-
Notifications
You must be signed in to change notification settings - Fork 25
/
crop_old.pas
executable file
·190 lines (175 loc) · 7.53 KB
/
crop_old.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
unit crop;
interface
function CropNIfTI(lL,lR,lA,lP,lD,lV: integer):boolean;
implementation
uses nifti_hdr, nifti_img,define_types, GraphicsMathLibrary,dialogs, nifti_img_view;
procedure NIFTIhdr_SlicesToCoord (var lHdr: TNIFTIhdr; lXslice,lYslice,lZslice: integer; var lXmm,lYmm,lZmm: single);
//ignores origin offset
begin
lXmm := (lHdr.srow_x[0]*lXslice)+ (lHdr.srow_x[1]*lYslice)+(lHdr.srow_x[2]*lzslice);
lYmm := (lHdr.srow_y[0]*lXslice)+ (lHdr.srow_y[1]*lYslice)+(lHdr.srow_y[2]*lzslice);
lZmm := (lHdr.srow_z[0]*lXslice)+ (lHdr.srow_z[1]*lYslice)+(lHdr.srow_z[2]*lzslice);
end;
function CropNIfTI(lL,lR,lA,lP,lD,lV: integer):boolean;
//to do : data swapping (errors on detection and writing zero in reverse order)
var
lInHdr,lOutHdr: TNIFTIhdr;
lOutname,lExt: string;
lXmm,lYmm,lZmm: single;
lMat: TMatrix;
lOutPos,lSlice,lVol,lVolBytes,lImgSamples,lInc,
lX,lY,lZ,lBPP, lB,
lInZOffset,lInYOffset,lInSliceSz,lInXSz,lInPos,lImgOffset: integer;
lBuffer: bytep;
(*lSrcBuffer,lBuffer, lBuffUnaligned: bytep;
l32Buf,lImgBuffer: singlep;
l16Buf : SmallIntP;
l32BufI : LongIntP;*)
lWordX: Word;
lSPM2: boolean;
lOutF,lInF: File;
lACrop,lPCrop,lDorsalCrop,lVentralCrop,lLCrop,lRCrop: integer;
lByteSwap: boolean;
begin
result := false;
if (gMRIcroOverlay[kBGOverlayNum].ScrnBufferItems < 1) or (gBGImg.ScrnDim[3] < 2) or (gBGImg.ScrnMM[3] = 0) then begin
showmessage('Please load a 3D background image for neck removal.');
exit;
end;
if (gBGImg.Resliced) then begin
showmessage('You must switch reslicing OFF (Help/Preferences) for image cropping.');
exit;
end;
lInHdr := gMRIcroOverlay[kBGOverlayNum].NIFTIHdr;
//check orthogonal alignment....
if lInHdr.dim[4] > 1 then begin
Showmessage('Only able to Crop 3D images (reorienting 4D could disrupt slice timing and diffusion directions.');
exit;
end;
//Next create reordered or trimmed image in the correct format
case lInHdr.datatype of
kDT_UNSIGNED_CHAR,kDT_SIGNED_SHORT,kDT_UINT16, kDT_SIGNED_INT,kDT_FLOAT:;//Supported
else begin
Showmessage('Crop 3D unsupported datatype.');
exit;
end;
end;
//Msg('Cropping NIfTI/Analyze image '+lFileName);
lOutHdr := lInHdr;
lImgSamples := lInHdr.dim[1]*lInHdr.dim[2]*lInHdr.dim[3];
lBPP := (lInHdr.bitpix div 8); //bytes per pixel
(*lVolBytes := lImgSamples*lBPP;
//Msg('Automatically Cropping image');
lBuffer := (@lSrcBuffer^[lImgOffset+1]);
GetMem(lBuffUnaligned ,(sizeof(single)*lImgSamples) + 16);
{$IFDEF FPC}
lImgBuffer := align(lBuffUnaligned,16);
{$ELSE}
lImgBuffer := SingleP($fffffff0 and (integer(lBuffUnaligned)+15));
{$ENDIF}
case lInHdr.datatype of
kDT_UNSIGNED_CHAR : begin //8 bit
for lInc := 1 to lImgSamples do
lImgBuffer^[lInc] := lBuffer^[lInc];
end;
kDT_SIGNED_SHORT{,kDT_UINT16}: begin //16-bit int
l16Buf := SmallIntP(lBuffer );
if lByteSwap then begin
for lInc := 1 to lImgSamples do
lImgBuffer^[lInc] := Swap(l16Buf^[lInc]);
end else begin
for lInc := 1 to lImgSamples do
lImgBuffer^[lInc] := l16Buf^[lInc];
end;
end;//16bit
kDT_SIGNED_INT: begin
l32Buf := SingleP(lBuffer );
if lByteSwap then //unswap and convert integer to float
for lInc := 1 to lImgSamples do
lImgBuffer^[lInc] := (Swap4r4i(l32Buf^[lInc]))
else //convert integer to float
