-
Notifications
You must be signed in to change notification settings - Fork 1
/
resume_these_fr.bbl
352 lines (290 loc) · 13.9 KB
/
resume_these_fr.bbl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
\begin{thebibliography}{61}
\expandafter\ifx\csname natexlab\endcsname\relax\def\natexlab#1{#1}\fi
\expandafter\ifx\csname url\endcsname\relax
\def\url#1{{\tt #1}}\fi
\bibitem[Amit \& Geman(1997)Amit and Geman]{Amit1997}
Y.~Amit and D.~Geman.
\newblock Shape quantization and recognition with randomized trees.
\newblock {\em Neural Comput.}, 9:\penalty0 1545--1588, 1997.
\bibitem[Baillo(2003)]{Baillo2003}
A.~Baillo.
\newblock Total error in a plug-in estimator of level sets.
\newblock {\em Statistics \& probability letters}, 65:\penalty0 411--417, 2003.
\bibitem[Baillo et~al.(2001)Baillo, Cuesta-Albertos, and Cuevas]{Baillo2001}
A.~Baillo, J.~A Cuesta-Albertos, and A.~Cuevas.
\newblock Convergence rates in nonparametric estimation of level sets.
\newblock {\em Statistics \& probability letters}, 53:\penalty0 27--35, 2001.
\bibitem[Biau et~al.(2008)Biau, Devroye, and Lugosi]{Biau2008}
G.~Biau, L.~Devroye, and G.~Lugosi.
\newblock Consistency of random forests and other averaging classifiers.
\newblock {\em JMLR}, 9:\penalty0 2015--2033, 2008.
\bibitem[Biau \& Scornet(2016)Biau and Scornet]{Biau2016}
G.~Biau and E.~Scornet.
\newblock A random forest guided tour.
\newblock {\em Test}, 25:\penalty0 197--227, 2016.
\bibitem[Breiman(2001)]{Breiman2001}
L.~Breiman.
\newblock Random forests.
\newblock {\em Machine learning}, 45:\penalty0 5--32, 2001.
\bibitem[Cadre(2006)]{Cadre2006}
B.~Cadre.
\newblock Kernel estimation of density level sets.
\newblock {\em JMVA}, 97:\penalty0 999--1023, 2006.
\bibitem[Cl\'emen\c{c}on \& Jakubowicz(2013)Cl\'emen\c{c}on and
Jakubowicz]{CLEM13}
S.~Cl\'emen\c{c}on and J.~Jakubowicz.
\newblock Scoring anomalies: a m-estimation formulation.
\newblock In {\em Proc. AISTATS}, volume~13, pages 659--667, 2013.
\bibitem[Cl\'emen\c{c}on \& Robbiano(2014)Cl\'emen\c{c}on and Robbiano]{CLEM14}
S.~Cl\'emen\c{c}on and S.~Robbiano.
\newblock {Anomaly Ranking as Supervised Bipartite Ranking}.
\newblock In {\em Proc. ICML}, 2014.
\bibitem[Cl{\'e}men{\c{c}}on \& Vayatis(2009)Cl{\'e}men{\c{c}}on and
Vayatis]{Clemencon2009}
S.~Cl{\'e}men{\c{c}}on and N.~Vayatis.
\newblock Nonparametric estimation of the precision-recall curve.
\newblock In {\em Proc. ICML}, pages 185--192, 2009.
\bibitem[Cl{\'e}men{\c{c}}on \& Vayatis(2010)Cl{\'e}men{\c{c}}on and
Vayatis]{Clemencon2010}
S.~Cl{\'e}men{\c{c}}on and N.~Vayatis.
\newblock Overlaying classifiers: a practical approach to optimal scoring.
\newblock {\em Constr Approx}, 32:\penalty0 619--648, 2010.
\bibitem[Clifton et~al.(2011)Clifton, Hugueny, and Tarassenko]{Clifton2011}
D.~A. Clifton, S.~Hugueny, and L.~Tarassenko.
