-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path12.rs
47 lines (36 loc) · 1.41 KB
/
12.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
/*
Problem 12 - Highly divisible triangular number
The sequence of triangle numbers is generated by adding the natural numbers. So the 7 th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1 : 1 3 : 1,3 6 : 1,2,3,6 10 : 1,2,5,10 15 : 1,3,5,15 21 : 1,3,7,21 28 : 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
*/
fn factors(number: usize) -> Vec<Vec<usize>> {
let max = (number as f64).sqrt() as usize;
let mut factors: Vec<Vec<usize>> = vec![vec![1, number]];
let is_even = number % 2 == 0;
for current_factor in (if is_even { 2 } else { 3 })..(max + 1) {
if number % current_factor != 0 {
continue;
}
factors.push(vec![current_factor, number / current_factor]);
}
return factors;
}
fn first_triangle_with_n_divisors(n: usize) -> usize {
let mut i = 1;
loop {
let triangle = (i * (i + 1)) / 2;
let factors = factors(triangle);
if factors.len() * 2 > n {
return triangle;
}
i += 1;
}
}
pub fn main() {
let value = first_triangle_with_n_divisors(500);
println!("The first triangle number with over 500 divisors is {value}");
}