diff --git a/README.md b/README.md index 1d8269e..462b48b 100644 --- a/README.md +++ b/README.md @@ -11,12 +11,17 @@ https://niivue.github.io/niivue-brainchop/ ### To run ```bash -git clone https://github.com/niivue/niivue-brainchop +git clone git@github.com:niivue/niivue-brainchop.git cd niivue-brainchop npm install npm run dev ``` +Use the `Segmentation Model` pull down menu to run different tissue classifications. + + +![brainchop](brainchop.png) + ### To build ```bash diff --git a/brainchop.js b/brainchop-mainthread.js similarity index 60% rename from brainchop.js rename to brainchop-mainthread.js index c7806d5..221a633 100644 --- a/brainchop.js +++ b/brainchop-mainthread.js @@ -1,599 +1,7 @@ import * as tf from '@tensorflow/tfjs' import { BWLabeler } from './bwlabels.js' -export { runInference, inferenceModelsList, brainChopOpts } - -const brainChopOpts = { - // General settings for input shape [batchSize, batch_D, batch_H, batch_W, numOfChan] - batchSize: 1, // How many batches are used during each inference iteration - numOfChan: 1, // num of channel of the input shape - isColorEnable: true, // If false, grey scale will enabled - isAutoColors: true, // If false, manualColorsRange will be in use - bgLabelValue: 0, // Semenatic Segmentation background label value - drawBoundingVolume: false, // plot bounding volume used to crop the brain - isBrainCropMaskBased: true, // Check if brain masking will be used for cropping & optional show or brain tissue will be used - showPhase1Output: false, // This will load to papaya the output of phase-1 (ie. brain mask or brain tissue) - isPostProcessEnable: true, // If true 3D Connected Components filter will apply - isContoursViewEnable: false, // If true 3D contours of the labeled regions will apply - browserArrayBufferMaxZDim: 30, // This value depends on Memory available - telemetryFlag: false, // Ethical and transparent collection of browser usage while adhering to security and privacy standards - chartXaxisStepPercent: 10, // percent from total labels on Xaxis - uiSampleName: 'BC_UI_Sample', // Sample name used by interface - atlasSelectedColorTable: 'Fire' // Select from ["Hot-and-Cold", "Fire", "Grayscale", "Gold", "Spectrum"] -} - -// Inference Models, the ids must start from 1 in sequence -const inferenceModelsList = [ - { - id: 1, - type: 'Segmentation', - path: './models/model5_gw_ae/model.json', - modelName: '\u26A1 Tissue GWM (light)', - labelsPath: './models/model5_gw_ae/labels.json', - colorsPath: './models/model5_gw_ae/colorLUT.json', - colormapPath: './models/model5_gw_ae/colormap3.json', - preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 0, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 18, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: false, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: null, // Warning message to show when select the model. - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'Gray and white matter segmentation model. Operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than the subvolume model.' - }, - { - id: 2, - type: 'Segmentation', - path: './models/model20chan3cls/model.json', - modelName: '\u{1F52A} Tissue GWM (High Acc)', - labelsPath: './models/model20chan3cls/labels.json', - colorsPath: './models/model20chan3cls/colorLUT.json', - colormapPath: './models/model20chan3cls/colormap.json', - preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 0, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 0, // Padding size add to cropped brain - autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: true, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: - "This model may need dedicated graphics card. For more info please check with Browser Resources .", - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'Gray and white matter segmentation model. Operates on full T1 image in a single pass but needs a dedicated graphics card to operate. Provides the best accuracy with hard cropping for better speed' - }, - { - id: 3, - type: 'Segmentation', - path: './models/model20chan3cls/model.json', - modelName: '\u{1F52A} Tissue GWM (High Acc, Low Mem)', - labelsPath: './models/model20chan3cls/labels.json', - colorsPath: './models/model20chan3cls/colorLUT.json', - colormapPath: './models/model20chan3cls/colormap.json', - preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 0, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 0, // Padding size add to cropped brain - autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: true, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: - "This model may need dedicated graphics card. For more info please check with Browser Resources .", - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'Gray and white matter segmentation model. Operates on full T1 image in a single pass but needs a dedicated graphics card to operate. Provides high accuracy and fit low memory available but slower' - }, - { - id: 4, - type: 'Atlas', - path: './models/model30chan18cls/model.json', - modelName: '\u{1FA93} Subcortical + GWM (High Mem, Fast)', - labelsPath: './models/model30chan18cls/labels.json', - colorsPath: './models/model30chan18cls/colorLUT.json', - colormapPath: './models/model30chan18cls/colormap.json', - preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 200, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 0, // Padding size add to cropped brain - autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: false, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: - "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.' - }, - { - id: 5, - type: 'Atlas', - path: './models/model30chan18cls/model.json', - modelName: '\u{1FA93} Subcortical + GWM (Low Mem, Slow)', - labelsPath: './models/model30chan18cls/labels.json', - colorsPath: './models/model30chan18cls/colorLUT.json', - colormapPath: './models/model30chan18cls/colormap.json', - preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 200, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 0, // Padding size add to cropped brain - autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: false, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: - "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.' - }, - { - id: 6, - type: 'Atlas', - path: './models/model18cls/model.json', - modelName: '\u{1FA93} Subcortical + GWM (Low Mem, Faster)', - labelsPath: './models/model18cls/labels.json', - colorsPath: './models/model18cls/colorLUT.json', - colormapPath: './models/model18cls/colormap.json', - preModelId: null, // model run first e.g. Brain_Extraction { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 200, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 0, // Padding size add to cropped brain - autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: false, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: - "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.' - }, - { - id: 7, - type: 'Atlas', - path: './models/model30chan18cls/model.json', - modelName: '\u{1F52A}\u{1FA93} Subcortical + GWM (Failsafe, Less Acc)', - labelsPath: './models/model30chan18cls/labels.json', - colorsPath: './models/model30chan18cls/colorLUT.json', - colormapPath: './models/model30chan18cls/colormap.json', - preModelId: 1, // model run first e.g. Brain_Extraction { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 200, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 0, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: false, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: - "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is not a robust model, it may work on low data quality, including varying saturation, and even clinical scans. It may work also on infant brains, but your mileage may vary.' - }, - { - id: 8, - type: 'Atlas', - path: './models/model30chan50cls/model.json', - modelName: '\u{1F52A} Aparc+Aseg 50 (High Mem, Fast)', - labelsPath: './models/model30chan50cls/labels.json', - colorsPath: './models/model30chan50cls/colorLUT.json', - colormapPath: './models/model30chan50cls/colormap.json', - preModelId: 1, // Model run first e.g. crop the brain { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 200, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 0, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: true, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: - "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'This is a 50-class model, that segments the brain into the Aparc+Aseg Freesurfer Atlas but one where cortical homologues are merged into a single class.' - }, - { - id: 9, - type: 'Atlas', - path: './models/model30chan50cls/model.json', - modelName: '\u{1F52A} Aparc+Aseg 50 (Low Mem, Slow)', - labelsPath: './models/model30chan50cls/labels.json', - colorsPath: './models/model30chan50cls/colorLUT.json', - colormapPath: './models/model30chan50cls/colormap.json', - preModelId: 1, // Model run first e.g. crop the brain { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 200, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 0, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: true, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last laye - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: - "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'This is a 50-class model, that segments the brain into the Aparc+Aseg Freesurfer Atlas but one where cortical homologues are merged into a single class. The model use sequential convolution for inference to overcome browser memory limitations but leads to longer computation time.' - }, - // './models/model5_gw_ae/colorLUT.json', - { - id: 10, - type: 'Brain_Extraction', - path: './models/model5_gw_ae/model.json', - modelName: '\u26A1 Extract the Brain (FAST)', - labelsPath: null, - colorsPath: null, - preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 0, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 18, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: false, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: null, // Warning message to show when select the model. - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'Extract the brain fast model operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than the failsafe version.' - }, - { - id: 11, - type: 'Brain_Extraction', - path: './models/model11_gw_ae/model.json', - modelName: '\u{1F52A} Extract the Brain (High Acc, Slow)', - labelsPath: null, - colorsPath: null, - preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 0, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 0, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: false, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: - "This model may need dedicated graphics card. For more info please check with Browser Resources .", - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'Extract the brain high accuracy model operates on full T1 image in a single pass, but uses only 11 filters per layer. Can work on dedicated graphics cards. Still more accurate than the fast version.' - }, - { - id: 12, - type: 'Brain_Masking', - path: './models/model5_gw_ae/model.json', - modelName: '\u26A1 Brain Mask (FAST)', - labelsPath: null, - colorsPath: null, - colormapPath: './models/model5_gw_ae/colormap.json', - preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 0, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 17, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: false, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: null, // Warning message to show when select the model. - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'This fast masking model operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than failsafe version.' - }, - { - id: 13, - type: 'Brain_Masking', - path: './models/model11_gw_ae/model.json', - modelName: '\u{1F52A} Brain Mask (High Acc, Low Mem)', - labelsPath: null, - colorsPath: null, - preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 0, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 0, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: true, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: - "This model may need dedicated graphics card. For more info please check with Browser Resources .", - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'This masking model operates on full T1 image in a single pass, but uses 11 filters per layer. Can work on dedicated graphics cards. Still more accurate than fast version.' - }, - { - id: 14, - type: 'Atlas', - path: './models/model21_104class/model.json', - modelName: '\u{1F52A} Aparc+Aseg 104 (High Mem, Fast)', - labelsPath: './models/model21_104class/labels.json', - colorsPath: './models/model21_104class/colorLUT.json', - colormapPath: './models/model21_104class/colormap.json', - preModelId: 1, // model run first e.g. Brain_Extraction { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 200, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 0, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: false, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: - "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'FreeSurfer aparc+aseg atlas 104 parcellate brain areas into 104 regions. It contains a combination of the Desikan-Killiany atlas for cortical area and also segmentation of subcortical regions.' - }, - { - id: 15, - type: 'Atlas', - path: './models/model21_104class/model.json', - modelName: '\u{1F52A} Aparc+Aseg 104 (Low Mem, Slow)', - labelsPath: './models/model21_104class/labels.json', - colorsPath: './models/model21_104class/colorLUT.json', - colormapPath: './models/model21_104class/colormap.json', - preModelId: 1, // model run first e.g. Brain_Extraction { null, 1, 2, .. } - preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. - isBatchOverlapEnable: false, // create extra overlap batches for inference - numOverlapBatches: 200, // Number of extra overlap batches for inference - enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched - enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. - cropPadding: 0, // Padding size add to cropped brain - autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain - enableQuantileNorm: false, // Some models needs Quantile Normaliztion. - filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas - enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer - textureSize: 0, // Requested Texture size for the model, if unknown can be 0. - warning: - "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. - inferenceDelay: 100, // Delay in ms time while looping layers applying. - description: - 'FreeSurfer aparc+aseg atlas 104 parcellate brain areas into 104 regions. It contains a combination of the Desikan-Killiany atlas for cortical area and also segmentation of subcortical regions. The model use sequential convolution for inference to overcome browser memory limitations but leads to longer computation time. ' - } -] // inferenceModelsList - -async function checkZero(timeValue) { - return timeValue < 10 ? timeValue : '0' + timeValue -} - -async function detectBrowser() { - if (navigator.userAgent.indexOf('OPR/') > -1) { - return 'Opera' - } else if (navigator.userAgent.indexOf('Edg/') > -1) { - return 'Edge' - } else if (navigator.userAgent.indexOf('Falkon/') > -1) { - return 'Falkon' - } else if (navigator.userAgent.indexOf('Chrome/') > -1) { - return 'Chrome' - } else if (navigator.userAgent.indexOf('Firefox/') > -1) { - return 'Firefox' - } else if (navigator.userAgent.indexOf('Safari/') > -1) { - return 'Safari' - } else if (navigator.userAgent.indexOf('MSIE/') > -1 || navigator.userAgent.indexOf('rv:') > -1) { - return 'IExplorer' - } else { - return 'Unknown' - } -} - -async function detectBrowserVersion() { - if (navigator.userAgent.indexOf('OPR/') > -1) { - return parseInt(navigator.userAgent.split('OPR/')[1]) - } else if (navigator.userAgent.indexOf('Edg/') > -1) { - return parseInt(navigator.userAgent.split('Edg/')[1]) - } else if (navigator.userAgent.indexOf('Falkon/') > -1) { - return parseInt(navigator.userAgent.split('Falkon/')[1]) - } else if (navigator.userAgent.indexOf('Chrome/') > -1) { - return parseInt(navigator.userAgent.split('Chrome/')[1]) - } else if (navigator.userAgent.indexOf('Firefox/') > -1) { - return parseInt(navigator.userAgent.split('Firefox/')[1]) - } else if (navigator.userAgent.indexOf('Safari/') > -1) { - return parseInt(navigator.userAgent.split('Safari/')[1]) - } else if (navigator.userAgent.indexOf('MSIE/') > -1 || navigator.userAgent.indexOf('rv:') > -1) { - return parseInt(navigator.userAgent.split('MSIE/')[1]) - } else { - return Infinity - } -} - -async function detectOperatingSys() { - if (navigator.userAgent.indexOf('Win') > -1) { - return 'Windows' - } else if (navigator.userAgent.indexOf('Mac') > -1) { - return 'MacOS' - } else if (navigator.userAgent.indexOf('Linux') > -1) { - return 'Linux' - } else if (navigator.userAgent.indexOf('UNIX') > -1) { - return 'UNIX' - } else { - return 'Unknown' - } -} - -async function checkWebGl2(callbackUI) { - const gl = document.createElement('canvas').getContext('webgl2') - if (!gl) { - if (typeof WebGL2RenderingContext !