCE5j2UxhQkQWICLqMeJangQ7k1+J4qp6wWnIlFTVNWLn0TwAwNQYDn4mFiAi6kHc7dUY4OMIACa7ACOJ8cXRPNQ2aNHH0x7De7uKjkMmgAWIiHqU21vGAXFZDGoly7J+5uepMYGQJA5+JhYgIuphWgdCJ2WUQJa5LAYBhy+U4XxhNWyslXgoUuzAWzIdLEBE1KNEB7tCZaVAfkUdMotrRMchE7CxZdX38UN94aixFpyGTAULEBH1KBprJaKDXQAASS3rPZHlKq6qx66TzYt0T+HgZ7oGCxAR9Tgj+zQ/Dp+UUSo4CYm2LTkXjVoZ4QHOGOTnJDoOmRAWICLqcVoHQh/MKkWjVic4DYmi1cnY3HL7axrX/aJfYQEioh5ngI8jXGytUV3fhGO5V0THIUH2nCtC3pWrcLa1xgNDfETHIRPDAkREPY5CISGuZXFUzgptuVoffX8k0h8aa6XgNGRqWICIqEe6vQ/XBbNkuWW12HO+eRA8Bz9Te1iAiKhHap0P6GjuFVTVNQpOQ8a26VAOZLl5PFiwu53oOGSCTKIArV69GsHBwdBoNIiJicHhw4dvuG9jYyPeeusthISEQKPRICwsDLt27brh/u+++y4kScLcuXO7ITkRmSp/F1sEu9lCq5NxMKtMdBwyovomLbYl5wIApnLwM92A8AK0detWzJs3D0uXLkVqairCwsIQHx+PoqKidvdfvHgx1qxZg/fffx+nT5/G7NmzMWHCBBw9evS6fY8cOYI1a9ZgyJAh3X0aRGSC9LNCcz4gi/LtiQKU1TTAx0mDe/t5io5DJkp4AVq+fDlmzZqFmTNnYsCAAfjwww9ha2uLf/3rX+3uv2HDBvzf//0fxowZg969e+O5557DmDFj8Ne//rXNftXV1ZgyZQrWrl0LFxcXY5wKEZmYX+YD4jggS9I6+PmxYYGwUgr/NUcmSuifjIaGBqSkpGDUqFH6bQqFAqNGjcKBAwfafU99fT00Gk2bbTY2NkhKSmqzLSEhAQ888ECbY99IfX09Kisr27yIyPzFhrhBIQGZxTXIr7gqOg4ZwZn8SiRnl8NKIeHR6ADRcciECS1AJSUl0Gq18PLyarPdy8sLBQUF7b4nPj4ey5cvR3p6OnQ6HXbv3o0dO3YgPz9fv89nn32G1NRULFu27JZyLFu2DE5OTvpXQAD/0hD1BE421hji7wyAj8NbitarP/EDveHpqLnJ3mTJzO7a4MqVKxEaGop+/fpBpVJhzpw5mDlzJhSK5lPJzc3FSy+9hE2bNl13pehGFi5ciIqKCv0rNze3O0+BiIzodv04IBagnq66vgk7j+YBAKYMDxSchkyd0ALk7u4OpVKJwsLCNtsLCwvh7e3d7ns8PDywc+dO1NTUIDs7G2fPnoW9vT169+4NAEhJSUFRUREiIiJgZWUFKysr/PTTT/j73/8OKysraLXa646pVqvh6OjY5kVEPcPIa+YD0ulkwWmoO31xNA81DVqEeNghtreb6Dhk4oQWIJVKhcjISCQmJuq36XQ6JCYmIjY29jffq9Fo4Ofnh6amJmzfvh3jxo0DANx77704ceIE0tLS9K+oqChMmTIFaWlpUCo5GyiRJRka6AJblRKlNQ04W1AlOg51E1mWsfFA8+2vKTFBkCRJcCIydVaiA8ybNw9PPPEEoqKiMGzYMKxYsQI1NTWYOXMmAGD69Onw8/PTj+c5dOgQ8vLyEB4ejry8PLzxxhvQ6XSYP38+AMDBwQGDBg1q8xl2dnZwc3O7bjsR9XwqKwViernif+eKkZRRjAG+vMLbEyVnl+NcYRU01gpMjPQXHYfMgPACNHnyZBQXF2PJkiUoKChAeHg4du3apR8YnZOTox/fAwB1dXVYvHgxsrKyYG9vjzFjxmDDhg1wdnYWdAZEZOpGhnrgf+eKsTe9BM/cESI6DnWD1sHP48L84GRjLTgNmQNJlmXeFP+VyspKODk5oaKiguOBiHqA84VVuO9vP0NjrUDakvu4MGYPU1Jdj7hlP6JBq8PXc0ZisL+T6EgkSEd+f5vdU2BERB0V6mkPTwc16hp1SM0uFx2HDGxbci4atDqEBTiz/NAtYwEioh5PkiT902B7OSt0j6LVydh8KAcAMDWGj77TrWMBIiKLMJLzAfVIP58vxqXyq3CyscbYMF/RcciMsAARkUVovQJ08nIFymsaBKchQ9nQMvj5kUh/ju2iDmEBIiKL4OmowW1e9pBlYH9mqeg4ZAC5ZbX437kiAMCU4UGC05C5YQEiIovxy+rwxYKTkCFsOZwDWW6+utfL3U50HDIzLEBEZDH064JxILTZq2/SYuuR5nUbp/LqD3UCCxARWYxhvVxhrZSQW3YV2aU1ouNQF+w6WYDSmgZ4O2owqr+n6DhkhliAiMhi2KmtMDTQBQCwl0+DmbVNB5sffX90WACslPxVRh3HPzVEZFFu78PH4c3d2YJKHL5YBqVCwmPDOPcPdQ4LEBFZlNb5gPZnlkCr40pA5qj16s99A7zg5agRnIbMFQsQEVmUIf7OcNBYobKuCSfyKkTHoQ6qrm/CF0fzAHDwM3UNCxARWRSlQkJciBsAICmdj8Obm51H81Bd34TeHnb6f49EncECREQWZ2Ro83xAHAhtXmRZxsaWmZ+nxARBkiTBicicsQARkcVpHQidmlOO2oYmwWnoVqXmlONsQRU01go8HOEvOg6ZORYgIrI4QW628HexQaNWxqELZaLj0C3a2DL4eewQXzjZWgtOQ+aOBYiILI4kSfrFUfk4vHkora7HN8fzAQDTYjn4mbqOBYiILFLr4/AsQObh3ymX0KDVYYi/E4b4O4uOQz0ACxARWaQRIe6QJOBcYRWKqupEx6HfoNPJ2HSoefDz1Bhe/SHDYAEiIovkYqfCIF8nAMA+Lo5q0n5KL0Zu2VU4aqwwNsxXdBzqIViAiMhijWgZB8TH4U3bppZH3x+ODICNSik4DfUULEBEZLFuv2YckCxzWQxTdKm8Fj+eLQIATBnOdb/IcFiAiMhiRQa5QG2lQFFVPTKKqkXHoXZsOZwDnQyM6OOGEA970XGoB2EBIiKLpbFWYlgvVwC8DWaKGpp02HokFwAHP5PhsQARkUXTzwfEgdAm57tTBSipboCngxqjBniJjkM9DAsQEVm01vmADmaVoqFJJzgNXWtDy+Dnx4YFwlrJX1dkWPwTRUQWrb+3I9zsVKht0CIt94roONTifGEVDl8og1Ih4bFhHPxMhscCREQWTaGQ9I/DJ6UXC05DrVoffR/V3xPeThrBaagnYgEiIovXOg5oL8cBmYSa+iZsT80DAEwbHiw2DPVYLEBEZPFaxwEdy72CiquNgtPQl2mXUV3fhF7udogLcRMdh3ooFiAisni+zjbo7WEHndw8GJrEkWUZG1tuf02JCYRCIQlORD0VCxAREYDb+3B1eFNwNPcKTudXQm2lwMOR/qLjUA/GAkREhF/WBeN8QGJtPNB89WdsmC+cbVWC01BPxgJERARgeIgblAoJF0pqcKm8VnQci1Re04D/nMgHAEwdzpmfqXuxABERAXDUWCM8wBkAsI9XgYT4d0ouGpp0GOTniDB/J9FxqIdjASIiaqF/HJ7jgIxOp5Ox6VAOAGDa8CBIEgc/U/diASIiatH6OPz+zFLodLLgNJZlb0YJsktr4aCxwtgwX9FxyAKwABERtQgPcIa92gplNQ04nV8pOo5FaX30fWKEP2xVVoLTkCVgASIiamGtVGB4b1cAfBrMmPKuXEXimUIAHPxMxsMCRER0jZGcD8joPjucA50MxPZ2Qx9Pe9FxyEKwABERXaN1HNDhi2Woa9QKTtPzNTTp8NmRXAC8+kPGxQJERHSNEA97eDtq0NCkw5GLZaLj9Hjfny5AcVU9PBzUuG+gl+g4ZEFYgIiIriFJkv4qEMcBdb/Wwc+PRQfAWslfSWQ8/NNGRPQrt4dyHJAxZBRV4WBWGRQS8OiwQNFxyMKwABER/UpcSHMBOnW5EqXV9YLT9FwbDzZPfDiqvxd8nW0EpyFLwwJERPQrHg5q9PN2ANA8KSIZXm1DE7anXALAwc8kBgsQEVE7eBuse32VdhlV9U0IcrPVTz1AZEwsQERE7RgZ6gGgeSC0LHNZDEOSZRkbWgY/T40JgkLBdb/I+FiAiIjaMSzYFSqlAnlXruJCSY3oOD1KWu4VnLpcCZWVAg9H+ouOQxaKBYiIqB02KiUig1wAAPv4OLxBtQ5+fnCID1zsVILTkKViASIiuoHW+YD2chyQwRRX1eM/xy8DAKZx8DMJxAJERHQDrQOhD2SWokmrE5zG/NU3aZGwKRX1TToM9nNCeICz6EhkwViAiIhuYKCvE5xsrFFV34RjlypExzFrsizj/3acxOGLZXBQW2H5pDBIEgc/kzgsQEREN6BUSBjRxw0AxwF11Yc/ZWF76iUoJGDVlAiEejmIjkQWjgWIiOg3jOzT8jg8xwF12q6TBXhv11kAwBv/byDuvM1DcCIiFiAiot/UOg4oNacc1fVNgtOYn5N5FXh5axoAYHpsEKbHBgvNQ9TKJArQ6tWrERwcDI1Gg5iYGBw+fPiG+zY2NuKtt95CSEgINBoNwsLCsGvXrjb7LFu2DNHR0XBwcICnpyfGjx+Pc+fOdfdpEFEPFOBqi0BXWzTpZBzK4rIYHVFYWYen1h3B1UYtbg91x5IHB4iORKQnvABt3boV8+bNw9KlS5GamoqwsDDEx8ejqKio3f0XL16MNWvW4P3338fp06cxe/ZsTJgwAUePHtXv89NPPyEhIQEHDx7E7t270djYiPvuuw81NZzMjIg6rvVx+CSOA7plVxu0eHpdMgor69HH0x6rp0TASin8Vw6RniQLnuM9JiYG0dHRWLVqFQBAp9MhICAAL7zwAhYsWHDd/r6+vli0aBESEhL02yZOnAgbGxts3Lix3c8oLi6Gp6cnfvrpJ9xxxx03zVRZWQknJydUVFTA0dGxk2dGRD3Ftyfy8dymVIR62mP3vDtFxzF5Op2MhM2p+PZkAVxsrfFlwkgEutmKjkUWoCO/v4XW8YaGBqSkpGDUqFH6bQqFAqNGjcKBAwfafU99fT00Gk2bbTY2NkhKSrrh51RUND++6urqesNjVlZWtnkREbWKC3GHJAHpRdUoqKgTHcfkLd99Ht+eLIC1UsKaaVEsP2SShBagkpISaLVaeHl5tdnu5eWFgoKCdt8THx+P5cuXIz09HTqdDrt378aOHTuQn5/f7v46nQ5z587FiBEjMGjQoHb3WbZsGZycnPSvgICArp0YEfUoTrbWGOLnBIC3wW5mR+olrPpfBgBg2UNDMKxX+//jSSSa2d2QXblyJUJDQ9GvXz+oVCrMmTMHM2fOhELR/qkkJCTg5MmT+Oyzz254zIULF6KiokL/ys3N7a74RGSmWscBcT6gGztysQwLtp8AADx3VwgXOiWTJrQAubu7Q6lUorCwsM32wsJCeHt7t/seDw8P7Ny5EzU1NcjOzsbZs2dhb2+P3r17X7fvnDlz8J///Af/+9//4O9/47+IarUajo6ObV5ERNfSzweUUQLBQydNUk5pLZ7dkIIGrQ7xA73w6n19RUci+k1CC5BKpUJkZCQSExP123Q6HRITExEbG/ub79VoNPDz80NTUxO2b9+OcePG6b8nyzLmzJmDL774Aj/++CN69erVbedARJYhIsgZNtZKFFfV41xhleg4JqWyrhFPrTuCspoGDPJzxN8mh0Oh4DIXZNqE3wKbN28e1q5di3Xr1uHMmTN47rnnUFNTg5kzZwIApk+fjoULF+r3P3ToEHbs2IGsrCzs3bsXo0ePhk6nw/z58/X7JCQkYOPGjdi8eTMcHBxQUFCAgoICXL161ejnR0Q9g9pKqR/Pwlmhf9Gk1eGFzUeRXlQNL0c1Pp4eDVuVlehYRDcl/E/p5MmTUVxcjCVLlqCgoADh4eHYtWuXfmB0Tk5Om/E9dXV1WLx4MbKysmBvb48xY8Zgw4YNcHZ21u/zwQcfAADuuuuuNp/1ySefYMaMGd19SkTUQ90e6o6fzhcjKaMET99+/W13S/SHb87gp/PF0Fgr8PH0aHg7aW7+JiITIHweIFPEeYCIqD1nCyoxesVe2Fgrkbb0d1BbKUVHEmrDgYt4/ctTAIAPp0Zg9CAfwYnI0pnNPEBEROakr5cD3O3VuNqoRWr2FdFxhNqbXow3vj4NAHg1vi/LD5kdFiAiolskSRJG9nEDACRlFAtOI05GURWe35QKrU7GQxF+eP6uENGRiDqMBYiIqANGhrY+Dm+ZC6OW1TTgyU+TUVXXhKggFyx7aDAkiU98kflhASIi6oCRfZonRDxx6QoqahsFpzGu+iYtZm9IQU5ZLQJcbbBmWqTFj4Mi88UCRETUAd5OGvTxtIdOBvZnWs7j8LIsY9EXJ3H4Yhkc1Fb45xPRcLNXi45F1GksQEREHdR6FWivBS2LsebnLHyecgkKCXj/8aG4zctBdCSiLmEBIiLqoNstbF2w704V4L1dZwEAS8cOxF19PQUnIuo6FiAiog6K6e0GK4WE7NJa5JbVio7TrU7mVWDuZ2mQZWDa8CA8ERcsOhKRQbAAERF1kL3aCkMDnQEAe3vwshiFlXV4el0yrjZqcXuoO5aOHSA6EpHBsAAREXXCL6vD98z5gK42aDFrfTIKKuvQx9Meqx6PgJWSvzKo5+CfZiKiThjZMg5of2YptLqetaKQTifj9/9Ow/FLFXCxtcY/n4iCk4216FhEBsUCRETUCWH+TnBQW+FKbSNOXa4QHceg/vbDefz3RAGslRLWTItCkJud6EhEBscCRETUCVZKBYaHNC+L0ZPGAX1x9BLe/zEDALDsoSEY1stVcCKi7sECRETUSa2Pwyf1kAKUfLEMr31+AgDw3F0heDjSX3Aiou7DAkRE1EmtEyKmZJfjaoNWcJquyS2rxbMbUtCg1SF+oBdeva+v6EhE3YoFiIiok3q528HP2QYNWh0OXywTHafTquoa8dS6IyitacBAX0f8bXI4FAoucEo9GwsQEVEnSZKEEX2axwElpZvn4/BNWh1e2HIU5wur4emgxj+fiIatykp0LKJuxwJERNQFI0Nb5wMqFZykc/7wzRnsOVcMjbUCHz8RBW8njehIREbBAkRE1AUjWp4EO5NfieKqesFpOmbDwWx8uv8iAGD5pHAM8XcWmofImFiAiIi6wM1ejYG+jgCA/Znm8zTY3vRivPHVKQDAq/F9MWawj+BERMbFAkRE1EWtT4OZy3xAGUXVeH5TKrQ6GQ8N9cPzd4WIjkRkdCxARERd1Losxr6MEsiyaS+LUV7TgKfWHUFVXROiglywbOJgSBKf+CLLwwJERNRF0cGuUFkpkF9Rh8ziGtFxbqihSYdnN6Ygu7QW/i42WDMtEmorpehYREKwABERdZHGWolhwc1LRpjq4/CyLGPRFydw+EIZ7NVW+NeMaLjZq0XHIhKGBYiIyABGtIwDSsowzXFAH/2chX+nXIJCAlY9PhS3eTmIjkQkFAsQEZEBtK4LdjCrDI1aneA0bX13qgDv7joLAFjy4ADc1ddTcCIi8ViAiIgMYICPI1ztVKiub8Kx3Cui4+idzKvA3M/SIMvAtOFBeCIuWHQkIpPAAkREZAAKhYS4lkkRTeVx+KLKOsxan4yrjVrcHuqOpWMH8IkvohYsQEREBjLShMYBXW3QYtb6ZORX1CHEww6rHo+AlZL/ySdqxb8NREQG0jofUFruFVTVNQrLodPJeOXfx3DsUgVcbK3xrxnRcLKxFpaHyBSxABERGYi/iy16udtBq5NxMKtMWI4VP5zHNyfyYa2U8OHUSAS52QnLQmSqWICIiAxIfxtM0HxAO4/m4e8/ZgAA/jhhMGJ6uwnJQWTqWICIiAyodT6gvQLGAaVkl2H+58cBALPvDMEjUQFGz0BkLliAiIgMKDbEDQoJyCquweUrV432ublltXhmfQoatDrcN8AL8+P7Gu2zicwRCxARkQE52VgjLMAZgPGeBquqa8RT646gtKYBA