for lInc := 1 to lImgSamples do
lImgBuffer^[lInc] := Conv4r4i(l32Buf^[lInc]);
end; //32-bit int
kDT_FLOAT: begin
l32Buf := SingleP(lBuffer);
for lInc := 1 to lImgSamples do
lImgBuffer[lInc] := l32Buf[lInc];
if lByteSwap then
for lInc := 1 to lImgSamples do
pswap4r(lImgBuffer^[lInc]); //faster as procedure than function see www.optimalcode.com
for lInc := 1 to lImgSamples do
if specialsingle(lImgBuffer^[lInc]) then lImgBuffer^[lInc] := 0.0;
//invert= for lInc := 1 to lImgSamples do l32Buf[lInc] := -l32Buf[lInc];
end; //32-bit float
else begin
Showmessage('Serious error: format not supported by Crop3D.');
exit;
end;
end; //case *)
lDorsalCrop := lD;
lVentralCrop := lV;
lLCrop := lL;
lRCrop := lR;
lACrop := lA;
lPCrop := lP;
//FreeMem(lBuffUnaligned);
if (lDorsalCrop = 0) and (lVentralCrop = 0)
and (lLCrop = 0) and (lRCrop = 0)
and (lACrop = 0) and (lPCrop = 0) then begin
Showmessage('Crop 3D quitting: no need to delete slices.');
//Freemem(lSrcBuffer);
end;
if (lDorsalCrop < 0) or (lVentralCrop < 0)
or (lLCrop < 0) or (lRCrop < 0)
or (lACrop < 0) or (lPCrop < 0) then begin
Showmessage('Crop 3D quitting: negative values should be impossible.');
//Freemem(lSrcBuffer);
end;
//next compute size of cropped volume
lOutHdr.Dim[1] := lInHdr.Dim[1]-lLCrop-lRCrop;
lOutHdr.Dim[2] := lInHdr.Dim[2]-lACrop-lPCrop;
lOutHdr.Dim[3] := lInHdr.Dim[3]-lDorsalCrop-lVentralCrop;
lVolBytes := lOutHdr.dim[1]*lOutHdr.dim[2]*lOutHdr.dim[3]*lBPP;
//next: readjust origin to take into account removed slices
//REQUIRES images to be aligned to nearest orthogonal to canonical space [1 0 0; 0 1 0; 0 0 1]
NIFTIhdr_SlicesToCoord (lInHdr,lLCrop,lPCrop,lVentralCrop, lXmm,lYmm,lZmm);
lOutHdr.srow_x[3] := lInHdr.srow_x[3] + lXmm;
lOutHdr.srow_y[3] := lInHdr.srow_y[3] + lYmm;
lOutHdr.srow_z[3] := lInHdr.srow_z[3] + lZmm;
lMat := Matrix3D (
lOutHdr.srow_x[0], lOutHdr.srow_x[1], lOutHdr.srow_x[2], lOutHdr.srow_x[3],
lOutHdr.srow_y[0], lOutHdr.srow_y[1], lOutHdr.srow_y[2], lOutHdr.srow_y[3],
lOutHdr.srow_z[0], lOutHdr.srow_z[1], lOutHdr.srow_z[2], lOutHdr.srow_z[3],
0, 0, 0, 1);
nifti_mat44_to_quatern( lMat,
lOutHdr.quatern_b,lOutHdr.quatern_c,lOutHdr.quatern_d,
lOutHdr.qoffset_x,lOutHdr.qoffset_y,lOutHdr.qoffset_z,
lXmm, lYmm, lZmm, lOutHdr.pixdim[0]{QFac});
//note we write and read to the same buffer - we will always SHRINK output
//no need to byteswap data - we will save in the save format as stored
lOutPos := 0;
lInSliceSz := lInHdr.dim[1]*lInHdr.dim[2]*lBPP;
lInXSz := lInHdr.dim[1]*lBPP;
GetMem(lBuffer,lVolBytes);
//Move(gMRIcroOverlay[kBGOverlayNum].ImgBuffer^,lTempBuf^,gBGImg.VOIUndoVolItems);
for lZ := 1 to lOutHdr.dim[3] do begin
lInZOffset := (lVentralCrop+lZ-1) * lInSliceSz;
for lY := 1 to lOutHdr.dim[2] do begin
lInYOffset := ((lPCrop+lY-1) * lInXSz) + lInZOffset + (lLCrop*lBPP);
for lX := 1 to lOutHdr.dim[1] do begin
for lB := 1 to lBPP do begin
inc(lOutPos);
lInPos := ((lX-1) * lBPP) + lInYOffset + lB;
lBuffer^[lOutPos] := gMRIcroOverlay[kBGOverlayNum].ImgBuffer^[lInPos];
end;
end;
end; //for Y
end; //for Z
lOutname := ChangeFilePrefix (gMRIcroOverlay[kBGOverlayNum].HdrFileName,'c');
//result := SaveNIfTICore (lOutName, lSrcBuffer, kNIIImgOffset+1, lOutHdr, lPrefs,lByteSwap);
SaveAsVOIorNIFTI (lBuffer,lOutHdr.dim[1]*lOutHdr.dim[2]*lOutHdr.dim[3], lBPP,1, false, lOutHdr, lOutname);
result := true;
Freemem(lBuffer);
end;
end.