== 'undefined') { - const msg = 'WebGL2 may be disabled. Please try updating video card drivers' - callbackUI(msg, -1, msg) - } else { - console.log('WebGL2 is not supported') - } - return false - } else { - console.log('WebGl2 is enabled') - return true - } -} - -async function detectGPUVendor() { - const gl = document.createElement('canvas').getContext('webgl') - let debugInfo - if (gl) { - debugInfo = gl.getExtension('WEBGL_debug_renderer_info') - if (debugInfo) { - const result = gl.getParameter(debugInfo.UNMASKED_VENDOR_WEBGL) - // --e.g. : NVIDIA Corporation - if (result.indexOf('(') > -1 && result.indexOf(')') > -1) { - return result.substring(result.indexOf('(') + 1, result.indexOf(')')) - } - return result - } - } - return null -} - -async function detectGPUVendor_v0() { - const gl = document.createElement('canvas').getContext('webgl') - - if (gl) { - const debugInfo = gl.getExtension('WEBGL_debug_renderer_info') - return debugInfo ? gl.getParameter(debugInfo.UNMASKED_VENDOR_WEBGL) : null - } else { - return null - } -} - -async function detectGPUCardType_v0() { - const gl = document.createElement('canvas').getContext('webgl') - if (gl) { - if (detectBrowser() === 'Firefox') { - // -- return e.g: "GeForce GTX 980/PCIe/SSE2" - return gl.getParameter(gl.RENDERER) - } - - const debugInfo = gl.getExtension('WEBGL_debug_renderer_info') - return debugInfo ? gl.getParameter(debugInfo.UNMASKED_RENDERER_WEBGL) : null - } else { - return null - } -} - -async function detectGPUCardType() { - const gl = document.createElement('canvas').getContext('webgl') - let debugInfo - - if (gl) { - if (detectBrowser() === 'Firefox') { - // -- return e.g: "GeForce GTX 980/PCIe/SSE2" - return gl.getParameter(gl.RENDERER) - } - - debugInfo = gl.getExtension('WEBGL_debug_renderer_info') - - if (debugInfo) { - let result = gl.getParameter(debugInfo.UNMASKED_RENDERER_WEBGL) - // --e.g. : ANGLE (NVIDIA Corporation, GeForce GTX 1050 Ti/PCIe/SSE2, OpenGL 4.5.0 NVIDIA 390.144) as with Chrome - // Or: GeForce GTX 1050 Ti/PCIe/SSE2 as with fireFox - - if (result.indexOf('(') > -1 && result.indexOf(')') > -1 && result.indexOf('(R)') === -1) { - result = result.substring(result.indexOf('(') + 1, result.indexOf(')')) - - if (result.split(',').length === 3) { - return result.split(',')[1].trim() - } - } - - return result - } - } - return null -} - -async function getCPUNumCores() { - return navigator.hardwareConcurrency -} - -async function isChrome() { - return /Chrome/.test(navigator.userAgent) && /Google Inc/.test(navigator.vendor) -} - -async function submitTiming2GoogleSheet(dataObj, callbackUI) { - if (navigator.onLine) { - const msg = 'Telemetry not yet supported' - callbackUI(msg, -1, msg) - console.log(dataObj) - - /* - // -- Fill form with data to submit - Object.keys(dataObj).forEach(dataKey =>{ - document.getElementById(dataKey).value = dataObj[dataKey]; - }) - //-- Settings of submission - const scriptURL = 'https://script.google.com/macros/s/AKfycbwn-Ix6IVGOwUSU1VBU8hFcABT9PqwCwN90UxfK_fXp5CEfxvIoQHZXs2XQRZQo_N8I/exec' - const form = document.forms['google-sheet'] - //-- Add event handler to the form. - form.addEventListener('submit', e => { - e.preventDefault() - fetch(scriptURL, { method: 'POST', body: new FormData(form)}) - .then(response => console.log("------Done------")) - .catch(error => console.error('Error!', error.message)) - }) - //-- Submit the form - document.getElementById("SubmitStatisticalData").click(); - */ - } else { - console.log(' Offline Mode ') - } -} +import { inferenceModelsList } from "./brainchop-parameters.js" +export { runInference} async function getModelNumParameters(modelObj) { let numParameters = 0 @@ -616,6 +24,7 @@ async function isModelChnlLast(modelObj) { } async function load_model(modelUrl) { + console.log('main thread load_model', modelUrl) return await tf.loadLayersModel(modelUrl) } @@ -776,131 +185,10 @@ async function tensor2LightBuffer(tensor, dtype) { async function draw3dObjBoundingVolume(unstackOutVolumeTensor) { window.alert('draw3dObjBoundingVolume() is not dead code?') - /* - console.log("Plot cropped volume shape ... "); - // Convert all slices into 1 Dim array to download - - let allOutputSlices3DCC = []; - let allOutputSlices3DContours = []; - - - // dataSync() using to flatten array. Takes around 1.5 s - for(let sliceTensorIdx = 0; sliceTensorIdx < unstackOutVolumeTensor.length; sliceTensorIdx++ ) { - allOutputSlices3DCC[sliceTensorIdx] = Array.from(unstackOutVolumeTensor[sliceTensorIdx].dataSync()); - } - - // if(false) { // Enable contour for overlay option - // // Remove noisy regions using 3d CC - // let sliceWidth = niftiHeader.dims[1]; - // let sliceHeight = niftiHeader.dims[2]; - // allOutputSlices3DCC = findVolumeContours(allOutputSlices3DCC, sliceHeight, sliceWidth, 2 ); - // } - - let allOutputSlices3DCC1DimArray = []; - // Use this conversion to download output slices as nii file. Takes around 0.5 s - for(let sliceIdx = 0; sliceIdx < allOutputSlices3DCC.length; sliceIdx++ ) { - allOutputSlices3DCC1DimArray.push.apply(allOutputSlices3DCC1DimArray, allOutputSlices3DCC[sliceIdx]); - } - - console.log("Done with allOutputSlices3DCC1DimArray ") - - let brainOut = []; - - - let brainMaskTensor1d = binarizeVolumeDataTensor(tf.tensor1d(allOutputSlices3DCC1DimArray)); - brainOut = Array.from(brainMaskTensor1d.dataSync()); - - - // labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainExtractionData1DimArr); - let labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainOut); - - TODO Papaa specific code? - if(true) { // flag to not draw for now - if(opts.isColorEnable) { - let blob = new Blob([labelArrayBuffer], {type: "application/octet-binary;charset=utf-8"}); - let file = new File([blob], "temp.nii"); - params_label["files"] = [file]; - params_label[file["name"]] = {lut: "Grayscale", interpolation: false}; - - } else { - params_label["binaryImages"] = [labelArrayBuffer]; - } - - // Set the view of container-2 as container-1 - params_label["mainView"] = papayaContainers[0].viewer.mainImage.sliceDirection == 1? "axial" : - papayaContainers[0].viewer.mainImage.sliceDirection == 2? "coronal" : "sagittal"; - - - papaya.Container.resetViewer(1, params_label); - papayaContainers[1].viewer.screenVolumes[0].alpha = 0.2; // 0 to 1 screenVolumes[0] is first image loaded in Labels viewer - papayaContainers[1].viewer.drawViewer(true, false); - - - // To sync swap view button - document.getElementById(PAPAYA_CONTROL_MAIN_SWAP_BUTTON_CSS + papayaContainers[0].containerIndex).addEventListener("click", function(){ - papayaContainers[1].viewer.rotateViews() - - }) - - document.getElementById(PAPAYA_CONTROL_MAIN_SWAP_BUTTON_CSS + papayaContainers[1].containerIndex).addEventListener("click", function(){ - papayaContainers[0].viewer.rotateViews() - - }) - - } - */ } async function argMaxLarge(outVolumeBuffer, num_of_slices, slice_height, slice_width, numOfClasses, dtype = 'float32') { window.alert('argMaxLarge() is not dead code?') - /* - if( findMinNumOfArrBufs(num_of_slices, slice_height, slice_width, numOfClasses, dtype) == 1) { - - // console.log("Convert output tensor to buffer"); - // reshape modelOutTensor.shape : [ 1, 256, 256, 256, 3 ] to [ 256, 256, 256, 3 ] - //-- let outVolumeBuffer = tensor2Buffer(modelOutTensor.relu().reshape([num_of_slices, slice_height, slice_width, numOfClasses])); - - //-- let outVolumeBuffer = tensor2Buffer(modelOutTensor.reshape([num_of_slices, slice_height, slice_width, numOfClasses])); - //-- let outVolumeBuffer = tensor2LightBuffer(modelOutTensor.reshape([num_of_slices, slice_height, slice_width, numOfClasses]), dtype); - - console.log("Start argMaxLarge for buffer with last axis -1") - - let outBuffer = tf.buffer([num_of_slices, slice_height, slice_width ], dtype=tf.float32); - - for(let depthIdx = 0; depthIdx < num_of_slices; depthIdx += 1) { - for(let rowIdx = 0; rowIdx < slice_height; rowIdx += 1) { - for(let colIdx = 0; colIdx < slice_width; colIdx += 1) { - // index of buffer with max Freq or max number so the index of that buffer is the right concensus label - let indexOfMaxVotedBuffer = -1; - // let maxVoxelValue = -Infinity; - let maxVoxelValue = -1000000; - - for(let bufferIdx = 0; bufferIdx < numOfClasses; bufferIdx += 1) { - //Requested out of range element at 1,0,0,0. Buffer shape=1,256,256,256,3 - let voxelValue = outVolumeBuffer.get(depthIdx, rowIdx, colIdx, bufferIdx ); - - if(maxVoxelValue <= voxelValue) { - maxVoxelValue = voxelValue; - indexOfMaxVotedBuffer = bufferIdx; - } - } - - outBuffer.set(indexOfMaxVotedBuffer, depthIdx, rowIdx, colIdx); - - } - } - } - - console.log("argMaxLarge for buffer ..Done"); - - return outBuffer.toTensor(); - - } else { - console.log(" Terminated due to browser memory limitation (TODO: callbackUI)"); - console.log("argMaxLarge needs buffer division .. "); - return 0; - } - */ } async function addZeroPaddingTo3dTensor(tensor3d, rowPadArr = [1, 1], colPadArr = [1, 1], depthPadArr = [1, 1]) { @@ -1026,17 +314,6 @@ async function generateBrainMask( } else { // Brain tissue window.alert('getAllSlicesData1D() is not dead code? niftiHeader and niftiImage required by getAllSlicesData1D') - /*const allSlices = getAllSlicesData1D(num_of_slices, niftiHeader, niftiImage) - for (let sliceIdx = 0; sliceIdx < allOutputSlices3DCC.length; sliceIdx++) { - for (let pixelIdx = 0; pixelIdx < slice_height * slice_width; pixelIdx++) { - // Filter smaller regions original MRI data - if (allOutputSlices3DCC[sliceIdx][pixelIdx] === 0) { - allSlices[sliceIdx][pixelIdx] = 0 - } - } - - brainOut.push.apply(brainOut, allSlices[sliceIdx]) - }*/ } if (isFinalImage || opts.showPhase1Output) {//all done callbackImg(brainOut, opts, modelEntry) @@ -1368,9 +645,6 @@ async function generateOutputSlicesV2( // Create a new TypedArray from