30dseLRcCgUfNyd6LewABERGdjt+nFA3V+AmrQ6vLDlKM4XVsPTQY2Pn4iCrcqq2z+XyNyxABERGVjrOKB9GSXQ6eRu/ax3/nsGe84VQ2OtwMdPRMHHyaZbP4+op2ABIiIysKGBLrBVKVFa04CzBVXd9jkbD2bjk30XAQDLJ4VjiL9zt30WUU/DAkREZGAqKwWGtzx+npTRPY/DJ6WXYOlXpwAAr9x3G8YM9umWzyHqqViAiIi6Qet8QN2xLlhGUTWe25QCrU7GhKF+SLi7j8E/g6inYwEiIuoGrctiHL5QhrpGrcGOW17TgKfWHUFVXRMig1zw7sTBXOCUqBNYgIiIukGopz28HNWob9IhNbvcIMdsaNJh9sYUZJfWwt/FBmumRUJtpTTIsYksDQsQEVE3kCTJoLNCy7KMxTtP4NCFMtirrfCvGdFwt1d3+bhElooFiIiom9wearj5gNbuzcK25EtQSMD7jw/FbV4OXT4mkSVjASIi6iYjQpoL0MnLFSivaej0cXafLsSyb88CAF5/cADu7utpkHxElowFiIiom3g6atDXywGyDOzPLO3UMU5drsBLnx2FLANThwdiRlywYUMSWSgWICKibtT6NFhn5gMqqqzD0+uSUdugxcg+7lg6diCf+CIyEBYgIqJu1FqA9qaXQJZvfVmMukYtZq1PRn5FHUI87LB6SgSslfxPNpGh8G8TEVE3iunlCmulhEvlV5FdWntL79HpZPz+38dw7FIFnG2t8c8nouFkY93NSYksCwsQEVE3slVZISLQBQCQdIuPw69ITMc3x/NhrZTw4dRIBLvbdWdEIovEAkRE1M068jj8zqN5+HtiOgDgnQmD9WuKEZFhsQAREXWzkaEeAID9mSXQ6m48Digluxzztx8HADx7Z29MigowSj4iS8QCRETUzQb7OcFRY4XKuiYcv3Sl3X1yy2rx7IZkNDTpcN8AL7wW38+4IYksDAsQEVE3UyokxLVMirivnXFAVXWNeHpdMkqqGzDAxxF/mxwOhYKPuxN1JxYgIiIjuPZx+GtpdTJe3HIU5wqr4Omgxj9nRMFObSUiIpFFYQEiIjKC1oHQqTnlqKlv0m9/55sz+N+5YqitFFg7PQo+TjaiIhJZFJMoQKtXr0ZwcDA0Gg1iYmJw+PDhG+7b2NiIt956CyEhIdBoNAgLC8OuXbu6dEwiou4W6GoLfxcbNGplHL5YBgDYdCgb/9p3AQCwfFI4wgKcBSYksizCC9DWrVsxb948LF26FKmpqQgLC0N8fDyKiora3X/x4sVYs2YN3n//fZw+fRqzZ8/GhAkTcPTo0U4fk4iou0mS1OZx+H0ZJVjy5SkAwO9/dxseGOIjMh6RxZHkjszN3g1iYmIQHR2NVatWAQB0Oh0CAgLwwgsvYMGCBdft7+vri0WLFiEhIUG/beLEibCxscHGjRs7dcxfq6yshJOTEyoqKuDo6GiI0yQiwjfH85GwORV+zjaoqmtEZV0Txof74m+Tw7nGF5EBdOT3t9ArQA0NDUhJScGoUaP02xQKBUaNGoUDBw60+576+npoNJo222xsbJCUlNSlY1ZWVrZ5EREZWlyIGyQJyLtyFZV1TYgMcsG7E4ew/BAJILQAlZSUQKvVwsvLq812Ly8vFBQUtPue+Ph4LF++HOnp6dDpdNi9ezd27NiB/Pz8Th9z2bJlcHJy0r8CAjj5GBEZnoudCoN8nQAA/i42WDMtEhprpeBURJZJ+Bigjlq5ciVCQ0PRr18/qFQqzJkzBzNnzoRC0flTWbhwISoqKvSv3NxcAyYmIvrF3FGhuOM2D3wyIxru9mrRcYgsltDJJtzd3aFUKlFYWNhme2FhIby9vdt9j4eHB3bu3Im6ujqUlpbC19cXCxYsQO/evTt9TLVaDbWa/yEiou53b38v3Nvf6+Y7ElG3EnoFSKVSITIyEomJifptOp0OiYmJiI2N/c33ajQa+Pn5oampCdu3b8e4ceO6fEwiIiKyDMKnG503