\newblock Novelty detection with multivariate extreme value statistics.
\newblock {\em J Signal Process Syst.}, 65:\penalty0 371--389, 2011.
\bibitem[Clifton et~al.(2008)Clifton, Tarassenko, McGrogan, King, King, and
Anuzis]{Clifton2008}
D.A. Clifton, L.~Tarassenko, N.~McGrogan, D.~King, S.~King, and P.~Anuzis.
\newblock Bayesian extreme value statistics for novelty detection in
gas-turbine engines.
\newblock In {\em AEROSP CONF PROC}, pages 1--11, 2008.
\bibitem[Coles \& Tawn(1991)Coles and Tawn]{coles1991modeling}
S.~Coles and J.A Tawn.
\newblock Modeling extreme multivariate events.
\newblock {\em JR Statist. Soc. B}, 53:\penalty0 377--392, 1991.
\bibitem[Cooley et~al.(2010)Cooley, Davis, and Naveau]{cooley2010pairwise}
D.~Cooley, R.A. Davis, and P.~Naveau.
\newblock The pairwise beta distribution: A flexible parametric multivariate
model for extremes.
\newblock {\em JMVA}, 101:\penalty0 2103--2117, 2010.
\bibitem[Cuevas \& Fraiman(1997)Cuevas and Fraiman]{Cuevas1997}
A.~Cuevas and R.~Fraiman.
\newblock A plug-in approach to support estimation.
\newblock {\em Ann. Stat.}, pages 2300--2312, 1997.
\bibitem[Davis \& Goadrich(2006)Davis and Goadrich]{Davis2006}
J.~Davis and M.~Goadrich.
\newblock The relationship between precision-recall and roc curves.
\newblock In {\em Proc. ICML}, 2006.
\bibitem[De~Haan \& Ferreira(2007)De~Haan and Ferreira]{dHF06}
L.~De~Haan and A.~Ferreira.
\newblock {\em Extreme value theory: an introduction}.
\newblock Springer Science \& Business Media, 2007.
\bibitem[Drees \& Huang(1998)Drees and Huang]{Drees98}
H.~Drees and X.~Huang.
\newblock Best attainable rates of convergence for estimators of the stable
tail dependence function.
\newblock {\em JMVA}, 64:\penalty0 25--47, 1998.
\bibitem[Désir et~al.(2012)Désir, Bernard, Petitjean, and Heutte]{Desir12}
C.~Désir, S.~Bernard, C.~Petitjean, and L.~Heutte.
\newblock A new random forest method for one-class classification.
\newblock In {\em Structural, Syntactic, and Statistical Pattern Recognition}.
Springer, 2012.
\bibitem[Einmahl et~al.(2012)Einmahl, Krajina, and Segers]{Einmahl2012}
J.~H.~J. Einmahl, A.~Krajina, and J.~Segers.
\newblock An m-estimator for tail dependence in arbitrary dimensions.
\newblock {\em Ann. Stat.}, 40:\penalty0 1764--1793, 2012.
\bibitem[Einmahl \& Segers(2009)Einmahl and Segers]{Einmahl2009}
J.~H.~J. Einmahl and J.~Segers.
\newblock Maximum empirical likelihood estimation of the spectral measure of an
extreme-value distribution.
\newblock {\em Ann. Stat.}, 37:\penalty0 2953--2989, 2009.
\bibitem[Einmahl et~al.(2001)Einmahl, de~Haan, and Piterbarg]{Einmahl2001}
J.~HJ Einmahl, L.~de~Haan, and V.~I Piterbarg.
\newblock Nonparametric estimation of the spectral measure of an extreme value
distribution.
\newblock {\em Ann. Stat.}, 29:\penalty0 1401--1423, 2001.
\bibitem[Einmahl \& Mason(1992)Einmahl and Mason]{Einmahl1992}
J.~HJ Einmahl and D.~M Mason.