img with the same type as outLabelVolume const allOutputSlices3DCC1DimArray = new Uint8Array(img) - // ? const maskBrainExtraction = false - - // let labelArrayBuffer const modelType = modelEntry.type // return img @@ -1602,6 +876,7 @@ async function inferenceFullVolumeSeqCovLayerPhase2( statData.Model_Param = await getModelNumParameters(res) statData.Model_Layers = await getModelNumLayers(res) statData.Model = modelEntry.modelName + statData.Seq_Conv = modelEntry.enableSeqConv statData.Extra_Info = null // Determine the number of output channels in the last layer of the model @@ -1637,8 +912,8 @@ async function inferenceFullVolumeSeqCovLayerPhase2( } tf.dispose(curTensor[i - 1]) } catch (err) { - // ? original code provided special dialog for shaders if( err.message === "Failed to compile fragment shader.") { - callbackUI(err.message, -1, err.message) + const errTxt = 'Your graphics card (e.g. Intel) may not be compatible with WebGL. ' + err.message + callbackUI(errTxt, -1, errTxt) window.clearInterval(timer) tf.engine().endScope() @@ -1650,9 +925,7 @@ async function inferenceFullVolumeSeqCovLayerPhase2( statData.Error_Type = err.message statData.Extra_Err_Info = 'Failed while model layer ' + i + ' apply' - if (opts.telemetryFlag) { - await submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) return 0 } @@ -1792,9 +1065,7 @@ async function inferenceFullVolumeSeqCovLayerPhase2( statData.Error_Type = error.message statData.Extra_Err_Info = 'Failed while generating output' - if (opts.telemetryFlag) { - await submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) return 0 } @@ -1810,9 +1081,7 @@ async function inferenceFullVolumeSeqCovLayerPhase2( statData.Postprocess_t = Postprocess_t statData.Status = 'OK' - if (opts.telemetryFlag) { - await submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) callbackUI('Segmentation finished', 0) callbackImg(outimg, opts, modelEntry) return 0 @@ -1970,8 +1239,6 @@ async function inferenceFullVolumePhase2( let startTime = performance.now() let adjusted_input_shape = [] const res = await model - // ? - // model.then(function (res) { try { startTime = performance.now() const inferenceStartTime = performance.now() @@ -1992,7 +1259,7 @@ async function inferenceFullVolumePhase2( const layersLength = res.layers.length console.log('res.layers.length ', layersLength) - const isChannelLast = isModelChnlLast(res) + const isChannelLast = await isModelChnlLast(res) const batchSize = opts.batchSize const numOfChan = opts.numOfChan @@ -2036,11 +1303,6 @@ async function inferenceFullVolumePhase2( const curTensor = [] curTensor[0] = cropped_slices_3d_w_pad.reshape(adjusted_input_shape) - // console.log("curTensor[0] :", curTensor[0].dataSync()) - - // ? let curProgBar = parseInt(document.getElementById("progressBar").style.width) - // let timer = window.setInterval(function() { - // ???? subsequent await are required const timer = window.setInterval(async function () { try { curTensor[i] = res.layers[i].apply(curTensor[i - 1]) @@ -2056,9 +1318,7 @@ async function inferenceFullVolumePhase2( statData.Error_Type = err.message statData.Extra_Err_Info = 'Failed while model layer ' + i + ' apply' - if (opts.telemetryFlag) { - submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) return 0 } @@ -2071,8 +1331,6 @@ async function inferenceFullVolumePhase2( const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons callbackUI(unreliableReasons, NaN, unreliableReasons) } - // ? document.getElementById("memoryStatus").style.backgroundColor = memStatus - if (i === layersLength - 1) { window.clearInterval(timer) @@ -2133,9 +1391,7 @@ async function inferenceFullVolumePhase2( statData.Error_Type = err2.message statData.Extra_Err_Info = 'prediction_argmax from argMaxLarge failed' - if (opts.telemetryFlag) { - submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) return 0 } @@ -2156,9 +1412,7 @@ async function inferenceFullVolumePhase2( statData.Error_Type = err1.message statData.Extra_Err_Info = 'prediction_argmax from argMaxLarge not support yet channel first' - if (opts.telemetryFlag) { - submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) return 0 } @@ -2202,10 +1456,8 @@ async function inferenceFullVolumePhase2( console.log('outLabelVolume transposed') outLabelVolume = outLabelVolume.transpose() } - // ???? await outLabelVolume = await removeZeroPaddingFrom3dTensor(outLabelVolume, pad, pad, pad) console.log(' outLabelVolume without padding shape : ', outLabelVolume.shape) - // ???? await outLabelVolume = await resizeWithZeroPadding( outLabelVolume, num_of_slices, @@ -2234,8 +1486,6 @@ async function inferenceFullVolumePhase2( tf.dispose(outLabelVolume) tf.engine().endScope() tf.engine().disposeVariables() - // ???? await - // BINGO outimg = await generateOutputSlicesV2( img, Vshape, @@ -2262,18 +1512,13 @@ async function inferenceFullVolumePhase2( statData.Error_Type = error.message statData.Extra_Err_Info = 'Failed while generating output' - if (opts.telemetryFlag) { - submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) return 0 } const Postprocess_t = ((performance.now() - startTime) / 1000).toFixed(4) - // ? $$("downloadBtn").enable() - // ? $$("segmentBtn").enable() - // $$("imageUploader").enable() // tf.engine().endScope() tf.engine().disposeVariables() @@ -2287,9 +1532,7 @@ async function inferenceFullVolumePhase2( statData.Postprocess_t = Postprocess_t statData.Status = 'OK' - if (opts.telemetryFlag) { - submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) clearInterval(timer) callbackUI('Segmentation finished', 0) callbackImg(outimg, opts, modelEntry) @@ -2303,9 +1546,6 @@ async function inferenceFullVolumePhase2( 'If webgl context is lost, try to restore webgl context by visit the link ' + 'here' ) - // ? document.getElementById("webGl2Status").style.backgroundColor = isWebGL2ContextLost() ? "Red" : "Green" - - // ? document.getElementById("memoryStatus").style.backgroundColor = tf.memory().unreliable ? "Red" : "Green" } // }) } @@ -2327,7 +1567,7 @@ async function inferenceFullVolumePhase1( statData.No_SubVolumes = 1 // load pre-model for inference first, can be null if no pre-model such as GWM models if (modelEntry.preModelId) { - const preModel = await load_model(inferenceModelsList[modelEntry.preModelId - 1].path) + const preModel = await load_model(opts.rootURL + inferenceModelsList[modelEntry.preModelId - 1].path) const transpose = inferenceModelsList[modelEntry.preModelId - 1].enableTranspose const quantileNorm = inferenceModelsList[modelEntry.preModelId - 1].enableQuantileNorm let preModel_slices_3d = null @@ -2413,8 +1653,6 @@ async function inferenceFullVolumePhase1( statData.Channel_Last = isPreModelChannelLast statData.Model_Param = await getModelNumParameters(preModelObject) statData.Model_Layers = await getModelNumLayers(preModelObject) - // ? statData["Model"] = inferenceModelsList[ modelEntry["preModelId"] - 1]["modelName"] - // ? statData["Extra_Info"] = inferenceModelsList[$$("selectModel").getValue() - 1]["modelName"] // maxLabelPredicted in whole volume of the brain let maxLabelPredicted = 0 @@ -2434,8 +1672,8 @@ async function inferenceFullVolumePhase1( try { curTensor[i] = res.layers[i].apply(curTensor[i - 1]) } catch (err) { - // ? original code provided special dialog for fragment shader if( err.message === "Failed to compile fragment shader.") - callbackUI(err.message, -1, err.message) + const errTxt = 'Your graphics card (e.g. Intel) may not be compatible with WebGL. ' + err.message + callbackUI(errTxt, -1, errTxt) window.clearInterval(timer) tf.engine().endScope() @@ -2447,9 +1685,7 @@ async function inferenceFullVolumePhase1( statData.Error_Type = err.message statData.Extra_Err_Info = 'PreModel Failed while model layer ' + i + ' apply' - if (opts.telemetryFlag) { - await submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) return 0 } @@ -2520,9 +1756,7 @@ async function inferenceFullVolumePhase1( statData.Error_Type = err2.message statData.Extra_Err_Info = 'preModel prediction_argmax from argMaxLarge failed' - if (opts.telemetryFlag) { - await submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) return 0 } @@ -2543,9 +1777,7 @@ async function inferenceFullVolumePhase1( statData.Error_Type = err1.message statData.Extra_Err_Info = 'preModel prediction_argmax from argMaxLarge not support yet channel first' - if (opts.telemetryFlag) { - await submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) return 0 } @@ -2612,9 +1844,7 @@ async function inferenceFullVolumePhase1( statData.Error_Type = error.message statData.Extra_Err_Info = 'Pre-model failed while generating output' - if (opts.telemetryFlag) { - await submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) return 0 } @@ -2629,9 +1859,7 @@ async function inferenceFullVolumePhase1( statData.Postprocess_t = Postprocess_t statData.Status = 'OK' - if (opts.telemetryFlag) { - await submitTiming2GoogleSheet(statData, callbackUI) - } + callbackUI('', -1, '', statData) if (slices_3d_mask == null) { const msg = 'slice_3d_mask failed ...' @@ -2668,8 +1896,6 @@ async function inferenceFullVolumePhase1( } else { // Mask cropping BUT no seq conv console.log('------ Mask Cropping - NO Seq Convoluton ------') - // ? await - // todo output not used outimg = await await inferenceFullVolumePhase2( model, slices_3d, @@ -2783,6 +2009,8 @@ async function enableProductionMode(textureF16Flag = true) { } async function runInference(opts, modelEntry, niftiHeader, niftiImage, callbackImg, callbackUI) { + const statData = [] + statData.startTime = performance.now() callbackUI('Segmentation started', 0) const startTime = performance.now() const batchSize = opts.batchSize @@ -2800,8 +2028,9 @@ async function runInference(opts, modelEntry, niftiHeader, niftiImage, callbackI tf.engine().startScope() console.log('Batch size: ', batchSize) console.log('Num of Channels: ', numOfChan) - const model = await load_model(modelEntry.path) + const model = await load_model(opts.rootURL + modelEntry.path) await enableProductionMode(true) + statData.TF_Backend = tf.getBackend() const modelObject = model let batchInputShape = [] // free global variable of 16777216 voxel @@ -2859,9 +2088,8 @@ async function runInference(opts, modelEntry, niftiHeader, niftiImage, callbackI } else { isModelFullVol = false } - // ? const modelNumLayers = modelObject.layers.length + statData.isModelFullVol = isModelFullVol // Model output number of segmentations - // ? const outLabels = modelObject.layers[modelNumLayers - 1].bias.shape[0] let allSlices = await getAllSlicesData1D(num_of_slices, niftiHeader, niftiImage) const allSlices_2D = await getAllSlices2D(allSlices, slice_height, slice_width) // free array from mem @@ -2870,89 +2098,6 @@ async function runInference(opts, modelEntry, niftiHeader, niftiImage, callbackI let slices_3d = await getSlices3D(allSlices_2D) // free tensor from mem tf.dispose(allSlices_2D) - const statData = [] - if (opts.telemetryFlag) { - const Preprocess_t = ((performance.now() - startTime) / 1000).toFixed(4) - // -- Timing data to collect - const today = new Date() - if (isModelFullVol) { - statData.Brainchop_Ver = 'FullVolume' - } else { - statData.Brainchop_Ver = 'SubVolumes' - } - - /* let geoData = getBrowserLocationInfo() - if(geoData) { - statData["Country"] = geoData["Country"] - statData["State"] = geoData["Region"] - statData["City"] = geoData["City"] - } else { - statData["Country"] = "" - statData["State"] = "" - statData["City"] = "" - } */ - - statData.Date = parseInt(today.getMonth() + 1) + '/' + today.getDate() + '/' + today.getFullYear() - statData.Time = - (await checkZero(today.getHours())) + ':' + checkZero(today.getMinutes()) + ':' + checkZero(today.getSeconds()) - // ? statData["File_Name"] = refFileName == "" ? opts.uiSampleName: refFileName - statData.Input_Shape = JSON.stringify(batchInputShape) - statData.Output_Shape = JSON.stringify(modelObject.output.shape) - statData.Channel_Last = isChannelLast - statData.Model_Param = await getModelNumParameters(modelObject) - statData.Model_Layers = await getModelNumLayers(modelObject) - - statData.Preprocess_t = Preprocess_t - statData.Model = modelEntry.modelName - statData.Browser = await detectBrowser() - statData.Browser_Ver = await detectBrowserVersion() - statData.OS = await detectOperatingSys() - // ? NiiVue requires WebGL2, all contemporary browsers support it statData["WebGL1"] = checkWebGl1() - statData.WebGL2 = await checkWebGl2(callbackUI) - statData.GPU_Vendor = await detectGPUVendor() - statData.GPU_Card = await detectGPUCardType() - statData.GPU_Vendor_Full = await detectGPUVendor_v0() - statData.GPU_Card_Full = await detectGPUCardType_v0() - statData.CPU_Cores = await getCPUNumCores() - statData.TF_Backend = tf.getBackend() - - statData.Which_Brainchop = 'latest' - // ? statData["Seq_Conv"] = inferenceModelsList[$$("selectModel").getValue() - 1]["enableSeqConv"] - statData.Seq_Conv = modelEntry.enableSeqConv - - // -- Init - statData.Actual_Labels = Infinity - statData.Expect_Labels = Infinity - statData.NumLabels_Match = null - statData.Inference_t = Infinity - statData.Merge_t = Infinity - statData.Postprocess_t = Infinity - statData.Status = null - statData.Error_Type = null - statData.Extra_Err_Info = null - statData.Extra_Info = null - - if (isChrome()) { - statData.Heap_Size_MB = window.performance.memory.totalJSHeapSize / (1024 * 1024).toFixed(2) - statData.Used_Heap_MB = window.performance.memory.usedJSHeapSize / (1024 * 1024).toFixed(2) - statData.Heap_Limit_MB = window.performance.memory.jsHeapSizeLimit / (1024 * 1024).toFixed(2) - } - const gl = checkWebGl2() ? document.createElement('canvas').getContext('webgl2') : null - - console.log('MAX_TEXTURE_SIZE :', gl.getParameter(gl.MAX_TEXTURE_SIZE)) - console.log('MAX_RENDERBUFFER_SIZE :', gl.getParameter(gl.MAX_RENDERBUFFER_SIZE)) - - // -- check to see if machine has two graphics card: one is the builtin e.g. Intel Iris Pro, the other is NVIDIA GeForce GT 750M. - // -- check browser use which one, if debugInfo is null then installed GPU is not used - const debugInfo = gl.getExtension('WEBGL_debug_renderer_info') - console.log('VENDOR WEBGL:', gl.getParameter(debugInfo.UNMASKED_VENDOR_WEBGL)) - - if (gl) { - statData.Texture_Size = gl.getParameter(gl.MAX_TEXTURE_SIZE) // --returns the maximum dimension the GPU can address - } else { - statData.Texture_Size = null - } - } // if telemetryFlag const transpose = modelEntry.enableTranspose const enableCrop = modelEntry.enableCrop if (isModelFullVol) { diff --git a/brainchop-parameters.js b/brainchop-parameters.js new file mode 100644 index 0000000..cd226e3 --- /dev/null +++ b/brainchop-parameters.js @@ -0,0 +1,410 @@ +export {inferenceModelsList, brainChopOpts } + +const brainChopOpts = { + // General settings for input shape [batchSize, batch_D, batch_H, batch_W, numOfChan] + batchSize: 1, // How many batches are used during each inference iteration + numOfChan: 1, // num of channel of the input shape + isColorEnable: true, // If false, grey scale will enabled + isAutoColors: true, // If false, manualColorsRange will be in use + bgLabelValue: 0, // Semenatic Segmentation background label value + drawBoundingVolume: false, // plot bounding volume used to crop the brain + isGPU: true, //use WebGL/GPU (faster) or CPU (compatibility) + isBrainCropMaskBased: true, // Check if brain masking will be used for cropping & optional show or brain tissue will be used + showPhase1Output: false, // This will load to papaya the output of phase-1 (ie. brain mask or brain tissue) + isPostProcessEnable: true, // If true 3D Connected Components filter will apply + isContoursViewEnable: false, // If true 3D contours of the labeled regions will apply + browserArrayBufferMaxZDim: 30, // This value depends on Memory available + telemetryFlag: false, // Ethical and transparent collection of browser usage while adhering to security and privacy standards + chartXaxisStepPercent: 10, // percent from total labels on Xaxis + uiSampleName: 'BC_UI_Sample', // Sample name used by interface + atlasSelectedColorTable: 'Fire' // Select from ["Hot-and-Cold", "Fire", "Grayscale", "Gold", "Spectrum"] +} + +// Inference Models, the ids must start from 1 in sequence +const inferenceModelsList = [ + { + id: 1, + type: 'Segmentation', + path: '/models/model5_gw_ae/model.json', + modelName: '\u26A1 Tissue GWM (light)', + labelsPath: './models/model5_gw_ae/labels.json', + colorsPath: './models/model5_gw_ae/colorLUT.json', + colormapPath: './models/model5_gw_ae/colormap3.json', + preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 0, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 18, // Padding size add to cropped brain + autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: false, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: null, // Warning message to show when select the model. + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'Gray and white matter segmentation model. Operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than the subvolume model.' + }, + { + id: 2, + type: 'Segmentation', + path: '/models/model20chan3cls/model.json', + modelName: '\u{1F52A} Tissue GWM (High Acc)', + labelsPath: './models/model20chan3cls/labels.json', + colorsPath: './models/model20chan3cls/colorLUT.json', + colormapPath: './models/model20chan3cls/colormap.json', + preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 0, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: true, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: + "This model may need dedicated graphics card. For more info please check with Browser Resources .", + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'Gray and white matter segmentation model. Operates on full T1 image in a single pass but needs a dedicated graphics card to operate. Provides the best accuracy with hard cropping for better speed' + }, + { + id: 3, + type: 'Segmentation', + path: '/models/model20chan3cls/model.json', + modelName: '\u{1F52A} Tissue GWM (High Acc, Low Mem)', + labelsPath: './models/model20chan3cls/labels.json', + colorsPath: './models/model20chan3cls/colorLUT.json', + colormapPath: './models/model20chan3cls/colormap.json', + preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 0, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: true, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: + "This model may need dedicated graphics card. For more info please check with Browser Resources .", + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'Gray and white matter segmentation model. Operates on full T1 image in a single pass but needs a dedicated graphics card to operate. Provides high accuracy and fit low memory available but slower' + }, + { + id: 4, + type: 'Atlas', + path: '/models/model30chan18cls/model.json', + modelName: '\u{1FA93} Subcortical + GWM (High Mem, Fast)', + labelsPath: './models/model30chan18cls/labels.json', + colorsPath: './models/model30chan18cls/colorLUT.json', + colormapPath: './models/model30chan18cls/colormap.json', + preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 200, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: false, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: + "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.' + }, + { + id: 5, + type: 'Atlas', + path: '/models/model30chan18cls/model.json', + modelName: '\u{1FA93} Subcortical + GWM (Low Mem, Slow)', + labelsPath: './models/model30chan18cls/labels.json', + colorsPath: './models/model30chan18cls/colorLUT.json', + colormapPath: './models/model30chan18cls/colormap.json', + preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 200, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: false, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: + "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.' + }, + { + id: 6, + type: 'Atlas', + path: '/models/model18cls/model.json', + modelName: '\u{1FA93} Subcortical + GWM (Low Mem, Faster)', + labelsPath: './models/model18cls/labels.json', + colorsPath: './models/model18cls/colorLUT.json', + colormapPath: './models/model18cls/colormap.json', + preModelId: null, // model run first e.g. Brain_Extraction { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 200, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0.2, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: false, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: + "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is a robust model able to handle range of data quality, including varying saturation, and even clinical scans. It may work on infant brains, but your mileage may vary.' + }, + { + id: 7, + type: 'Atlas', + path: '/models/model30chan18cls/model.json', + modelName: '\u{1F52A}\u{1FA93} Subcortical + GWM (Failsafe, Less Acc)', + labelsPath: './models/model30chan18cls/labels.json', + colorsPath: './models/model30chan18cls/colorLUT.json', + colormapPath: './models/model30chan18cls/colormap.json', + preModelId: 1, // model run first e.g. Brain_Extraction { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 200, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: false, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: + "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'Parcellation of the brain into 17 regions: gray and white matter plus subcortical areas. This is not a robust model, it may work on low data quality, including varying saturation, and even clinical scans. It may work also on infant brains, but your mileage may vary.' + }, + { + id: 8, + type: 'Atlas', + path: '/models/model30chan50cls/model.json', + modelName: '\u{1F52A} Aparc+Aseg 50 (High Mem, Fast)', + labelsPath: './models/model30chan50cls/labels.json', + colorsPath: './models/model30chan50cls/colorLUT.json', + colormapPath: './models/model30chan50cls/colormap.json', + preModelId: 1, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 200, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: true, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: + "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'This is a 50-class model, that segments the brain into the Aparc+Aseg Freesurfer Atlas but one where cortical homologues are merged into a single class.' + }, + { + id: 9, + type: 'Atlas', + path: '/models/model30chan50cls/model.json', + modelName: '\u{1F52A} Aparc+Aseg 50 (Low Mem, Slow)', + labelsPath: './models/model30chan50cls/labels.json', + colorsPath: './models/model30chan50cls/colorLUT.json', + colormapPath: './models/model30chan50cls/colormap.json', + preModelId: 1, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 200, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: true, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last laye + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: + "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'This is a 50-class model, that segments the brain into the Aparc+Aseg Freesurfer Atlas but one where cortical homologues are merged into a single class. The model use sequential convolution for inference to overcome browser memory limitations but leads to longer computation time.' + }, + // './models/model5_gw_ae/colorLUT.json', + { + id: 10, + type: 'Brain_Extraction', + path: '/models/model5_gw_ae/model.json', + modelName: '\u26A1 Extract the Brain (FAST)', + labelsPath: null, + colorsPath: null, + preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 0, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 18, // Padding size add to cropped brain + autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: false, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: null, // Warning message to show when select the model. + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'Extract the brain fast model operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than the failsafe version.' + }, + { + id: 11, + type: 'Brain_Extraction', + path: '/models/model11_gw_ae/model.json', + modelName: '\u{1F52A} Extract the Brain (High Acc, Slow)', + labelsPath: null, + colorsPath: null, + preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 0, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: false, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: + "This model may need dedicated graphics card. For more info please check with Browser Resources .", + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'Extract the brain high accuracy model operates on full T1 image in a single pass, but uses only 11 filters per layer. Can work on dedicated graphics cards. Still more accurate than the fast version.' + }, + { + id: 12, + type: 'Brain_Masking', + path: '/models/model5_gw_ae/model.json', + modelName: '\u26A1 Brain Mask (FAST)', + labelsPath: null, + colorsPath: null, + colormapPath: './models/model5_gw_ae/colormap.json', + preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 0, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 17, // Padding size add to cropped brain + autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: false, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: null, // Warning message to show when select the model. + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'This fast masking model operates on full T1 image in a single pass, but uses only 5 filters per layer. Can work on integrated graphics cards but is barely large enough to provide good accuracy. Still more accurate than failsafe version.' + }, + { + id: 13, + type: 'Brain_Masking', + path: '/models/model11_gw_ae/model.json', + modelName: '\u{1F52A} Brain Mask (High Acc, Low Mem)', + labelsPath: null, + colorsPath: null, + preModelId: null, // Model run first e.g. crop the brain { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 0, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: true, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: + "This model may need dedicated graphics card. For more info please check with Browser Resources .", + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'This masking model operates on full T1 image in a single pass, but uses 11 filters per layer. Can work on dedicated graphics cards. Still more accurate than fast version.' + }, + { + id: 14, + type: 'Atlas', + path: '/models/model21_104class/model.json', + modelName: '\u{1F52A} Aparc+Aseg 104 (High Mem, Fast)', + labelsPath: './models/model21_104class/labels.json', + colorsPath: './models/model21_104class/colorLUT.json', + colormapPath: './models/model21_104class/colormap.json', + preModelId: 1, // model run first e.g. Brain_Extraction { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 200, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: false, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: false, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: + "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'FreeSurfer aparc+aseg atlas 104 parcellate brain areas into 104 regions. It contains a