bx6eeOIJREVFYdiwYVixYgVqamowc+ZMAMD06dPh5+eHZcuWAQAOHTqEvLw8hIeHIy8vD2+88QZ0Oh3mz59/y8ckIiIiyya8AE2ePBnFxcVYsmQJCgoKEB4ejl27dukHMefk5LQZ31NXV4fFixcjKysL9vb2GDNmDDZs2ABnZ+dbPiYRERFZNuHzAJkizgNERERkfsxmHiAiIiIiEViAiIiIyOKwABEREZHFYQEiIiIii8MCRERERBaHBYiIiIgsDgsQERERWRwWICIiIrI4LEBERERkcViAiIiIyOIIXwvMFLWuDlJZWSk4CREREd2q1t/bt7LKFwtQO6qqqgAAAQEBgpMQERFRR1VVVcHJyek39+FiqO3Q6XS4fPkyHBwcIEmSQY9dWVmJgIAA5ObmWuRCq5Z+/gB/Bjx/yz5/gD8DSz9/oPt+BrIso6qqCr6+vlAofnuUD68AtUOhUMDf379bP8PR0dFi/+ADPH+APwOev2WfP8CfgaWfP9A9P4ObXflpxUHQREREZHFYgIiIiMjisAAZmVqtxtKlS6FWq0VHEcLSzx/gz4Dnb9nnD/BnYOnnD5jGz4CDoImIiMji8AoQERERWRwWICIiIrI4LEBERERkcViAjGDZsmWIjo6Gg4MDPD09MX78eJw7d050LKP64IMPMGTIEP2cD7Gxsfj2229FxxLm3XffhSRJmDt3rugoRvPGG29AkqQ2r379+omOZVR5eXmYOnUq3NzcYGNjg8GDByM5OVl0LKMJDg6+7s+AJElISEgQHc0otFotXn/9dfTq1Qs2NjYICQnB22+/fUvLNvQUVVVVmDt3LoKCgmBjY4O4uDgcOXJESBZOhGgEP/30ExISEhAdHY2mpib83//9H+677z6cPn0adnZ2ouMZhb+/P959912EhoZClmWsW7cO48aNw9GjRzFw4EDR8YzqyJEjWLNmDYYMGSI6itENHDgQP/zwg/5rKyvL+U9QeXk5RowYgbvvvhvffvstPDw8kJ6eDhcXF9HRjObIkSPQarX6r0+ePInf/e53eOSRRwSmMp733nsPH3zwAdatW4eBAwciOTkZM2fOhJOTE1588UXR8Yzi6aefxsmTJ7Fhwwb4+vpi48aNGDVqFE6fPg0/Pz/jhpHJ6IqKimQA8k8//SQ6ilAuLi7yxx9/LDqGUVVVVcmhoaHy7t275TvvvFN+6aWXREcymqVLl8phYWGiYwjz2muvySNHjhQdw6S89NJLckhIiKzT6URHMYoHHnhAfvLJJ9tse+ihh+QpU6YISmRctbW1slKplP/zn/+02R4RESEvWrTI6Hl4C0yAiooKAICrq6vgJGJotVp89tlnqKmpQWxsrOg4RpWQkIAHHngAo0aNEh1FiPT0dPj6+qJ3796YMmUKcnJyREcymq+++gpRUVF45JFH4OnpiaFDh2Lt2rWiYwnT0NCAjRs34sknnzT4moumKi4uDomJiTh//jwA4NixY0hKSsL9998vOJlxNDU1QavVQqPRtNluY2ODpKQk4wcyeuWycFqtVn7ggQfkESNGiI5idMePH5ft7OxkpVIpOzk5yd98843oSEa1ZcsWedCgQfLVq1dlWZYt7grQf//7X3nbtm3ysWPH5F27dsmxsbFyYGCgXFlZKTqaUajValmtVssLFy6UU1NT5TVr1sgajUb+9NNPRUcTYuvWrbJSqZTz8vJERzEarVYrv/baa7IkSbKVlZUsSZL8xz/+UXQso4qNjZXvvPNOOS8vT25qapI3bNggKxQK+bbbbjN6FhYgI5s9e7YcFBQk5+bmio5idPX19XJ6erqcnJwsL1iwQHZ3d5dPnTolOpZR5OTkyJ6envKxY8f02yytAP1aeXm57OjoaDG3Qa2treXY2Ng221544QV5+PDhghKJdd9998kPPvig6BhGtWXLFtnf31/esmWLfPz4cXn9+vWyq6urRZXgjIwM+Y477pAByEqlUo6OjpanTJki9+vXz+hZWICMKCEhQfb395