diff --git a/js/brainchop/mainMeshNetFunctions.js b/js/brainchop/mainMeshNetFunctions.js index ac9a6ec..d9b8fc2 100644 --- a/js/brainchop/mainMeshNetFunctions.js +++ b/js/brainchop/mainMeshNetFunctions.js @@ -4,8 +4,8 @@ ========================================================= * Discription: A user interface for whole brain segmentation -* Input shape : [1, D, H, W, 1] e.g. [1, 38, 38, 38, 1] -* Model : Meshnet or similar +* Input shape : [1, D, H, W, 1] e.g. [1, 38, 38, 38, 1] +* Model : Meshnet or similar * * Authors: Mohamed Masoud and Sergey Plis - 2022 ========================================================= @@ -14,14 +14,15 @@ ========================================================= Brainchop for 3D Brain Segmentation -=========================================================*/ - +=========================================================*/ +// Set the WEBGL_FORCE_F16_TEXTURES flag +tf.env().set('WEBGL_FORCE_F16_TEXTURES', true); (function() { /** -* Return 1-Dim Array of the slice pixels value, this 1 dim represents one channel +* Return 1-Dim Array of the slice pixels value, this 1 dim represents one channel * * @since 1.0.0 * @param {number} sliceIdx- The slice index. @@ -33,7 +34,7 @@ * getSliceData1D(100, niftiHeader, niftiImage) * // => [0, 0, ...]; * -*/ +*/ getSliceData1D = (sliceIdx, niftiHeader, niftiImage) => { @@ -77,13 +78,13 @@ for (let col = 0; col < cols; col++) { let offset = sliceOffset + rowOffset + col; let value = typedData[offset]; - // Create 1Dim Array of pixel value, this 1 dim represents one channel + // Create 1Dim Array of pixel value, this 1 dim represents one channel data1DimArr[(rowOffset + col)] = value & 0xFF; } - } + } - return data1DimArr; + return data1DimArr; } @@ -92,7 +93,7 @@ * * @since 3.0.0 * @param {Any} variable -* @returns {bool} +* @returns {bool} * @example * * isString("someString") @@ -103,12 +104,12 @@ * * isString("") * // => false -*/ +*/ isString = (variable) => { - return (typeof variable === 'string' || variable instanceof String) && + return (typeof variable === 'string' || variable instanceof String) && (variable !== null) && variable.length ? true : false; - } + } /** @@ -116,7 +117,7 @@ * * @since 3.0.0 * @param {Any} variable -* @returns {bool} +* @returns {bool} * @example * * isObject({ "0": "BG", "1": "Cerebral-White-Matter", "2": "Ventricle"}) @@ -125,29 +126,29 @@ * isObject("someString") * // => false * -*/ +*/ isObject = (variable) => { return (typeof variable === 'object') && (variable !== null) ? true : false; - } + } /** - * Find if two arrays are identical. + * Find if two arrays are identical. * * @function * @since 3.0.0 * @version 3.0.0 * @category Array * @param {Array} array1 - The array of values. - * @param {Array} array2 - The array of values. - * @returns {boolean} + * @param {Array} array2 - The array of values. + * @returns {boolean} * @example * * areArraysEquals( [1, 1, 2, 3], [1, 1, 2, 5]) * * => false - */ + */ areArraysEquals = (array1, array2) => { return JSON.stringify(array1) === JSON.stringify(array2) ? true : false; @@ -157,20 +158,20 @@ /** * Verify if parent object has all keys of child object * e.g. child object: labelsHistoObj, parent object: colorLutObj or labelsObj - * + * * * @function * @since 1.0.0 * @version 3.0.0 * @param {object} childObj - The child object e.g. labelsHistoObj * @param {object} parentObj - The parent object e.g. colorLutObj or labelsObj - * @returns {boolean} + * @returns {boolean} * @example * * verifyChildParentObjects( {"x": 1, "y": 2}, {"y": 2, "z": 3, "x": 4}) * * => true - */ + */ verifyChildParentObjects = (childObj, parentObj) => { @@ -178,14 +179,14 @@ if ( ! parentObj.hasOwnProperty(childKey)) { return false; - } + } }) return true; } /** -* Generates number of colors using HSL wheel hsl(hue, saturation, lightness). +* Generates number of colors using HSL wheel hsl(hue, saturation, lightness). * * @since 1.0.0 * @param {number} s- The saturation number. @@ -197,7 +198,7 @@ * generateColors(100, 50, 3) * // => [ "hsla(0,100%,50%)", "hsla(120,100%,50%)", "hsla(240,100%,50%)" ] * -*/ +*/ generateColors = (s, l, num_colors) => { let colors = [] @@ -205,24 +206,24 @@ for (let i = 0; i < num_colors; i++) { let h = i * delta - colors.push("hsla("+ h + "," + s +"%," + l+ "%" + ")") + colors.push("hsla("+ h + "," + s +"%," + l+ "%" + ")") } return colors } /** -* Convert rgb string to rgb object. +* Convert rgb string to rgb object. * * @since 1.0.0 * @param {string} rgbString- The rgb string. * @returns {Object} Returns RGB as object * @example -* +* * getRgbObject( "rgb(255,0,0)" ) * // => { r: 255, g: 0, b: 0 } * -*/ +*/ getRgbObject = (rgbString) => { let RGB = {}; @@ -234,17 +235,17 @@ } /** -* Convert "hsl(hue, saturation, lightness)" string to "rgb(rValue,gValue,bValue)" string. +* Convert "hsl(hue, saturation, lightness)" string to "rgb(rValue,gValue,bValue)" string. * * @since 1.0.0 * @param {string} hsl- The hsl string. * @returns {string} Returns RGB as string * @example -* +* * hslToRgb( "hsla(0,100%,50%)" ) * // => "rgb(255,0,0)" * -*/ +*/ hslToRgb = (hsl) => { let sep = hsl.indexOf(",") > -1 ? "," : " "; @@ -257,7 +258,7 @@ let h = hsl[0], s = hsl[1].substr(0,hsl[1].length - 1) / 100, l = hsl[2].substr(0,hsl[2].length - 1) / 100; - + let c = (1 - Math.abs(2 * l - 1)) * s, @@ -289,18 +290,18 @@ /** -* Convert rgb object to hex string. +* Convert rgb object to hex string. * Credit: https://stackoverflow.com/questions/5623838/ * * @since 1.2.0 -* @param {object} rgbOb +* @param {object} rgbOb * @returns {string} Returns hex as string * @example -* +* * rgbToHex( { r: 255, g: 0, b: 0 } ) * // => "#" * -*/ +*/ rgbToHex = (rgbObj) => { chToHex = (ch) => { @@ -313,18 +314,18 @@ rgbToHex = (rgbObj) => { /** -* For Dice calculations- find the intersection +* For Dice calculations- find the intersection * * @since 1.0.0 * @param {Array} ar1- The array represents output labels in 1D * @param {Array} ar2- The array represents GT data in 1D -* @returns {Array} Returns intersection 1D array +* @returns {Array} Returns intersection 1D array * @example * * intersect([0,1,1], [0,2,2]) * // => [0] * -*/ +*/ intersect = (ar1, ar2) => { const intersection = []; @@ -339,7 +340,7 @@ rgbToHex = (rgbObj) => { /** -* For Dice calculations- diceCoefficient +* For Dice calculations- diceCoefficient * * @since 1.0.0 * @param {Array} ar1- The array represents output labels in 1D @@ -350,11 +351,11 @@ rgbToHex = (rgbObj) => { * diceCoefficient([0,1,1], [0,2,2]) * // => 0.333 * -*/ +*/ diceCoefficient = (ar1, ar2) => { return ( 2 * intersect(ar1, ar2).length ) / ( ar1.length + ar2.length ); - } + } /** @@ -370,23 +371,23 @@ rgbToHex = (rgbObj) => { * getMaxRegionMaskByContour( ctx.getImageData(0, 0, 255, 255) ) * // => Uint8Array(65025) [ 0, 0, 0, 0, 0, 0, 0,... , 255, 255, 255, … ] * -*/ +*/ getMaxRegionMaskByContour= (canvasImageData) => { // slice matrix let mat = cv.matFromImageData(canvasImageData); - - let mask = cv.Mat.zeros(mat.cols, mat.rows, cv.CV_8UC3); + + let mask = cv.Mat.zeros(mat.cols, mat.rows, cv.CV_8UC3); let mask_gray = new cv.Mat (); let mask_binary = new cv.Mat (); - let contours = new cv.MatVector(); - let hierarchy = new cv.Mat(); + let contours = new cv.MatVector(); + let hierarchy = new cv.Mat(); // Grayscale conversion cv.cvtColor (mat, mask_gray, cv.COLOR_RGBA2GRAY, 0); - cv.findContours(mask_gray, contours, hierarchy, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE); // cv.CHAIN_APPROX_SIMPLE + cv.findContours(mask_gray, contours, hierarchy, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE); // cv.CHAIN_APPROX_SIMPLE let maxContourArea = 0 let maxContourAreaIdx = -1 @@ -397,27 +398,27 @@ rgbToHex = (rgbObj) => { if(maxContourArea < area) { maxContourArea = area; maxContourAreaIdx = i; - } + } - cnt.delete(); + cnt.delete(); } let color = new cv.Scalar(255, 255, 255); - cv.drawContours(mask, contours, maxContourAreaIdx, color, -1); //cv.LINE_8 - - cv.cvtColor (mask, mask_gray, cv.COLOR_RGBA2GRAY, 0); - cv.threshold (mask_gray, mask_binary, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU); - + cv.drawContours(mask, contours, maxContourAreaIdx, color, -1); //cv.LINE_8 + + cv.cvtColor (mask, mask_gray, cv.COLOR_RGBA2GRAY, 0); + cv.threshold (mask_gray, mask_binary, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU); + mat.delete(); mask.delete(); mask_gray.delete(); - contours.delete(); - hierarchy.delete(); - - return mask_binary.data; - } + contours.delete(); + hierarchy.delete(); + + return mask_binary.data; + } /////////////******************* 3D Connected Components**************************///////////////// @@ -437,21 +438,21 @@ rgbToHex = (rgbObj) => { * * // => [ [0,0,0,0, 0,1,1,0, 0,0,0,0], * [0,0,0,0, 0,0,1,1, 0,0,0,0], -* [0,0,0,0, 0,0,0,1, 0,0,0,0] +* [0,0,0,0, 0,0,0,1, 0,0,0,0] * ] * -*/ +*/ postProcessSlices3D = (outputSlices, sliceHeight, sliceWidth) => { let cc3d = new ConnectCompFor3D(); outputSlices = cc3d.findLargest3dRegion(outputSlices, sliceHeight, sliceWidth); - - // postprocess outputSlices after remove noisy regions or smaller regions + + // postprocess outputSlices after remove noisy regions or smaller regions delete cc3d; return outputSlices; - } + } @@ -462,8 +463,8 @@ rgbToHex = (rgbObj) => { let mat = cv.matFromImageData( imgDataForLabel ); let mask_gray = new cv.Mat (); let mask_binary = new cv.Mat (); - let contours = new cv.MatVector(); - let hierarchy = new cv.Mat(); + let contours = new cv.MatVector(); + let hierarchy = new cv.Mat(); // Grayscale conversion cv.cvtColor (mat, mask_gray, cv.COLOR_RGBA2GRAY, 0); @@ -474,9 +475,9 @@ rgbToHex = (rgbObj) => { cv.drawContours(mask, contours, i, color, 1, cv.LINE_8, hierarchy, 100); } - mask_gray.delete(); contours.delete(); hierarchy.delete(); + mask_gray.delete(); contours.delete(); hierarchy.delete(); - return mask; + return mask; } @@ -493,8 +494,8 @@ rgbToHex = (rgbObj) => { } - getCanvasImageDataForImgRegion = (sliceData1D, imgHeight, imgWidth, regionLabel) => { - let canvas = document.createElement("CANVAS"); + getCanvasImageDataForImgRegion = (sliceData1D, imgHeight, imgWidth, regionLabel) => { + let canvas = document.createElement("CANVAS"); // Set canvas dimensions to nifti slice dimensions canvas.width = imgWidth; @@ -502,34 +503,34 @@ rgbToHex = (rgbObj) => { // make canvas image data let ctx = canvas.getContext("2d"); - let canvasImageData = ctx.createImageData(canvas.width, canvas.height); + let canvasImageData = ctx.createImageData(canvas.width, canvas.height); for (let idx = 0; idx < sliceData1D.length; idx++) { if(sliceData1D[idx] == regionLabel) { - value = 255; + value = 255; } else { - value = 0; + value = 0; } canvasImageData.data[idx * 4] = value; canvasImageData.data[idx * 4 + 1] = value; canvasImageData.data[idx * 4 + 2] = value; - canvasImageData.data[idx * 4 + 3] = 255; // Alpha channel + canvasImageData.data[idx * 4 + 3] = 255; // Alpha channel } return canvasImageData; - + } getSliceContours = ( sliceData1D, sliceHeight, sliceWidth, numSegClasses, isRGBA = false) => { - let sliceContoursMask = cv.Mat.zeros(sliceWidth, sliceHeight, cv.CV_8UC3); + let sliceContoursMask = cv.Mat.zeros(sliceWidth, sliceHeight, cv.CV_8UC3); - let allLabelColors = getCustomContoursColor(numSegClasses); + let allLabelColors = getCustomContoursColor(numSegClasses); //-- e.g. allLabelColors : [ { r: 255, g: 0, b: 0 }, { r: 0, g: 255, b: 0 }, { r: 0, g: 0, b: 255 } ] - + // For future use let bgLabel = 0; @@ -537,21 +538,21 @@ rgbToHex = (rgbObj) => { for(let label = 0; label < numSegClasses; label++) { if(label != bgLabel) { - + let labelColor; if(isRGBA) { - labelColor = { 0: allLabelColors[label].r , 1: allLabelColors[label].g, 2: allLabelColors[label].b, 3: 0, length: 4 }; + labelColor = { 0: allLabelColors[label].r , 1: allLabelColors[label].g, 2: allLabelColors[label].b, 3: 0, length: 4 }; } else { // is Gray let grayValue = Math.ceil(label*255/(numSegClasses - 1)) - labelColor = { 0: grayValue , 1: grayValue, 2: grayValue, 3: 0, length: 4 }; + labelColor = { 0: grayValue , 1: grayValue, 2: grayValue, 3: 0, length: 4 }; } sliceContoursMask = getSliceContoursMaskByLabel( getCanvasImageDataForImgRegion( [...sliceData1D], sliceHeight, sliceWidth, label ), sliceContoursMask, labelColor ); } } if(isRGBA) { - // Convert output contours mask to RGBA to make background areas transparent. + // Convert output contours mask to RGBA to make background areas transparent. cv.cvtColor (sliceContoursMask, sliceContoursMask, cv.COLOR_RGB2RGBA, 0); // Make background areas transparent and keep only edges @@ -561,7 +562,7 @@ rgbToHex = (rgbObj) => { if( (slicePixelsRGBA1D[i] == 0) && (slicePixelsRGBA1D[i+1] == 0) && (slicePixelsRGBA1D[i+2] == 0) ) { slicePixelsRGBA1D[i+3] = 0; - } + } } sliceContoursMask.delete(); @@ -569,10 +570,10 @@ rgbToHex = (rgbObj) => { return slicePixelsRGBA1D } else { // Gray is needed. - + cv.cvtColor (sliceContoursMask, sliceContoursMask, cv.COLOR_RGBA2GRAY, 0); - return sliceContoursMask.data - } + return sliceContoursMask.data + } } @@ -585,24 +586,24 @@ rgbToHex = (rgbObj) => { } return volumeSlicesWithContours; - } + } ////////////*******************************************************************//////////////////// /** * Standard Normal variate using Box-Muller transformation. -* The transformation simply takes two variables that are uniformly distributed +* The transformation simply takes two variables that are uniformly distributed * and sends them to two independent random variables with a standard normal distribution. * * @since 1.0.0 -* @returns {number} Returns +* @returns {number} Returns * @example * * randn_bm() * * // => 0.2175 * -*/ +*/ randn_bm = () => { //u and v are random variables, they are uniformly distributed in the interval (0,1) @@ -621,14 +622,14 @@ rgbToHex = (rgbObj) => { * @param {Array} DHW- Generated Coordinates e.g. [100,150,100] * @param {Array} cubeSides - MRI volume sides e.g.[256,256,256] * @param {Array} subCubeSides -Batch size e.g. [38,38,38] -* @returns {boolean} Returns - true or false +* @returns {boolean} Returns - true or false * @example * * checkInside([100,150,100], [256,256,256], [38,38,38]) ) * * // => true * -*/ +*/ checkInside = (DHW, cubeSides, subCubeSides) => { @@ -644,7 +645,7 @@ rgbToHex = (rgbObj) => { /** -* Generate feasible overlap coordinates for inference +* Generate feasible overlap coordinates for inference * * @since 1.0.0 * @param {number} numOfSubCubes- Number of ovelap subCubes to generate e.g. 200 @@ -659,8 +660,8 @@ rgbToHex = (rgbObj) => { * * // => [[ 187, 132, 56 ], [ 109, 103, 208 ], ... , [ 54, 97, 29 ]] * -*/ - +*/ + findCoordsOfAddBrainBatches = (numOfSubCubes, mean, sigma, cubeSides, subCubeSides ) => { const allCoords = []; @@ -694,14 +695,14 @@ rgbToHex = (rgbObj) => { * * // => Tensor [0, 1, 0, 0] * -*/ +*/ binarizeVolumeDataTensor = (volumeDataTensor) => { let alpha = 0; - // element-wise: (x > 0 ? 1 : alpha * x ); e.g. Tenosr [0, 0.9, 0.8, -3] => Tensor [0, 1, 1, 0] - return volumeDataTensor.step(alpha); + // element-wise: (x > 0 ? 1 : alpha * x ); e.g. Tenosr [0, 0.9, 0.8, -3] => Tensor [0, 1, 1, 0] + return volumeDataTensor.step(alpha); } @@ -709,7 +710,7 @@ rgbToHex = (rgbObj) => { /** * Convert tensor to buffer so immutable tensor can be mutable buffer with get() and set() * To convert buffer to tensor use bufferObj.toTensor() -* +* * @since 1.0.0 * @param {tf.Tensor|TypedArray|Array} tensor- e.g. tf.tensor1d([0, 0.2, 0.1, 0.3]) * @returns {tf.buffer} Returns mutable tf.buffer object @@ -718,8 +719,8 @@ rgbToHex = (rgbObj) => { * tensor2Buffer( tf.tensor1d( [0, 2, -1, -3] ) ) * * // => tf.buffer: Object { dtype: "float32", shape: (1) […], size: 4, values: Float32Array(4), strides: [] } -* -*/ +* +*/ tensor2Buffer = (tensor) => { return tf.buffer(tensor.shape, tensor.dtype, tensor.dataSync()); @@ -729,12 +730,12 @@ rgbToHex = (rgbObj) => { tensor2LightBuffer = (tensor, dtype) => { return new Buffer(tensor.shape, dtype, Array.from(tensor.dataSync()) ); - } + } /** * Convert single/multi dimensional tensor to single/multi dimensional Array -* +* * @since 1.0.0 * @param {tf.Tensor} tensor- e.g. tf.tensor( [1,2,3,4,5,6,7,8], [2, 2, 2] ) * @returns {Array} Returns mutable single/multi dimensional Array @@ -748,8 +749,8 @@ rgbToHex = (rgbObj) => { * [ [5,6], * [7,8] ] * ] -* -*/ +* +*/ tensor2Array = (tensor) => { return tensor.arraySync(); @@ -758,15 +759,15 @@ rgbToHex = (rgbObj) => { /** * Convert single/multi dimensional array to single/multi tensor -* +* * @since 1.0.0 * @param {Array} array- e.g. [1,2,3,4,5,6,7,8] -* @returns {tf.tensor} Returns tf.tensor +* @returns {tf.tensor} Returns tf.tensor * @example * * t = array2Tensor([[ [1,2], * [3,4] ], -* +* * [ [5,6], * [7,8] ] * ]) @@ -778,8 +779,8 @@ rgbToHex = (rgbObj) => { * [ [5,6], * [7,8] ] * ] -* -*/ +* +*/ array2Tensor = (array) => { return tf.tensor(array); @@ -788,7 +789,7 @@ rgbToHex = (rgbObj) => { /** * Convert single/multi dimensional tensor to flatten 1d dimensional Array -* +* * @since 1.0.0 * @param {tf.Tensor} tensor- e.g. tf.tensor( [1,2,3,4,5,6,7,8], [2, 2, 2] ) * @returns {Array} Returns mutable flatten 1d dimensional Array @@ -797,8 +798,8 @@ rgbToHex = (rgbObj) => { * tensor2FlattenArray( tf.tensor( [1,2,3,4,5,6,7,8], [2, 2, 2] ) ) * * // =>Array [ 1, 2, 3, 4, 5, 6, 7, 8 ] -* -*/ +* +*/ tensor2FlattenArray = (tensor) => { return Array.from(tensor.dataSync()); @@ -809,7 +810,7 @@ rgbToHex = (rgbObj) => { /** * Calculate the mements of the MRI volume to find mean and variance -* +* * @since 1.0.0 * @param {tf.Tensor} cube3d- e.g slice3d repesents the MRI volume * @param {number} threshold- filter voxels based on the threshold value @@ -819,8 +820,8 @@ rgbToHex = (rgbObj) => { * cubeMoments( tf.tensor( [1,2,3,4,5,6,7,8], [2, 2, 2] ) , 0.5) * * // => Array [[0, 0, 0],[0.25, 0.25, 0.25]] -* -*/ +* +*/ cubeMoments = (cube3d, threshold) => { @@ -849,7 +850,7 @@ rgbToHex = (rgbObj) => { /** * For all MRI volume values > 0 , find the Centroid voxel Array [d, h, w] -* +* * @since 1.0.0 * @param {tf.Tensor} slices_3d - e.g slice_3d repesents the MRI volume slices as tensor * @param {number} num_of_slices- Total Number of slices aka z-dim @@ -863,8 +864,8 @@ rgbToHex = (rgbObj) => { * findHeadCentroid( tf.tensor( Array.from({length: 27}, (x, i) => i) , [3, 3, 3] ), 3, 3, 3 ) * * // => Array [ 1, 1, 1 ] -* -*/ +* +*/ findHeadCentroid = (slices_3d, num_of_slices, slice_height, slice_width) => { @@ -874,23 +875,23 @@ rgbToHex = (rgbObj) => { const grid_coords = []; let counter = 0; - - + + // Find coordinates of nonzero voxels as (x_i, y_i, z_i) vectors - for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { - for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { + for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { + for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { for(let colIdx = 0; colIdx < slice_width; colIdx += 1) { let voxelValue = binarizeVolumeBuffer.get(depthIdx, rowIdx, colIdx); if(voxelValue == 1) { grid_coords[counter] = Array(depthIdx, rowIdx, colIdx); - counter += 1; + counter += 1; } } } - } - - // Create 2D Tesnor with three columns for depth, row, col index + } + + // Create 2D Tesnor with three columns for depth, row, col index let gridCoordsTensor = tf.tensor2d(grid_coords); let axis = 0; @@ -908,17 +909,17 @@ rgbToHex = (rgbObj) => { /** * Creates batches with the volume of slices each of D,H,W sub_volume and -* focus on brain area for the additional sub_volumes -* +* focus on brain area for the additional sub_volumes +* * @since 1.0.0 * @param {tf.Tensor} slices_3d - e.g slice_3d repesents the MRI volume slices as tensor * @param {number} num_of_slices- Total Number of slices aka z-dim * @param {number} slice_height- - Slice Height * @param {number} slice_width- Slice Width * @param {number} batch_D- batch depth-dim a.k.a z-dim -* @param {number} batch_H- batch height +* @param {number} batch_H- batch height * @param {number} batch_W- batch width -* @param {Array} headSubCubesCoords - coordinates of overlap batches centered around the head +* @param {Array} headSubCubesCoords - coordinates of overlap batches centered around the head * @returns {Array} Returns Array of objects for all Slices Batch e.g. {id: number, coordinates:[Array], data: tf.Tensor } * * [0.. 7] <==> Array.from({length: 8}, (x, i) => i) @@ -927,20 +928,20 @@ rgbToHex = (rgbObj) => { * sliceVolumeIntoOverlappedBatches( tf.tensor( Array.from({length: 27}, (x, i) => i) , [3, 3, 3] ), 3, 3, 3, 2, 2, 2, [] ) * * // => Array [ {id:1, coordinates:[0,0,0], data:{ kept: false, isDisposedInternal: false, dtype: "float32", … } }, {...}, ... ] -* -*/ +* +*/ sliceVolumeIntoOverlappedBatches = (slices_3d, num_of_slices, slice_height, slice_width, batch_D, batch_H, batch_W, headSubCubesCoords ) => { let allSlicedBatches = []; let batch_id = 1; - for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += batch_D) { - for(let rowIdx = 0; rowIdx < slice_height; rowIdx += batch_H) { + for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += batch_D) { + for(let rowIdx = 0; rowIdx < slice_height; rowIdx += batch_H) { for(let colIdx = 0; colIdx < slice_width; colIdx += batch_W) { - // for overlap calculations of last batches + // for overlap calculations of last batches let depthIdxDiff = 0; - let rowIdxDiff = 0; + let rowIdxDiff = 0; let colIdxDiff = 0; if((depthIdx + batch_D) > num_of_slices) { @@ -953,62 +954,62 @@ rgbToHex = (rgbObj) => { if((colIdx + batch_W) > slice_width) { colIdxDiff = (colIdx + batch_W) - slice_width; - } + } let startIndex = [depthIdx - depthIdxDiff, rowIdx - rowIdxDiff, colIdx - colIdxDiff]; let batch = slices_3d.slice(startIndex, [batch_D, batch_H, batch_W]); allSlicedBatches.push({id: batch_id , coordinates: startIndex, data: batch}); batch_id += 1; - } + } } } - // Additional sub_volumes or batches focus around the head centroid + // Additional sub_volumes or batches focus around the head centroid for(let cubeIdx = 0; cubeIdx < headSubCubesCoords.length; cubeIdx++) { let startIndex = [headSubCubesCoords[cubeIdx][0], headSubCubesCoords[cubeIdx][1], headSubCubesCoords[cubeIdx][2]]; let batch = slices_3d.slice(startIndex, [batch_D, batch_H, batch_W]); allSlicedBatches.push({id: batch_id , coordinates: startIndex, data: batch}); - batch_id += 1; + batch_id += 1; } return allSlicedBatches; - } + } /** * Try to create batches with the volume of slices each of D,H,W sub_volume with minimum overlap option -* +* * @since 1.0.0 * @param {tf.Tensor} slices_3d - e.g slice_3d repesents the MRI volume slices as tensor * @param {number} num_of_slices- Total Number of slices aka z-dim * @param {number} slice_height- - Slice Height * @param {number} slice_width- Slice Width * @param {number} batch_D- batch depth-dim a.k.a z-dim -* @param {number} batch_H- batch height +* @param {number} batch_H- batch height * @param {number} batch_W- batch width * @returns {Array} Returns Array of objects for all Slices Batch e.g. {id: number, coordinates:[Array], data: tf.Tensor } * * [0.. 7] <==> Array.from({length: 8}, (x, i) => i) -* +* * sliceVolumeIntoBatches( tf.tensor( Array.from({length: 27}, (x, i) => i) , [3, 3, 3] ), 3, 3, 3, 2, 2, 2 ) * * // => Array [ {id:1, coordinates:[0,0,0], data:{ kept: false, isDisposedInternal: false, dtype: "float32", … } }, {...