combination of the Desikan-Killiany atlas for cortical area and also segmentation of subcortical regions.' + }, + { + id: 15, + type: 'Atlas', + path: '/models/model21_104class/model.json', + modelName: '\u{1F52A} Aparc+Aseg 104 (Low Mem, Slow)', + labelsPath: './models/model21_104class/labels.json', + colorsPath: './models/model21_104class/colorLUT.json', + colormapPath: './models/model21_104class/colormap.json', + preModelId: 1, // model run first e.g. Brain_Extraction { null, 1, 2, .. } + preModelPostProcess: false, // If true, perform postprocessing to remove noisy regions after preModel inference generate output. + isBatchOverlapEnable: false, // create extra overlap batches for inference + numOverlapBatches: 200, // Number of extra overlap batches for inference + enableTranspose: true, // Keras and tfjs input orientation may need a tranposing step to be matched + enableCrop: true, // For speed-up inference, crop brain from background before feeding to inference model to lower memory use. + cropPadding: 0, // Padding size add to cropped brain + autoThreshold: 0, // Threshold between 0 and 1, given no preModel and tensor is normalized either min-max or by quantiles. Will remove noisy voxels around brain + enableQuantileNorm: false, // Some models needs Quantile Normaliztion. + filterOutWithPreMask: false, // Can be used to multiply final output with premodel output mask to crean noisy areas + enableSeqConv: true, // For low memory system and low configuration, enable sequential convolution instead of last layer + textureSize: 0, // Requested Texture size for the model, if unknown can be 0. + warning: + "This model may need dedicated graphics card. For more info please check with Browser Resources .", // Warning message to show when select the model. + inferenceDelay: 100, // Delay in ms time while looping layers applying. + description: + 'FreeSurfer aparc+aseg atlas 104 parcellate brain areas into 104 regions. It contains a combination of the Desikan-Killiany atlas for cortical area and also segmentation of subcortical regions. The model use sequential convolution for inference to overcome browser memory limitations but leads to longer computation time. ' + } +] // inferenceModelsList diff --git a/brainchop-telemetry.js b/brainchop-telemetry.js new file mode 100644 index 0000000..603d132 --- /dev/null +++ b/brainchop-telemetry.js @@ -0,0 +1,201 @@ +export {isChrome, localSystemDetails } + +async function detectBrowser() { + if (navigator.userAgent.indexOf('OPR/') > -1) { + return 'Opera' + } else if (navigator.userAgent.indexOf('Edg/') > -1) { + return 'Edge' + } else if (navigator.userAgent.indexOf('Falkon/') > -1) { + return 'Falkon' + } else if (navigator.userAgent.indexOf('Chrome/') > -1) { + return 'Chrome' + } else if (navigator.userAgent.indexOf('Firefox/') > -1) { + return 'Firefox' + } else if (navigator.userAgent.indexOf('Safari/') > -1) { + return 'Safari' + } else if (navigator.userAgent.indexOf('MSIE/') > -1 || navigator.userAgent.indexOf('rv:') > -1) { + return 'IExplorer' + } else { + return 'Unknown' + } +} + +async function detectBrowserVersion() { + if (navigator.userAgent.indexOf('OPR/') > -1) { + return parseInt(navigator.userAgent.split('OPR/')[1]) + } else if (navigator.userAgent.indexOf('Edg/') > -1) { + return parseInt(navigator.userAgent.split('Edg/')[1]) + } else if (navigator.userAgent.indexOf('Falkon/') > -1) { + return parseInt(navigator.userAgent.split('Falkon/')[1]) + } else if (navigator.userAgent.indexOf('Chrome/') > -1) { + return parseInt(navigator.userAgent.split('Chrome/')[1]) + } else if (navigator.userAgent.indexOf('Firefox/') > -1) { + return parseInt(navigator.userAgent.split('Firefox/')[1]) + } else if (navigator.userAgent.indexOf('Safari/') > -1) { + return parseInt(navigator.userAgent.split('Safari/')[1]) + } else if (navigator.userAgent.indexOf('MSIE/') > -1 || navigator.userAgent.indexOf('rv:') > -1) { + return parseInt(navigator.userAgent.split('MSIE/')[1]) + } else { + return Infinity + } +} + +async function detectOperatingSys() { + if (navigator.userAgent.indexOf('Win') > -1) { + return 'Windows' + } else if (navigator.userAgent.indexOf('Mac') > -1) { + return 'MacOS' + } else if (navigator.userAgent.indexOf('Linux') > -1) { + return 'Linux' + } else if (navigator.userAgent.indexOf('UNIX') > -1) { + return 'UNIX' + } else { + return 'Unknown' + } +} + +async function checkWebGl2(gl) { + //const gl = document.createElement('canvas').getContext('webgl2') + if (!gl) { + if (typeof WebGL2RenderingContext !== 'undefined') { + const msg = 'WebGL2 may be disabled. Please try updating video card drivers' + } else { + console.log('WebGL2 is not supported') + } + return false + } else { + console.log('WebGl2 is enabled') + return true + } +} + +async function detectGPUVendor(gl) { + //const gl = document.createElement('canvas').getContext('webgl') + let debugInfo + if (gl) { + debugInfo = gl.getExtension('WEBGL_debug_renderer_info') + if (debugInfo) { + const result = gl.getParameter(debugInfo.UNMASKED_VENDOR_WEBGL) + // --e.g. : NVIDIA Corporation + if (result.indexOf('(') > -1 && result.indexOf(')') > -1) { + return result.substring(result.indexOf('(') + 1, result.indexOf(')')) + } + return result + } + } + return null +} + +async function detectGPUVendor_v0(gl) { + //const gl = document.createElement('canvas').getContext('webgl') + if (gl) { + const debugInfo = gl.getExtension('WEBGL_debug_renderer_info') + return debugInfo ? gl.getParameter(debugInfo.UNMASKED_VENDOR_WEBGL) : null + } else { + return null + } +} + +async function detectGPUCardType_v0(gl) { + if (gl) { + if (detectBrowser() === 'Firefox') { + // -- return e.g: "GeForce GTX 980/PCIe/SSE2" + return gl.getParameter(gl.RENDERER) + } + + const debugInfo = gl.getExtension('WEBGL_debug_renderer_info') + return debugInfo ? gl.getParameter(debugInfo.UNMASKED_RENDERER_WEBGL) : null + } else { + return null + } +} + +async function detectGPUCardType(gl) { + let debugInfo + + if (gl) { + if (detectBrowser() === 'Firefox') { + // -- return e.g: "GeForce GTX 980/PCIe/SSE2" + return gl.getParameter(gl.RENDERER) + } + + debugInfo = gl.getExtension('WEBGL_debug_renderer_info') + + if (debugInfo) { + let result = gl.getParameter(debugInfo.UNMASKED_RENDERER_WEBGL) + // --e.g. : ANGLE (NVIDIA Corporation, GeForce GTX 1050 Ti/PCIe/SSE2, OpenGL 4.5.0 NVIDIA 390.144) as with Chrome + // Or: GeForce GTX 1050 Ti/PCIe/SSE2 as with fireFox + + if (result.indexOf('(') > -1 && result.indexOf(')') > -1 && result.indexOf('(R)') === -1) { + result = result.substring(result.indexOf('(') + 1, result.indexOf(')')) + + if (result.split(',').length === 3) { + return result.split(',')[1].trim() + } + } + + return result + } + } + return null +} + +async function getCPUNumCores() { + return navigator.hardwareConcurrency +} + +async function isChrome() { + return /Chrome/.test(navigator.userAgent) && /Google Inc/.test(navigator.vendor) +} + +async function localSystemDetails(statData, gl = null) { + const Preprocess_t = ((performance.now() - statData.startTime) / 1000).toFixed(4) + // -- Timing data to collect + const today = new Date() + if (statData.isModelFullVol) { + statData.Brainchop_Ver = 'FullVolume' + } else { + statData.Brainchop_Ver = 'SubVolumes' + } + + /* let geoData = getBrowserLocationInfo() + if(geoData) { + statData["Country"] = geoData["Country"] + statData["State"] = geoData["Region"] + statData["City"] = geoData["City"] + } else { + statData["Country"] = "" + statData["State"] = "" + statData["City"] = "" + } */ + + statData.Date = parseInt(today.getMonth() + 1) + '/' + today.getDate() + '/' + today.getFullYear() + statData.Time_Elapsed = Preprocess_t + statData.Browser = await detectBrowser() + statData.Browser_Ver = await detectBrowserVersion() + statData.OS = await detectOperatingSys() + statData.WebGL2 = await checkWebGl2(gl) + statData.GPU_Vendor = await detectGPUVendor(gl) + statData.GPU_Card = await detectGPUCardType(gl) + statData.GPU_Vendor_Full = await detectGPUVendor_v0(gl) + statData.GPU_Card_Full = await detectGPUCardType_v0(gl) + statData.CPU_Cores = await getCPUNumCores() + statData.Which_Brainchop = 'latest' + if (await isChrome()) { + statData.Heap_Size_MB = window.performance.memory.totalJSHeapSize / (1024 * 1024).toFixed(2) + statData.Used_Heap_MB = window.performance.memory.usedJSHeapSize / (1024 * 1024).toFixed(2) + statData.Heap_Limit_MB = window.performance.memory.jsHeapSizeLimit / (1024 * 1024).toFixed(2) + } + if (gl) { + console.log('MAX_TEXTURE_SIZE :', gl.getParameter(gl.MAX_TEXTURE_SIZE)) + console.log('MAX_RENDERBUFFER_SIZE :', gl.getParameter(gl.MAX_RENDERBUFFER_SIZE)) + // -- check to see if machine has two graphics card: one is the builtin e.g. Intel Iris Pro, the other is NVIDIA GeForce GT 750M. + // -- check browser use which one, if debugInfo is null then installed GPU is not used + const debugInfo = gl.getExtension('WEBGL_debug_renderer_info') + console.log('VENDOR