-
Notifications
You must be signed in to change notification settings - Fork 0
/
RawBoost.py
98 lines (80 loc) · 2.83 KB
/
RawBoost.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import numpy as np
from scipy import signal
import copy
'''
Hemlata Tak, Madhu Kamble, Jose Patino, Massimiliano Todisco, Nicholas Evans.
RawBoost: A Raw Data Boosting and Augmentation Method applied to Automatic Speaker Verification Anti-Spoofing.
In Proc. ICASSP 2022, pp:6382--6386.
'''
def randRange(x1, x2, integer):
y = np.random.uniform(low=x1, high=x2, size=(1,))
if integer:
y = int(y)
return y
def normWav(x,always):
if always:
x = x/np.amax(abs(x))
elif np.amax(abs(x)) > 1:
x = x/np.amax(abs(x))
return x
def genNotchCoeffs(nBands,minF,maxF,minBW,maxBW,minCoeff,maxCoeff,minG,maxG,fs):
b = 1
for i in range(0, nBands):
fc = randRange(minF,maxF,0);
bw = randRange(minBW,maxBW,0);
c = randRange(minCoeff,maxCoeff,1);
if c/2 == int(c/2):
c = c + 1
f1 = fc - bw/2
f2 = fc + bw/2
if f1 <= 0:
f1 = 1/1000
if f2 >= fs/2:
f2 = fs/2-1/1000
b = np.convolve(signal.firwin(c, [float(f1), float(f2)], window='hamming', fs=fs),b)
G = randRange(minG,maxG,0);
_, h = signal.freqz(b, 1, fs=fs)
b = pow(10, G/20)*b/np.amax(abs(h))
return b
def filterFIR(x,b):
N = b.shape[0] + 1
xpad = np.pad(x, (0, N), 'constant')
y = signal.lfilter(b, 1, xpad)
y = y[int(N/2):int(y.shape[0]-N/2)]
return y
# Linear and non-linear convolutive noise
def LnL_convolutive_noise(x,N_f,nBands,minF,maxF,minBW,maxBW,minCoeff,maxCoeff,minG,maxG,minBiasLinNonLin,maxBiasLinNonLin,fs):
y = [0] * x.shape[0]
for i in range(0, N_f):
if i == 1:
minG = minG-minBiasLinNonLin;
maxG = maxG-maxBiasLinNonLin;
b = genNotchCoeffs(nBands,minF,maxF,minBW,maxBW,minCoeff,maxCoeff,minG,maxG,fs)
y = y + filterFIR(np.power(x, (i+1)), b)
y = y - np.mean(y)
y = normWav(y,0)
return y
# Impulsive signal dependent noise
def ISD_additive_noise(x, P, g_sd):
beta = randRange(0, P, 0)
y = copy.deepcopy(x)
x_len = x.shape[0]
n = int(x_len*(beta/100))
p = np.random.permutation(x_len)[:n]
f_r= np.multiply(((2*np.random.rand(p.shape[0]))-1),((2*np.random.rand(p.shape[0]))-1))
r = g_sd * x[p] * f_r
y[p] = x[p] + r
y = normWav(y,0)
return y
# Stationary signal independent noise
def SSI_additive_noise(x,SNRmin,SNRmax,nBands,minF,maxF,minBW,maxBW,minCoeff,maxCoeff,minG,maxG,fs):
noise = np.random.normal(0, 1, x.shape[0])
b = genNotchCoeffs(nBands,minF,maxF,minBW,maxBW,minCoeff,maxCoeff,minG,maxG,fs)
noise = filterFIR(noise, b)
noise = normWav(noise,1)
SNR = randRange(SNRmin, SNRmax, 0)
noise = noise / np.linalg.norm(noise,2) * np.linalg.norm(x,2) / 10.0**(0.05 * SNR)
x = x + noise
return x