}, ... ] -* -*/ +* +*/ sliceVolumeIntoBatches = (slices_3d, num_of_slices, slice_height, slice_width, batch_D, batch_H, batch_W ) => { let allSlicedBatches = []; let batch_id = 1; - for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += batch_D) { - for(let rowIdx = 0; rowIdx < slice_height; rowIdx += batch_H) { + for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += batch_D) { + for(let rowIdx = 0; rowIdx < slice_height; rowIdx += batch_H) { for(let colIdx = 0; colIdx < slice_width; colIdx += batch_W) { - // for overlap calculations of last batches + // for overlap calculations of last batches let depthIdxDiff = 0; - let rowIdxDiff = 0; + let rowIdxDiff = 0; let colIdxDiff = 0; if((depthIdx + batch_D) > num_of_slices) { @@ -1021,14 +1022,14 @@ rgbToHex = (rgbObj) => { if((colIdx + batch_W) > slice_width) { colIdxDiff = (colIdx + batch_W) - slice_width; - } + } let startIndex = [depthIdx - depthIdxDiff, rowIdx - rowIdxDiff, colIdx - colIdxDiff]; let batch = slices_3d.slice(startIndex, [batch_D, batch_H, batch_W]); allSlicedBatches.push({id: batch_id , coordinates: startIndex, data: batch}); batch_id += 1; - } + } } } @@ -1049,7 +1050,7 @@ rgbToHex = (rgbObj) => { * getAllSlicesData1D(256, niftiHeader, niftiImage) * // => [ [0,0, 0, ...], [0,0,...,0], ... ]; * -*/ +*/ getAllSlicesData1D = (num_of_slices, niftiHeader, niftiImage) => { @@ -1057,9 +1058,9 @@ rgbToHex = (rgbObj) => { for(let sliceIdx = 0; sliceIdx < num_of_slices; sliceIdx++) { let slice = getSliceData1D(sliceIdx, niftiHeader, niftiImage); allSlices.push(slice); - } + } - return allSlices; + return allSlices; } @@ -1083,31 +1084,31 @@ rgbToHex = (rgbObj) => { * [255, 255, 255], * [0 , 0 , 0 ]] * -*/ +*/ getAllSlices2D = (allSlices, slice_height, slice_width) => { let allSlices_2D = []; for(let sliceIdx = 0; sliceIdx < allSlices.length; sliceIdx ++){ allSlices_2D.push(tf.tensor(allSlices[sliceIdx], [slice_height, slice_width])); - } + } - return allSlices_2D; + return allSlices_2D; } /** * Return volumatric 3-Dim tensor of all slices data * @since 1.0.0 -* @param {Array} allSlices_2D- Array of 2d tensors of all slices data -* @returns {tf.Tensor} Returns Tensor of all slices data +* @param {Array} allSlices_2D- Array of 2d tensors of all slices data +* @returns {tf.Tensor} Returns Tensor of all slices data * @example * -* slices3d = getSlices3D([ tf.tensor( Array.from({length: 16}, (x, i) => i) , [4, 4]), +* slices3d = getSlices3D([ tf.tensor( Array.from({length: 16}, (x, i) => i) , [4, 4]), * tf.tensor( Array.from({length: 16}, (x, i) => i) , [4, 4]) * ]) * -* // => object { kept: false, isDisposedInternal: false, shape: (3) […], dtype: "float32", -* size: 32, strides: (2) […], dataId: {…}, id: 355, rankType: "3", scopeId: 29 +* // => object { kept: false, isDisposedInternal: false, shape: (3) […], dtype: "float32", +* size: 32, strides: (2) […], dataId: {…}, id: 355, rankType: "3", scopeId: 29 * } * * slices3d.print() @@ -1122,23 +1123,23 @@ rgbToHex = (rgbObj) => { * [8 , 9 , 10, 11], * [12, 13, 14, 15]]] * -*/ +*/ getSlices3D = (allSlices_2D) => { - return tf.stack(allSlices_2D); + return tf.stack(allSlices_2D); } /** * Normalize the tensor data to the range 0 - 1 using min-max scaling * @since 1.0.0 -* @param {tf.Tensor} volumeData- Tensor1d/Tensor2d/Tensor3d, e.g. Tensor3d of all MRI volume data -* @returns {tf.Tensor} Returns Tensor of all normalized data +* @param {tf.Tensor} volumeData- Tensor1d/Tensor2d/Tensor3d, e.g. Tensor3d of all MRI volume data +* @returns {tf.Tensor} Returns Tensor of all normalized data * @example * * normSlices = minMaxNormalizeVolumeData ( tf.tensor( Array.from({length: 8}, (x, i) => i) , [2, 2, 2]) ) * -* // => Object { kept: false, isDisposedInternal: false, shape: (3) […], dtype: "float32", +* // => Object { kept: false, isDisposedInternal: false, shape: (3) […], dtype: "float32", * size: 8, strides: (2) […], dataId: {…}, id: 369, rankType: "3", scopeId: 39 } * * normSlices.print() @@ -1149,31 +1150,31 @@ rgbToHex = (rgbObj) => { * [[0.5714286, 0.7142857], * [0.8571429, 1 ]]] * -*/ +*/ minMaxNormalizeVolumeData = (volumeData) => { //Normalize the data to the range 0 - 1 using min-max scaling const volumeData_Max = volumeData.max(); const volumeData_Min = volumeData.min(); const normalizedSlices_3d = volumeData.sub(volumeData_Min).div(volumeData_Max.sub(volumeData_Min)); - return normalizedSlices_3d; + return normalizedSlices_3d; } /** * For future use * Calculate the tensor data quantiles * @since 3.0.0 -* @param {tf.Tensor} tensor - Tensor1d/Tensor2d/Tensor3d, e.g. Tensor3d of all MRI volume data -* @param {number} lowerQuantile -* @param {number} upperQuantile -* @returns {object} +* @param {tf.Tensor} tensor - Tensor1d/Tensor2d/Tensor3d, e.g. Tensor3d of all MRI volume data +* @param {number} lowerQuantile +* @param {number} upperQuantile +* @returns {object} * @example * * await calculateQuantiles ( tf.tensor( Array.from({length: 8}, (x, i) => i) , [2, 2, 2]) ) * * // => Object { qmin: 0, qmax: 7 } -* -*/ +* +*/ calculateQuantiles = async(tensor, lowerQuantile = 0.01, upperQuantile = 0.99) => { @@ -1214,15 +1215,15 @@ rgbToHex = (rgbObj) => { * For future use * Normalize the tensor data using quantiles * @since 3.0.0 -* @param {tf.Tensor} tensor - Tensor1d/Tensor2d/Tensor3d, e.g. Tensor3d of all MRI volume data -* @param {number} lowerQuantile -* @param {number} upperQuantile -* @returns {tf.Tensor} +* @param {tf.Tensor} tensor - Tensor1d/Tensor2d/Tensor3d, e.g. Tensor3d of all MRI volume data +* @param {number} lowerQuantile +* @param {number} upperQuantile +* @returns {tf.Tensor} * @example * * normTensor = await quantileNormalizeVolumeData ( tf.tensor( Array.from({length: 8}, (x, i) => i) , [2, 2, 2]) ) * -* // => Object Object { kept: false, isDisposedInternal: false, shape: (3) […], dtype: "float32", size: 8, +* // => Object Object { kept: false, isDisposedInternal: false, shape: (3) […], dtype: "float32", size: 8, * strides: (2) […], dataId: {…}, id: 9, rankType: "3", scopeId: 5 } * * normTensor.print() @@ -1232,8 +1233,8 @@ rgbToHex = (rgbObj) => { * [0.2857143, 0.4285715]], * * [[0.5714286, 0.7142857], -* [0.8571429, 1 ]]] -*/ +* [0.8571429, 1 ]]] +*/ quantileNormalizeVolumeData = async (tensor, lowerQuantile = 0.05, upperQuantile = 0.95) => { @@ -1260,11 +1261,11 @@ rgbToHex = (rgbObj) => { /** * Get MRI mask after threshold noisy voxels around the brain for better cropping later * @since 3.0.0 -* @param {tf.Tensor} tensor - Tensor3d, e.g. Tensor3d of all MRI volume data -* @param {number} percentage - Threshold percentage is just a number between 0 and 1 -* @returns {tf.Tensor} +* @param {tf.Tensor} tensor - Tensor3d, e.g. Tensor3d of all MRI volume data +* @param {number} percentage - Threshold percentage is just a number between 0 and 1 +* @returns {tf.Tensor} * -*/ +*/ applyMriThreshold = async(tensor, percentage) => { @@ -1298,9 +1299,9 @@ applyMriThreshold = async(tensor, percentage) => { /** * Get MRI copping coordinates after threshold * @since 3.0.0 -* @param {tf.Tensor} tensor - Tensor3d, e.g. Tensor3d of all MRI volume data -* @param {number} percentage - Threshold percentage is just a number between 0 and 1 -* @returns {Array} +* @param {tf.Tensor} tensor - Tensor3d, e.g. Tensor3d of all MRI volume data +* @param {number} percentage - Threshold percentage is just a number between 0 and 1 +* @returns {Array} * @example * * arr = Array.from({length: 27}, (x, i) => i/10) @@ -1312,7 +1313,7 @@ applyMriThreshold = async(tensor, percentage) => { * * cropped[0].print() * -*/ +*/ cropTensorWithThreshold = async(tensor, percentage) => { @@ -1385,14 +1386,14 @@ applyMriThreshold = async(tensor, percentage) => { * load_model("./models/mnm_tfjs_me_test/model.json") * // => Promise { : "fulfilled", : {…} } * -*/ +*/ load_model = async( modelUrl) => { return await tf.loadLayersModel(modelUrl); } /** -* load uploaded pre-trained model from local drive +* load uploaded pre-trained model from local drive * * @since 1.0.0 * @param {File} modelFile - the model File e.g. { name: "model.json", lastModified: 1625122369308, webkitRelativePath: "", size: 250, type: "" } @@ -1403,7 +1404,7 @@ applyMriThreshold = async(tensor, percentage) => { * load_browser_model(uploadJSONInput.files[0], uploadWeightsInput.files[0]) * // => Promise { : "fulfilled", : {…} } * -*/ +*/ load_browser_model = async( modelFile, weightFile) => { return await tf.loadLayersModel(tf.io.browserFiles( [ modelFile, weightFile ])); @@ -1420,25 +1421,25 @@ applyMriThreshold = async(tensor, percentage) => { * getCustomColorTable(3) * // => function customColorTable() * -*/ +*/ getCustomColorTable = (numSegClasses) => { - var customColorTable = function() { }; - let colors = []; + var customColorTable = function() { }; + let colors = []; if( (!opts.isAutoColors) && (numSegClasses <= manualColorsRange.length) ) { //Manual coloring colors = manualColorsRange; } else { - //Auto coloring + //Auto coloring colors = generateColors(100, 50, numSegClasses); - + if(!opts.isAutoColors) { // if manual coloring was requested but failed if(numSegClasses > manualColorsRange.length) { console.log("number of Segmentation classes > manualColorsRange --> Auto coloring enabled"); webix.message("number of Segmentation classes > manualColorsRange --> Auto coloring enabled"); } - + } } @@ -1449,7 +1450,7 @@ getCustomColorTable = (numSegClasses) => { let classGreyValue = []; if(opts.isColorEnable) { - + //Find the threshold grey value of each class for(let classIdx = 0; classIdx < numSegClasses; classIdx ++ ) { classGreyValue[classIdx] = Math.ceil(classIdx*255/(numSegClasses - 1)); @@ -1462,12 +1463,12 @@ getCustomColorTable = (numSegClasses) => { for(let classIdx = 0; classIdx < numSegClasses; classIdx ++ ) { if (screenVal == 0) { - return 0; + return 0; } else if (screenVal == classGreyValue[classIdx]) { - return colorsRgbObj[classIdx].r; + return colorsRgbObj[classIdx].r; } - } + } }; @@ -1475,27 +1476,27 @@ getCustomColorTable = (numSegClasses) => { for(let classIdx = 0; classIdx < numSegClasses; classIdx ++ ) { if (screenVal == 0) { - return 0; + return 0; } else if (screenVal == classGreyValue[classIdx]) { - return colorsRgbObj[classIdx].g; + return colorsRgbObj[classIdx].g; } - } + } }; customColorTable.prototype.lookupBlue = function (screenVal, imageVal) { for(let classIdx = 0; classIdx < numSegClasses; classIdx ++ ) { if (screenVal == 0) { - return 0; + return 0; } else if (screenVal == classGreyValue[classIdx]) { - return colorsRgbObj[classIdx].b; + return colorsRgbObj[classIdx].b; } - } - }; + } + }; - } + } return customColorTable; } @@ -1503,20 +1504,20 @@ getCustomColorTable = (numSegClasses) => { /** -* Get object from external json file +* Get object from external json file * * @since 1.2.0 * @param {string} jsonURL - External file URL -* @returns {object} +* @returns {object} * @example * * getExternalJSON("colorLUT.json") -* // => {0: "rgb(0,0,0)", 1: "rgb(0,255,0)", 2: "rgb(255,0,255)"} +* // => {0: "rgb(0,0,0)", 1: "rgb(0,255,0)", 2: "rgb(255,0,255)"} * -*/ +*/ getExternalJSON = (jsonURL) => { - let jsonObj; + let jsonObj; // read json file in sync mode $.ajax({ url: jsonURL, @@ -1524,7 +1525,7 @@ getExternalJSON = (jsonURL) => { dataType: 'json', success: function (response) { jsonObj = response - //-- colors : {0: "rgb(0,0,0)", 1: "rgb(0,255,0)", 2: "rgb(255,0,255)"} + //-- colors : {0: "rgb(0,0,0)", 1: "rgb(0,255,0)", 2: "rgb(255,0,255)"} } }); @@ -1533,12 +1534,12 @@ getExternalJSON = (jsonURL) => { } -getCustomColorTableFromUrl = (numSegClasses, colorURL ) => { +getCustomColorTableFromUrl = (numSegClasses, colorURL ) => { - var customColorTable = function() { }; + var customColorTable = function() { }; - let colors; + let colors; // read json file in sync mode $.ajax({ url: colorURL, @@ -1546,7 +1547,7 @@ getCustomColorTableFromUrl = (numSegClasses, colorURL ) => { dataType: 'json', success: function (response) { colors = response - //-- colors : {0: "rgb(0,0,0)", 1: "rgb(0,255,0)", 2: "rgb(255,0,255)"} + //-- colors : {0: "rgb(0,0,0)", 1: "rgb(0,255,0)", 2: "rgb(255,0,255)"} } }); @@ -1560,7 +1561,7 @@ getCustomColorTableFromUrl = (numSegClasses, colorURL ) => { // Array of threshold grey value of each class let classGreyValue = []; - + // Find the threshold grey value of each class for(let classIdx = 0; classIdx < numSegClasses; classIdx ++ ) { classGreyValue[classIdx] = Math.round(classIdx*255/(numSegClasses - 1)); @@ -1575,12 +1576,12 @@ getCustomColorTableFromUrl = (numSegClasses, colorURL ) => { for(let classIdx = 0; classIdx < numSegClasses; classIdx ++ ) { if (screenVal == 0) { - return 0; + return 0; } else if (screenVal == classGreyValue[classIdx]) { - return colorsRgbObj[classIdx].r; + return colorsRgbObj[classIdx].r; } - } + } }; @@ -1588,25 +1589,25 @@ getCustomColorTableFromUrl = (numSegClasses, colorURL ) => { for(let classIdx = 0; classIdx < numSegClasses; classIdx ++ ) { if (screenVal == 0) { - return 0; + return 0; } else if (screenVal == classGreyValue[classIdx]) { - return colorsRgbObj[classIdx].g; + return colorsRgbObj[classIdx].g; } - } + } }; customColorTable.prototype.lookupBlue = function (screenVal, imageVal) { for(let classIdx = 0; classIdx < numSegClasses; classIdx ++ ) { if (screenVal == 0) { - return 0; + return 0; } else if (screenVal == classGreyValue[classIdx]) { - return colorsRgbObj[classIdx].b; + return colorsRgbObj[classIdx].b; } - } - }; + } + }; return customColorTable; } @@ -1621,20 +1622,20 @@ getCustomColorTableFromUrl = (numSegClasses, colorURL ) => { * * fetchLabelStructure("./models/meshnet_dropout/mnm_dropout/labels.json") * -*/ +*/ fetchLabelStructure = (labelsURL) => { if(labelsURL !== null) { - let labelsDataObj; + let labelsDataObj; $.ajax({ url: labelsURL, async: false, dataType: 'json', success: function (response) { - labelsDataObj = response - //-- labelsDataObj { 0: "background", 1: "Grey Matter", 2: "White Matter" } + labelsDataObj = response + //-- labelsDataObj { 0: "background", 1: "Grey Matter", 2: "White Matter" } } }); @@ -1652,7 +1653,7 @@ fetchLabelStructure = (labelsURL) => { } else { console.log(" No labels file found for this model") - } + } } @@ -1667,13 +1668,13 @@ fetchLabelStructure = (labelsURL) => { * * addMouseMoveHandler("./models/meshnet_dropout/mnm_dropout/labels.json", 0) * -*/ +*/ addMouseMoveHandler = (labelsURL, papayaContainerIdx = 1) => { if(labelsURL !== null) { - let labelsDataObj; //-- labelsDataObj { 0: "background", 1: "Grey Matter", 2: "White Matter" } + let labelsDataObj; //-- labelsDataObj { 0: "background", 1: "Grey Matter", 2: "White Matter" } $.ajax({ url: labelsURL, async: false, @@ -1681,7 +1682,7 @@ addMouseMoveHandler = (labelsURL, papayaContainerIdx = 1) => { success: function (response) { labelsDataObj = response } - }); + }); let canvasMain = papayaContainers[papayaContainerIdx].viewer.canvas; @@ -1701,7 +1702,7 @@ addMouseMoveHandler = (labelsURL, papayaContainerIdx = 1) => { } } - canvasMain.addEventListener('mousemove', mouseMoveHandler); + canvasMain.addEventListener('mousemove', mouseMoveHandler); mouseOutHandler = () => { document.getElementById("annotOfContainer_" + papayaContainerIdx).value = ""; @@ -1712,7 +1713,7 @@ addMouseMoveHandler = (labelsURL, papayaContainerIdx = 1) => { } else { console.log(" No labels file found for this model") - } + } } @@ -1726,19 +1727,19 @@ addMouseMoveHandler = (labelsURL, papayaContainerIdx = 1) => { * * removeMouseMoveHandler( 1 ) * -*/ +*/ removeMouseMoveHandler = ( papayaContainerIdx ) => { let canvasMain = papayaContainers[papayaContainerIdx].viewer.canvas; - canvasMain.removeEventListener('mousemove', mouseMoveHandler); + canvasMain.removeEventListener('mousemove', mouseMoveHandler); mouseOutHandler = () => { document.getElementById("annotOfContainer_" + papayaContainerIdx).value = ""; } - canvasMain.removeEventListener('mouseout', mouseOutHandler); + canvasMain.removeEventListener('mouseout', mouseOutHandler); } @@ -1746,11 +1747,11 @@ removeMouseMoveHandler = ( papayaContainerIdx ) => { /** * Remove any existing overlay from MRI Viewer on the left -* +* * @since 1.0.0 * @param {number} overlayIdx- papaya viewer overlay index * -*/ +*/ resetMriViewerOverlay = ( overlayIdx = 1) => { @@ -1765,30 +1766,30 @@ resetMriViewerOverlay = ( overlayIdx = 1) => { /** * Reset label viewer (1) -* +* * @since 1.0.0 * -*/ +*/ resetLabelViewer = () => { removeMouseMoveHandler(1); - papayaContainers[1].viewer.resetViewer(); + papayaContainers[1].viewer.resetViewer(); } /** * argMax large to find final labels by looping to overcome tf.argMax limitations -* +* * @since 1.2.0 * @param {buffer} outVolumeBuffer- resulted buffer e.g. shape: [ 1, 256, 256, 256, 3 ] * @param {number} num_of_slices- Total Number of slices a.k.a z-dim * @param {number} slice_height- - Slice Height * @param {number} slice_width- Slice Width * @param {number} numSegClasses- The number of segmentation classes -* @returns {tf.Tensor} Returns prediction_argmax +* @returns {tf.Tensor} Returns prediction_argmax * -*/ +*/ argMaxLarge = (outVolumeBuffer, num_of_slices, slice_height, slice_width, numOfClasses, dtype = 'float32') => { @@ -1805,29 +1806,29 @@ argMaxLarge = (outVolumeBuffer, num_of_slices, slice_height, slice_width, numOfC let outBuffer = tf.buffer([num_of_slices, slice_height, slice_width ], dtype=tf.float32); - for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { - for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { + for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { + for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { for(let colIdx = 0; colIdx < slice_width; colIdx += 1) { // index of buffer with max Freq or max number so the index of that buffer is the right concensus label - let indexOfMaxVotedBuffer = -1; - // let maxVoxelValue = -Infinity; - let maxVoxelValue = -1000000; + let indexOfMaxVotedBuffer = -1; + // let maxVoxelValue = -Infinity; + let maxVoxelValue = -1000000; for(let bufferIdx = 0; bufferIdx < numOfClasses; bufferIdx += 1) { //Requested out of range element at 1,0,0,0. Buffer shape=1,256,256,256,3 - let voxelValue = outVolumeBuffer.get(depthIdx, rowIdx, colIdx, bufferIdx ); + let voxelValue = outVolumeBuffer.get(depthIdx, rowIdx, colIdx, bufferIdx ); if(maxVoxelValue <= voxelValue) { maxVoxelValue = voxelValue; indexOfMaxVotedBuffer = bufferIdx; - } + } } - + outBuffer.set(indexOfMaxVotedBuffer, depthIdx, rowIdx, colIdx); } } - } + } console.log("argMaxLarge for buffer ..Done"); @@ -1845,19 +1846,19 @@ argMaxLarge = (outVolumeBuffer, num_of_slices, slice_height, slice_width, numOfC //- findBufferThreBinIdx( buffersThresholds = [3, 6], value=3) ==> return index 1 or bin-1, because bin-0 range 0-> 2 /** -* Find which buffer have the label value -* +* Find which buffer have the label value +* * @since 1.0.0 * @param {Array} buffersThresholds - Array of buffers threshold values e.g. [ 3, 6]--> 0-1-2, 3-4-5 * @param {number} labelValue- Total Number of slices a.k.a z-dim * @returns {number} Returns buffer index that has label value * @example * -* findBufferThreBinIdx( buffersThresholds = [3, 6], value=3) -* +* findBufferThreBinIdx( buffersThresholds = [3, 6], value=3) +* * //==> 1 // or bin-1, because bin-0 range 0-> 2( 1 )) * -*/ +*/ findBufferThreBinIdx = (buffersThresholds, labelValue) => { @@ -1866,7 +1867,7 @@ findBufferThreBinIdx = (buffersThresholds, labelValue) => { for(let bin = 1; bin < buffersThresholds.length; bin ++) { if( (labelValue >= buffersThresholds[bin-1]) && (labelValue < buffersThresholds[bin]) ) { binIdx = bin; - } + } } return binIdx; @@ -1876,18 +1877,18 @@ findBufferThreBinIdx = (buffersThresholds, labelValue) => { /** * Create 3D tf.buffer from large 4D segmenation model * -* +* * @since 1.0.0 -* @param {Array} allPredictions - Array of objects {"id": number, "coordinates": Array, "data":1dArray }) +* @param {Array} allPredictions - Array of objects {"id": number, "coordinates": Array, "data":1dArray }) * @param {number} num_of_slices- Total Number of slices a.k.a z-dim * @param {number} numSegLabels- The number of segmentation classes/labels * @param {number} slice_height- - Slice Height * @param {number} slice_width- Slice Width * @param {number} batch_D- batch depth-dim a.k.a z-dim -* @param {number} batch_H- batch height +* @param {number} batch_H- batch height * @param {number} batch_W- batch width -* @returns {tf.buffer} Returns 3D buffer of ouput volume -*/ +* @returns {tf.buffer} Returns 3D buffer of ouput volume +*/ bufferLarge = (allPredictions, num_of_slices, slice_height, slice_width, numSegLabels, batch_D, batch_H, batch_W ) => { @@ -1900,24 +1901,24 @@ bufferLarge = (allPredictions, num_of_slices, slice_height, slice_width, numSegL //-- Create sub-buffers let outVolumeBuffer = []; for(let arrBufIdx = 0; arrBufIdx < numArrBufPartitions; arrBufIdx ++) { - outVolumeBuffer[arrBufIdx] = tf.buffer([num_of_slices, slice_height, slice_width, bufferNumLabels[arrBufIdx] ], dtype=tf.float32); + outVolumeBuffer[arrBufIdx] = tf.buffer([num_of_slices, slice_height, slice_width, bufferNumLabels[arrBufIdx] ], dtype=tf.float32); //labels : 0-49 - console.log("outVolumeBuffer-" + (arrBufIdx + 1) + " created"); + console.log("outVolumeBuffer-" + (arrBufIdx + 1) + " created"); } console.log(" Num of created buffers : ", outVolumeBuffer.length); - - //Convert to buffer - for(let batchIdx = 0; batchIdx < allPredictions.length; batchIdx += 1) { - let coord = allPredictions[batchIdx]["coordinates"]; + //Convert to buffer + for(let batchIdx = 0; batchIdx < allPredictions.length; batchIdx += 1) { + + let coord = allPredictions[batchIdx]["coordinates"]; let pixelValues = allPredictions[batchIdx]["data"]; - let pixelValuesCounter = 0; + let pixelValuesCounter = 0; - for(let depthIdx = coord[0]; depthIdx < (batch_D + coord[0]); depthIdx += 1) { - for(let rowIdx = coord[1]; rowIdx < (batch_H + coord[1]); rowIdx += 1) { + for(let depthIdx = coord[0]; depthIdx < (batch_D + coord[0]); depthIdx += 1) { + for(let rowIdx = coord[1]; rowIdx < (batch_H + coord[1]); rowIdx += 1) { for(let colIdx = coord[2]; colIdx < (batch_W + coord[2]); colIdx += 1) { - // Find current voxel value of the related seg class buffer + // Find current voxel value of the related seg class buffer // if we have numSegClasses = 3 then we have 3 buffers, one for each seg classes 0, 1, 2 let binIdx = findBufferThreBinIdx(buffersThresholds, pixelValues[pixelValuesCounter]); @@ -1930,70 +1931,70 @@ bufferLarge = (allPredictions, num_of_slices, slice_height, slice_width, numSegL let voxelValue = outVolumeBuffer[ binIdx ].get(depthIdx, rowIdx, colIdx, pixelValues[pixelValuesCounter] - buffersThresholds[ binIdx-1 ] ); // increment current voxel value by 1 in the current class buffer outVolumeBuffer[ binIdx ].set(voxelValue + 1, depthIdx, rowIdx, colIdx, pixelValues[pixelValuesCounter] - buffersThresholds[ binIdx-1 ] ); - } + } pixelValuesCounter += 1; - } + } } } } - - let outBuffer = []; - for(let arrBufIdx = 0; arrBufIdx < numArrBufPartitions; arrBufIdx ++) { + + let outBuffer = []; + for(let arrBufIdx = 0; arrBufIdx < numArrBufPartitions; arrBufIdx ++) { console.log("Start argMax for buffer-" + (arrBufIdx + 1) + " with last axis -1"); outBuffer[arrBufIdx] = tf.buffer([num_of_slices, slice_height, slice_width ], dtype=tf.float32); // convert output buffer to tensor - // let axis = -1; // last axis + // let axis = -1; // last axis // Set for each voxel the value of the index of the buffer that has the max voxel value, e.g. third buffer with index = 2 (cont..) - // has max voxel value = 10 then the related voxel in outVolumeTensor will have value of 2 - for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { - for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { + // has max voxel value = 10 then the related voxel in outVolumeTensor will have value of 2 + for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { + for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { for(let colIdx = 0; colIdx < slice_width; colIdx += 1) { // index of buffer with max Freq or max number so the index of that buffer is the right concensus label - let indexOfMaxVotedBuffer = -1; - let maxVoxelValue = -1; + let indexOfMaxVotedBuffer = -1; + let maxVoxelValue = -1; // Move through all buffers for the same voxel location and find which buffer indx has that max voxel value for(let bufferIdx = 0; bufferIdx < bufferNumLabels[ arrBufIdx ] ; bufferIdx += 1) { - let voxelValue = outVolumeBuffer[ arrBufIdx ].get(depthIdx, rowIdx, colIdx, bufferIdx ); + let voxelValue = outVolumeBuffer[ arrBufIdx ].get(depthIdx, rowIdx, colIdx, bufferIdx ); if(maxVoxelValue < voxelValue) { maxVoxelValue = voxelValue; indexOfMaxVotedBuffer = bufferIdx; - } + } } - + outBuffer[ arrBufIdx ].set(indexOfMaxVotedBuffer, depthIdx, rowIdx, colIdx); } } } - console.log("argMax in buffer-" + ( arrBufIdx +1) + " ..Done") + console.log("argMax in buffer-" + ( arrBufIdx +1) + " ..Done") } - + let outFinaleBuffer = tf.buffer([num_of_slices, slice_height, slice_width], dtype=tf.float32); - for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { - for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { + for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { + for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { for(let colIdx = 0; colIdx < slice_width; colIdx += 1) { let voxelValue = []; let voxel_histoMax = []; - for(let arrBufIdx = 0; arrBufIdx < numArrBufPartitions; arrBufIdx ++) { + for(let arrBufIdx = 0; arrBufIdx < numArrBufPartitions; arrBufIdx ++) { voxelValue[ arrBufIdx ] = outBuffer[ arrBufIdx ].get(depthIdx, rowIdx, colIdx); - voxel_histoMax[ arrBufIdx ] = outVolumeBuffer[arrBufIdx].get(depthIdx, rowIdx, colIdx, voxelValue[ arrBufIdx ] ); - } + voxel_histoMax[ arrBufIdx ] = outVolumeBuffer[arrBufIdx].get(depthIdx, rowIdx, colIdx, voxelValue[ arrBufIdx ] ); + } + + idxMaxVal = voxel_histoMax.indexOf(voxel_histoMax.reduce((a, b) => { return Math.max(a, b) })); - idxMaxVal = voxel_histoMax.indexOf(voxel_histoMax.reduce((a, b) => { return Math.max(a, b) })); - if(idxMaxVal == 0) { outFinaleBuffer.set(voxelValue[idxMaxVal], depthIdx, rowIdx, colIdx); } else { outFinaleBuffer.set(voxelValue[idxMaxVal] + buffersThresholds[ idxMaxVal-1 ], depthIdx, rowIdx, colIdx); - } + } } } } @@ -2006,24 +2007,24 @@ bufferLarge = (allPredictions, num_of_slices, slice_height, slice_width, numSegL /** * Merge all subvolumes output from the inference model * -* +* * @since 1.0.0 -* @param {Array} allPredictions - Array of objects {"id": number, "coordinates": Array, "data":1dArray }) +* @param {Array} allPredictions - Array of objects {"id": number, "coordinates": Array, "data":1dArray }) * @param {number} num_of_slices- Total Number of slices a.k.a z-dim * @param {number} numSegClasses- The number of segmentation classes * @param {number} slice_height- - Slice Height * @param {number} slice_width- Slice Width * @param {number} batch_D- batch depth-dim a.k.a z-dim -* @param {number} batch_H- batch height +* @param {number} batch_H- batch height * @param {number} batch_W- batch width -* @param {number} axis- -* @returns {tf.Tensor} Returns Tensor of ouput volume -*/ +* @param {number} axis- +* @returns {tf.Tensor} Returns Tensor of ouput volume +*/ mergeSubVolumesV2 = (allPredictions, num_of_slices, slice_height, slice_width, numSegClasses, batch_D, batch_H, batch_W, axis) => { console.log("Wait while generate output labels... "); - + let outVolumeTensor; let transpose = inferenceModelsList[$$("selectModel").getValue() - 1]["enableTranspose"]; @@ -2034,28 +2035,28 @@ mergeSubVolumesV2 = (allPredictions, num_of_slices, slice_height, slice_width, n // buffer set ( depth, H, W) in order // -- if(numSegClasses <= opts.browserArrayBufferMaxZDim ) { - if( isValidBuf ) { - let outVolumeBuffer = new Buffer([num_of_slices, slice_height, slice_width, numSegClasses ], 'uint16'); + if( isValidBuf ) { + let outVolumeBuffer = new Buffer([num_of_slices, slice_height, slice_width, numSegClasses ], 'uint16'); console.log("New uint16 buffer called ..") - //Convert to buffer - for(let batchIdx = 0; batchIdx < allPredictions.length; batchIdx += 1) { + //Convert to buffer + for(let batchIdx = 0; batchIdx < allPredictions.length; batchIdx += 1) { - let coord = allPredictions[batchIdx]["coordinates"]; + let coord = allPredictions[batchIdx]["coordinates"]; let pixelValues = allPredictions[batchIdx]["data"]; - let pixelValuesCounter = 0; + let pixelValuesCounter = 0; - for(depthIdx = coord[0]; depthIdx < (batch_D + coord[0]); depthIdx += 1) { - for(rowIdx = coord[1]; rowIdx < (batch_H + coord[1]); rowIdx += 1) { + for(depthIdx = coord[0]; depthIdx < (batch_D + coord[0]); depthIdx += 1) { + for(rowIdx = coord[1]; rowIdx < (batch_H + coord[1]); rowIdx += 1) { for(colIdx = coord[2]; colIdx < (batch_W + coord[2]); colIdx += 1) { - // Find current voxel value of the related seg class buffer + // Find current voxel value of the related seg class buffer // if we have numSegClasses = 3 then we have 3 buffers, one for each seg classes 0, 1, 2 let voxelValue = outVolumeBuffer.get(depthIdx, rowIdx, colIdx, pixelValues[pixelValuesCounter] ); // increment current voxel value by 1 in the current class buffer outVolumeBuffer.set(voxelValue + 1, depthIdx, rowIdx, colIdx, pixelValues[pixelValuesCounter] ); pixelValuesCounter += 1; - } + } } } } @@ -2063,19 +2064,19 @@ mergeSubVolumesV2 = (allPredictions, num_of_slices, slice_height, slice_width, n // convert output buffer to tensor // Set for each voxel the value of the index of the buffer that has the max voxel value, e.g. third buffer with index = 2 (cont..) - // has max voxel value = 10 then the related voxel in outVolumeTensor will have value of 2 + // has max voxel value = 10 then the related voxel in outVolumeTensor will have value of 2 try { console.log(" Try for merging with tf.argMax .."); //-- outVolumeBuffer.toTensor() will convert to dtype float32 - outVolumeTensor = tf.argMax(outVolumeBuffer.toTensor(), axis); - + outVolumeTensor = tf.argMax(outVolumeBuffer.toTensor(), axis); + } catch(err1) { // -- common error message: //-- WebGL2RenderingContext.texImage2D: Argument 9 can't be - //-- an ArrayBuffer or an ArrayBufferView larger than 2 GB + //-- an ArrayBuffer or an ArrayBufferView larger than 2 GB if(axis == -1) { try { @@ -2089,8 +2090,8 @@ mergeSubVolumesV2 = (allPredictions, num_of_slices, slice_height, slice_width, n let errTxt = "Merging argMax buffer couldn't be created due to limited memory resources."; webix.alert(errTxt); - - //window.clearInterval( timer ); + + //window.clearInterval( timer ); tf.engine().endScope(); tf.engine().disposeVariables(); @@ -2100,11 +2101,11 @@ mergeSubVolumesV2 = (allPredictions, num_of_slices, slice_height, slice_width, n statData["Error_Type"] = err2.message; statData["Extra_Err_Info"] = "Merging function tf.argMax failed and argMaxLarge failed."; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } - return 0; + return 0; } @@ -2112,7 +2113,7 @@ mergeSubVolumesV2 = (allPredictions, num_of_slices, slice_height, slice_width, n // if channel first .. let errTxt = "Merging argMax buffer couldn't be created due to limited memory resources."; webix.alert(errTxt); - + tf.engine().endScope(); tf.engine().disposeVariables(); @@ -2122,27 +2123,27 @@ mergeSubVolumesV2 = (allPredictions, num_of_slices, slice_height, slice_width, n statData["Error_Type"] = err1.message; statData["Extra_Err_Info"] = "Merging function tf.argMax failed and argMaxLarge not support yet channel first"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); - } + } return 0; - } - - } - + } + + } + // Transpose MRI data to be match pytorch/keras input output if(transpose) { console.log("outVolumeTensor transposed"); - outVolumeTensor = outVolumeTensor.transpose(); + outVolumeTensor = outVolumeTensor.transpose(); } } else { // Can be subdivided into 2 subBuffers let outFinaleBuffer; - + try { outFinaleBuffer = bufferLarge(allPredictions, num_of_slices, slice_height, slice_width, numSegClasses, batch_D, batch_H, batch_W); } catch(err3) { @@ -2158,25 +2159,25 @@ mergeSubVolumesV2 = (allPredictions, num_of_slices, slice_height, slice_width, n statData["Error_Type"] = err3.message; statData["Extra_Err_Info"] = "bufferLarge couldn't be created due to limited memory resources."; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } - return 0; + return 0; } - console.log("Final merged buffer -- Done"); + console.log("Final merged buffer -- Done"); outVolumeTensor = outFinaleBuffer.toTensor(); - + // Transpose MRI data to be match pytorch/keras input output if(transpose) { console.log("Final merged buffer transposed"); - outVolumeTensor = outVolumeTensor.transpose(); + outVolumeTensor = outVolumeTensor.transpose(); } - } + } return outVolumeTensor; @@ -2194,28 +2195,28 @@ mergeSubVolumes_old = (allPredictions, num_of_slices, slice_height, slice_width, // buffer set ( depth, H, W) in order // -- if(numSegClasses <= opts.browserArrayBufferMaxZDim ) { - if( isValidBuf ) { - let outVolumeBuffer = tf.buffer([num_of_slices, slice_height, slice_width, numSegClasses ], dtype=tf.float32) + if( isValidBuf ) { + let outVolumeBuffer = tf.buffer([num_of_slices, slice_height, slice_width, numSegClasses ], dtype=tf.float32) - //Convert to buffer - for(let batchIdx = 0; batchIdx < allPredictions.length; batchIdx += 1) { + //Convert to buffer + for(let batchIdx = 0; batchIdx < allPredictions.length; batchIdx += 1) { - let coord = allPredictions[batchIdx]["coordinates"]; + let coord = allPredictions[batchIdx]["coordinates"]; let pixelValues = allPredictions[batchIdx]["data"]; - let pixelValuesCounter = 0; + let pixelValuesCounter = 0; - for(depthIdx = coord[0]; depthIdx < (batch_D + coord[0]); depthIdx += 1) { - for(rowIdx = coord[1]; rowIdx < (batch_H + coord[1]); rowIdx += 1) { + for(depthIdx = coord[0]; depthIdx < (batch_D + coord[0]); depthIdx += 1) { + for(rowIdx = coord[1]; rowIdx < (batch_H + coord[1]); rowIdx += 1) { for(colIdx = coord[2]; colIdx < (batch_W + coord[2]); colIdx += 1) { - // Find current voxel value of the related seg class buffer + // Find current voxel value of the related seg class buffer // if we have numSegClasses = 3 then we have 3 buffers, one for each seg classes 0, 1, 2 let voxelValue = outVolumeBuffer.get(depthIdx, rowIdx, colIdx, pixelValues[pixelValuesCounter] ); // increment current voxel value by 1 in the current class buffer outVolumeBuffer.set(voxelValue + 1, depthIdx, rowIdx, colIdx, pixelValues[pixelValuesCounter] ); pixelValuesCounter += 1; - } + } } } } @@ -2223,18 +2224,18 @@ mergeSubVolumes_old = (allPredictions, num_of_slices, slice_height, slice_width, // convert output buffer to tensor // Set for each voxel the value of the index of the buffer that has the max voxel value, e.g. third buffer with index = 2 (cont..) - // has max voxel value = 10 then the related voxel in outVolumeTensor will have value of 2 + // has max voxel value = 10 then the related voxel in outVolumeTensor will have value of 2 let outVolumeTensor; try { console.log(" Try for merging tf.argMax .."); - outVolumeTensor = tf.argMax(outVolumeBuffer.toTensor(), axis); + outVolumeTensor = tf.argMax(outVolumeBuffer.toTensor(), axis); } catch(err1) { // -- common error message: //-- WebGL2RenderingContext.texImage2D: Argument 9 can't be - //-- an ArrayBuffer or an ArrayBufferView larger than 2 GB + //-- an ArrayBuffer or an ArrayBufferView larger than 2 GB if(axis == -1) { try { @@ -2247,8 +2248,8 @@ mergeSubVolumes_old = (allPredictions, num_of_slices, slice_height, slice_width, let errTxt = "Merging argMax buffer couldn't be created due to limited memory resources."; webix.alert(errTxt); - - // window.clearInterval( timer ); + + // window.clearInterval( timer ); tf.engine().endScope(); tf.engine().disposeVariables(); @@ -2258,11 +2259,11 @@ mergeSubVolumes_old = (allPredictions, num_of_slices, slice_height, slice_width, statData["Error_Type"] = err2.message; statData["Extra_Err_Info"] = "Merging function tf.argMax failed and argMaxLarge failed."; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } - return 0; + return 0; } @@ -2270,7 +2271,7 @@ mergeSubVolumes_old = (allPredictions, num_of_slices, slice_height, slice_width, // if channel first .. let errTxt = "Merging argMax buffer couldn't be created due to limited memory resources."; webix.alert(errTxt); - + tf.engine().endScope(); tf.engine().disposeVariables(); @@ -2280,20 +2281,20 @@ mergeSubVolumes_old = (allPredictions, num_of_slices, slice_height, slice_width, statData["Error_Type"] = err1.message; statData["Extra_Err_Info"] = "Merging function tf.argMax failed and argMaxLarge not support yet channel first"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); - } + } return 0; - } - - } - + } + + } + // Transpose MRI data to be match pytorch/keras input output if(transpose) { console.log("outVolumeTensor transposed"); - outVolumeTensor = outVolumeTensor.transpose(); + outVolumeTensor = outVolumeTensor.transpose(); } unstackOutVolumeTensor = tf.unstack(outVolumeTensor); @@ -2305,26 +2306,26 @@ mergeSubVolumes_old = (allPredictions, num_of_slices, slice_height, slice_width, let Buffer1NumLabels = Math.round(numSegClasses/2); - let outVolumeBuffer1 = tf.buffer([num_of_slices, slice_height, slice_width, Buffer1NumLabels ], dtype=tf.float32) + let outVolumeBuffer1 = tf.buffer([num_of_slices, slice_height, slice_width, Buffer1NumLabels ], dtype=tf.float32) //labels : 0-49 - console.log("outVolumeBuffer-1 created"); + console.log("outVolumeBuffer-1 created"); - let outVolumeBuffer2 = tf.buffer([num_of_slices, slice_height, slice_width, numSegClasses - Buffer1NumLabels ], dtype=tf.float32) + let outVolumeBuffer2 = tf.buffer([num_of_slices, slice_height, slice_width, numSegClasses - Buffer1NumLabels ], dtype=tf.float32) // labels : 50 - (numSegClasses-1) console.log("outVolumeBuffer-2 created"); - //Convert to buffer - for(let batchIdx = 0; batchIdx < allPredictions.length; batchIdx += 1) { + //Convert to buffer + for(let batchIdx = 0; batchIdx < allPredictions.length; batchIdx += 1) { - let coord = allPredictions[batchIdx]["coordinates"]; + let coord = allPredictions[batchIdx]["coordinates"]; let pixelValues = allPredictions[batchIdx]["data"]; - let pixelValuesCounter = 0; + let pixelValuesCounter = 0; - for(let depthIdx = coord[0]; depthIdx < (batch_D + coord[0]); depthIdx += 1) { - for(let rowIdx = coord[1]; rowIdx < (batch_H + coord[1]); rowIdx += 1) { + for(let depthIdx = coord[0]; depthIdx < (batch_D + coord[0]); depthIdx += 1) { + for(let rowIdx = coord[1]; rowIdx < (batch_H + coord[1]); rowIdx += 1) { for(let colIdx = coord[2]; colIdx < (batch_W + coord[2]); colIdx += 1) { - // Find current voxel value of the related seg class buffer + // Find current voxel value of the related seg class buffer // if we have numSegClasses = 3 then we have 3 buffers, one for each seg classes 0, 1, 2 if(pixelValues[pixelValuesCounter] < Buffer1NumLabels) { let voxelValue1 = outVolumeBuffer1.get(depthIdx, rowIdx, colIdx, pixelValues[pixelValuesCounter] ); @@ -2339,7 +2340,7 @@ mergeSubVolumes_old = (allPredictions, num_of_slices, slice_height, slice_width, } pixelValuesCounter += 1; - } + } } } } @@ -2350,88 +2351,88 @@ mergeSubVolumes_old = (allPredictions, num_of_slices, slice_height, slice_width, // convert output buffer to tensor - // let axis = -1; // last axis + // let axis = -1; // last axis // Set for each voxel the value of the index of the buffer that has the max voxel value, e.g. third buffer with index = 2 (cont..) - // has max voxel value = 10 then the related voxel in outVolumeTensor will have value of 2 - for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { - for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { + // has max voxel value = 10 then the related voxel in outVolumeTensor will have value of 2 + for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { + for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { for(let colIdx = 0; colIdx < slice_width; colIdx += 1) { // index of buffer with max Freq or max number so the index of that buffer is the right concensus label - let indexOfMaxVotedBuffer = -1; - let maxVoxelValue = -1; + let indexOfMaxVotedBuffer = -1; + let maxVoxelValue = -1; // Move through all buffers for the same voxel location and find which buffer indx has that max voxel value for(let bufferIdx = 0; bufferIdx < Buffer1NumLabels; bufferIdx += 1) { - let voxelValue = outVolumeBuffer1.get(depthIdx, rowIdx, colIdx, bufferIdx ); + let voxelValue = outVolumeBuffer1.get(depthIdx, rowIdx, colIdx, bufferIdx ); if(maxVoxelValue < voxelValue) { maxVoxelValue = voxelValue; indexOfMaxVotedBuffer = bufferIdx; - } + } } - + outBuffer1.set(indexOfMaxVotedBuffer, depthIdx, rowIdx, colIdx); } } } - console.log("argMax in buffer-1 ..Done") + console.log("argMax in buffer-1 ..Done") console.log("Start argMax for buffer-2 with last axis -1") let outBuffer2 = tf.buffer([num_of_slices, slice_height, slice_width ], dtype=tf.float32) ; - for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { - for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { + for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { + for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { for(let colIdx = 0; colIdx < slice_width; colIdx += 1) { // index of buffer with max Freq or max number so the index of that buffer is the right concensus label - let indexOfMaxVotedBuffer = -1; - let maxVoxelValue = -1; + let indexOfMaxVotedBuffer = -1; + let maxVoxelValue = -1; for(let bufferIdx = 0; bufferIdx < (numSegClasses - Buffer1NumLabels); bufferIdx += 1) { - let voxelValue = outVolumeBuffer2.get(depthIdx, rowIdx, colIdx, bufferIdx ); + let voxelValue = outVolumeBuffer2.get(depthIdx, rowIdx, colIdx, bufferIdx ); if(maxVoxelValue < voxelValue) { maxVoxelValue = voxelValue; indexOfMaxVotedBuffer = bufferIdx; - } + } } - + outBuffer2.set(indexOfMaxVotedBuffer, depthIdx, rowIdx, colIdx); } } - } + } - console.log("argMax in buffer-2 ..Done") - let outFinaleBuffer = tf.buffer([num_of_slices, slice_height, slice_width], dtype=tf.float32) + console.log("argMax in buffer-2 ..Done") + let outFinaleBuffer = tf.buffer([num_of_slices, slice_height, slice_width], dtype=tf.float32) - for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { - for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { + for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { + for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { for(let colIdx = 0; colIdx < slice_width; colIdx += 1) { let voxelValue1 = outBuffer1.get(depthIdx, rowIdx, colIdx); - let voxel1_histoMax = outVolumeBuffer1.get(depthIdx, rowIdx, colIdx, voxelValue1 ); - let voxelValue2 = outBuffer2.get(depthIdx, rowIdx, colIdx); - let voxel2_histoMax = outVolumeBuffer2.get(depthIdx, rowIdx, colIdx, voxelValue2 ); + let voxel1_histoMax = outVolumeBuffer1.get(depthIdx, rowIdx, colIdx, voxelValue1 ); + let voxelValue2 = outBuffer2.get(depthIdx, rowIdx, colIdx); + let voxel2_histoMax = outVolumeBuffer2.get(depthIdx, rowIdx, colIdx, voxelValue2 ); if(voxel2_histoMax < voxel1_histoMax) { outFinaleBuffer.set(voxelValue1, depthIdx, rowIdx, colIdx); } else { outFinaleBuffer.set(voxelValue2 + Buffer1NumLabels, depthIdx, rowIdx, colIdx); - } + } } } } - console.log("Final merged buffer -- Done"); + console.log("Final merged buffer -- Done"); let outFinaleTensor = outFinaleBuffer.toTensor(); - + // Transpose MRI data to be match pytorch/keras input output if(transpose) { console.log("Final merged buffer transposed"); - outFinaleTensor = outFinaleTensor.transpose(); + outFinaleTensor = outFinaleTensor.transpose(); } unstackOutVolumeTensor = tf.unstack(outFinaleTensor); @@ -2451,9 +2452,9 @@ mergeSubVolumes_old = (allPredictions, num_of_slices, slice_height, slice_width, //statData["Error_Type"] = "SW Enhancement needed"; statData["Extra_Err_Info"] = "Merging buffer needs divide into more than 2 partitions"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); - } + } return 0; @@ -2471,112 +2472,112 @@ mergeSubVolumes_old = (allPredictions, num_of_slices, slice_height, slice_width, * Generate output labels of all slices. (refine) * Find current voxel value of the related seg class buffer, if we have numSegClasses = 3 then we have 3 buffers, * one for each seg classes 0, 1, 2 -* +* * @since 1.0.0 -* @param {tf.Tensor} unstackOutVolumeTensor +* @param {tf.Tensor} unstackOutVolumeTensor * @param {number} num_of_slices- Total Number of slices a.k.a z-dim * @param {number} numSegClasses- The number of segmentation classes * @param {number} slice_height- - Slice Height * @param {number} slice_width- Slice Width * -*/ +*/ + - generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, slice_height, slice_width) => { - // Convert all slices into 1 Dim array + // Convert all slices into 1 Dim array let allOutputSlices3DCC = []; let allOutputSlices3DContours = []; - // dataSync() using to flatten array. Takes around 1.5 s + // dataSync() using to flatten array. Takes around 1.5 s for(let sliceTensorIdx = 0; sliceTensorIdx < unstackOutVolumeTensor.length; sliceTensorIdx++ ) { // flat each slice to 1D and store in the allOutputSlices3DCC of 2D allOutputSlices3DCC[sliceTensorIdx] = Array.from(unstackOutVolumeTensor[sliceTensorIdx].dataSync()); } - + if(opts.isPostProcessEnable) { - console.log("Post processing enabled ... "); - allOutputSlices3DCC = tf.tidy(() => { - // Remove noisy regions using 3d CC + console.log("Post processing enabled ... "); + allOutputSlices3DCC = tf.tidy(() => { + // Remove noisy regions using 3d CC let sliceWidth = niftiHeader.dims[1]; - let sliceHeight = niftiHeader.dims[2]; + let sliceHeight = niftiHeader.dims[2]; return postProcessSlices3D(allOutputSlices3DCC, sliceHeight, sliceWidth ); }) - console.log("Post processing done ... "); - } + console.log("Post processing done ... "); + } if(opts.isContoursViewEnable) { // Enable contour for overlay option - // Remove noisy regions using 3d CC + // Remove noisy regions using 3d CC let sliceWidth = niftiHeader.dims[1]; - let sliceHeight = niftiHeader.dims[2]; - allOutputSlices3DCC = findVolumeContours(allOutputSlices3DCC, sliceHeight, sliceWidth, numSegClasses ); - } + let sliceHeight = niftiHeader.dims[2]; + allOutputSlices3DCC = findVolumeContours(allOutputSlices3DCC, sliceHeight, sliceWidth, numSegClasses ); + } allOutputSlices3DCC1DimArray = []; - // Use this conversion to download output slices as nii file. Takes around 0.5 s + // Use this conversion to download output slices as nii file. Takes around 0.5 s for(let sliceIdx = 0; sliceIdx < allOutputSlices3DCC.length; sliceIdx++ ) { allOutputSlices3DCC1DimArray.push.apply(allOutputSlices3DCC1DimArray, allOutputSlices3DCC[sliceIdx]); - } + } - let maskBrainExtraction = false; + let maskBrainExtraction = false; let labelArrayBuffer; let modelType = inferenceModelsList[$$("selectModel").getValue() - 1]["type"]; switch ( modelType) { case 'Brain_Masking': - { + { let brainMaskTensor1d = binarizeVolumeDataTensor(tf.tensor1d(allOutputSlices3DCC1DimArray)).mul(255); let brainMask = Array.from(brainMaskTensor1d.dataSync()); brainMaskTensor1d.dispose(); - labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainMask); + labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainMask); allOutputSlices3DCC1DimArray = brainMask; // --labelsHistogramMap = null; maskBrainExtraction = true; - break; - } + break; + } case 'Brain_Extraction': - { - // Input data or loaded nifti file data - let allSlices = getAllSlicesData1D(num_of_slices, niftiHeader, niftiImage); + { + // Input data or loaded nifti file data + let allSlices = getAllSlicesData1D(num_of_slices, niftiHeader, niftiImage); let brainExtractionData1DimArr = []; for(let sliceIdx = 0; sliceIdx < allOutputSlices3DCC.length; sliceIdx++ ) { for(pixelIdx = 0; pixelIdx < (slice_height * slice_width); pixelIdx++) { - //Filter smaller regions original MRI data + //Filter smaller regions original MRI data if(allOutputSlices3DCC[sliceIdx][pixelIdx] == 0) { allSlices[sliceIdx][pixelIdx] = 0; - } - } + } + } brainExtractionData1DimArr.push.apply(brainExtractionData1DimArr, allSlices[sliceIdx]) - } - - labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainExtractionData1DimArr); + } + + labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainExtractionData1DimArr); allOutputSlices3DCC1DimArray = brainExtractionData1DimArr; //-- labelsHistogramMap = null; maskBrainExtraction = true; - break; - } + break; + } default: { - labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, allOutputSlices3DCC1DimArray); - break; - } + labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, allOutputSlices3DCC1DimArray); + break; + } } // Find voxel values frequency let labelsHistogramMap = arrValuesFreq(allOutputSlices3DCC1DimArray); - console.log("Output Segmentation Labels (ROI) volumes : ", labelsHistogramMap); + console.log("Output Segmentation Labels (ROI) volumes : ", labelsHistogramMap); - // Convert map to object + // Convert map to object let labelsHistoObj = map2Object(labelsHistogramMap); // to plot 3d shape @@ -2586,46 +2587,46 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, let colorURL = inferenceModelsList[$$("selectModel").getValue() - 1]["colorsPath"]; - if(opts.isColorEnable) { + if(opts.isColorEnable) { let blob = new Blob([labelArrayBuffer], {type: "application/octet-binary;charset=utf-8"}); let file = new File([blob], "temp.nii"); params_label["files"] = [file]; switch ( modelType) { case 'Brain_Mask': - { - params_label[file["name"]] = {lut: "Grayscale", interpolation: false}; - break; - } + { + params_label[file["name"]] = {lut: "Grayscale", interpolation: false}; + break; + } case 'Brain_Extraction': - { - params_label[file["name"]] = {lut: "Grayscale", interpolation: false}; - break; - } + { + params_label[file["name"]] = {lut: "Grayscale", interpolation: false}; + break; + } default: { if(colorURL) { // colorURL file exists - let customColorTable = getCustomColorTableFromUrl(numSegClasses, colorURL); + let customColorTable = getCustomColorTableFromUrl(numSegClasses, colorURL); params_label[file["name"]] = {lut: new customColorTable(), interpolation: false}; - } else {// No colorURL file + } else {// No colorURL file if(numSegClasses > 3) { - params_label[file["name"]] = {lut: opts.atlasSelectedColorTable, interpolation: false}; + params_label[file["name"]] = {lut: opts.atlasSelectedColorTable, interpolation: false}; } else { - let customColorTable = getCustomColorTable(numSegClasses); - params_label[file["name"]] = {lut: new customColorTable(), interpolation: false}; + let customColorTable = getCustomColorTable(numSegClasses); + params_label[file["name"]] = {lut: new customColorTable(), interpolation: false}; } } - break; - } + break; + } } } else { params_label["binaryImages"] = [labelArrayBuffer]; - } + } // Set the view of container-2 as container-1 params_label["mainView"] = papayaContainers[0].viewer.mainImage.sliceDirection == 1? "axial" : @@ -2636,33 +2637,33 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, //-- Remove any existing overlay resetMriViewerOverlay(1); - // Add new overlay to MRI viewer + // Add new overlay to MRI viewer var addImageParams = []; addImageParams["binaryImages"] = {lut: "Spectrum"}; - papaya.Container.addImage(0, [labelArrayBuffer], addImageParams); - numOfOverlays += 1; + papaya.Container.addImage(0, [labelArrayBuffer], addImageParams); + numOfOverlays += 1; + - // Label segmenation voxels according to label file console.log("label path: ", inferenceModelsList[$$("selectModel").getValue() - 1]["labelsPath"]) - - // set 1 for label viewer - papaya.Container.resetViewer(1, params_label); - let labelsURL = inferenceModelsList[$$("selectModel").getValue() - 1]["labelsPath"]; + // set 1 for label viewer + papaya.Container.resetViewer(1, params_label); + + let labelsURL = inferenceModelsList[$$("selectModel").getValue() - 1]["labelsPath"]; //Activate annotation for papaya container 0 addMouseMoveHandler(labelsURL , 0); - //Activate annotation for papaya container 1 + //Activate annotation for papaya container 1 addMouseMoveHandler(labelsURL, 1); // Activate Swap view button for MRI viewer - // This needed to deactivated because of async behave + // This needed to deactivated because of async behave document.getElementById(PAPAYA_CONTROL_MAIN_SWAP_BUTTON_CSS + papayaContainers[0].containerIndex).disabled = false; - // To sync swap view button + // To sync swap view button document.getElementById(PAPAYA_CONTROL_MAIN_SWAP_BUTTON_CSS + papayaContainers[0].containerIndex).addEventListener("click", function(){ papayaContainers[1].viewer.rotateViews() @@ -2670,7 +2671,7 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, document.getElementById(PAPAYA_CONTROL_MAIN_SWAP_BUTTON_CSS + papayaContainers[1].containerIndex).addEventListener("click", function(){ papayaContainers[0].viewer.rotateViews() - }) + }) outVolumeStatus['labelsHistoObj'] = labelsHistoObj; @@ -2681,7 +2682,7 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, Object.keys(labelsHistoObj).forEach((labelKey, idx) => { //-- Make sure to delete labelsHistoObj['0'] before totalTissueVol += labelsHistoObj[labelKey]; - }) + }) let roiData = []; let roiLabels = []; @@ -2693,26 +2694,26 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, let colorLutObj = getExternalJSON(colorURL); //--e.g. colorLutObj- e.g. {"0": "rgb(0,0,0)", "1": "rgb(245,245,245)", "2": "rgb(196,58,250)", ... } let labelsObj = getExternalJSON(labelsURL); - //-- e.g. labelsObj- { "0": "BG", "1": "Cerebral-White-Matter", "2": "Ventricle",..