diff --git a/brainchop.js b/brainchop.js index f8c4a6e..f3d150a 100644 --- a/brainchop.js +++ b/brainchop.js @@ -606,13 +606,23 @@ async function load_model(modelUrl) { return await tf.loadLayersModel(modelUrl) } -async function getSliceData1D(sliceIdx, niftiHeader, niftiImage) { +async function getAllSlices2D(allSlices, slice_height, slice_width) { + const allSlices_2D = [] + for (let sliceIdx = 0; sliceIdx < allSlices.length; sliceIdx++) { + allSlices_2D.push(tf.tensor(allSlices[sliceIdx], [slice_height, slice_width])) + } + return allSlices_2D +} + +async function getSlices3D(allSlices_2D) { + return tf.stack(allSlices_2D) +} + +async function getAllSlicesData1D(num_of_slices, niftiHeader, niftiImage) { // Get nifti dimensions const cols = niftiHeader.dims[1] // Slice width const rows = niftiHeader.dims[2] // Slice height - let typedData - if (niftiHeader.datatypeCode === 2) { // enum from nvimage/utils DT_UINT8 = 2 typedData = new Uint8Array(niftiImage) @@ -640,39 +650,19 @@ async function getSliceData1D(sliceIdx, niftiHeader, niftiImage) { } else { return } - // offset to specified slice - const sliceSize = cols * rows - const sliceOffset = sliceSize * sliceIdx - const data1DimArr = [] + const allSlices = [] + let offset3D = 0 // Draw pixels - for (let row = 0; row < rows; row++) { - const rowOffset = row * cols - for (let col = 0; col < cols; col++) { - const offset = sliceOffset + rowOffset + col - const value = typedData[offset] - // Create 1Dim Array of pixel value, this 1 dim represents one channel - data1DimArr[rowOffset + col] = value & 0xff + for (let slice = 0; slice < num_of_slices; slice++) { + const slice = new Array(rows * cols) + let offset2D = 0 + for (let row = 0; row < rows; row++) { + for (let col = 0; col < cols; col++) { + const value = typedData[offset3D++] + // Create 1Dim Array of pixel value, this 1 dim represents one channel + slice[offset2D++] = value & 0xff + } } - } - return data1DimArr -} - -async function getAllSlices2D(allSlices, slice_height, slice_width) { - const allSlices_2D = [] - for (let sliceIdx = 0; sliceIdx < allSlices.length; sliceIdx++) { - allSlices_2D.push(tf.tensor(allSlices[sliceIdx], [slice_height, slice_width])) - } - return allSlices_2D -} - -async function getSlices3D(allSlices_2D) { - return tf.stack(allSlices_2D) -} - -async function getAllSlicesData1D(num_of_slices, niftiHeader, niftiImage) { - const allSlices = [] - for (let sliceIdx = 0; sliceIdx < num_of_slices; sliceIdx++) { - const slice = await getSliceData1D(sliceIdx, niftiHeader, niftiImage) allSlices.push(slice) } return allSlices @@ -1009,13 +999,15 @@ async function generateBrainMask( } else { console.log('Phase-1 Post processing disabled ... ') } - - const allOutputSlices3DCC1DimArray = [] - // Use this conversion to download output slices as nii file. Takes around 0.5 s + // Use this conversion to download output slices as nii file. Takes around 30 ms + // does not use `push` to avoid stack overflows. In future: consider .set() with typed arrays + const allOutputSlices3DCC1DimArray = new Array(allOutputSlices3DCC[0].length * allOutputSlices3DCC.length) + let index = 0; for (let sliceIdx = 0; sliceIdx < allOutputSlices3DCC.length; sliceIdx++) { - allOutputSlices3DCC1DimArray.push.apply(allOutputSlices3DCC1DimArray, allOutputSlices3DCC[sliceIdx]) + for (let i = 0; i < allOutputSlices3DCC[sliceIdx].length; i++) { + allOutputSlices3DCC1DimArray[index++] = allOutputSlices3DCC[sliceIdx][i]; + } } - let brainOut = [] if (opts.isBrainCropMaskBased) {