This chapter shows how to implement various SVM methods with TensorFlow. We first create a linear SVM and also show how it can be used for regression. We then introduce kernels (RBF Gaussian kernel) and show how to use it to split up non-linear data. We finish with a multi-dimensional implementation of non-linear SVMs to work with multiple classes.
- We introduce the concept of SVMs and how we will go about implementing them in the TensorFlow framework.
- We create a linear SVM to separate I. setosa based on sepal length and pedal width in the Iris data set.
- The heart of SVMs is separating classes with a line. We change tweek the algorithm slightly to perform SVM regression.
- In order to extend SVMs into non-linear data, we explain and show how to implement different kernels in TensorFlow.
- We use the Gaussian kernel (RBF) to separate non-linear classes.
- SVMs are inherently binary predictors. We show how to extend them in a one-vs-all strategy in TensorFlow.