\newblock Generalized quantile processes.
\newblock {\em Ann. Stat.}, 20:\penalty0 1062--1078, 1992.
\bibitem[Embrechts et~al.(2000)Embrechts, de~Haan, and Huang]{Embrechts2000}
P.~Embrechts, L.~de~Haan, and X.~Huang.
\newblock Modelling multivariate extremes.
\newblock {\em Extremes and integrated risk management}, pages 59--67, 2000.
\bibitem[Fawcett(2006)]{Fawcett2006}
T.~Fawcett.
\newblock An introduction to roc analysis.
\newblock {\em Pattern recognition letters}, 27:\penalty0 861--874, 2006.
\bibitem[Foug{\`e}res et~al.(2009)Foug{\`e}res, Nolan, and
Rootz{\'e}n]{fougeres2009models}
A-L. Foug{\`e}res, J.~P Nolan, and H~Rootz{\'e}n.
\newblock Models for dependent extremes using stable mixtures.
\newblock {\em Scandinavian Journal of Statistics}, 36:\penalty0 42--59, 2009.
\bibitem[Genuer et~al.(2008)Genuer, Poggi, and Tuleau]{Genuer2008}
R.~Genuer, J.-M. Poggi, and C.~Tuleau.
\newblock Random forests: some methodological insights.
\newblock {\em arXiv:0811.3619}, 2008.
\bibitem[Gini(1912)]{Gini1912}
C.~Gini.
\newblock Variabilita e mutabilita.
\newblock {\em Memorie di metodologia statistica}, 1912.
\bibitem[Goix(2016)]{ICMLworkshop16}
N.~Goix.
\newblock {How to Evaluate the Quality of Unsupervised Anomaly Detection
Algorithms?}
\newblock In {\em ICML Workshop on Anomaly Detection}, 2016.
\bibitem[Goix et~al.(2016{\natexlab{a}})Goix, Brault, Drougard, and
Chiapino]{OCRF16}
N.~Goix, R.~Brault, N.~Drougard, and M.~Chiapino.
\newblock {One Class Splitting Criteria for Random Forests with Application to
Anomaly Detection}.
\newblock Submitted to AISTATS, 2016{\natexlab{a}}.
\bibitem[Goix et~al.(2015{\natexlab{a}})Goix, Sabourin, and Cl{\'e}men{\c
c}on]{NIPSWORKSHOP15}
N.~Goix, A.~Sabourin, and S.~Cl{\'e}men{\c c}on.
\newblock {Sparse Representation of Multivariate Extremes}.
\newblock NIPS 2015 Workshop on Nonparametric Methods for Large Scale
Representation Learning, 2015{\natexlab{a}}.
\bibitem[Goix et~al.(2016{\natexlab{b}})Goix, Sabourin, and Cl{\'e}men{\c
c}on]{ARXIV16}
N.~Goix, A.~Sabourin, and S.~Cl{\'e}men{\c c}on.
\newblock {Sparse Representation of Multivariate Extremes with Applications to
Anomaly Detection}.
\newblock In the reviewing process of JMVA, July 2016{\natexlab{b}}.
\bibitem[Goix et~al.(2015{\natexlab{b}})Goix, Sabourin, and
Clémençon]{COLT15}
N.~Goix, A.~Sabourin, and S.~Clémençon.
\newblock {Learning the dependence structure of rare events: a non-asymptotic
study}.
\newblock In {\em Proc. COLT}, 2015{\natexlab{b}}.
\bibitem[Goix et~al.(2015{\natexlab{c}})Goix, Sabourin, and
Clémençon]{AISTAT15}
N.~Goix, A.~Sabourin, and S.~Clémençon.
\newblock {On Anomaly Ranking and Excess-Mass Curves}.
\newblock In {\em Proc. AISTATS}, 2015{\natexlab{c}}.