ezsrJERzEJ9957r/zMM8+IjmEUX3zxhf4vfOsLgCxJkqxUKuWmpibREYWIioqSFyxYIDqGUQQGBspPPfVUm23/+Mc/ZF9fX0GJxLl48aKsUCjknTt3io5iVP7+/vKqVavabHv77bflvn37CkokTnV1tXz58mVZlmV50qRJ8pgxY4yegWOAjECWZcyZMwdffPEFfvzxR/Tq1Ut0JJOg0+lQX18vOoZR3HvvvThx4gTS0tL0r6ioKEyZMgVpaWlQKpWiIxpddXU1MjMz4ePjIzqKUYwYMeK66S/Onz+PoKAgQYnE+eSTT+Dp6YkHHnhAdBSjqq2thULR9teuUqmETqcTlEgcOzs7+Pj4oLy8HN999x3GjRtn9AyW8wyqQAkJCdi8eTO+/PJLODg4oKCgAADg5OQEGxsbwemMY+HChbj//vsRGBiIqqoqbN68GXv27MF3330nOppRODg4YNCgQW222dnZwc3N7brtPdUrr7yCsWPHIigoCJcvX8bSpUuhVCrx2GOPiY5mFC+//DLi4uLwxz/+EZMmTcLhw4fx0Ucf4aOPPhIdzah0Oh0++eQTPPHEExY1DQIAjB07Fu+88w4CAwMxcOBAHD16FMuXL8eTTz4pOprRfPfdd5BlGX379kVGRgZeffVV9OvXDzNnzjR+GKNfc7JAANp9ffLJJ6KjGc2TTz4pBwUFySqVSvbw8JDvvfde+fvvvxcdSyhLGwM0efJk2cfHR1apVLKfn588efJkOSMjQ3Qso/r666/lQYMGyWq1Wu7Xr5/80UcfiY5kdN99950MQD537pzoKEZXWVkpv/TSS3JgYKCs0Wjk3r17y4sWLZLr6+tFRzOarVu3yr1795ZVKpXs7e0tJyQkyFeuXBGShavBExERkcXhGCAiIiKyOCxAREREZHFYgIiIiMjisAARERGRxWEBIiIiIovDAkREREQWhwWIiIiILA4LEBEREVkcFiAiMnkFBQX43e9+Bzs7Ozg7O4uOQ0Q9AAsQEZm8v/3tb8jPz0daWhrOnz9vsOMGBwdjxYoVBjseEZkPy1qJjojMUmZmJiIjIxEaGio6SrsaGhqgUqlExyCiDuAVICIyirvuugsvvvgi5s+fD1dXV3h7e+ONN9646fuCg4Oxfft2rF+/HpIkYcaMGQCAK1eu4Omnn4aHhwccHR1xzz334NixY/r3ZWZmYty4cfDy8oK9vT2io6Pxww8/tMmTnZ2Nl19+GZIkQZIkAMAbb7yB8PDwNhlWrFiB4OBg/dczZszA+PHj8c4778DX1xd9+/YFAOTm5mLSpElwdnaGq6srxo0bh4sXL+rft2fPHgwbNkx/K2/EiBHIzs7u2A+SiAyCBYiIjGbdunWws7PDoUOH8Kc//QlvvfUWdu/e/ZvvOXLkCEaPHo1JkyYhPz8fK1euBAA88sgjKCoqwrfffouUlBRERETg3nvvRVlZGQCguroaY8aMQWJiIo4ePYrRo0dj7NixyMnJAQDs2LED/v7+eOutt5Cfn4/8/PwOnUtiYiLOnTuH3bt34z//+Q8aGxsRHx8PBwcH7N27F/v27YO9vT1Gjx6NhoYGNDU1Yfz48bjzzjtx/PhxHDhwAM8884y+eBGRcfEWGBEZzZAhQ7B06VIAQGhoKFatWoXExET87ne/u+F7PDw8oFarYWNjA29vbwBAUlISDh8+jKKiIqjVagDAX/7yF+zcuROff/45nnnmGYSFhSEsLEx/nLfffhtffPEFvvrqK8yZMweurq5QKpVwcHDQH7cj7Ozs8PHHH+tvfW3cuBE6nQ4ff/yxvtR88skncHZ2xp49exAVFYWKigo8+OCDCAkJAQD079+/w59LRIbBK0BEZDRDhgxp87WPjw+Kioo6fJxjx46huroabm5usLe3178uXLiAzMxMAM1XgF555RX0798fzs7OsLe3x5kzZ/RXgLpq8ODBbcb9HDt2DBkZGXBwcNDncXV1RV1dHTIzM+Hq6ooZM2YgPj4eY8eOxcqVKzt81YmIDIdXgIjIaKytrdt8LUkSdDpdh49TXV0NHx8f7Nmz57rvtT4m/8orr2D37t34y1/+gj59+sDGxgYPP/wwGhoafvPYCoUCsiy32dbY2HjdfnZ2dtdlioyMxKZNm67b18PDA0DzFaEXX3wRu3btwtatW7F48WLs3r0bw4cP/81MRGR4LEBEZHYiIiJQUFAAKyurNoOTr7Vv3z7MmDEDEyZMANBcUK4dkAwAKpUKWq22zTYPDw8UFBRAlmX9ray0tLRbyrR161Z4enrC0dHxhvsNHToUQ4cOxcKFCxEbG4vNmzezABEJwFtgRGR2Ro0ahdjYWIwfPx7ff/89Ll68iP3792PRokVITk4G0DzGaMeOHUhLS8OxY8fw+OOPX3e1KTg4GD///DPy8vJQUlICoPnpsOLiYvzpT39CZmYmVq9ejW+//fammaZMmQJ3d3eMGzcOe/fuxYULF7Bnzx68+OKLuHTpEi5cuICFCxfiwIEDyM7Oxvfff4/09HSOAyIShAWIiMyOJEn473//izvuuAMzZ87EbbfdhkcffRTZ2dnw8vICACxfvhwuLi6Ii4vD2LFjER8fj4iIiDbHeeutt3Dx4kWEhITob1P1798f//jHP7B69WqEhYXh8OHDeOWVV26aydbWFj///DMCAwPx0EMPoX///njqqadQV1cHR0dH2Nra4uzZs5g4cSJuu+02PPPMM0hISMCzzz5r+B8QEd2UJP/6ZjcRERFRD8crQERERGRxWICISKhNmza1eZT92tfAgQNFxyOiHoq3wIhIqKqqKhQWFrb7PWtrawQFBRk5ERFZAhYgIiIisji8BUZEREQWhwWIiIiILA4LEBEREVkcFiAiIiKyOCxAREREZHFYgIiIiMjisAARERGRxWEBIiIiIovz/wGTckOwOCcjnwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -2920,13 +2778,13 @@ "source": [ "sns.lineplot(data=sim_df, \n", " x='n_features',\n", - " y='metric')#, hue='n_features')" + " y='corr')#, hue='n_features')" ] }, { "cell_type": "code", "execution_count": 168, - "id": "81eef14d", + "id": "7183e87f", "metadata": { "ExecuteTime": { "end_time": "2024-04-11T04:08:49.331441Z", @@ -2964,7 +2822,7 @@ { "cell_type": "code", "execution_count": 174, - "id": "caf9471b", + "id": "5fa9b058", "metadata": { "ExecuteTime": { "end_time": "2024-04-11T04:10:11.894810Z", @@ -2989,7 +2847,7 @@ { "cell_type": "code", "execution_count": 173, - "id": "ed2de38c", + "id": "87afe0c9", "metadata": { "ExecuteTime": { "end_time": "2024-04-11T04:09:56.002651Z", @@ -3015,7 +2873,7 @@ { "cell_type": "code", "execution_count": 175, - "id": "48a2e99c", + "id": "09e9a387", "metadata": { "ExecuteTime": { "end_time": "2024-04-11T04:10:14.250903Z", @@ -3171,7 +3029,7 @@ { "cell_type": "code", "execution_count": null, - "id": "f578f871", + "id": "d5a96a45", "metadata": {}, "outputs": [], "source": []