-
Notifications
You must be signed in to change notification settings - Fork 3
/
main.py
113 lines (83 loc) · 3.93 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import math
import os
import sys
import cv2
import face_recognition
import numpy
import datetime
import time
def face_confidence(face_distance, face_match_threshold=0.6):
range = (1.0 - face_match_threshold)
linear_val = (1.0 - face_distance) / (range * 2.0)
if face_distance > face_match_threshold:
return str(round(linear_val * 100, 2)) + '%'
else:
value = (linear_val + ((1.0 - linear_val) * math.pow((linear_val - 0.5) * 2, 0.2))) * 100
return str(round(value, 2)) + '%'
class FaceRecognition:
face_locations = []
face_encodings = []
face_names = []
known_face_encodings = []
known_face_names = []
process_current_frame = True
attendance_count = 0
max_attendance_count = 3
def __init__(self):
self.encode_faces()
def encode_faces(self):
for image in os.listdir('faces'):
face_image = face_recognition.load_image_file(f'faces/{image}')
face_encoding = face_recognition.face_encodings(face_image)[0]
self.known_face_encodings.append(face_encoding)
self.known_face_names.append(image)
print(self.known_face_names)
def run_recognition(self):
global face_distances
video_capture = cv2.VideoCapture(0)
if not video_capture.isOpened():
sys.exit('Video source not found!')
while True:
ret, frame = video_capture.read()
if self.process_current_frame:
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = numpy.ascontiguousarray(small_frame[:, :, ::-1])
self.face_locations = face_recognition.face_locations(rgb_small_frame)
self.face_encodings = face_recognition.face_encodings(rgb_small_frame, self.face_locations)
self.face_names = []
for face_encoding in self.face_encodings:
matches = face_recognition.compare_faces(self.known_face_encodings, face_encoding)
name = 'unknown'
confidence = 'Unknown'
import numpy as np
face_distances = face_recognition.face_distance(self.known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = self.known_face_names[best_match_index]
confidence = face_confidence(face_distances[best_match_index])
self.face_names.append(f'{name} ({confidence})')
self.process_current_frame = not self.process_current_frame
# Display annotations
for (top, right, bottom, left), name in zip(self.face_locations, self.face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
if 'unknown' not in name:
self.attendance_count += 1
print(f'Attendance {self.attendance_count} recorded at {datetime.datetime.now()}')
if self.attendance_count >= self.max_attendance_count:
print('Attendance completed!')
#self.attendance_count = 0 Reset the attendance count
time.sleep(5)
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), -1)
cv2.putText(frame, name, (left + 6, bottom - 6), cv2.FONT_HERSHEY_DUPLEX, 0.8, (255, 255), 1)
cv2.imshow('Face Recognition', frame)
if cv2.waitKey(1) == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
fr = FaceRecognition()
fr.run_recognition()