} + //-- e.g. labelsObj- { "0": "BG", "1": "Cerebral-White-Matter", "2": "Ventricle",..} // Color object, check if segmenation labels less or equal colors if ( isObject(colorLutObj) ? verifyChildParentObjects( Object.keys(labelsHistoObj).length, Object.keys(colorLutObj).length) : false ) { - + Object.keys(labelsHistoObj).forEach((labelKey, idx) => { roiData.push({y: labelsHistoObj[labelKey] * 1 / totalTissueVol, color: rgbToHex( getRgbObject( colorLutObj[labelKey] ) ) }); - }) - + }) + } else { colorLutObj = {}; Object.keys(labelsHistoObj).forEach((labelKey, idx) => { colorLutObj[labelKey] = "rgb(" + labelKey + "," + labelKey + "," + labelKey + ")"; - }) + }) Object.keys(labelsHistoObj).forEach((labelKey, idx) => { roiData.push({y: labelsHistoObj[labelKey] * 1 / totalTissueVol, color: rgbToHex( getRgbObject( colorLutObj[labelKey] ) ) }); - }) + }) } @@ -2724,27 +2725,27 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, Object.keys(labelsHistoObj).forEach((labelKey, idx) => { roiLabels[idx] = labelsObj[labelKey]; - }) + }) outVolumeStatus['labelsObj'] = labelsObj; } else { labelsObj = {}; - + Object.keys(labelsHistoObj).forEach((labelKey, idx) => { labelsObj[labelKey] = labelKey; - }) + }) Object.keys(labelsHistoObj).forEach((labelKey, idx) => { if(idx == 0 || idx == Math.round(Object.keys(labelsHistoObj).length * opts.chartXaxisStepPercent) || idx == Object.keys(labelsHistoObj).length -1 ){ roiLabels[idx] = labelsObj[labelKey]; } - }) + }) chartXaxisStep = Math.round(Object.keys(labelsHistoObj).length * opts.chartXaxisStepPercent); // To only show All make label null - outVolumeStatus['labelsObj'] = null; + outVolumeStatus['labelsObj'] = null; } @@ -2763,20 +2764,20 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, // Object.keys(labelsHistoObj).forEach((labelKey, idx) => { // roiData.push({y: labelsHistoObj[labelKey] * 1 / totalTissueVol, color: rgbToHex( getRgbObject( colorLutObj[labelKey] ) ) }); // roiLabels[idx] = labelsObj[labelKey]; - // }) + // }) // //-- roiData = [ {y: 34.4, color: 'red'}, {y: 20.1, color: '#aaff99'}]; // //-- roiLabels = ['Roi-1','Roi-2']; - + // } else { // For mask or brain extraction models or when label/color json not provided - + // let colorLutObj = {}; // let labelsObj = {}; // Object.keys(labelsHistoObj).forEach((labelKey, idx) => { // colorLutObj[labelKey] = "rgb(" + labelKey + "," + labelKey + "," + labelKey + ")"; // labelsObj[labelKey] = labelKey; - // }) + // }) // Object.keys(labelsHistoObj).forEach((labelKey, idx) => { @@ -2785,7 +2786,7 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, // roiLabels[idx] = labelsObj[labelKey]; // } - // }) + // }) // chartXaxisStep = Math.round(Object.keys(labelsHistoObj).length * opts.chartXaxisStepPercent); @@ -2798,14 +2799,14 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, $$("hchart").config.settings.xAxis.categories = roiLabels; $$("hchart").config.settings.xAxis.labels.step = chartXaxisStep; $$("hchart").config.settings.series[0].data = roiData; - $$("hchart")._render(); + $$("hchart")._render(); - $$("out3DIcon").enable(); - $$("outChartIcon").enable(); + $$("out3DIcon").enable(); + $$("outChartIcon").enable(); document.getElementById("out3D-1").style.opacity = 1; document.getElementById("outChart-1").style.opacity = 1; document.getElementById("out3D-1").style.filter = "alpha(opacity=100)"; - document.getElementById("outChart-1").style.filter = "alpha(opacity=100)"; + document.getElementById("outChart-1").style.filter = "alpha(opacity=100)"; } @@ -2815,10 +2816,10 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, * * @since 1.0.0 * @param {CanvasRenderingContext2D } ctx - renderContext e.g. papayaContainers[0].viewer.canvas.getContext("2d") -* @param {number} Threshold - To threshold the canvas context +* @param {number} Threshold - To threshold the canvas context * @param {object} RGB - e.g. { r: 110, g: 255, b: 182 } * -*/ +*/ thresholdRenderContext = (ctx,Threshold, RGB ={ r: 110, g: 255, b: 182 }) => { @@ -2838,10 +2839,10 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, - refreshDiv = (divId) => { + refreshDiv = (divId) => { $( "#"+ divId ).load(window.location.href + " #"+ divId ); } - + /** * Function to use with checking output file name, it must start with letter a-z or A-Z @@ -2860,10 +2861,10 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, * isLetter("$") * // => false */ - + isLetter = (ch) => { return (/[a-zA-Z]/).test(ch) - } + } /** @@ -2871,7 +2872,7 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, * * @since 1.0.0 * @param {Array} array - character to check -* @returns {number} +* @returns {number} * @example * * findArrayMax([3, 0, 2]) @@ -2912,14 +2913,14 @@ generateOutputSlicesV2 = (unstackOutVolumeTensor, num_of_slices, numSegClasses, }).fail(function() { runActivateFlag = false; }); - } + } } else { console.log("webGl2Status Ok") document.getElementById("webGl2Status").style.backgroundColor = "green"; } return runActivateFlag; - } + } /** @@ -2936,7 +2937,7 @@ isChrome = () => { /** -* Function to online connection is established +* Function to online connection is established * * @since 1.0.0 * @returns {boolean} Returns - true or false @@ -2963,7 +2964,7 @@ isOnline= () => { if (typeof WebGLRenderingContext !== 'undefined') { console.log('WebGL1 may be disabled. Please try updating video card drivers'); } else { - console.log('WebGL1 is not supported'); + console.log('WebGL1 is not supported'); } return false; @@ -3003,7 +3004,7 @@ isOnline= () => { console.log('WebGL2 may be disabled. Please try updating video card drivers'); webix.alert("WebGL2 may be disabled. Please try updating video card drivers"); } else { - console.log('WebGL2 is not supported'); + console.log('WebGL2 is not supported'); } return false; } else { @@ -3016,7 +3017,7 @@ isOnline= () => { * Function to detect GPU Vendor * * @since 1.0.0 -* @returns {String} Returns - e.g.: 'NVIDIA Corporation'. +* @returns {String} Returns - e.g.: 'NVIDIA Corporation'. * */ @@ -3025,7 +3026,7 @@ isOnline= () => { if(gl) { let debugInfo = gl.getExtension('WEBGL_debug_renderer_info'); - return debugInfo ? gl.getParameter(debugInfo.UNMASKED_VENDOR_WEBGL) : null; + return debugInfo ? gl.getParameter(debugInfo.UNMASKED_VENDOR_WEBGL) : null; } else { return null; @@ -3045,11 +3046,11 @@ isOnline= () => { if( (result.indexOf( "(" ) > -1) && (result.indexOf( ")" ) > -1) ) { return result.substring( result.indexOf( '(' ) + 1, result.indexOf( ')' ) ); - } - - return result; - } - } + } + + return result; + } + } return null; } @@ -3058,7 +3059,7 @@ isOnline= () => { * Function to detect GPU renderer or card type * * @since 1.0.0 -* @returns {String} Returns - e.g.: 'GeForce'. +* @returns {String} Returns - e.g.: 'GeForce'. * */ @@ -3074,11 +3075,11 @@ isOnline= () => { } let debugInfo = gl.getExtension('WEBGL_debug_renderer_info'); - return debugInfo ? gl.getParameter(debugInfo.UNMASKED_RENDERER_WEBGL) : null; + return debugInfo ? gl.getParameter(debugInfo.UNMASKED_RENDERER_WEBGL) : null; } else { return null; - } + } } @@ -3091,8 +3092,8 @@ isOnline= () => { //-- return e.g: "GeForce GTX 980/PCIe/SSE2" return gl.getParameter(gl.RENDERER); - } - + } + debugInfo = gl.getExtension('WEBGL_debug_renderer_info'); if (debugInfo) { @@ -3107,14 +3108,14 @@ isOnline= () => { if ( result.split(',').length == 3) { return result.split(',')[1].trim(); - } + } - } - - return result; + } + + return result; - } - } + } + } return null; } @@ -3125,7 +3126,7 @@ isOnline= () => { * Function to detect browser version * * @since 1.0.0 -* @returns {String} Returns - e.g.: 96. +* @returns {String} Returns - e.g.: 96. * */ @@ -3135,8 +3136,8 @@ isOnline= () => { return parseInt(navigator.userAgent.split('OPR/')[1]); } else if (navigator.userAgent.indexOf("Edg/") > -1) { - return parseInt(navigator.userAgent.split('Edg/')[1]); - + return parseInt(navigator.userAgent.split('Edg/')[1]); + } else if (navigator.userAgent.indexOf("Falkon/") > -1) { return parseInt(navigator.userAgent.split('Falkon/')[1]); @@ -3162,13 +3163,13 @@ isOnline= () => { * Function to find browser Location Info * * @since 1.0.0 -* @returns {Object} Returns +* @returns {Object} Returns * */ - getBrowserLocationInfo = () => { - let LocationDataObj = {}; - + getBrowserLocationInfo = () => { + let LocationDataObj = {}; + if(isOnline()){ try { $.ajax({ @@ -3176,10 +3177,10 @@ isOnline= () => { async: false, dataType: "json", success: function(response) { - LocationDataObj = {Country: response.location.country.name, Region: response.location.region.name, City: response.location.city, latitude: response.location.latitude, longitude: response.location.longitude}; + LocationDataObj = {Country: response.location.country.name, Region: response.location.region.name, City: response.location.city, latitude: response.location.latitude, longitude: response.location.longitude}; }, - error: function(XMLHttpRequest, textStatus, errorThrown) { - // alert("Status: " + textStatus); alert("Error: " + errorThrown); + error: function(XMLHttpRequest, textStatus, errorThrown) { + // alert("Status: " + textStatus); alert("Error: " + errorThrown); $.ajax({ url: "https://geolocation-db.com/json/", async: false, @@ -3187,18 +3188,18 @@ isOnline= () => { success: function (response) { LocationDataObj = {Country: response.country_name, Region: response.state, City: response.city, latitude: response.latitude, longitude: response.longitude}; }, - error: function(XMLHttpRequest, textStatus, errorThrown) { + error: function(XMLHttpRequest, textStatus, errorThrown) { console.log("Resource for browser info not available "); - } + } }); - } + } }); } catch(err) { console.log("Online resources for browser info currently not available "); } } - + return LocationDataObj; } @@ -3206,10 +3207,10 @@ isOnline= () => { /** -* Function to detect browser +* Function to detect browser * * @since 1.0.0 -* @returns {String} Returns - e.g.: Firefox etc. +* @returns {String} Returns - e.g.: Firefox etc. * */ @@ -3219,10 +3220,10 @@ isOnline= () => { return "Opera"; } else if (navigator.userAgent.indexOf("Edg/") > -1) { - return "Edge"; + return "Edge"; } else if (navigator.userAgent.indexOf("Falkon/") > -1) { - return "Falkon"; + return "Falkon"; } else if (navigator.userAgent.indexOf("Chrome/") > -1) { return "Chrome"; @@ -3243,7 +3244,7 @@ isOnline= () => { } /** -* Function to detect Operating System +* Function to detect Operating System * * @since 1.0.0 * @returns {String} Returns - e.g.: Linux @@ -3254,7 +3255,7 @@ detectOperatingSys = () => { if (navigator.userAgent.indexOf("Win") > -1) { return "Windows"; - + } else if (navigator.userAgent.indexOf("Mac") > -1) { return "MacOS"; @@ -3266,8 +3267,8 @@ detectOperatingSys = () => { } else { return "Unknown"; - - } + + } } @@ -3275,12 +3276,12 @@ detectOperatingSys = () => { * Function to detect CPU number of cores * * @since 1.0.0 -* @returns {number} Returns - e.g.: 12 +* @returns {number} Returns - e.g.: 12 * */ getCPUNumCores = () => { - return navigator.hardwareConcurrency; + return navigator.hardwareConcurrency; } @@ -3295,38 +3296,38 @@ detectOperatingSys = () => { submitTiming2GoogleSheet = (dataObj) => { - if(isOnline()){ + if(isOnline()){ // -- Fill form with data to submit Object.keys(dataObj).forEach(dataKey =>{ document.getElementById(dataKey).value = dataObj[dataKey]; - }) + }) //-- Settings of submission const scriptURL = 'https://script.google.com/macros/s/AKfycbwn-Ix6IVGOwUSU1VBU8hFcABT9PqwCwN90UxfK_fXp5CEfxvIoQHZXs2XQRZQo_N8I/exec' const form = document.forms['google-sheet'] - + //-- Add event handler to the form. form.addEventListener('submit', e => { e.preventDefault() fetch(scriptURL, { method: 'POST', body: new FormData(form)}) .then(response => console.log("------Done------")) .catch(error => console.error('Error!', error.message)) - }) + }) - //-- Submit the form - document.getElementById("SubmitStatisticalData").click(); + //-- Submit the form + document.getElementById("SubmitStatisticalData").click(); } else { - console.log(" Offline Mode ") - + console.log(" Offline Mode ") + } } /** -* For adjust time by adding 0 +* For adjust time by adding 0 * @since 1.0.0 * @param {number} timeValue - e.g. 0 to 59 * @returns {String} Returns - e.g.: 00 @@ -3371,19 +3372,19 @@ checkZero = (timeValue) => { getModelOutputNumLabels = (modelObject) => { if(modelObject.output.shape.length >= 4) { - return isModelChnlLast(modelObject) ? modelObject.output.shape[ modelObject.output.shape.length-1 ] : + return isModelChnlLast(modelObject) ? modelObject.output.shape[ modelObject.output.shape.length-1 ] : modelObject.output.shape[1]; - } + } return null; } /** -* Function to calculate the model total number of parameters +* Function to calculate the model total number of parameters * * @since 1.0.0 * @param {Object} modelObj - Model to check -* @returns {number} Returns - e.g.: 5000 +* @returns {number} Returns - e.g.: 5000 * */ @@ -3402,21 +3403,21 @@ checkZero = (timeValue) => { * Function to calculate the max texture size for current browser * * @since 1.0.0 -* @returns {number} Returns - e.g.: 8192 +* @returns {number} Returns - e.g.: 8192 * */ getMaxTextureSize = () => { - let gl = checkWebGl2() ? document.createElement('canvas').getContext('webgl2') : + let gl = checkWebGl2() ? document.createElement('canvas').getContext('webgl2') : checkWebGl1() ? document.createElement('canvas').getContext('webgl1') : null; - return gl ? gl.getParameter(gl.MAX_TEXTURE_SIZE) : null; + return gl ? gl.getParameter(gl.MAX_TEXTURE_SIZE) : null; } /** -* Function to calculate the model total number of layers +* Function to calculate the model total number of layers * * @since 1.0.0 * @param {Object} modelObj - Model to check @@ -3431,7 +3432,7 @@ checkZero = (timeValue) => { /** -* Function to test tf.argMax size allocation in browser +* Function to test tf.argMax size allocation in browser * * @since 1.2.0 * @param {number} depth- Total Number of slices a.k.a z-dim @@ -3439,7 +3440,7 @@ checkZero = (timeValue) => { * @param {number} width- Slice or shape Width * @param {number} numSegLabels - Number of segmenation labels resulted from model * @param {String} dataType - e.g.: 'float32' , 'int32' -* @param {number} axis - e.g.: -1 +* @param {number} axis - e.g.: -1 * @returns {boolean} Returns - e.g.: true/false * @example * @@ -3462,14 +3463,14 @@ isArgMaxValid = (depth, height, width, numSegLabels, dataType = 'float32', axis } catch(err) { // console.log("Error :", err); isValid = false; - } + } return isValid; } /** -* Function to find feasible number of tf.argMax. +* Function to find feasible number of tf.argMax. * * @since 1.2.0 * @param {number} depth- Total Number of slices a.k.a z-dim @@ -3478,7 +3479,7 @@ isArgMaxValid = (depth, height, width, numSegLabels, dataType = 'float32', axis * @param {number} numSegLabels - Number of segmenation labels resulted from model * @param {String} dataType - e.g.: 'float32' , 'int32' * @param {number} numArgMaxParts - Number of minimum argMax partitions needed to breakdown the original argMax. -* @param {number} axis - e.g.: -1 +* @param {number} axis - e.g.: -1 * @returns {number} Returns - e.g.: 1 , 2, 4, .. * @example * @@ -3496,16 +3497,16 @@ findMinNumOfArgMaxs = (depth, height, width, numSegLabels, dataType = 'float32' if( ! isArgMaxValid(depth, height, width, numSegLabels, dataType, axis)) { return findMinNumOfArgMaxs(depth, height, width, Math.ceil(numSegLabels/2) , dataType, numArgMaxParts * 2, axis); - } + } - return numArgMaxParts; + return numArgMaxParts; } /** -* Function to test arraybuffer size allocation in browser +* Function to test arraybuffer size allocation in browser * * @since 1.2.0 * @param {number} depth- Total Number of slices a.k.a z-dim @@ -3537,13 +3538,13 @@ isArrBufSizeValid = (depth, height, width, numSegLabels, dataType = 'float32') = } catch(err) { console.log("Error :", err); isValid = false; - } + } return isValid; } /** -* Function to find feasible number of arraybuffers to subvolume and argMax. +* Function to find feasible number of arraybuffers to subvolume and argMax. * * @since 1.2.0 * @param {number} depth- Total Number of slices a.k.a z-dim @@ -3573,13 +3574,13 @@ findMinNumOfArrBufs = (depth, height, width, numSegLabels, dataType = 'float32' if( ! isArrBufSizeValid(depth, height, width, numSegLabels, dataType)) { return findMinNumOfArrBufs(depth, height, width, Math.ceil(numSegLabels/2) , dataType, numBufParts * 2); - } + } - return numBufParts; + return numBufParts; } /** -* Function to find feasible sizes of sub arraybuffers. +* Function to find feasible sizes of sub arraybuffers. * * @since 1.2.0 * @param {number} depth- Total Number of slices a.k.a z-dim @@ -3635,7 +3636,7 @@ findSubArrBufSizes = (depth, height, width, numSegLabels, dataType = 'float32') */ accumulateArrBufSizes = (bufferSizesArr) => { - + let thresholds = []; for(let i = 0; i < bufferSizesArr.length; i++) { @@ -3672,7 +3673,7 @@ accumulateArrBufSizes = (bufferSizesArr) => { * @param {number} batch_W- Batch Width * */ - + inferenceSubVolumes = async(model, slices_3d, num_of_slices, slice_height, slice_width, pipeline1_out = null) => { let refVoxel = [], boundVolSizeArr = []; @@ -3688,25 +3689,25 @@ accumulateArrBufSizes = (bufferSizesArr) => { // Min Max Nomalize MRI data to be from 0 to 1 console.log("preModel Min Max normalization enabled"); slices_3d = minMaxNormalizeVolumeData(slices_3d); - } + } if(enableCrop) { //--Phase-2, After remove the skull try to allocate brain volume and make inferece - console.log(" ---- Start SubVolume inference phase-II ---- "); + console.log(" ---- Start SubVolume inference phase-II ---- "); let mask_3d; if(pipeline1_out == null) { // binarize original image if there is no pre-model for masking task - mask_3d = slices_3d.greater([0]).asType('bool'); + mask_3d = slices_3d.greater([0]).asType('bool'); } else { - mask_3d = pipeline1_out.greater([0]).asType('bool'); - pipeline1_out.dispose(); + mask_3d = pipeline1_out.greater([0]).asType('bool'); + pipeline1_out.dispose(); - } + } console.log(" mask_3d shape : ", mask_3d.shape); @@ -3734,10 +3735,10 @@ accumulateArrBufSizes = (bufferSizesArr) => { } if ( depth_min > coordsArr[i][2] ) { - depth_min = coordsArr[i][2]; + depth_min = coordsArr[i][2]; } else if(depth_max < coordsArr[i][2]) { - depth_max = coordsArr[i][2]; - } + depth_max = coordsArr[i][2]; + } } @@ -3746,8 +3747,8 @@ accumulateArrBufSizes = (bufferSizesArr) => { console.log( "depth min and max :", depth_min, depth_max); //-- Reference voxel that cropped volume started slice with it - refVoxel = [row_min, col_min, depth_min]; - // -- Starting form refVoxel, size of bounding volume + refVoxel = [row_min, col_min, depth_min]; + // -- Starting form refVoxel, size of bounding volume boundVolSizeArr = [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1]; @@ -3755,10 +3756,10 @@ accumulateArrBufSizes = (bufferSizesArr) => { //-- Extract 3d object (e.g. brain) slices_3d = slices_3d.slice([row_min, col_min, depth_min], [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1] ) - - //-- Padding size add to cropped brain - let pad = inferenceModelsList[$$("selectModel").getValue() - 1]["cropPadding"]; + + //-- Padding size add to cropped brain + let pad = inferenceModelsList[$$("selectModel").getValue() - 1]["cropPadding"]; // Create margin around the bounding volume slices_3d = addZeroPaddingTo3dTensor(slices_3d, [pad, pad] , [pad, pad], [pad, pad]); @@ -3771,15 +3772,15 @@ accumulateArrBufSizes = (bufferSizesArr) => { console.log(" testVol without padding shape : ", testVol.shape); testVol = resizeWithZeroPadding(testVol, num_of_slices, slice_height, slice_width, refVoxel, boundVolSizeArr ); - console.log(" testVol final shape after resizing : ", testVol.shape); + console.log(" testVol final shape after resizing : ", testVol.shape); draw3dObjBoundingVolume(tf.unstack(testVol)); testVol.dispose(); - + return 0; } - } + } let transpose = inferenceModelsList[$$("selectModel").getValue() - 1]["enableTranspose"]; @@ -3788,35 +3789,35 @@ accumulateArrBufSizes = (bufferSizesArr) => { console.log("Input transposed for model"); } else { console.log("Transpose not enabled for model"); - } + } - model.then(function (res) { + model.then(function (res) { let batch_D, batch_H, batch_W; let input_shape; - let modelObject = {}; + let modelObject = {}; - modelObject = res; + modelObject = res; let isChannelLast = isModelChnlLast(modelObject); const batchSize = opts.batchSize; - const numOfChan = opts.numOfChan; + const numOfChan = opts.numOfChan; - //-- Test and adjust model input shape dim after padding .. + //-- Test and adjust model input shape dim after padding .. for (let i = 0; i < slices_3d.rank; i++) { if(isChannelLast) { if(slices_3d.shape[i] < modelObject.layers[0].batchInputShape[i+1]) { console.log(" cropped slices_3d with pad < model input shape dim "); modelObject.layers[0].batchInputShape[i+1] = slices_3d.shape[i]; - } + } } else { if(slices_3d.shape[i] < modelObject.layers[0].batchInputShape[i+2]) { console.log(" cropped slices_3d with pad < model input shape dim "); modelObject.layers[0].batchInputShape[i+2] = slices_3d.shape[i]; - } + } } } @@ -3825,16 +3826,16 @@ accumulateArrBufSizes = (bufferSizesArr) => { if(isChannelLast) { batch_D = modelObject.layers[0].batchInputShape[1]; batch_H = modelObject.layers[0].batchInputShape[2]; - batch_W = modelObject.layers[0].batchInputShape[3]; - input_shape = [batchSize, batch_D, batch_H, batch_W, numOfChan]; + batch_W = modelObject.layers[0].batchInputShape[3]; + input_shape = [batchSize, batch_D, batch_H, batch_W, numOfChan]; } else { batch_D = modelObject.layers[0].batchInputShape[2]; batch_H = modelObject.layers[0].batchInputShape[3]; - batch_W = modelObject.layers[0].batchInputShape[4]; - input_shape = [batchSize, numOfChan, batch_D, batch_H, batch_W]; + batch_W = modelObject.layers[0].batchInputShape[4]; + input_shape = [batchSize, numOfChan, batch_D, batch_H, batch_W]; } - - const isBatchOverlapEnable = inferenceModelsList[$$("selectModel").getValue() - 1]["isBatchOverlapEnable"]; + + const isBatchOverlapEnable = inferenceModelsList[$$("selectModel").getValue() - 1]["isBatchOverlapEnable"]; let allBatches = []; let headSubCubesCoords = []; @@ -3844,36 +3845,36 @@ accumulateArrBufSizes = (bufferSizesArr) => { let numOverlapBatches = inferenceModelsList[$$("selectModel").getValue() - 1]["numOverlapBatches"]; console.log(" num of overlapped batches: ", numOverlapBatches); - // Find the centroid of 3D head volume and the variance + // Find the centroid of 3D head volume and the variance let cent_var = cubeMoments(slices_3d, 0.5); // Mean or centroid const headCentroid = cent_var[0]; - console.log(" Head 3D Centroid : ", headCentroid); - // Variance + console.log(" Head 3D Centroid : ", headCentroid); + // Variance const sigma = cent_var[1]; - console.log(" Head 3D Variance : ", sigma); + console.log(" Head 3D Variance : ", sigma); - headSubCubesCoords = findCoordsOfAddBrainBatches(numOverlapBatches, - new Array(headCentroid[0], headCentroid[1], headCentroid[2]), + headSubCubesCoords = findCoordsOfAddBrainBatches(numOverlapBatches, + new Array(headCentroid[0], headCentroid[1], headCentroid[2]), new Array(sigma[0], sigma[1], sigma[2]), - new Array(slices_3d.shape[0], slices_3d.shape[1], slices_3d.shape[2]), + new Array(slices_3d.shape[0], slices_3d.shape[1], slices_3d.shape[2]), new Array(batch_D, batch_H, batch_W)); - allBatches = sliceVolumeIntoOverlappedBatches(slices_3d, slices_3d.shape[0], slices_3d.shape[1], slices_3d.shape[2], batch_D, batch_H, batch_W, headSubCubesCoords); + allBatches = sliceVolumeIntoOverlappedBatches(slices_3d, slices_3d.shape[0], slices_3d.shape[1], slices_3d.shape[2], batch_D, batch_H, batch_W, headSubCubesCoords); } else { // This option will cover all slices, some slices that are not enough to create a batch will need overlap with prevous batch slices - // e.g. slice volume = 3*5*5 DHW , and batch is 2*2*2 , 2*3*3 =18 batches will be considered - let num_of_batches = Math.ceil(slices_3d.shape[2]/batch_W) * Math.ceil(slices_3d.shape[1]/batch_H) * Math.ceil(slices_3d.shape[0]/batch_D); + // e.g. slice volume = 3*5*5 DHW , and batch is 2*2*2 , 2*3*3 =18 batches will be considered + let num_of_batches = Math.ceil(slices_3d.shape[2]/batch_W) * Math.ceil(slices_3d.shape[1]/batch_H) * Math.ceil(slices_3d.shape[0]/batch_D); console.log("Num of Batches for inference: ", num_of_batches); allBatches = sliceVolumeIntoBatches(slices_3d, slices_3d.shape[0], slices_3d.shape[1], slices_3d.shape[2], batch_D, batch_H, batch_W); } - tf.dispose(slices_3d); + tf.dispose(slices_3d); - statData["No_SubVolumes"] = allBatches.length; - statData["Brainchop_Ver"] = "SubVolumes"; + statData["No_SubVolumes"] = allBatches.length; + statData["Brainchop_Ver"] = "SubVolumes"; let allPredictions = []; @@ -3888,13 +3889,13 @@ accumulateArrBufSizes = (bufferSizesArr) => { console.log("Inference delay :", delay); let layersLength = res.layers.length; - console.log("res.layers.length ", layersLength); + console.log("res.layers.length ", layersLength); statData["Input_Shape"] = JSON.stringify(res.layers[0].batchInputShape); statData["Output_Shape"] = JSON.stringify(res.output.shape); statData["Channel_Last"] = isChannelLast; statData["Model_Param"] = getModelNumParameters(res); - statData["Model_Layers"] = getModelNumLayers(res); + statData["Model_Layers"] = getModelNumLayers(res); statData["Model"] = inferenceModelsList[$$("selectModel").getValue() - 1]["modelName"]; statData["Extra_Info"] = null; @@ -3902,10 +3903,10 @@ accumulateArrBufSizes = (bufferSizesArr) => { let j = 0; let timer = window.setInterval(function() { - let curTensor = []; + let curTensor = []; curTensor[0] = tf.tensor(allBatches[j].data.dataSync(), input_shape); - - let lastIdx = 0; + + let lastIdx = 0; for (let i = 1; i < layersLength; i++) { try { @@ -3916,7 +3917,7 @@ accumulateArrBufSizes = (bufferSizesArr) => { if( err.message === "Failed to compile fragment shader.") { webix.confirm({ title:"", - ok:"Ok", + ok:"Ok", cancel:"Cancel", type: "confirm-error", width: 500, @@ -3931,12 +3932,12 @@ accumulateArrBufSizes = (bufferSizesArr) => { //--- }); - + } else { webix.alert(err.message); } - - window.clearInterval( timer ); + + window.clearInterval( timer ); tf.engine().endScope(); tf.engine().disposeVariables(); @@ -3946,58 +3947,58 @@ accumulateArrBufSizes = (bufferSizesArr) => { statData["Error_Type"] = err.message; statData["Extra_Err_Info"] = "Failed while model layer " + i + " apply"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } - + return 0; } if( j == allBatches.length-1 ) { - console.log("layer ", i); - console.log("layer output Tensor shape : ", curTensor[i].shape); + console.log("layer ", i); + console.log("layer output Tensor shape : ", curTensor[i].shape); console.log("layer count params ", res.layers[i].countParams()); } - curTensor[i-1].dispose(); - lastIdx += 1; + curTensor[i-1].dispose(); + lastIdx += 1; } - - // Get axis - let axis = isChannelLast ? -1 : 1; + + // Get axis + let axis = isChannelLast ? -1 : 1; let prediction_argmax = tf.argMax(curTensor[lastIdx], axis); if( j == allBatches.length - 1 ) { expected_Num_labels = isChannelLast ? curTensor[lastIdx].shape[4] : curTensor[lastIdx].shape[1]; - } + } - tf.dispose(curTensor[lastIdx]); + tf.dispose(curTensor[lastIdx]); - allPredictions.push({"id": allBatches[j].id, "coordinates": allBatches[j].coordinates, "data": Array.from(prediction_argmax.dataSync()) }) + allPredictions.push({"id": allBatches[j].id, "coordinates": allBatches[j].coordinates, "data": Array.from(prediction_argmax.dataSync()) }) let curBatchMaxLabel = findArrayMax(Array.from(prediction_argmax.dataSync())); if( maxLabelPredicted < curBatchMaxLabel ) { maxLabelPredicted = curBatchMaxLabel; - } + } - tf.dispose(prediction_argmax); - + tf.dispose(prediction_argmax); + + + let memStatus = tf.memory().unreliable ? "Red" : "Green"; + let unreliableReasons = tf.memory().unreliable ? "unreliable reasons :" + tf.memory().reasons.fontcolor("red").bold() : ""; + document.getElementById("progressBar").style.width = (curProgBar + (j + 1)*(100 - curProgBar)/allBatches.length) + "%"; - let memStatus = tf.memory().unreliable ? "Red" : "Green"; - let unreliableReasons = tf.memory().unreliable ? "unreliable reasons :" + tf.memory().reasons.fontcolor("red").bold() : ""; - document.getElementById("progressBar").style.width = (curProgBar + (j + 1)*(100 - curProgBar)/allBatches.length) + "%"; - document.getElementById("memoryStatus").style.backgroundColor = memStatus; - + //-- let memoryStatusData=[{ memoryUse: Math.round(tf.memory().numBytesInGPU/(1024*1024*20))}]; //-- $$("memoryMonitor").clearAll(); - //-- $$("memoryMonitor").parse(memoryStatusData); + //-- $$("memoryMonitor").parse(memoryStatusData); //-- document.getElementById("progressBar").innerHTML= Math.floor((j+1)*100/allBatches.length) + "%"; - + if( j == allBatches.length-1 ) { window.clearInterval( timer ); @@ -4008,39 +4009,39 @@ accumulateArrBufSizes = (bufferSizesArr) => { statData["Actual_Labels"] = numSegClasses; statData["Expect_Labels"] = expected_Num_labels; - statData["NumLabels_Match"] = numSegClasses == expected_Num_labels? true : false; + statData["NumLabels_Match"] = numSegClasses == expected_Num_labels? true : false; + - startTime = performance.now(); - // Generate output volume or slices - console.log("Merging subvolumes... "); + // Generate output volume or slices + console.log("Merging subvolumes... "); let outLabelVolume = tf.tidy(() => { - return mergeSubVolumesV2(allPredictions, slices_3d.shape[0], slices_3d.shape[1], slices_3d.shape[2], numSegClasses, batch_D, batch_H, batch_W, axis); + return mergeSubVolumesV2(allPredictions, slices_3d.shape[0], slices_3d.shape[1], slices_3d.shape[2], numSegClasses, batch_D, batch_H, batch_W, axis); }) allPredictions = []; let Merge_t = ((performance.now() - startTime)/1000).toFixed(4); if(enableCrop) { - let pad = inferenceModelsList[$$("selectModel").getValue() - 1]["cropPadding"]; + let pad = inferenceModelsList[$$("selectModel").getValue() - 1]["cropPadding"]; outLabelVolume = removeZeroPaddingFrom3dTensor(outLabelVolume, pad, pad, pad); console.log(" outLabelVolume without padding shape : ", outLabelVolume.shape); outLabelVolume = resizeWithZeroPadding(outLabelVolume, num_of_slices, slice_height, slice_width, refVoxel, boundVolSizeArr ); - console.log(" outLabelVolume final shape after resizing : ", outLabelVolume.shape); + console.log(" outLabelVolume final shape after resizing : ", outLabelVolume.shape); } - let unstackOutVolumeTensor = tf.unstack(outLabelVolume); - tf.dispose(outLabelVolume); + let unstackOutVolumeTensor = tf.unstack(outLabelVolume); + tf.dispose(outLabelVolume); startTime = performance.now(); - console.log("Generating output..."); - try { + console.log("Generating output..."); + try { generateOutputSlicesV2(unstackOutVolumeTensor, num_of_slices, numSegClasses, slice_height, slice_width); - console.log(" SubVolume inference num of tensors after generateOutputSlicesV2: " , tf.memory().numTensors ); + console.log(" SubVolume inference num of tensors after generateOutputSlicesV2: " , tf.memory().numTensors ); } catch(error) { - + //-- Timing data to collect tf.engine().endScope(); @@ -4055,30 +4056,30 @@ accumulateArrBufSizes = (bufferSizesArr) => { statData["Error_Type"] = error.message; statData["Extra_Err_Info"] = "Failed while generating output"; - document.getElementById("progressBar").style.width = 0; + document.getElementById("progressBar").style.width = 0; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } - return 0; + return 0; } let Postprocess_t = ((performance.now() - startTime)/1000).toFixed(4); - document.getElementById("progressBar").style.width = 0; + document.getElementById("progressBar").style.width = 0; //webix.message.hide("waitMessage"); - - $$("downloadBtn").enable(); - $$("segmentBtn").enable(); - // $$("imageUploader").enable(); + + $$("downloadBtn").enable(); + $$("segmentBtn").enable(); + // $$("imageUploader").enable(); tf.engine().endScope(); tf.engine().disposeVariables(); - - console.log("Processing the whole brain volume in tfjs tooks for multi-class output mask : ", + + console.log("Processing the whole brain volume in tfjs tooks for multi-class output mask : ", ((performance.now()-inferenceStartTime)/1000).toFixed(4) + " Seconds"); //-- Timing data to collect @@ -4087,33 +4088,33 @@ accumulateArrBufSizes = (bufferSizesArr) => { statData["Postprocess_t"] = Postprocess_t; statData["Status"] = "OK" - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } - + } j++; - }, delay); + }, delay); } catch(err) { webix.alert(err.message); console.log( err.message ); console.log( - "If webgl context is lost, try to restore webgl context by visit the link " + + "If webgl context is lost, try to restore webgl context by visit the link " + 'here' - ); + ); - document.getElementById("webGl2Status").style.backgroundColor = isWebGL2ContextLost() ? "Red" : "Green"; - document.getElementById("memoryStatus").style.backgroundColor = tf.memory().unreliable ? "Red" : "Green"; + document.getElementById("webGl2Status").style.backgroundColor = isWebGL2ContextLost() ? "Red" : "Green"; + document.getElementById("memoryStatus").style.backgroundColor = tf.memory().unreliable ? "Red" : "Green"; } - - }); - } + }); + + } ///////////////////////////////////////////////////////////////////////// ///////////////----------------SEQ LAYER-----------------//////////////// @@ -4128,61 +4129,75 @@ accumulateArrBufSizes = (bufferSizesArr) => { * @param {number} chunkSize -parameter important for memory, the larger it is, the more memory in use. e.g. 4 * @return {tf.Tensor} * -*/ - -function processTensorInChunks(inputTensor, vector, chunkSize) { - const rank = inputTensor.rank; - const lastDimension = inputTensor.shape[rank - 1]; - - if (lastDimension !== vector.size) { - throw new Error('The last dimension of the input tensor must match the length of the vector.'); - } - - if (chunkSize <= 0 || chunkSize > lastDimension) { - throw new Error('Invalid chunk size.'); - } - - return tf.tidy(() => { - let accumulatedResult = null; - - for (let i = 0; i < lastDimension; i += chunkSize) { - const sliceSize = Math.min(chunkSize, lastDimension - i); +*/ +function processTensorInChunks(inputTensor, filterWeights, chunkSize) { + // Assuming inputTensor's shape: [batch, depth, height, width, inChannels] + // and filterWeights's shape: [filterDepth, filterHeight, filterWidth, inChannels, outChannels] + const stride = 1; + const pad = 0; + const dilationRate = 1; + const inChannels = inputTensor.shape[4]; + const numSlices = Math.ceil(inChannels / chunkSize); + + let accumulatedResult = null; + + for (let i = 0; i < numSlices; i++) { + const startChannel = i * chunkSize; + const endChannel = Math.min((i + 1) * chunkSize, inChannels); + const channels = endChannel - startChannel; + + const inputSlice = tf.tidy(() => { + // Slice the input tensor to get the current chunk + return inputTensor.slice([0, 0, 0, 0, startChannel], [-1, -1, -1, -1, channels]); + }); - const tensorSlice = inputTensor.slice([...Array(rank - 1).fill(0), i], [-1, -1, -1, sliceSize]); - const vectorSlice = vector.slice(i, sliceSize); + const filterSlice = tf.tidy(() => { + // Slice the filter weights to match the input tensor's current chunk + return filterWeights.slice([0, 0, 0, startChannel, 0], [-1, -1, -1, channels, -1]); + }); - const multiplied = tf.mul(tensorSlice, vectorSlice); - tensorSlice.dispose(); - vectorSlice.dispose(); + const resultSlice = tf.conv3d(inputSlice, filterSlice, stride, pad, 'NDHWC', dilationRate); + // Clean up the slices to free memory + inputSlice.dispose(); + filterSlice.dispose(); - const summed = tf.sum(multiplied, -1); - multiplied.dispose(); // Dispose of the multiplied tensor, as we no longer need it. + // Squeeze the result slice to remove dimensions of size 1 + const squeezedResultSlice = tf.squeeze(resultSlice); + resultSlice.dispose(); // Dispose of the original resultSlice after squeezing - if (accumulatedResult === null) { - accumulatedResult = summed; - } else { - // Before updating accumulatedResult, dispose of the previous tensor - const oldAccumulatedResult = accumulatedResult; - accumulatedResult = oldAccumulatedResult.add(summed); - oldAccumulatedResult.dispose(); // Dispose of the old accumulated result - summed.dispose(); // Dispose of the summed tensor, as it is now part of the accumulated result + if (accumulatedResult === null) { + accumulatedResult = squeezedResultSlice; + } else { + // Accumulate the result by adding the new result slice to it + const newAccumulatedResult = accumulatedResult.add(squeezedResultSlice); + + // Dispose of the previous accumulatedResult and squeezedResultSlice + accumulatedResult.dispose(); + // Dispose of squeezedResultSlice only if it wasn't assigned to accumulatedResult + if (accumulatedResult !== squeezedResultSlice) { + squeezedResultSlice.dispose(); } + // Update accumulatedResult with the new result + accumulatedResult = newAccumulatedResult; } - return accumulatedResult; - }); -} + tf.tidy(() => { + tf.matMul(tf.zeros([1, 1]), tf.zeros([1, 1])); + }); + } + return accumulatedResult; +} /** -* This function is show memory status while running sequential processing +* This function is show memory status while running sequential processing * * @since 3.0.0 -* @param {number} chIdx -* @param {number} totalChannels +* @param {number} chIdx +* @param {number} totalChannels * @return {promise} * -*/ +*/ showMemStatus = async(chIdx, totalChannels) => { @@ -4227,14 +4242,14 @@ class SequentialConvLayer { * @since 3.0.0 * @member SequentialConvLayer * @param {tf.Tensor} inputTensor e.g. [ 1, 256, 256, 256, 5 ] - * @return {promise} + * @return {promise} * * convLayer.rank -> 3 * typeof(convLayer) -> "object" * convLayer: Object { dataFormat: "channelsLast", dilationRate: Array(3) [ 1, 1, 1 ], inputSpec: Array [ {…} ], * name: "output", padding: "same", strides: Array(3) [ 1, 1, 1 ], ...} * - * weights.shape -> Array(5) [ 1, 1, 1, 5, 3 ] + * weights.shape -> Array(5) [ 1, 1, 1, 5, 3 ] * weights.print() * //=> Tensor * [[[[[0.146999 , -1.4474995, -2.8961499], @@ -4242,11 +4257,11 @@ class SequentialConvLayer { * [-0.38512 , -0.2812168, -0.8637539], * [0.9341159, -0.0344299, -2.3668685], * [0.1052373, 1.266812 , 0.6542516 ]]]]] - * - * biases.shape -> Array [ 3 ] - * biases.print() + * + * biases.shape -> Array [ 3 ] + * biases.print() * //=> Tensor - * [-0.7850812, -2.3238883, 2.1639345] + * [-0.7850812, -2.3238883, 2.1639345] * * for idx = 0 -> filterWeights.shape -> Array(5) [ 1, 1, 1, 5, 1 ] * filterWeights.print() @@ -4262,105 +4277,11 @@ class SequentialConvLayer { * //=> Tensor * [-0.7850812] - */ - - - // async apply(inputTensor) { - - // const self = this; - // // Important to avoid "undefined" class var members inside the timer. - // // "this" has another meaning inside the timer. - // const startTime = performance.now(); - - // const convLayer = self.model.layers[self.model.layers.length - 1]; - // const weights = convLayer.getWeights()[0]; // - // const biases = convLayer.getWeights()[1]; - // const outputShape = self.isChannelLast ? inputTensor.shape.slice(1,-1) : inputTensor.shape.slice(2); - - // //-- e.g. outputShape : [256,256,256] or cropped Dim - // //-- if inputTensor [ 1, D, H, W, 50 ], channelLast true -> outputShape : outputShape [D, H, W] - // //-- if inputTensor [ 1, 50, D, H, W ], channelLast false -> outputShape : outputShape [D, H, W] - - // let outB = tf.mul(tf.ones(outputShape), -10000); - // //-- e.g. outB.shape [256,256,256] - // let outC = tf.zeros(outputShape); - // //-- e.g. outC.shape [256,256,256] - // // let chIdx = 0; - - // // console.log("---------------------------------------------------------"); - // console.log(" channel loop"); - // document.getElementById("progressBarChild").parentElement.style.visibility = "visible"; - - // for (let chIdx = 0; chIdx < self.outChannels; chIdx++) { - // console.log(chIdx); - - // console.log('======================='); - // const memoryInfo0 = tf.memory(); - // console.log(`| Number of Tensors: ${memoryInfo0.numTensors}`); - // console.log(`| Number of Data Buffers: ${memoryInfo0.numDataBuffers}`); - - // const result = tf.tidy( () => { - // const filterWeights = weights.slice([0, 0, 0, 0, chIdx], [-1, -1, -1, -1, 1]); - // // -- e.g. filterWeights.shape [ 1, 1, 1, 5, 1 ] - // const filterBiases = biases.slice([chIdx], [1]); - // //-- e.g. filterBiases.shape [1] -> Tensor [-0.7850812] - // const outA = tf.squeeze(processTensorInChunks(inputTensor, filterWeights, filterBiases, self.chunkSize)); - // const greater = tf.greater(outA, outB); - // const newoutB = tf.where(greater, outA, outB); - // const currentIdx = tf.fill(outC.shape, chIdx); - // const newoutC = tf.where(greater, currentIdx, outC); - // // Dispose the old tensors before reassigning - // tf.dispose([outB, outC, filterWeights, filterBiases, currentIdx, greater]); - // return [newoutC, newoutB]; - // }); - - // const memoryInfo1 = tf.memory(); - // console.log(`| Number of Tensors: ${memoryInfo1.numTensors}`); - // console.log(`| Number of Data Buffers: ${memoryInfo1.numDataBuffers}`); - // console.log('======================='); - - // // -- await showMemStatus(chIdx, self.outChannels); - // // Log memory usage - - // const memoryInfo = tf.memory(); - // console.log(`Iteration ${chIdx}:`); - // console.log(`Number of Tensors: ${memoryInfo.numTensors}`); - // console.log(`Number of Data Buffers: ${memoryInfo.numDataBuffers}`); - // console.log(`Bytes In Use: ${memoryInfo.numBytes}`); - // console.log(`Megabytes In Use: ${(memoryInfo.numBytes / 1048576).toFixed(3)} MB`); - // console.log(`Unreliable: ${memoryInfo.unreliable}`); - - // // If outB and outC were previously assigned, dispose of them before reassignment - // if (outB) { - // outB.dispose(); - // } - - // if (outC) { - // outC.dispose(); - // } - - // // Assign the new values to outC and outB - // outC = result[0]; - // outB = result[1]; - - // // Artificially introduce a pause to allow for garbage collection to catch up - // await new Promise(resolve => setTimeout(resolve, 0)); - // document.getElementById("progressBarChild").style.width = (chIdx + 1)*100/self.outChannels + "%"; - // } - - // tf.dispose(outB); - // const endTime = performance.now(); - // const executionTime = endTime - startTime; - // console.log(`Execution time for output layer: ${executionTime} milliseconds`); - // document.getElementById("progressBarChild").parentElement.style.visibility = "hidden"; - // tf.dispose([weights, biases]); - // return outC; - - // } // end of apply fun - - + */ async apply(inputTensor) { + let oldDeleteTextureThreshold = tf.ENV.get('WEBGL_DELETE_TEXTURE_THRESHOLD'); + tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0); const self = this; // Important to avoid "undefined" class var members inside the timer. @@ -4391,6 +4312,7 @@ class SequentialConvLayer { let seqTimer = window.setInterval(async function() { + tf.engine().startScope(); // Start TensorFlow.js scope console.log('======================='); const memoryInfo0 = tf.memory(); console.log(`| Number of Tensors: ${memoryInfo0.numTensors}`); @@ -4402,12 +4324,17 @@ class SequentialConvLayer { // -- e.g. filterWeights.shape [ 1, 1, 1, 5, 1 ] const filterBiases = biases.slice([chIdx], [1]); //-- e.g. filterBiases.shape [1] -> Tensor [-0.7850812] - const outA = processTensorInChunks(tf.squeeze(inputTensor), tf.squeeze(filterWeights), Math.min(self.chunkSize, self.outChannels)).add(filterBiases); + const outA = processTensorInChunks(inputTensor, + filterWeights, + Math.min(self.chunkSize, self.outChannels)) + .add(filterBiases); const greater = tf.greater(outA, outB); const newoutB = tf.where(greater, outA, outB); const newoutC = tf.where(greater, tf.fill(outC.shape, chIdx), outC); // Dispose the old tensors before reassigning tf.dispose([outB, outC, filterWeights, filterBiases, outA, greater]); + // Dummy operation to trigger cleanup + tf.tidy(() => tf.matMul(tf.ones([1, 1]), tf.ones([1, 1]))); return [newoutC, newoutB]; }); @@ -4416,7 +4343,7 @@ class SequentialConvLayer { const memoryInfo1 = tf.memory(); console.log(`| Number of Tensors: ${memoryInfo1.numTensors}`); console.log(`| Number of Data Buffers: ${memoryInfo1.numDataBuffers}`); - console.log('======================='); + console.log('======================='); // Log memory usage @@ -4426,11 +4353,18 @@ class SequentialConvLayer { console.log(`Number of Data Buffers: ${memoryInfo.numDataBuffers}`); console.log(`Bytes In Use: ${memoryInfo.numBytes}`); console.log(`Megabytes In Use: ${(memoryInfo.numBytes / 1048576).toFixed(3)} MB`); - console.log(`Unreliable: ${memoryInfo.unreliable}`); + console.log(`Unreliable: ${memoryInfo.unreliable}`); + // Dispose of previous values before assigning new tensors to outC and outB + if (typeof outC !== 'undefined') outC.dispose(); + if (typeof outB !