\bibitem[Goix et~al.(2016{\natexlab{c}})Goix, Sabourin, and
Clémençon]{AISTAT16}
N.~Goix, A.~Sabourin, and S.~Clémençon.
\newblock {Sparse Representation of Multivariate Extremes with Applications to
Anomaly Ranking}.
\newblock In {\em Proc. AISTATS}, 2016{\natexlab{c}}.
\bibitem[Goix \& Thomas(2016)Goix and Thomas]{NIPS16evaluation}
N.~Goix and A.~Thomas.
\newblock {How to Evaluate the Quality of Unsupervised Anomaly Detection
Algorithms?}
\newblock To be submitted, 2016.
\bibitem[Ho(1998)]{Ho1998}
T.K. Ho.
\newblock The random subspace method for constructing decision forests.
\newblock {\em IEEE transactions on pattern analysis and machine intelligence},
20:\penalty0 832--844, 1998.
\bibitem[Huang(1992)]{Huangphd}
X.~Huang.
\newblock Statistics of bivariate extreme values.
\newblock {\em PhD thesis}, 1992.
\bibitem[Lee \& Roberts(2008)Lee and Roberts]{Lee2008}
H.J. Lee and S.J. Roberts.
\newblock On-line novelty detection using the kalman filter and extreme value
theory.
\newblock In {\em ICPR}, pages 1--4, 2008.
\bibitem[Liu et~al.(2008)Liu, Ting, and Zhou]{Liu2008}
F.T. Liu, K.M. Ting, and Z.H. Zhou.
\newblock {Isolation Forest}.
\newblock In {\em ICDM}, pages 413--422, 2008.
\bibitem[Mason \& Polonik(2009)Mason and Polonik]{Mason2009}
D.~M. Mason and W.~Polonik.
\newblock Asymptotic normality of plug-in level set estimates.
\newblock {\em The Annals of Applied Probability}, 19:\penalty0 1108--1142,
2009.
\bibitem[Panov \& D{\v{z}}eroski(2007)Panov and D{\v{z}}eroski]{Panov2007}
P.~Panov and S.~D{\v{z}}eroski.
\newblock {\em Combining bagging and random subspaces to create better
ensembles}.
\newblock Springer, 2007.
\bibitem[Pedregosa et~al.(2011)Pedregosa, Varoquaux, Gramfort, Michel, Thirion,
Grisel, Blondel, Prettenhofer, Weiss, Dubourg, et~al.]{sklearn2011}
F.~Pedregosa, G.~Varoquaux, A.~Gramfort, V.~Michel, B.~Thirion, O.~Grisel,
M.~Blondel, P.~Prettenhofer, R.~Weiss, V.~Dubourg, et~al.
\newblock {Scikit-learn: Machine learning in Python}.
\newblock {\em JMLR}, 12:\penalty0 2825--2830, 2011.
\bibitem[Polonik(1995)]{Polonik95}
W.~Polonik.
\newblock {Measuring Mass Concentrations and Estimating Density Contour
Cluster-An excess Mass Approach}.
\newblock {\em Ann. Stat.}, 23:\penalty0 855--881, 1995.
\bibitem[Polonik(1997)]{Polonik97}
W.~Polonik.
\newblock {Minimum volume sets and generalized quantile processes}.
\newblock {\em Stochastic Processes and their Applications}, 69:\penalty0
1--24, 1997.
\bibitem[Provost et~al.(1997)Provost, Fawcett, et~al.]{Provost1997}
FJ~Provost, T.~Fawcett, et~al.
\newblock Analysis and visualization of classifier performance: comparison
under imprecise class and cost distributions.
\newblock In {\em KDD}, volume~97, pages 43--48, 1997.
\bibitem[Provost et~al.(1998)Provost, Fawcett, and Kohavi]{Provost1998}
FJ~Provost, T.~Fawcett, and R.~Kohavi.
\newblock The case against accuracy estimation for comparing induction
algorithms.
\newblock In {\em Proc. ICML}, volume~98, pages 445--453, 1998.
\bibitem[Qi(1997)]{Qi97}
Y.~Qi.
\newblock Almost sure convergence of the stable tail empirical dependence
function in multivariate extreme statistics.
\newblock {\em Acta Mathematicae Applicatae Sinica}, 13:\penalty0 167--175,
1997.
\bibitem[Rigollet \& Vert(2009)Rigollet and Vert]{Rigollet2009}
P.~Rigollet and R.~Vert.
\newblock Optimal rates for plug-in estimators of density level sets.
\newblock {\em Bernoulli}, 15:\penalty0 1154--1178, 2009.
\bibitem[Roberts(1999)]{Roberts99}
S.J. Roberts.
\newblock Novelty detection using extreme value statistics.
\newblock {\em IEE P-VIS IMAGE SIGN}, 146:\penalty0 124--129, Jun 1999.
\bibitem[Roberts(2000)]{Roberts2000}
S.J Roberts.
\newblock Extreme value statistics for novelty detection in biomedical data
processing.
\newblock {\em IEE P-SCI MEAS TECH}, 147:\penalty0 363--367, 2000.
\bibitem[Sabourin \& Naveau(2014)Sabourin and Naveau]{sabourinNaveau2012}
A.~Sabourin and P.~Naveau.
\newblock Bayesian dirichlet mixture model for multivariate extremes: A
re-parametrization.
\newblock {\em Comput. Stat. Data Anal.}, 71:\penalty0 542--567, 2014.
\bibitem[Sch{\"o}lkopf et~al.(2001)Sch{\"o}lkopf, Platt, Shawe-Taylor, Smola,
and Williamson]{Scholkopf2001}
B.~Sch{\"o}lkopf, J.C Platt, J.~Shawe-Taylor, A.J Smola, and R.C Williamson.
\newblock Estimating the support of a high-dimensional distribution.
\newblock {\em Neural Comput.}, 13:\penalty0 1443--1471, 2001.
\bibitem[Scott \& Nowak(2006)Scott and Nowak]{Scott2006}
C.D Scott and R.D Nowak.
\newblock Learning minimum volume sets.
\newblock {\em JMLR}, 7:\penalty0 665--704, 2006.
\bibitem[Shi \& Horvath(2012)Shi and Horvath]{Shi2012}
T.~Shi and S.~Horvath.
\newblock Unsupervised learning with random forest predictors.
\newblock {\em J. Comp. Graph. Stat.}, 15, 2012.
\bibitem[Steinwart et~al.(2005)Steinwart, Hush, and Scovel]{Steinwart2005}
I.~Steinwart, D.~Hush, and C.~Scovel.
\newblock A classification framework for anomaly detection.
\newblock {\em JMLR}, 6:\penalty0 211--232, 2005.
\bibitem[Stephenson(2009)]{stephenson2009high}
A.G. Stephenson.
\newblock High-dimensional parametric modelling of multivariate extreme events.
\newblock {\em Australian \& New Zealand Journal of Statistics}, 51:\penalty0
77--88, 2009.
\bibitem[Thomas et~al.(2015)Thomas, Feuillard, and Gramfort]{Thomas2015}
A.~Thomas, V.~Feuillard, and A.~Gramfort.
\newblock {Calibration of One-Class SVM for MV set estimation}.
\newblock In {\em DSAA}, pages 1--9, 2015.
\bibitem[Tsybakov(1997)]{Tsybakov1997}
A.~B. Tsybakov.
\newblock On nonparametric estimation of density level sets.
\newblock {\em Ann. Stat.}, 25:\penalty0 948--969, 1997.
\bibitem[Vert \& Vert(2006)Vert and Vert]{VertVert}
J.-P. Vert and R.~Vert.
\newblock Consistency and convergence rates of one-class svms and related
algorithms.
\newblock {\em JMLR}, 6:\penalty0 828--835, 2006.
\end{thebibliography}