== 'undefined') outB.dispose(); // Assign the new values to outC and outB - outC = result[0]; - outB = result[1]; + outC = tf.keep(result[0]); + outB = tf.keep(result[1]); + // // Assign the new values to outC and outB + // outC = result[0]; + // outB = result[1]; + tf.engine().endScope(); if(chIdx == (self.outChannels -1)) { @@ -4446,7 +4380,7 @@ class SequentialConvLayer { chIdx++; // Artificially introduce a pause to allow for garbage collection to catch up - await new Promise(resolve => setTimeout(resolve, 0)); + await new Promise(resolve => setTimeout(resolve, 300)); document.getElementById("progressBarChild").style.width = (chIdx + 1)*100/self.outChannels + "%"; } @@ -4454,6 +4388,7 @@ class SequentialConvLayer { }, 0); }); + tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', oldDeleteTextureThreshold); } @@ -4466,16 +4401,16 @@ class SequentialConvLayer { * This function better memory managment during the model layer processing * * @since 3.0.0 -* @param {tf.Tensor} input -* @param {tf.Tensor} filter -* @param {tf.Tensor} biases +* @param {tf.Tensor} input +* @param {tf.Tensor} filter +* @param {tf.Tensor} biases * @param {Array} stride e.g. [ 1, 1, 1 ] * @param {string} pad e.g. "same" * @param {Array} dilationRate e.g. [ 1, 1, 1 ] -* @param {number} sliceSize e.g. 3 +* @param {number} sliceSize e.g. 3 * @return {} * -*/ +*/ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, dilationRate, sliceSize) { const batchSize = input.shape[0]; @@ -4540,8 +4475,8 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, /** -* Inference Function for full volume and also apply sequential convoluton layer -* Suitable for low memory devices and low performance devices. +* Inference Function for full volume and also apply sequential convoluton layer +* Suitable for low memory devices and low performance devices. * * @since 1.0.0 * @param {promise} model @@ -4558,7 +4493,7 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, console.log(" ---- Start FullVolume Inference with Sequential Convoluton Layer ---- "); statData["No_SubVolumes"] = 1; - + model.then(async function (res) { try { @@ -4580,7 +4515,7 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, // Min Max Nomalize MRI data to be from 0 to 1 console.log("preModel Min Max normalization enabled"); slices_3d = minMaxNormalizeVolumeData(slices_3d); - } + } let i = 1; @@ -4689,10 +4624,10 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, window.clearInterval( timer ); // // Create an instance of SequentialConvLayer - // The second parameter is important for memory, + // The second parameter is important for memory, // the larger it is, the more memory it uses - // it was 8, but I set it to 3, got a different error - seqConvLayer = new SequentialConvLayer(res, 3, isChannelLast); + // it was 8, but I set it to 3, got a different error + seqConvLayer = new SequentialConvLayer(res, 10, isChannelLast); // Apply the last output tensor to the seq. instance let outputTensor = null; @@ -4738,7 +4673,7 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, if( numSegClasses != expected_Num_labels ) { webix.alert("expected " + expected_Num_labels + " labels, but the predicted are " + numSegClasses + ". For possible solutions please refer to FAQ .", "alert-error"); console.log("expected " + expected_Num_labels + " labels, but the predicted are " + numSegClasses); - } + } // Transpose MRI data to be match pytorch/keras input output if(transpose) { @@ -4832,7 +4767,7 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, /** * Inference function for full volume that crops input MRI and also apply sequential convoluton layer (Phase 2) -* Suitable for low memory devices and low performance devices. +* Suitable for low memory devices and low performance devices. * Phase-1 find the mask * * @since 1.2.0 @@ -4861,7 +4796,7 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, // Min Max Nomalize MRI data to be from 0 to 1 console.log("preModel Min Max normalization enabled"); slices_3d = minMaxNormalizeVolumeData(slices_3d); - } + } @@ -4869,25 +4804,25 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, if(pipeline1_out == null) { // preModel is null - // Check if thresholding the MRI to remove noisy voxels for better cropping is needed. + // Check if thresholding the MRI to remove noisy voxels for better cropping is needed. let autoThresholdValue = inferenceModelsList[$$("selectModel").getValue() - 1]["autoThreshold"]; - + if( (autoThresholdValue > 0) && (autoThresholdValue <= 1) ) { // Filtered MRI from noisy voxel below autoThresholdValue mask_3d = await applyMriThreshold(slices_3d, autoThresholdValue); } else { console.log("No valid crop threshold value"); - // binarize original image - mask_3d = slices_3d.greater([0]).asType('bool'); - } + // binarize original image + mask_3d = slices_3d.greater([0]).asType('bool'); + } } else { - mask_3d = pipeline1_out.greater([0]).asType('bool'); - //-- pipeline1_out.dispose(); + mask_3d = pipeline1_out.greater([0]).asType('bool'); + //-- pipeline1_out.dispose(); - } + } console.log(" mask_3d shape : ", mask_3d.shape); @@ -5130,17 +5065,17 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, let unreliableReasons = tf.memory().unreliable ? "unreliable reasons :" + tf.memory().reasons : ""; document.getElementById("memoryStatus").style.backgroundColor = memStatus; - + if( i == layersLength - 2) { //Stop before the last layer or classification layer. window.clearInterval( timer ); - + // // Create an instance of SequentialConvLayer - //The second parameter is important for memory, + //The second parameter is important for memory, // the larger it is, the more memory it uses - // it was 8, but I set it to 3, got a different error - seqConvLayer = new SequentialConvLayer(res, 3, isChannelLast); + // it was 8, but I set it to 3, got a different error + seqConvLayer = new SequentialConvLayer(res, 10, isChannelLast); // Apply the last output tensor to the seq. instance @@ -5169,7 +5104,7 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, webix.alert("Output tensor shape should be 3 dims but it is " + outputTensor.shape.length, "alert-error"); } - + let Inference_t = ((performance.now() - startTime)/1000).toFixed(4); console.log(" find array max "); @@ -5188,7 +5123,7 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, if( numSegClasses != expected_Num_labels ) { webix.alert("expected " + expected_Num_labels + " labels, but the predicted are " + numSegClasses + ". For possible solutions please refer to FAQ .", "alert-error"); console.log("expected " + expected_Num_labels + " labels, but the predicted are " + numSegClasses); - } + } //-- Transpose back to fit Papaya display settings let outLabelVolume = outputTensor.reshape([cropped_slices_3d_w_pad.shape[0], cropped_slices_3d_w_pad.shape[1], cropped_slices_3d_w_pad.shape[2]]); @@ -5206,7 +5141,7 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, console.log(" outLabelVolume final shape after resizing : ", outLabelVolume.shape); let filterOutWithPreMask = inferenceModelsList[$$("selectModel").getValue() - 1]["filterOutWithPreMask"]; - + // To clean the skull area wrongly segmented inphase-2. if(pipeline1_out != null && opts.isBrainCropMaskBased && filterOutWithPreMask) { outLabelVolume = outLabelVolume.mul(binarizeVolumeDataTensor(pipeline1_out)); @@ -5301,7 +5236,7 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, /** * Inference Function for full volume -* No Sequential Convolution Layer +* No Sequential Convolution Layer * Faster * * @since 1.0.0 @@ -5314,7 +5249,7 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, * @param {number} slice_width- Slice Width * */ - + inferenceFullVolume = (model, slices_3d, input_shape, isChannelLast, num_of_slices, slice_height, slice_width) => { statData["No_SubVolumes"] = 1; @@ -5342,29 +5277,29 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, // Min Max Nomalize MRI data to be from 0 to 1 console.log("preModel Min Max normalization enabled"); slices_3d = minMaxNormalizeVolumeData(slices_3d); - } + } let i = 1; let layersLength = res.layers.length; - console.log("res.layers.length ", layersLength); + console.log("res.layers.length ", layersLength); - let curTensor = []; + let curTensor = []; curTensor[0] = slices_3d.reshape(input_shape); // console.log("curTensor[0] :", curTensor[0].dataSync()); - + let timer = window.setInterval(function() { try { curTensor[i] = res.layers[i].apply( curTensor[i-1]); - + } catch(err) { if( err.message === "Failed to compile fragment shader.") { webix.confirm({ title:"", - ok:"Ok", + ok:"Ok", cancel:"Cancel", type: "confirm-error", width: 500, @@ -5379,12 +5314,12 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, //--- }); - + } else { webix.alert(err.message); } - - window.clearInterval( timer ); + + window.clearInterval( timer ); tf.engine().endScope(); tf.engine().disposeVariables(); @@ -5394,15 +5329,15 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, statData["Error_Type"] = err.message; statData["Extra_Err_Info"] = "Failed while model layer " + i + " apply"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } return 0; - } + } - console.log("layer ", i); - console.log("layer output Tensor shape : ", curTensor[i].shape); + console.log("layer ", i); + console.log("layer output Tensor shape : ", curTensor[i].shape); console.log("layer count params ", res.layers[i].countParams()); res.layers[i].dispose(); @@ -5410,19 +5345,19 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, document.getElementById("progressBar").style.width = (i + 1)*100/layersLength + "%"; - let memStatus = tf.memory().unreliable ? "Red" : "Green"; - let unreliableReasons = tf.memory().unreliable ? "unreliable reasons :" + tf.memory().reasons : ""; + let memStatus = tf.memory().unreliable ? "Red" : "Green"; + let unreliableReasons = tf.memory().unreliable ? "unreliable reasons :" + tf.memory().reasons : ""; document.getElementById("memoryStatus").style.backgroundColor = memStatus; - + if( i == layersLength - 1) { - window.clearInterval( timer ); + window.clearInterval( timer ); // prediction = res.layers[res.layers.length-1].apply(curTensor[i]); - // curTensor[i].print(); + // curTensor[i].print(); //outputDataBeforArgmx = Array.from(curTensor[i].dataSync()) - let axis = isChannelLast ? -1 : 1; + let axis = isChannelLast ? -1 : 1; console.log(" find argmax ") console.log("last Tensor shape : ", curTensor[i].shape); //-- curTensor[i].shape : [ 1, 256, 256, 256, 3 ] @@ -5438,7 +5373,7 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, console.log("tf.argMax for fullVolume takes : ", ((performance.now() - argMaxTime)/1000).toFixed(4) ); } catch(err1) { - // if channel last + // if channel last if(axis == -1) { try { @@ -5454,8 +5389,8 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, webix.alert(errTxt); prediction_argmax.dispose(); - - window.clearInterval( timer ); + + window.clearInterval( timer ); tf.engine().endScope(); tf.engine().disposeVariables(); @@ -5465,11 +5400,11 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, statData["Error_Type"] = err2.message; statData["Extra_Err_Info"] = "prediction_argmax from argMaxLarge failed"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } - return 0; + return 0; } @@ -5479,8 +5414,8 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, webix.alert(errTxt); prediction_argmax.dispose(); - - window.clearInterval( timer ); + + window.clearInterval( timer ); tf.engine().endScope(); tf.engine().disposeVariables(); @@ -5490,37 +5425,37 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, statData["Error_Type"] = err1.message; statData["Extra_Err_Info"] = "prediction_argmax from argMaxLarge not support yet channel first"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); - } + } return 0; - } - + } + } - + console.log(" prediction_argmax shape : ", prediction_argmax.shape); //-- prediction_argmax.shape : [ 1, 256, 256, 256] let Inference_t = ((performance.now() - startTime)/1000).toFixed(4); //outputDataBeforArgmx = Array.from(prediction_argmax.dataSync()) - tf.dispose(curTensor[i]); - // allPredictions.push({"id": allBatches[j].id, "coordinates": allBatches[j].coordinates, "data": Array.from(prediction_argmax.dataSync()) }) + tf.dispose(curTensor[i]); + // allPredictions.push({"id": allBatches[j].id, "coordinates": allBatches[j].coordinates, "data": Array.from(prediction_argmax.dataSync()) }) console.log(" find array max "); let curBatchMaxLabel = findArrayMax(Array.from(prediction_argmax.dataSync())); if( maxLabelPredicted < curBatchMaxLabel ) { maxLabelPredicted = curBatchMaxLabel; - } + } let numSegClasses = maxLabelPredicted + 1; console.log("numSegClasses", numSegClasses); statData["Actual_Labels"] = numSegClasses; statData["Expect_Labels"] = expected_Num_labels; - statData["NumLabels_Match"] = numSegClasses == expected_Num_labels? true : false; + statData["NumLabels_Match"] = numSegClasses == expected_Num_labels? true : false; //-- Transpose back to fit Papaya display settings @@ -5530,19 +5465,19 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, // Transpose MRI data to be match pytorch/keras input output if(transpose) { console.log("outLabelVolume transposed"); - outLabelVolume = outLabelVolume.transpose(); - } + outLabelVolume = outLabelVolume.transpose(); + } let unstackOutVolumeTensor = tf.unstack(outLabelVolume); tf.dispose(outLabelVolume); startTime = performance.now(); - // Generate output volume or slices - console.log("Generating output"); + // Generate output volume or slices + console.log("Generating output"); - try { + try { generateOutputSlicesV2(unstackOutVolumeTensor , num_of_slices, numSegClasses, slice_height, slice_width); - console.log(" FullVolume inference num of tensors after generateOutputSlicesV2: " , tf.memory().numTensors ); + console.log(" FullVolume inference num of tensors after generateOutputSlicesV2: " , tf.memory().numTensors ); } catch (error) { //-- Timing data to collect @@ -5557,62 +5492,62 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, statData["Error_Type"] = error.message; statData["Extra_Err_Info"] = "Failed while generating output"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } - return 0; + return 0; } - + let Postprocess_t = ((performance.now() - startTime)/1000).toFixed(4); - document.getElementById("progressBar").style.width = 0; + document.getElementById("progressBar").style.width = 0; //webix.message.hide("waitMessage"); - $$("downloadBtn").enable(); - $$("segmentBtn").enable(); - // $$("imageUploader").enable(); + $$("downloadBtn").enable(); + $$("segmentBtn").enable(); + // $$("imageUploader").enable(); tf.engine().endScope(); tf.engine().disposeVariables(); - console.log("Processing the whole brain volume in tfjs tooks for multi-class output mask : ", + console.log("Processing the whole brain volume in tfjs tooks for multi-class output mask : ", ((performance.now()-inferenceStartTime)/1000).toFixed(4) + " Seconds"); - + //-- Timing data to collect statData["Inference_t"] = Inference_t; statData["Postprocess_t"] = Postprocess_t; statData["Status"] = "OK"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); - } - - } + } + + } i++; - }, delay); + }, delay); } catch(err) { webix.alert(err.message); console.log( err.message ); console.log( - "If webgl context is lost, try to restore webgl context by visit the link " + + "If webgl context is lost, try to restore webgl context by visit the link " + 'here' - ); + ); - document.getElementById("webGl2Status").style.backgroundColor = isWebGL2ContextLost() ? "Red" : "Green"; + document.getElementById("webGl2Status").style.backgroundColor = isWebGL2ContextLost() ? "Red" : "Green"; - document.getElementById("memoryStatus").style.backgroundColor = tf.memory().unreliable ? "Red" : "Green"; + document.getElementById("memoryStatus").style.backgroundColor = tf.memory().unreliable ? "Red" : "Green"; } - }); + }); - } + } /** -* Remove zero padding from 3D tensor +* Remove zero padding from 3D tensor * pad([[1,1],[1,1]]) means: 1 row of zeros befor, 1 row of zeros after, * 1 col of zeros befor, 1 col of zeros after, * @@ -5649,12 +5584,12 @@ function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, * [[4, 5], * [6, 7]]] * -*/ +*/ removeZeroPaddingFrom3dTensor = (tensor3d, rowPad = 1, colPad = 1, depthPad = 1) => { - if(tensor3d.rank != 3) { - throw "Tensor must be 3D"; + if(tensor3d.rank != 3) { + throw "Tensor must be 3D"; } [h, w, d] = tensor3d.shape; @@ -5663,7 +5598,7 @@ removeZeroPaddingFrom3dTensor = (tensor3d, rowPad = 1, colPad = 1, depthPad = 1) /** -* Add zero padding to 3D tensor +* Add zero padding to 3D tensor * pad([[1,1],[1,1]]) means: 1 row of zeros befor, 1 row of zeros after, * 1 col of zeros befor, 1 col of zeros after, * @@ -5694,18 +5629,18 @@ removeZeroPaddingFrom3dTensor = (tensor3d, rowPad = 1, colPad = 1, depthPad = 1) * [[0, 0, 0, 0], * [0, 0, 0, 0], * [0, 0, 0, 0], -* [0, 0, 0, 0]]] +* [0, 0, 0, 0]]] * -*/ +*/ addZeroPaddingTo3dTensor = (tensor3d, rowPadArr = [1, 1], colPadArr = [1, 1], depthPadArr = [1, 1]) => { - if(tensor3d.rank != 3) { - throw "Tensor must be 3D"; + if(tensor3d.rank != 3) { + throw "Tensor must be 3D"; } return tensor3d.pad([ rowPadArr ,colPadArr, depthPadArr ]); -} +} @@ -5721,8 +5656,8 @@ Original voxel is the x,y,z used for slicing the brain * @param {number} newDepth, the new depth to resize cropped volume to it, e.g. 256 * @param {number} newHeight, the new height to resize cropped volume to it, e.g. 256 * @param {number} newWidth, the new width to resize cropped volume to it, e.g. 256 -* @param {Array} refVoxel, the reference voxel to position the cropped volume into the new volume or original volume size -* @param {Array} boundVolSizeArr, size dim of the cropped brain bounding volume +* @param {Array} refVoxel, the reference voxel to position the cropped volume into the new volume or original volume size +* @param {Array} boundVolSizeArr, size dim of the cropped brain bounding volume * @returns {tf.tensor} Returns same input tensor with zero padding margins * @example * @@ -5748,9 +5683,9 @@ Original voxel is the x,y,z used for slicing the brain * [[0, 0, 0, 0], * [0, 0, 0, 0], * [0, 0, 0, 0], -* [0, 0, 0, 0]]] +* [0, 0, 0, 0]]] * -*/ +*/ @@ -5761,8 +5696,8 @@ Original voxel is the x,y,z used for slicing the brain let depth_pad_befor = refVoxel[2]; // last and lower volume voxel let row_max = row_pad_befor + boundVolSizeArr[0] -1; // size [2, 2, 2] means 2 voxels total in each dim - let col_max = col_pad_befor + boundVolSizeArr[1] -1; - let depth_max = depth_pad_befor + boundVolSizeArr[2] -1; + let col_max = col_pad_befor + boundVolSizeArr[1] -1; + let depth_max = depth_pad_befor + boundVolSizeArr[2] -1; let row_pad_after = (newHeight - row_max -1) > 0 ? (newHeight - row_max -1) : 0; let col_pad_after = (newWidth - col_max -1) > 0 ? (newWidth - col_max -1) : 0; @@ -5777,92 +5712,92 @@ Original voxel is the x,y,z used for slicing the brain * Generate output labels of all slices. (refine) * Find current voxel value of the related seg class buffer, if we have numSegClasses = 3 then we have 3 buffers, * one for each seg classes 0, 1, 2 -* +* * @since 1.0.0 -* @param {tf.Tensor} unstackOutVolumeTensor +* @param {tf.Tensor} unstackOutVolumeTensor * @param {number} num_of_slices- Total Number of slices a.k.a z-dim * @param {number} slice_height- - Slice Height * @param {number} slice_width- Slice Width * @return {tensor} * -*/ +*/ + - generateBrainMask = (unstackOutVolumeTensor, num_of_slices, slice_height, slice_width) => { - - console.log("Generate Brain Masking ... "); + + console.log("Generate Brain Masking ... "); // Convert all slices into 1 Dim array to download let allOutputSlices3DCC = []; let allOutputSlices3DContours = []; - // dataSync() using to flatten array. Takes around 1.5 s + // dataSync() using to flatten array. Takes around 1.5 s for(let sliceTensorIdx = 0; sliceTensorIdx < unstackOutVolumeTensor.length; sliceTensorIdx++ ) { allOutputSlices3DCC[sliceTensorIdx] = Array.from(unstackOutVolumeTensor[sliceTensorIdx].dataSync()); } - + let isPreModelPostProcessEnable = inferenceModelsList[$$("selectModel").getValue() - 1]["preModelPostProcess"]; - + if(isPreModelPostProcessEnable) { - console.log("Phase-1 Post processing enabled ... "); - allOutputSlices3DCC = tf.tidy(() => { - // Remove noisy regions using 3d CC + console.log("Phase-1 Post processing enabled ... "); + allOutputSlices3DCC = tf.tidy(() => { + // Remove noisy regions using 3d CC let sliceWidth = niftiHeader.dims[1]; - let sliceHeight = niftiHeader.dims[2]; + let sliceHeight = niftiHeader.dims[2]; return postProcessSlices3D(allOutputSlices3DCC, sliceHeight, sliceWidth ); - }) - console.log("Post processing done "); + }) + console.log("Post processing done "); } else { - console.log("Phase-1 Post processing disabled ... "); - } + console.log("Phase-1 Post processing disabled ... "); + } let allOutputSlices3DCC1DimArray = []; - // Use this conversion to download output slices as nii file. Takes around 0.5 s + // Use this conversion to download output slices as nii file. Takes around 0.5 s for(let sliceIdx = 0; sliceIdx < allOutputSlices3DCC.length; sliceIdx++ ) { allOutputSlices3DCC1DimArray.push.apply(allOutputSlices3DCC1DimArray, allOutputSlices3DCC[sliceIdx]); - } + } + - let brainOut = []; - if(opts.isBrainCropMaskBased) { // Mask-based + if(opts.isBrainCropMaskBased) { // Mask-based let brainMaskTensor1d = binarizeVolumeDataTensor(tf.tensor1d(allOutputSlices3DCC1DimArray)); brainOut = Array.from(brainMaskTensor1d.dataSync()); } else { // Brain tissue - let allSlices = getAllSlicesData1D(num_of_slices, niftiHeader, niftiImage); + let allSlices = getAllSlicesData1D(num_of_slices, niftiHeader, niftiImage); for(let sliceIdx = 0; sliceIdx < allOutputSlices3DCC.length; sliceIdx++ ) { for(pixelIdx = 0; pixelIdx < (slice_height * slice_width); pixelIdx++) { - //Filter smaller regions original MRI data + //Filter smaller regions original MRI data if(allOutputSlices3DCC[sliceIdx][pixelIdx] == 0) { allSlices[sliceIdx][pixelIdx] = 0; - } - } + } + } brainOut.push.apply(brainOut, allSlices[sliceIdx]) - } - } - + } + } + - let labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainOut); + let labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainOut); if(opts.showPhase1Output) { // flag to not draw for now - if(opts.isColorEnable) { + if(opts.isColorEnable) { let blob = new Blob([labelArrayBuffer], {type: "application/octet-binary;charset=utf-8"}); let file = new File([blob], "temp.nii"); params_label["files"] = [file]; - params_label[file["name"]] = {lut: "Grayscale", interpolation: false}; + params_label[file["name"]] = {lut: "Grayscale", interpolation: false}; } else { params_label["binaryImages"] = [labelArrayBuffer]; - } + } // Set the view of container-2 as container-1 params_label["mainView"] = papayaContainers[0].viewer.mainImage.sliceDirection == 1? "axial" : @@ -5873,15 +5808,15 @@ generateBrainMask = (unstackOutVolumeTensor, num_of_slices, slice_height, slice_ resetMriViewerOverlay(1); - + // Label segmenation voxels according to label file console.log("label path: ", inferenceModelsList[$$("selectModel").getValue() - 1]["labelsPath"]) - - // set 1 for label viewer - papaya.Container.resetViewer(1, params_label); + // set 1 for label viewer + papaya.Container.resetViewer(1, params_label); - // To sync swap view button + + // To sync swap view button document.getElementById(PAPAYA_CONTROL_MAIN_SWAP_BUTTON_CSS + papayaContainers[0].containerIndex).addEventListener("click", function(){ papayaContainers[1].viewer.rotateViews() @@ -5890,15 +5825,15 @@ generateBrainMask = (unstackOutVolumeTensor, num_of_slices, slice_height, slice_ document.getElementById(PAPAYA_CONTROL_MAIN_SWAP_BUTTON_CSS + papayaContainers[1].containerIndex).addEventListener("click", function(){ papayaContainers[0].viewer.rotateViews() - }) + }) } - if(opts.isBrainCropMaskBased) { + if(opts.isBrainCropMaskBased) { // To show brain volume - console.log("Output Segmentation Labels (ROI) volumes : ", arrValuesFreq(brainOut)); + console.log("Output Segmentation Labels (ROI) volumes : ", arrValuesFreq(brainOut)); } - + return tf.tensor(brainOut, [num_of_slices, slice_height, slice_width] ); } @@ -5908,74 +5843,74 @@ generateBrainMask = (unstackOutVolumeTensor, num_of_slices, slice_height, slice_ * (Option) Draw 3D bounding volume of the brain in Papaya label viewer * For visualization purpose * @since 1.2.0 -* @param {tf.Tensor} unstackOutVolumeTensor +* @param {tf.Tensor} unstackOutVolumeTensor * -*/ +*/ draw3dObjBoundingVolume= (unstackOutVolumeTensor) => { - - console.log("Plot cropped volume shape ... "); + + console.log("Plot cropped volume shape ... "); // Convert all slices into 1 Dim array to download let allOutputSlices3DCC = []; let allOutputSlices3DContours = []; - // dataSync() using to flatten array. Takes around 1.5 s + // dataSync() using to flatten array. Takes around 1.5 s for(let sliceTensorIdx = 0; sliceTensorIdx < unstackOutVolumeTensor.length; sliceTensorIdx++ ) { allOutputSlices3DCC[sliceTensorIdx] = Array.from(unstackOutVolumeTensor[sliceTensorIdx].dataSync()); } // if(false) { // Enable contour for overlay option - // // Remove noisy regions using 3d CC + // // Remove noisy regions using 3d CC // let sliceWidth = niftiHeader.dims[1]; - // let sliceHeight = niftiHeader.dims[2]; - // allOutputSlices3DCC = findVolumeContours(allOutputSlices3DCC, sliceHeight, sliceWidth, 2 ); - // } + // let sliceHeight = niftiHeader.dims[2]; + // allOutputSlices3DCC = findVolumeContours(allOutputSlices3DCC, sliceHeight, sliceWidth, 2 ); + // } let allOutputSlices3DCC1DimArray = []; - // Use this conversion to download output slices as nii file. Takes around 0.5 s + // Use this conversion to download output slices as nii file. Takes around 0.5 s for(let sliceIdx = 0; sliceIdx < allOutputSlices3DCC.length; sliceIdx++ ) { allOutputSlices3DCC1DimArray.push.apply(allOutputSlices3DCC1DimArray, allOutputSlices3DCC[sliceIdx]); - } + } console.log("Done with allOutputSlices3DCC1DimArray ") - + let brainOut = []; let brainMaskTensor1d = binarizeVolumeDataTensor(tf.tensor1d(allOutputSlices3DCC1DimArray)); brainOut = Array.from(brainMaskTensor1d.dataSync()); - - // labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainExtractionData1DimArr); - let labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainOut); - + + // labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainExtractionData1DimArr); + let labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainOut); + if(true) { // flag to not draw for now - if(opts.isColorEnable) { + if(opts.isColorEnable) { let blob = new Blob([labelArrayBuffer], {type: "application/octet-binary;charset=utf-8"}); let file = new File([blob], "temp.nii"); params_label["files"] = [file]; - params_label[file["name"]] = {lut: "Grayscale", interpolation: false}; + params_label[file["name"]] = {lut: "Grayscale", interpolation: false}; } else { params_label["binaryImages"] = [labelArrayBuffer]; - } + } // Set the view of container-2 as container-1 params_label["mainView"] = papayaContainers[0].viewer.mainImage.sliceDirection == 1? "axial" : papayaContainers[0].viewer.mainImage.sliceDirection == 2? "coronal" : "sagittal"; - - papaya.Container.resetViewer(1, params_label); + + papaya.Container.resetViewer(1, params_label); papayaContainers[1].viewer.screenVolumes[0].alpha = 0.2; // 0 to 1 screenVolumes[0] is first image loaded in Labels viewer - papayaContainers[1].viewer.drawViewer(true, false); + papayaContainers[1].viewer.drawViewer(true, false); - // To sync swap view button + // To sync swap view button document.getElementById(PAPAYA_CONTROL_MAIN_SWAP_BUTTON_CSS + papayaContainers[0].containerIndex).addEventListener("click", function(){ papayaContainers[1].viewer.rotateViews() @@ -5984,7 +5919,7 @@ draw3dObjBoundingVolume= (unstackOutVolumeTensor) => { document.getElementById(PAPAYA_CONTROL_MAIN_SWAP_BUTTON_CSS + papayaContainers[1].containerIndex).addEventListener("click", function(){ papayaContainers[0].viewer.rotateViews() - }) + }) } @@ -5994,7 +5929,7 @@ draw3dObjBoundingVolume= (unstackOutVolumeTensor) => { * Function return the 3D bounding volume of the brain * For visualization purpose * @since 1.2.0 -* @param {tf.Tensor} slices_3d, input 3D tesnor shape +* @param {tf.Tensor} slices_3d, input 3D tesnor shape * @return {Pormise} promise with result has minVoxelCoord Array, maxVoxelCoord Array , boundVolSize Array. * @example * @@ -6022,12 +5957,12 @@ draw3dObjBoundingVolume= (unstackOutVolumeTensor) => { * //=> * Object { minVoxelCoord: [1, 1, 1], maxVoxelCoord: [2, 2, 2 ], boundVolSize: [2, 2, 2 ] } * -*/ +*/ get3dObjectBoundingVolume = async(slices_3d) => { - - // Get the shape mask - let maskTensor_3d = slices_3d.greater([0]).asType('bool'); + + // Get the shape mask + let maskTensor_3d = slices_3d.greater([0]).asType('bool'); //-- Don't dispose slices_3d here, dispose it from the calling function.. const coords = await tf.whereAsync(maskTensor_3d); @@ -6055,10 +5990,10 @@ get3dObjectBoundingVolume = async(slices_3d) => { } if ( depth_min > coordsArr[i][2] ) { - depth_min = coordsArr[i][2]; + depth_min = coordsArr[i][2]; } else if(depth_max < coordsArr[i][2]) { - depth_max = coordsArr[i][2]; - } + depth_max = coordsArr[i][2]; + } } @@ -6085,11 +6020,11 @@ get3dObjectBoundingVolume = async(slices_3d) => { * @param {number} slice_width- Slice Width * */ - + inferenceFullVolumePhase2 = async(model, slices_3d, num_of_slices, slice_height, slice_width, pipeline1_out) => { - + //--Phase-2, After remove the skull try to allocate brain volume and make inferece - console.log(" ---- Start FullVolume inference phase-II ---- "); + console.log(" ---- Start FullVolume inference phase-II ---- "); let quantileNorm = inferenceModelsList[$$("selectModel").getValue() - 1]["enableQuantileNorm"]; @@ -6101,32 +6036,32 @@ get3dObjectBoundingVolume = async(slices_3d) => { // Min Max Nomalize MRI data to be from 0 to 1 console.log("preModel Min Max normalization enabled"); slices_3d = minMaxNormalizeVolumeData(slices_3d); - } + } let mask_3d; if(pipeline1_out == null) { // preModel is null - // Check if thresholding the MRI to remove noisy voxels for better cropping is needed. + // Check if thresholding the MRI to remove noisy voxels for better cropping is needed. let autoThresholdValue = inferenceModelsList[$$("selectModel").getValue() - 1]["autoThreshold"]; - + if( (autoThresholdValue > 0) && (autoThresholdValue <= 1) ) { // Filtered MRI from noisy voxel below autoThresholdValue mask_3d = await applyMriThreshold(slices_3d, autoThresholdValue); } else { console.log("No valid crop threshold value"); - // binarize original image - mask_3d = slices_3d.greater([0]).asType('bool'); - } + // binarize original image + mask_3d = slices_3d.greater([0]).asType('bool'); + } } else { - mask_3d = pipeline1_out.greater([0]).asType('bool'); - //-- pipeline1_out.dispose(); + mask_3d = pipeline1_out.greater([0]).asType('bool'); + //-- pipeline1_out.dispose(); - } + } console.log(" mask_3d shape : ", mask_3d.shape); @@ -6154,10 +6089,10 @@ get3dObjectBoundingVolume = async(slices_3d) => { } if ( depth_min > coordsArr[i][2] ) { - depth_min = coordsArr[i][2]; + depth_min = coordsArr[i][2]; } else if(depth_max < coordsArr[i][2]) { - depth_max = coordsArr[i][2]; - } + depth_max = coordsArr[i][2]; + } } @@ -6166,23 +6101,23 @@ get3dObjectBoundingVolume = async(slices_3d) => { console.log( "depth min and max :", depth_min, depth_max); //-- Reference voxel that cropped volume started slice with it - let refVoxel = [row_min, col_min, depth_min]; + let refVoxel = [row_min, col_min, depth_min]; console.log("refVoxel :", refVoxel) - // -- Starting form refVoxel, size of bounding volume - let boundVolSizeArr = [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1]; + // -- Starting form refVoxel, size of bounding volume + let boundVolSizeArr = [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1]; - console.log("boundVolSizeArr :", boundVolSizeArr) + console.log("boundVolSizeArr :", boundVolSizeArr) coords.dispose(); //-- Extract 3d object (e.g. brain) let cropped_slices_3d = slices_3d.slice([row_min, col_min, depth_min], [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1] ) - + slices_3d.dispose(); - //-- Padding size add to cropped brain - let pad = inferenceModelsList[$$("selectModel").getValue() - 1]["cropPadding"]; + //-- Padding size add to cropped brain + let pad = inferenceModelsList[$$("selectModel").getValue() - 1]["cropPadding"]; // Create margin around the bounding volume cropped_slices_3d_w_pad = addZeroPaddingTo3dTensor(cropped_slices_3d, [pad, pad] , [pad, pad], [pad, pad]); @@ -6191,7 +6126,7 @@ get3dObjectBoundingVolume = async(slices_3d) => { cropped_slices_3d.dispose(); - //-- Test dim after padding .. + //-- Test dim after padding .. // for (let i = 0; i < cropped_slices_3d_w_pad.rank; i++) { // if(cropped_slices_3d_w_pad.shape[i] > 256) { // console.log(" cropped_slices_3d_w_pad > 256 "); @@ -6207,7 +6142,7 @@ get3dObjectBoundingVolume = async(slices_3d) => { console.log(" outLabelVolume without padding shape : ", testVol.shape); testVol = resizeWithZeroPadding(testVol, num_of_slices, slice_height, slice_width, refVoxel, boundVolSizeArr ); - console.log(" outLabelVolume final shape after resizing : ", testVol.shape); + console.log(" outLabelVolume final shape after resizing : ", testVol.shape); draw3dObjBoundingVolume(tf.unstack(testVol)); testVol.dispose(); @@ -6216,7 +6151,7 @@ get3dObjectBoundingVolume = async(slices_3d) => { } - statData["Brainchop_Ver"] = "FullVolume"; + statData["Brainchop_Ver"] = "FullVolume"; model.then(function (res) { @@ -6234,59 +6169,59 @@ get3dObjectBoundingVolume = async(slices_3d) => { console.log("Input transposed for pre-model"); } else { console.log("Transpose not enabled for pre-model"); - } + } let i = 1; let layersLength = res.layers.length; - console.log("res.layers.length ", layersLength); + console.log("res.layers.length ", layersLength); let isChannelLast = isModelChnlLast(res); const batchSize = opts.batchSize; - const numOfChan = opts.numOfChan; + const numOfChan = opts.numOfChan; - //-- Adjust model input shape + //-- Adjust model input shape if(isChannelLast) { res.layers[0].batchInputShape[1] = cropped_slices_3d_w_pad.shape[0]; res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[1]; - res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[2]; + res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[2]; - adjusted_input_shape = [batchSize, res.layers[0].batchInputShape[1], + adjusted_input_shape = [batchSize, res.layers[0].batchInputShape[1], res.layers[0].batchInputShape[2], res.layers[0].batchInputShape[3], - numOfChan]; + numOfChan]; } else { res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[0]; res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[1]; - res.layers[0].batchInputShape[4] = cropped_slices_3d_w_pad.shape[2]; + res.layers[0].batchInputShape[4] = cropped_slices_3d_w_pad.shape[2]; - adjusted_input_shape = [batchSize, numOfChan, - res.layers[0].batchInputShape[2], - res.layers[0].batchInputShape[3], - res.layers[0].batchInputShape[4]]; + adjusted_input_shape = [batchSize, numOfChan, + res.layers[0].batchInputShape[2], + res.layers[0].batchInputShape[3], + res.layers[0].batchInputShape[4]]; - } + } - console.log(" Model batch input shape : ", res.layers[0].batchInputShape); - // -- batchInputShape {Array} input_shape - e.g. [?, D, H, W, Ch] or [?, Ch, D, H, W] + console.log(" Model batch input shape : ", res.layers[0].batchInputShape); + // -- batchInputShape {Array} input_shape - e.g. [?, D, H, W, Ch] or [?, Ch, D, H, W] statData["Input_Shape"] = JSON.stringify(res.layers[0].batchInputShape); statData["Output_Shape"] = JSON.stringify(res.output.shape); statData["Channel_Last"] = isChannelLast; statData["Model_Param"] = getModelNumParameters(res); - statData["Model_Layers"] = getModelNumLayers(res); + statData["Model_Layers"] = getModelNumLayers(res); statData["Model"] = inferenceModelsList[$$("selectModel").getValue() - 1]["modelName"]; statData["Extra_Info"] = null; - let curTensor = []; + let curTensor = []; curTensor[0] = cropped_slices_3d_w_pad.reshape(adjusted_input_shape); // console.log("curTensor[0] :", curTensor[0].dataSync()); let curProgBar = parseInt(document.getElementById("progressBar").style.width); - + let timer = window.setInterval(function() { try { @@ -6298,7 +6233,7 @@ get3dObjectBoundingVolume = async(slices_3d) => { if( err.message === "Failed to compile fragment shader.") { webix.confirm({ title:"", - ok:"Ok", + ok:"Ok", cancel:"Cancel", type: "confirm-error", width: 500, @@ -6313,12 +6248,12 @@ get3dObjectBoundingVolume = async(slices_3d) => { //--- }); - + } else { webix.alert(err.message); } - - window.clearInterval( timer ); + + window.clearInterval( timer ); tf.engine().endScope(); tf.engine().disposeVariables(); @@ -6328,15 +6263,15 @@ get3dObjectBoundingVolume = async(slices_3d) => { statData["Error_Type"] = err.message; statData["Extra_Err_Info"] = "Failed while model layer " + i + " apply"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } return 0; - } + } - console.log("layer ", i); - console.log("layer output Tensor shape : ", curTensor[i].shape); + console.log("layer ", i); + console.log("layer output Tensor shape : ", curTensor[i].shape); console.log("layer count params ", res.layers[i].countParams()); res.layers[i].dispose(); @@ -6344,19 +6279,19 @@ get3dObjectBoundingVolume = async(slices_3d) => { document.getElementById("progressBar").style.width = (curProgBar + (i + 1)*(100 - curProgBar)/layersLength) + "%"; - let memStatus = tf.memory().unreliable ? "Red" : "Green"; - let unreliableReasons = tf.memory().unreliable ? "unreliable reasons :" + tf.memory().reasons : ""; + let memStatus = tf.memory().unreliable ? "Red" : "Green"; + let unreliableReasons = tf.memory().unreliable ? "unreliable reasons :" + tf.memory().reasons : ""; document.getElementById("memoryStatus").style.backgroundColor = memStatus; - + if( i == layersLength - 1) { - window.clearInterval( timer ); + window.clearInterval( timer ); // prediction = res.layers[res.layers.length-1].apply(curTensor[i]); - // curTensor[i].print(); + // curTensor[i].print(); //outputDataBeforArgmx = Array.from(curTensor[i].dataSync()) - let axis = isChannelLast ? -1 : 1; + let axis = isChannelLast ? -1 : 1; console.log(" find argmax ") console.log("last Tensor shape : ", curTensor[i].shape); //-- curTensor[i].shape e.g. [ 1, 256, 256, 256, 3 ] @@ -6372,7 +6307,7 @@ get3dObjectBoundingVolume = async(slices_3d) => { console.log("tf.argMax for fullVolume takes : ", ((performance.now() - argMaxTime)/1000).toFixed(4) ); } catch(err1) { - // if channel last + // if channel last if(axis == -1) { try { @@ -6387,8 +6322,8 @@ get3dObjectBoundingVolume = async(slices_3d) => { let errTxt = "argMax buffer couldn't be created due to limited memory resources."; webix.alert(errTxt); - - window.clearInterval( timer ); + + window.clearInterval( timer ); tf.engine().endScope(); tf.engine().disposeVariables(); @@ -6398,11 +6333,11 @@ get3dObjectBoundingVolume = async(slices_3d) => { statData["Error_Type"] = err2.message; statData["Extra_Err_Info"] = "prediction_argmax from argMaxLarge failed"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } - return 0; + return 0; } @@ -6412,8 +6347,8 @@ get3dObjectBoundingVolume = async(slices_3d) => { webix.alert(errTxt); prediction_argmax.dispose(); - - window.clearInterval( timer ); + + window.clearInterval( timer ); tf.engine().endScope(); tf.engine().disposeVariables(); @@ -6423,43 +6358,43 @@ get3dObjectBoundingVolume = async(slices_3d) => { statData["Error_Type"] = err1.message; statData["Extra_Err_Info"] = "prediction_argmax from argMaxLarge not support yet channel first"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); - } + } return 0; - } - + } + } - + console.log(" prediction_argmax shape : ", prediction_argmax.shape); //-- prediction_argmax.shape : [ 1, 256, 256, 256] let Inference_t = ((performance.now() - startTime)/1000).toFixed(4); //outputDataBeforArgmx = Array.from(prediction_argmax.dataSync()) - tf.dispose(curTensor[i]); - // allPredictions.push({"id": allBatches[j].id, "coordinates": allBatches[j].coordinates, "data": Array.from(prediction_argmax.dataSync()) }) + tf.dispose(curTensor[i]); + // allPredictions.push({"id": allBatches[j].id, "coordinates": allBatches[j].coordinates, "data": Array.from(prediction_argmax.dataSync()) }) console.log(" find array max "); let curBatchMaxLabel = findArrayMax(Array.from(prediction_argmax.dataSync())); if( maxLabelPredicted < curBatchMaxLabel ) { maxLabelPredicted = curBatchMaxLabel; - } + } let numSegClasses = maxLabelPredicted + 1; console.log("numSegClasses", numSegClasses); statData["Actual_Labels"] = numSegClasses; statData["Expect_Labels"] = expected_Num_labels; - statData["NumLabels_Match"] = numSegClasses == expected_Num_labels? true : false; + statData["NumLabels_Match"] = numSegClasses == expected_Num_labels? true : false; if( numSegClasses != expected_Num_labels ) { webix.alert("expected " + expected_Num_labels + " labels, but the predicted are " + numSegClasses + ". For possible solutions please refer to FAQ .", "alert-error"); console.log("expected " + expected_Num_labels + " labels, but the predicted are " + numSegClasses); - } + } //-- Transpose back to fit Papaya display settings @@ -6469,32 +6404,32 @@ get3dObjectBoundingVolume = async(slices_3d) => { // Transpose MRI data to be match pytorch/keras input output if(transpose) { console.log("outLabelVolume transposed"); - outLabelVolume = outLabelVolume.transpose(); - } + outLabelVolume = outLabelVolume.transpose(); + } outLabelVolume = removeZeroPaddingFrom3dTensor(outLabelVolume, pad, pad, pad); console.log(" outLabelVolume without padding shape : ", outLabelVolume.shape); outLabelVolume = resizeWithZeroPadding(outLabelVolume, num_of_slices, slice_height, slice_width, refVoxel, boundVolSizeArr ); - console.log(" outLabelVolume final shape after resizing : ", outLabelVolume.shape); + console.log(" outLabelVolume final shape after resizing : ", outLabelVolume.shape); - let filterOutWithPreMask = inferenceModelsList[$$("selectModel").getValue() - 1]["filterOutWithPreMask"]; - // To clean the skull area wrongly segmented in phase-2. - if(pipeline1_out != null && opts.isBrainCropMaskBased && filterOutWithPreMask) { + let filterOutWithPreMask = inferenceModelsList[$$("selectModel").getValue() - 1]["filterOutWithPreMask"]; + // To clean the skull area wrongly segmented in phase-2. + if(pipeline1_out != null && opts.isBrainCropMaskBased && filterOutWithPreMask) { outLabelVolume = outLabelVolume.mul(binarizeVolumeDataTensor(pipeline1_out)); } - let unstackOutVolumeTensor = tf.unstack(outLabelVolume); + let unstackOutVolumeTensor = tf.unstack(outLabelVolume); tf.dispose(outLabelVolume); startTime = performance.now(); - // Generate output volume or slices - console.log("Generating output"); + // Generate output volume or slices + console.log("Generating output"); - try { + try { generateOutputSlicesV2(unstackOutVolumeTensor , num_of_slices, numSegClasses, slice_height, slice_width); - console.log(" Phase-2 num of tensors after generateOutputSlicesV2: " , tf.memory().numTensors ); + console.log(" Phase-2 num of tensors after generateOutputSlicesV2: " , tf.memory().numTensors ); } catch (error) { @@ -6510,59 +6445,59 @@ get3dObjectBoundingVolume = async(slices_3d) => { statData["Error_Type"] = error.message; statData["Extra_Err_Info"] = "Failed while generating output"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } - return 0; + return 0; } - + let Postprocess_t = ((performance.now() - startTime)/1000).toFixed(4); - document.getElementById("progressBar").style.width = 0; - //webix.message.hide("waitMessage"); - - $$("downloadBtn").enable(); - $$("segmentBtn").enable(); - // $$("imageUploader").enable(); + document.getElementById("progressBar").style.width = 0; + //webix.message.hide("waitMessage"); + + $$("downloadBtn").enable(); + $$("segmentBtn").enable(); + // $$("imageUploader").enable(); tf.engine().endScope(); tf.engine().disposeVariables(); - console.log("Processing the whole brain volume in tfjs tooks for multi-class output mask : ", + console.log("Processing the whole brain volume in tfjs tooks for multi-class output mask : ", ((performance.now()-inferenceStartTime)/1000).toFixed(4) + " Seconds"); - + //-- Timing data to collect statData["Inference_t"] = Inference_t; statData["Postprocess_t"] = Postprocess_t; statData["Status"] = "OK"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); - } - - } + } + + } i++; - }, delay); + }, delay); } catch(err) { webix.alert(err.message); console.log( err.message ); console.log( - "If webgl context is lost, try to restore webgl context by visit the link " + + "If webgl context is lost, try to restore webgl context by visit the link " + 'here' - ); + ); - document.getElementById("webGl2Status").style.backgroundColor = isWebGL2ContextLost() ? "Red" : "Green"; + document.getElementById("webGl2Status").style.backgroundColor = isWebGL2ContextLost() ? "Red" : "Green"; - document.getElementById("memoryStatus").style.backgroundColor = tf.memory().unreliable ? "Red" : "Green"; + document.getElementById("memoryStatus").style.backgroundColor = tf.memory().unreliable ? "Red" : "Green"; } - }); + }); - } + } /** * Function to check if there is any problem with the sequence of ids @@ -6603,16 +6538,16 @@ checkInferenceModelList = () => { console.log("modelEntry ", modelEntry) // load pre-model for inference first, can be null if no pre-model such as GWM models - if(modelEntry["preModelId"]) { + if(modelEntry["preModelId"]) { - let preModel = load_model(inferenceModelsList[ modelEntry["preModelId"] - 1]['path'] ); + let preModel = load_model(inferenceModelsList[ modelEntry["preModelId"] - 1]['path'] ); let transpose = inferenceModelsList[ modelEntry["preModelId"] - 1]["enableTranspose"]; let quantileNorm = inferenceModelsList[ modelEntry["preModelId"] - 1]["enableQuantileNorm"]; - let preModel_slices_3d = null; + let preModel_slices_3d = null; - //-- If pre-model is not null then slices_3d mask will be generated.. + //-- If pre-model is not null then slices_3d mask will be generated.. //-- The mask is needed to remove the skull and set noise in background to 0, and get the brain bounding volume properly - let slices_3d_mask = null; + let slices_3d_mask = null; if(quantileNorm) { // Quantile normalize function needs specific models to be used @@ -6628,13 +6563,13 @@ checkInferenceModelList = () => { //-- Transpose MRI data to be match pytorch/keras input output //-- Check if pre-model needs transpose.. if(transpose) { - + preModel_slices_3d = preModel_slices_3d.transpose(); console.log("Input transposed for pre-model"); } else { console.log("Transpose not enabled for pre-model"); - } + } statData["Brainchop_Ver"] = "PreModel_FV" ; // e.g. "PreModel_FV" @@ -6645,19 +6580,19 @@ checkInferenceModelList = () => { let inferenceStartTime = performance.now(); let preModelObject = res; - // read input shape from model.json object - let preModelBatchInputShape = preModelObject.layers[0].batchInputShape; + // read input shape from model.json object + let preModelBatchInputShape = preModelObject.layers[0].batchInputShape; console.log(" Pre-Model batch input shape : ", preModelBatchInputShape) //-- Verify input shape if(preModelBatchInputShape.length != 5) { webix.alert("The pre-model input shape must be 5D "); return 0; - } - + } + let isPreModelChannelLast = isModelChnlLast(preModelObject); const batchSize = opts.batchSize; - const numOfChan = opts.numOfChan; + const numOfChan = opts.numOfChan; let batch_D, batch_H, batch_W; if(isPreModelChannelLast ) { @@ -6665,26 +6600,26 @@ checkInferenceModelList = () => { if (isNaN(preModelBatchInputShape[4]) || (preModelBatchInputShape[4] !=1)) { webix.alert("The number of channels for pre-model input shape must be 1"); return 0; - } + } batch_D = preModelBatchInputShape[1]; batch_H = preModelBatchInputShape[2]; - batch_W = preModelBatchInputShape[3]; + batch_W = preModelBatchInputShape[3]; - preModel_input_shape = [batchSize, batch_D, batch_H, batch_W, numOfChan]; + preModel_input_shape = [batchSize, batch_D, batch_H, batch_W, numOfChan]; } else { console.log("Pre-Model Channel First") if (isNaN(preModelBatchInputShape[1]) || (preModelBatchInputShape[1] !=1)) { webix.alert("The number of channels for pre-model input shape must be 1"); return 0; - } + } batch_D = preModelBatchInputShape[2]; batch_H = preModelBatchInputShape[3]; - batch_W = preModelBatchInputShape[4]; + batch_W = preModelBatchInputShape[4]; - preModel_input_shape = [batchSize, numOfChan, batch_D, batch_H, batch_W]; + preModel_input_shape = [batchSize, numOfChan, batch_D, batch_H, batch_W]; } @@ -6693,11 +6628,11 @@ checkInferenceModelList = () => { statData["Output_Shape"] = JSON.stringify(preModelObject.output.shape); statData["Channel_Last"] = isPreModelChannelLast; statData["Model_Param"] = getModelNumParameters(preModelObject); - statData["Model_Layers"] = getModelNumLayers(preModelObject); + statData["Model_Layers"] = getModelNumLayers(preModelObject); statData["Model"] = inferenceModelsList[ modelEntry["preModelId"] - 1]["modelName"]; statData["Extra_Info"] = inferenceModelsList[$$("selectModel").getValue() - 1]["modelName"]; - + // maxLabelPredicted in whole volume of the brain let maxLabelPredicted = 0; let delay = inferenceModelsList[ modelEntry["preModelId"] - 1]["inferenceDelay"]; @@ -6705,24 +6640,24 @@ checkInferenceModelList = () => { let i = 1; let layersLength = res.layers.length; - let curTensor = []; + let curTensor = []; //-- reshape MRI to model input shape curTensor[0] = preModel_slices_3d.reshape(preModel_input_shape); - //Dispose the volume + //Dispose the volume tf.dispose(preModel_slices_3d); - + let timer = window.setInterval(function() { try { curTensor[i] = res.layers[i].apply( curTensor[i-1]); - + } catch(err) { if( err.message === "Failed to compile fragment shader.") { webix.confirm({ title:"", - ok:"Ok", + ok:"Ok", cancel:"Cancel", type: "confirm-error", width: 500, @@ -6737,12 +6672,12 @@ checkInferenceModelList = () => { //--- }); - + } else { webix.alert(err.message); } - - window.clearInterval( timer ); + + window.clearInterval( timer ); tf.engine().endScope(); tf.engine().disposeVariables(); @@ -6752,33 +6687,33 @@ checkInferenceModelList = () => { statData["Error_Type"] = err.message; statData["Extra_Err_Info"] = "PreModel Failed while model layer " + i + " apply"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } return 0; - } + } - console.log("layer ", i); + console.log("layer ", i); res.layers[i].dispose(); curTensor[i-1].dispose(); document.getElementById("progressBar").style.width = (i + 1)*50/layersLength + "%"; - let memStatus = tf.memory().unreliable ? "Red" : "Green"; - let unreliableReasons = tf.memory().unreliable ? "unreliable reasons :" + tf.memory().reasons : ""; + let memStatus = tf.memory().unreliable ? "Red" : "Green"; + let unreliableReasons = tf.memory().unreliable ? "unreliable reasons :" + tf.memory().reasons : ""; document.getElementById("memoryStatus").style.backgroundColor = memStatus; - + if( i == layersLength - 1) { - window.clearInterval( timer ); + window.clearInterval( timer ); //-- prediction = res.layers[res.layers.length-1].apply(curTensor[i]); - //-- curTensor[i].print(); + //-- curTensor[i].print(); //-- outputDataBeforArgmx = Array.from(curTensor[i].dataSync()) - let axis = isPreModelChannelLast ? -1 : 1; + let axis = isPreModelChannelLast ? -1 : 1; console.log(" find argmax ") console.log("last Tensor shape : ", curTensor[i].shape); //-- curTensor[i].shape : [ 1, 256, 256, 256, 3 ] @@ -6792,7 +6727,7 @@ checkInferenceModelList = () => { prediction_argmax = tf.argMax(curTensor[i], axis); } catch(err1) { - // if channel last + // if channel last if(axis == -1) { try { @@ -6808,8 +6743,8 @@ checkInferenceModelList = () => { webix.alert(errTxt); prediction_argmax.dispose(); - - window.clearInterval( timer ); + + window.clearInterval( timer ); tf.engine().endScope(); tf.engine().disposeVariables(); @@ -6819,11 +6754,11 @@ checkInferenceModelList = () => { statData["Error_Type"] = err2.message; statData["Extra_Err_Info"] = "preModel prediction_argmax from argMaxLarge failed"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } - return 0; + return 0; } @@ -6833,8 +6768,8 @@ checkInferenceModelList = () => { webix.alert(errTxt); prediction_argmax.dispose(); - - window.clearInterval( timer ); + + window.clearInterval( timer ); tf.engine().endScope(); tf.engine().disposeVariables(); @@ -6844,37 +6779,37 @@ checkInferenceModelList = () => { statData["Error_Type"] = err1.message; statData["Extra_Err_Info"] = "preModel prediction_argmax from argMaxLarge not support yet channel first"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); - } + } return 0; - } - + } + } - + console.log(" Pre-model prediction_argmax shape : ", prediction_argmax.shape); //-- prediction_argmax.shape : [ 1, 256, 256, 256] let Inference_t = ((performance.now() - inferenceStartTime)/1000).toFixed(4); - tf.dispose(curTensor[i]); + tf.dispose(curTensor[i]); console.log(" Pre-model find array max "); let curBatchMaxLabel = findArrayMax(Array.from(prediction_argmax.dataSync())); if( maxLabelPredicted < curBatchMaxLabel ) { maxLabelPredicted = curBatchMaxLabel; - } + } let numSegClasses = maxLabelPredicted + 1; console.log("Pre-model numSegClasses", numSegClasses); statData["Actual_Labels"] = numSegClasses; statData["Expect_Labels"] = expected_Num_labels; - statData["NumLabels_Match"] = numSegClasses == expected_Num_labels? true : false; + statData["NumLabels_Match"] = numSegClasses == expected_Num_labels? true : false; //-- Transpose back to fit Papaya display settings let outLabelVolume = prediction_argmax.reshape([num_of_slices, slice_height, slice_width]); @@ -6883,22 +6818,22 @@ checkInferenceModelList = () => { // Transpose MRI data to be match pytorch/keras input output if(transpose) { console.log("Pre-model outLabelVolume transposed"); - outLabelVolume = outLabelVolume.transpose(); - } + outLabelVolume = outLabelVolume.transpose(); + } startTime = performance.now(); - // Generate output volume or slices - console.log("Generating pre-model output"); + // Generate output volume or slices + console.log("Generating pre-model output"); - try { - slices_3d_mask = tf.tidy(() => { + try { + slices_3d_mask = tf.tidy(() => { let unstackOutVolumeTensor = tf.unstack(outLabelVolume); - tf.dispose(outLabelVolume); + tf.dispose(outLabelVolume); return generateBrainMask(unstackOutVolumeTensor, num_of_slices, slice_height, slice_width); - }); + }); - console.log(" Phase-1 num of tensors after generateBrainMask: " , tf.memory().numTensors ); + console.log(" Phase-1 num of tensors after generateBrainMask: " , tf.memory().numTensors ); } catch (error) { @@ -6914,26 +6849,26 @@ checkInferenceModelList = () => { statData["Error_Type"] = error.message; statData["Extra_Err_Info"] = "Pre-model failed while generating output"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } - return 0; + return 0; } - + let Postprocess_t = ((performance.now() - startTime)/1000).toFixed(4); - console.log("Pre-model processing the whole brain volume in tfjs tooks for multi-class output mask : ", + console.log("Pre-model processing the whole brain volume in tfjs tooks for multi-class output mask : ", ((performance.now()-inferenceStartTime)/1000).toFixed(4) + " Seconds"); - + //-- Timing data to collect statData["Inference_t"] = Inference_t; statData["Postprocess_t"] = Postprocess_t; statData["Status"] = "OK"; - if(opts.telemetryFlag) { + if(opts.telemetryFlag) { submitTiming2GoogleSheet(statData); } @@ -6950,22 +6885,22 @@ checkInferenceModelList = () => { console.log("--- pre-model done ---"); // --mask_3d = slices_3d_mask.greater([0]).asType('bool'); // --slices_3d_mask.dispose(); - + if(isModelFullVol) { if(modelEntry["enableSeqConv"]) { // Mask cropping & seq conv // Non-Atlas model (e.g. GWM) needs sequential convolution layer. - // Sequential convolution layer to be used after cropping - slow but reliable on most machines - console.log("------ Mask Cropping & Seq Convoluton ------"); + // Sequential convolution layer to be used after cropping - slow but reliable on most machines + console.log("------ Mask Cropping & Seq Convoluton ------"); inferenceFullVolumeSeqCovLayerPhase2(model, slices_3d, num_of_slices, slice_height, slice_width, slices_3d_mask); // inferenceFullVolumeSeqCovLayerPhase2(model, slices_3d.transpose(), num_of_slices, slice_height, slice_width, slices_3d_mask); } else { // Mask cropping BUT no seq conv - console.log("------ Mask Cropping - NO Seq Convoluton ------"); + console.log("------ Mask Cropping - NO Seq Convoluton ------"); inferenceFullVolumePhase2(model, slices_3d, num_of_slices, slice_height, slice_width, slices_3d_mask); // inferenceFullVolumePhase2(model, slices_3d.transpose(), num_of_slices, slice_height, slice_width, slices_3d_mask); - } + } } else { // -- In version 3.0.0 this function not used @@ -6974,43 +6909,43 @@ checkInferenceModelList = () => { } } - - } + + } i++; - }, delay); + }, delay); } catch(err) { webix.alert(err.message); console.log( err.message ); console.log( - "If webgl context is lost, try to restore webgl context by visit the link " + + "If webgl context is lost, try to restore webgl context by visit the link " + 'here' - ); + ); - document.getElementById("webGl2Status").style.backgroundColor = isWebGL2ContextLost() ? "Red" : "Green"; + document.getElementById("webGl2Status").style.backgroundColor = isWebGL2ContextLost() ? "Red" : "Green"; - document.getElementById("memoryStatus").style.backgroundColor = tf.memory().unreliable ? "Red" : "Green"; + document.getElementById("memoryStatus").style.backgroundColor = tf.memory().unreliable ? "Red" : "Green"; } - }); + }); + + //-- if(...) end + } else { // No preModel - //-- if(...) end - } else { // No preModel - //--Phase-2, After remove the skull try to allocate brain volume and make inferece console.log("--- No pre-model is selected ---"); console.log("------ Run voxel cropping ------"); //-- mask_3d = slices_3d.greater([0]).asType('bool'); - + if(isModelFullVol) { - + if(modelEntry["enableSeqConv"]) { // Voxel cropping & seq conv // Non-Atlas model (e.g. GWM) needs sequential convolution layer. - // Sequential convolution layer to be used after cropping - slow but reliable on most machines - console.log("------ Seq Convoluton ------"); + // Sequential convolution layer to be used after cropping - slow but reliable on most machines + console.log("------ Seq Convoluton ------"); inferenceFullVolumeSeqCovLayerPhase2(model, slices_3d, num_of_slices, slice_height, slice_width, null); } else { // Voxel cropping BUT no seq conv @@ -7020,15 +6955,15 @@ checkInferenceModelList = () => { } else { // -- In version 3.0.0 this function not used inferenceSubVolumes(model, slices_3d, num_of_slices, slice_height, slice_width, null); - } + } } - - } + + } /** -* Inference Function +* Inference Function * @since 1.2.0 * */ @@ -7037,7 +6972,7 @@ checkInferenceModelList = () => { //-- tf.setBackend('cpu'); //-- tf.removeBackend('cpu') - + //-- Calling enableProdMode() method await tf.enableProdMode(); //-- Setting debug mode of the environment @@ -7045,18 +6980,18 @@ checkInferenceModelList = () => { tf.env().set('WEBGL_FORCE_F16_TEXTURES', true); - //-- set this flag so that textures are deleted when tensors are disposed. - tf.env().set("WEBGL_DELETE_TEXTURE_THRESHOLD", 0); - //-- tf.env().set('WEBGL_PACK', false); - - //-- Put ready after sets above - await tf.ready(); + //-- set this flag so that textures are deleted when tensors are disposed. + tf.env().set("WEBGL_DELETE_TEXTURE_THRESHOLD", 0); + //-- tf.env().set('WEBGL_PACK', false); + + //-- Put ready after sets above + await tf.ready(); //-- Printing output console.log(tf.env().flags); console.log("tf env() features :", tf.env().features); console.log("tf env total features: ", Object.keys(tf.env().features).length); - console.log(tf.getBackend()); + console.log(tf.getBackend()); } /** @@ -7072,11 +7007,11 @@ resetMainParameters = () => { } /** -* Inference function +* Inference function * @since 1.0.0 * */ - + runInference = async() => { let startTime = performance.now(); @@ -7089,12 +7024,12 @@ resetMainParameters = () => { webix.alert("The batch Size for input shape must be 1"); return 0; - } + } if (isNaN(numOfChan) || (numOfChan != 1)) { webix.alert("The number of channels for input shape must be 1"); return 0; - } + } tf.engine().startScope() @@ -7109,28 +7044,28 @@ resetMainParameters = () => { model = load_model(modelEntry["path"]); } else { modelEntry = browserModelList.filter(entry => entry.id == $$("selectModel").getValue().toString())[0]; - model = load_browser_model( modelEntry.modelFile, modelEntry.weightFile); + model = load_browser_model( modelEntry.modelFile, modelEntry.weightFile); } let modelObject = {}; // get model object data e.g. layers etc model.then(function(res) { modelObject = res; - - let batchInputShape = []; + + let batchInputShape = []; // free global variable of 16777216 voxel // allOutputSlices3DCC1DimArray = []; // outputSceneRendered = false; - // read input shape from model.json object - batchInputShape = modelObject.layers[0].batchInputShape; + // read input shape from model.json object + batchInputShape = modelObject.layers[0].batchInputShape; console.log(" Model batch input shape : ", batchInputShape) //-- Verify input shape if(batchInputShape.length != 5) { webix.alert("The model input shape must be 5D "); return 0; - } + } let batch_D, batch_H, batch_W; let slice_width, slice_height, num_of_slices; @@ -7148,36 +7083,36 @@ resetMainParameters = () => { if (isNaN(batchInputShape[4]) || (batchInputShape[4] !=1)) { webix.alert("The number of channels for input shape must be 1"); return 0; - } + } batch_D = batchInputShape[1]; batch_H = batchInputShape[2]; - batch_W = batchInputShape[3]; + batch_W = batchInputShape[3]; - input_shape = [batchSize, batch_D, batch_H, batch_W, numOfChan]; + input_shape = [batchSize, batch_D, batch_H, batch_W, numOfChan]; } else { console.log("Model Channel First") if (isNaN(batchInputShape[1]) || (batchInputShape[1] !=1)) { webix.alert("The number of channels for input shape must be 1"); return 0; - } + } batch_D = batchInputShape[2]; batch_H = batchInputShape[3]; - batch_W = batchInputShape[4]; + batch_W = batchInputShape[4]; - input_shape = [batchSize, numOfChan, batch_D, batch_H, batch_W]; + input_shape = [batchSize, numOfChan, batch_D, batch_H, batch_W]; } - // //-- Atlas version check + // //-- Atlas version check // if ( (batch_D > 30) && (batch_H == 256) && (batch_W == 256) ) { // webix.alert("The subvolume dimension in z-axis shouldn't exceed 30 number of slices for browser limitation"); // return 0; - // } + // } - //--Check whether the model will make inference at once as FullVolumeModel + //--Check whether the model will make inference at once as FullVolumeModel let isModelFullVol; if ( (batch_D == 256) && (batch_H == 256) && (batch_W == 256) ) { @@ -7186,12 +7121,12 @@ resetMainParameters = () => { } else { isModelFullVol = false; - } - + } + - let modelNumLayers = modelObject.layers.length; + let modelNumLayers = modelObject.layers.length; // Model output number of segmentations - let outLabels = modelObject.layers[ modelNumLayers - 1 ].bias.shape[0]; + let outLabels = modelObject.layers[ modelNumLayers - 1 ].bias.shape[0]; let allSlices = getAllSlicesData1D(num_of_slices, niftiHeader, niftiImage); @@ -7204,7 +7139,7 @@ resetMainParameters = () => { let slices_3d = getSlices3D(allSlices_2D); // free tensor from mem - tf.dispose(allSlices_2D); + tf.dispose(allSlices_2D); // if(inferenceModelsList[$$("selectModel").getValue() - 1]["enableQuantileNorm"]) { @@ -7219,8 +7154,8 @@ resetMainParameters = () => { - - let Preprocess_t = ((performance.now() - startTime)/1000).toFixed(4); + + let Preprocess_t = ((performance.now() - startTime)/1000).toFixed(4); console.log(tf.getBackend()); //-- set this flag so that textures are deleted when tensors are disposed. @@ -7243,7 +7178,7 @@ resetMainParameters = () => { } - + let geoData = getBrowserLocationInfo(); if(geoData) { statData["Country"] = geoData["Country"]; @@ -7254,12 +7189,12 @@ resetMainParameters = () => { statData["State"] = ""; statData["City"] = ""; } - - statData["Date"] = parseInt(today.getMonth() + 1) + "/" + today.getDate() + "/" + today.getFullYear(); - statData["Time"] = checkZero(today.getHours()) + ":" + checkZero(today.getMinutes()) + ":" + checkZero(today.getSeconds()); - statData["File_Name"] = refFileName == "" ? opts.uiSampleName: refFileName; + + statData["Date"] = parseInt(today.getMonth() + 1) + "/" + today.getDate() + "/" + today.getFullYear(); + statData["Time"] = checkZero(today.getHours()) + ":" + checkZero(today.getMinutes()) + ":" + checkZero(today.getSeconds()); + statData["File_Name"] = refFileName == "" ? opts.uiSampleName: refFileName; statData["Input_Shape"] = JSON.stringify(batchInputShape); statData["Output_Shape"] = JSON.stringify(modelObject.output.shape); statData["Channel_Last"] = isChannelLast; @@ -7272,54 +7207,54 @@ resetMainParameters = () => { statData["Browser_Ver"] = detectBrowserVersion(); statData["OS"] = detectOperatingSys(); statData["WebGL1"] = checkWebGl1(); - statData["WebGL2"] = checkWebGl2(); + statData["WebGL2"] = checkWebGl2(); statData["GPU_Vendor"] = detectGPUVendor(); - statData["GPU_Card"] = detectGPUCardType(); + statData["GPU_Card"] = detectGPUCardType(); statData["GPU_Vendor_Full"] = detectGPUVendor_v0(); - statData["GPU_Card_Full"] = detectGPUCardType_v0(); - statData["CPU_Cores"] = getCPUNumCores(); - statData["TF_Backend"] = tf.getBackend(); - + statData["GPU_Card_Full"] = detectGPUCardType_v0(); + statData["CPU_Cores"] = getCPUNumCores(); + statData["TF_Backend"] = tf.getBackend(); + statData["Which_Brainchop"] = "latest"; - statData["Seq_Conv"] = inferenceModelsList[$$("selectModel").getValue() - 1]["enableSeqConv"]; + statData["Seq_Conv"] = inferenceModelsList[$$("selectModel").getValue() - 1]["enableSeqConv"]; - //-- Init + //-- Init statData["Actual_Labels"] = Infinity; statData["Expect_Labels"] = Infinity; - statData["NumLabels_Match"] = null; + statData["NumLabels_Match"] = null; statData["Inference_t"] = Infinity; statData["Merge_t"] = Infinity; statData["Postprocess_t"] = Infinity; statData["Status"] = null; - statData["Error_Type"] = null; - statData["Extra_Err_Info"] = null; - statData["Extra_Info"] = null; + statData["Error_Type"] = null; + statData["Extra_Err_Info"] = null; + statData["Extra_Info"] = null; + - if(isChrome()) { statData["Heap_Size_MB"] = window.performance.memory["totalJSHeapSize"]/(1024*1024).toFixed(2); statData["Used_Heap_MB"] = window.performance.memory["usedJSHeapSize"]/(1024*1024).toFixed(2); statData["Heap_Limit_MB"] = window.performance.memory["jsHeapSizeLimit"]/(1024*1024).toFixed(2); } - - let gl = checkWebGl2() ? document.createElement('canvas').getContext('webgl2') : + + let gl = checkWebGl2() ? document.createElement('canvas').getContext('webgl2') : checkWebGl1() ? document.createElement('canvas').getContext('webgl1') : null; - + console.log("MAX_TEXTURE_SIZE :", gl.getParameter(gl.MAX_TEXTURE_SIZE)); console.log("MAX_RENDERBUFFER_SIZE :", gl.getParameter(gl.MAX_RENDERBUFFER_SIZE)); - - //-- check to see if machine has two graphics card: one is the builtin e.g. Intel Iris Pro, the other is NVIDIA GeForce GT 750M. + + //-- check to see if machine has two graphics card: one is the builtin e.g. Intel Iris Pro, the other is NVIDIA GeForce GT 750M. //-- check browser use which one, if debugInfo is null then installed GPU is not used let debugInfo = gl.getExtension('WEBGL_debug_renderer_info'); - console.log("VENDOR WEBGL:", gl.getParameter(debugInfo.UNMASKED_VENDOR_WEBGL) ); + console.log("VENDOR WEBGL:", gl.getParameter(debugInfo.UNMASKED_VENDOR_WEBGL) ); if(gl) { - statData["Texture_Size"] = gl.getParameter(gl.MAX_TEXTURE_SIZE) //--returns the maximum dimension the GPU can address + statData["Texture_Size"] = gl.getParameter(gl.MAX_TEXTURE_SIZE) //--returns the maximum dimension the GPU can address } else { statData["Texture_Size"] = null; - } + } let transpose = inferenceModelsList[$$("selectModel").getValue() - 1]["enableTranspose"]; @@ -7329,10 +7264,10 @@ resetMainParameters = () => { if (isModelFullVol) { if( enableCrop) { - // FullVolume with Crop option before inference .. + // FullVolume with Crop option before inference .. // pre-model to mask the volume, can also be null and the cropping will be on the MRI. inferenceFullVolumePhase1(model, slices_3d, num_of_slices, slice_height, slice_width, isModelFullVol); - } else { + } else { // Transpose MRI data to be match pytorch/keras input output console.log("Cropping Disabled"); @@ -7341,7 +7276,7 @@ resetMainParameters = () => { console.log("Input transposed"); } else { console.log("Transpose NOT Enabled"); - } + } let enableSeqConv = inferenceModelsList[$$("selectModel").getValue() - 1]["enableSeqConv"]; @@ -7351,37 +7286,37 @@ resetMainParameters = () => { } else { console.log("Seq Convoluton Disabled"); inferenceFullVolume(model, slices_3d, input_shape, isChannelLast, num_of_slices, slice_height, slice_width); - } - + } - } - } else { + } + + } else { - // // In version 3.0.0 this function not used + // // In version 3.0.0 this function not used //-- if(enableCrop) { - // // FullVolume with Crop option before inference .. + // // FullVolume with Crop option before inference .. // // pre-model to mask the volume, can also be null and the cropping will be on the MRI. //-- inferenceFullVolumePhase1(model, slices_3d, num_of_slices, slice_height, slice_width, isModelFullVol); - //-- } else { + //-- } else { // // Transpose MRI data to be match pytorch/keras input output //-- if(transpose) { //-- slices_3d = slices_3d.transpose() //-- console.log("Input transposed"); //-- } else { //-- console.log("Transpose not enabled"); - //-- } + //-- } //-- inferenceSubVolumes(model, slices_3d, num_of_slices, slice_height, slice_width); - //-- } + //-- } console.log("This is not a full volume model"); - webix.alert({title: "", text: "This is not a full volume model", type:"alert-error"}); + webix.alert({title: "", text: "This is not a full volume model", type:"alert-error"}); + + } - } + }) //-- End of model.then - }) //-- End of model.then - } //-- End of runInference diff --git a/js/brainchop/mainParameters.js b/js/brainchop/mainParameters.js index 723ccd5..fd9e179 100644 --- a/js/brainchop/mainParameters.js +++ b/js/brainchop/mainParameters.js @@ -113,8 +113,8 @@ isBatchOverlapEnable: false, //create extra overlap batches for inference numOverlapBatches: 0, //Number of extra overlap batches for inference enableTranspose : true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 2, // Padding size add to cropped brain + enableCrop: false, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain autoThreshold: 0.1, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain enableQuantileNorm: false, // Some models needs Quantile Normaliztion. filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas @@ -132,14 +132,14 @@ modelName:"\u{1F52A} Tissue GWM (High Acc)", labelsPath: "./models/model20chan3cls/labels.json", colorsPath: "./models/model20chan3cls/colorLUT.json", - preModelId: 1, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. isBatchOverlapEnable: false, //create extra overlap batches for inference numOverlapBatches: 0, //Number of extra overlap batches for inference enableTranspose : true, // Keras and tfjs input orientation may need a tranposing step to be matched enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 2, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain enableQuantileNorm: true, // Some models needs Quantile Normaliztion. filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer @@ -156,14 +156,14 @@ modelName:"\u{1F52A} Tissue GWM (High Acc, Low Mem)", labelsPath: "./models/model20chan3cls/labels.json", colorsPath: "./models/model20chan3cls/colorLUT.json", - preModelId: 1, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. isBatchOverlapEnable: false, //create extra overlap batches for inference numOverlapBatches: 0, //Number of extra overlap batches for inference enableTranspose : true, // Keras and tfjs input orientation may need a tranposing step to be matched enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 2, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain enableQuantileNorm: true, // Some models needs Quantile Normaliztion. filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer @@ -254,14 +254,14 @@ modelName:"\u{1F52A} Aparc+Aseg 50 (High Mem, Fast)", labelsPath: "./models/model30chan50cls/labels.json", colorsPath: "./models/model30chan50cls/colorLUT.json", - preModelId: 1,// Model run first e.g. crop the brain { null, 1, 2, .. } + preModelId: null,// Model run first e.g. crop the brain { null, 1, 2, .. } preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. isBatchOverlapEnable: false, //create extra overlap batches for inference numOverlapBatches: 200, //Number of extra overlap batches for inference enableTranspose : true, // Keras and tfjs input orientation may need a tranposing step to be matched enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 2, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain enableQuantileNorm: true, // Some models needs Quantile Normaliztion. filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer @@ -278,14 +278,14 @@ modelName:"\u{1F52A} Aparc+Aseg 50 (Low Mem, Slow)", labelsPath: "./models/model30chan50cls/labels.json", colorsPath: "./models/model30chan50cls/colorLUT.json", - preModelId: 1,// Model run first e.g. crop the brain { null, 1, 2, .. } + preModelId: null,// Model run first e.g. crop the brain { null, 1, 2, .. } preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. isBatchOverlapEnable: false, //create extra overlap batches for inference numOverlapBatches: 200, //Number of extra overlap batches for inference enableTranspose : true, // Keras and tfjs input orientation may need a tranposing step to be matched enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 2, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain enableQuantileNorm: true, // Some models needs Quantile Normaliztion. filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last laye @@ -399,14 +399,14 @@ modelName:"\u{1F52A} Aparc+Aseg 104 (High Mem, Fast)", labelsPath: "./models/model21_104class/labels.json", colorsPath: "./models/model21_104class/colorLUT.json", - preModelId: 1, // model run first e.g. Brain_Extraction { null, 1, 2, .. } + preModelId: null, // model run first e.g. Brain_Extraction { null, 1, 2, .. } preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. isBatchOverlapEnable: false, //create extra overlap batches for inference numOverlapBatches: 200, //Number of extra overlap batches for inference enableTranspose : true, // Keras and tfjs input orientation may need a tranposing step to be matched enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 2, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain enableQuantileNorm: false, // Some models needs Quantile Normaliztion. filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer @@ -423,14 +423,14 @@ modelName:"\u{1F52A} Aparc+Aseg 104 (Low Mem, Slow)", labelsPath: "./models/model21_104class/labels.json", colorsPath: "./models/model21_104class/colorLUT.json", - preModelId: 1, // model run first e.g. Brain_Extraction { null, 1, 2, .. } + preModelId: null, // model run first e.g. Brain_Extraction { null, 1, 2, .. } preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. isBatchOverlapEnable: false, //create extra overlap batches for inference numOverlapBatches: 200, //Number of extra overlap batches for inference enableTranspose : true, // Keras and tfjs input orientation may need a tranposing step to be matched enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 2, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain enableQuantileNorm: false, // Some models needs Quantile Normaliztion. filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer diff --git a/paper/paper.pdf b/paper/paper.pdf index c88929a..3ed1499 100644 Binary files a/paper/paper.pdf and b/paper/paper.pdf differ