WEBGL:', gl.getParameter(debugInfo.UNMASKED_VENDOR_WEBGL)) + statData.Texture_Size = gl.getParameter(gl.MAX_TEXTURE_SIZE) // --returns the maximum dimension the GPU can address + } else { + statData.Texture_Size = null + } + return statData +} diff --git a/brainchop-webworker.js b/brainchop-webworker.js new file mode 100644 index 0000000..cc851d3 --- /dev/null +++ b/brainchop-webworker.js @@ -0,0 +1,2166 @@ +import * as tf from '@tensorflow/tfjs' +import { BWLabeler } from './bwlabels.js' +import { inferenceModelsList } from "./brainchop-parameters.js" + +function wcallbackUI(message = "", progressFrac = -1, modalMessage = "", statData = []) { + let statStr = [] + if (Object.keys(statData).length > 0) { + function arrayToStr(array) { + let list = {}; + for (var key in statData){ + list[key] = statData[key] + } + return JSON.stringify(list); + } + statStr = arrayToStr(statData) + } + self.postMessage({cmd : "ui", message : message, progressFrac: progressFrac, modalMessage: modalMessage, statData: statStr}) +} + +function wcallbackImg(img, opts, modelEntry) { + self.postMessage({cmd : "img", img : img, opts: opts, modelEntry: modelEntry}) +} + +async function getModelNumParameters(modelObj) { + let numParameters = 0 + for (let layerIdx = 0; layerIdx < modelObj.layers.length; layerIdx++) { + numParameters += modelObj.layers[layerIdx].countParams() + } + return numParameters +} + +async function getModelNumLayers(modelObj) { + return modelObj.layers.length +} + +async function isModelChnlLast(modelObj) { + for (let layerIdx = 0; layerIdx < modelObj.layers.length; layerIdx++) { + if (modelObj.layersByDepth[layerIdx][0].dataFormat) { + return modelObj.layersByDepth[layerIdx][0].dataFormat === 'channelsLast' + } + } +} + +async function load_model(modelUrl) { + console.log('webworker load_model', modelUrl) + return await tf.loadLayersModel(modelUrl) +} + +async function getAllSlices2D(allSlices, slice_height, slice_width) { + const allSlices_2D = [] + for (let sliceIdx = 0; sliceIdx < allSlices.length; sliceIdx++) { + allSlices_2D.push(tf.tensor(allSlices[sliceIdx], [slice_height, slice_width])) + } + return allSlices_2D +} + +async function getSlices3D(allSlices_2D) { + return tf.stack(allSlices_2D) +} + +async function getAllSlicesData1D(num_of_slices, niftiHeader, niftiImage) { + // Get nifti dimensions + const cols = niftiHeader.dims[1] // Slice width + const rows = niftiHeader.dims[2] // Slice height + let typedData + if (niftiHeader.datatypeCode === 2) { + // enum from nvimage/utils DT_UINT8 = 2 + typedData = new Uint8Array(niftiImage) + } else if (niftiHeader.datatypeCode === 4) { + // DT_INT16 = 4 + typedData = new Int16Array(niftiImage) + } else if (niftiHeader.datatypeCode === 8) { + // DT_INT32 = 8 + typedData = new Int32Array(niftiImage) + } else if (niftiHeader.datatypeCode === 16) { + // DT_FLOAT32 = 16 + typedData = new Float32Array(niftiImage) + } else if (niftiHeader.datatypeCode === 64) { + // DT_FLOAT64 = 64 + typedData = new Float64Array(niftiImage) + } else if (niftiHeader.datatypeCode === 256) { + // DT_INT8 = 256 + typedData = new Int8Array(niftiImage) + } else if (niftiHeader.datatypeCode === 512) { + // DT_UINT16 = 512 + typedData = new Uint16Array(niftiImage) + } else if (niftiHeader.datatypeCode === 768) { + // DT_UINT32 = 768 + typedData = new Uint32Array(niftiImage) + } else { + return + } + const allSlices = [] + let offset3D = 0 + // Draw pixels + for (let slice = 0; slice < num_of_slices; slice++) { + const slice = new Array(rows * cols) + let offset2D = 0 + for (let row = 0; row < rows; row++) { + for (let col = 0; col < cols; col++) { + const value = typedData[offset3D++] + // Create 1Dim Array of pixel value, this 1 dim represents one channel + slice[offset2D++] = value & 0xff + } + } + allSlices.push(slice) + } + return allSlices +} + +async function calculateQuantiles(tensor, lowerQuantile = 0.01, upperQuantile = 0.99) { + // Flatten the tensor + const flatTensor = tensor.flatten() + + // Convert the flattened tensor to an array to sort it + const flatArray = await flatTensor.array() + flatArray.sort((a, b) => a - b) // Sort the array in ascending order + + // Convert the sorted array back to a tensor + const sortedTensor = tf.tensor1d(flatArray) + + // Calculate the indices for the quantiles + const numElements = sortedTensor.shape[0] + const lowIndex = Math.floor(numElements * lowerQuantile) + const highIndex = Math.ceil(numElements * upperQuantile) - 1 // Subtract 1 because indices are 0-based + + // Slice the sorted tensor to get qmin and qmax + const qmin = sortedTensor.slice(lowIndex, 1) // Get the value at the low index + const qmax = sortedTensor.slice(highIndex, 1) // Get the value at the high index + + // Get the actual values from the tensors + const qminValue = (await qmin.array())[0] + const qmaxValue = (await qmax.array())[0] + + // Clean up tensors to free memory + flatTensor.dispose() + sortedTensor.dispose() + qmin.dispose() + qmax.dispose() + + return { qmin: qminValue, qmax: qmaxValue } +} + +async function quantileNormalizeVolumeData(tensor, lowerQuantile = 0.05, upperQuantile = 0.95) { + // Call calculateQuantiles and wait for the result + const { qmin, qmax } = await calculateQuantiles(tensor, lowerQuantile, upperQuantile) + + // Convert qmin and qmax back to scalars + const qminScalar = tf.scalar(qmin) + const qmaxScalar = tf.scalar(qmax) + + // Perform the operation: (tensor - qmin) / (qmax - qmin) + const resultTensor = tensor.sub(qminScalar).div(qmaxScalar.sub(qminScalar)) + + // Dispose of the created scalars to free memory + qminScalar.dispose() + qmaxScalar.dispose() + + // Return the resulting tensor + return resultTensor +} + +async function minMaxNormalizeVolumeData(volumeData) { + // Normalize the data to the range 0 - 1 using min-max scaling + const volumeData_Max = volumeData.max() + const volumeData_Min = volumeData.min() + const normalizedSlices_3d = await volumeData.sub(volumeData_Min).div(volumeData_Max.sub(volumeData_Min)) + return normalizedSlices_3d +} + +async function inferenceFullVolumeSeqCovLayer( + model, + slices_3d, + input_shape, + isChannelLast, + num_of_slices, + slice_height, + slice_width +) { + callbackUI(msg, -1, 'inferenceFullVolumeSeqCovLayer() is not dead code?') +} + +async function inferenceFullVolume( + model, + slices_3d, + input_shape, + isChannelLast, + num_of_slices, + slice_height, + slice_width +) { + wcallbackUI('',-1, 'inferenceFullVolume() is not dead code?') +} + +async function inferenceSubVolumes(model, slices_3d, num_of_slices, slice_height, slice_width, pipeline1_out = null) { + wcallbackUI('', -1, 'inferenceSubVolumes() is not dead code?') +} + +async function tensor2LightBuffer(tensor, dtype) { + wcallbackUI('', -1, 'tensor2LightBuffer() is not dead code?') +} + +async function draw3dObjBoundingVolume(unstackOutVolumeTensor, opts, modelEntry) { + let allOutputSlices3DCC = [] + let allOutputSlices3DContours = [] + + // dataSync() using to flatten array. Takes around 1.5 s + for(let sliceTensorIdx = 0; sliceTensorIdx < unstackOutVolumeTensor.length; sliceTensorIdx++ ) { + allOutputSlices3DCC[sliceTensorIdx] = Array.from(unstackOutVolumeTensor[sliceTensorIdx].dataSync()) + } + + // Use this conversion to download output slices as nii file. Takes around 30 ms + // does not use `push` to avoid stack overflows. In future: consider .set() with typed arrays + const allOutputSlices3DCC1DimArray = new Array(allOutputSlices3DCC[0].length * allOutputSlices3DCC.length) + let index = 0 + for (let sliceIdx = 0; sliceIdx < allOutputSlices3DCC.length; sliceIdx++) { + for (let i = 0; i < allOutputSlices3DCC[sliceIdx].length; i++) { + allOutputSlices3DCC1DimArray[index++] = allOutputSlices3DCC[sliceIdx][i] + } + } + console.log("Done with allOutputSlices3DCC1DimArray ") + let brainMaskTensor1d = await binarizeVolumeDataTensor(tf.tensor1d(allOutputSlices3DCC1DimArray)) + let brainOut = Array.from(brainMaskTensor1d.dataSync()) + wcallbackImg(brainOut, opts, modelEntry) +} + +async function argMaxLarge(outVolumeBuffer, num_of_slices, slice_height, slice_width, numOfClasses, dtype = 'float32') { + wcallbackUI('', -1, 'argMaxLarge() is not dead code?') +} + +async function addZeroPaddingTo3dTensor(tensor3d, rowPadArr = [1, 1], colPadArr = [1, 1], depthPadArr = [1, 1]) { + if (tensor3d.rank !== 3) { + throw new Error('Tensor must be 3D') + } + return tensor3d.pad([rowPadArr, colPadArr, depthPadArr]) +} + +async function removeZeroPaddingFrom3dTensor(tensor3d, rowPad = 1, colPad = 1, depthPad = 1) { + if (tensor3d.rank !== 3) { + throw new Error('Tensor must be 3D') + } + let h, w, d + ;[h, w, d] = tensor3d.shape + return tensor3d.slice([rowPad, colPad, depthPad], [h - 2 * rowPad, w - 2 * colPad, d - 2 * depthPad]) +} + +async function resizeWithZeroPadding(croppedTensor3d, newDepth, newHeight, newWidth, refVoxel, boundVolSizeArr) { + const row_pad_befor = refVoxel[0] + const col_pad_befor = refVoxel[1] + const depth_pad_befor = refVoxel[2] + // last and lower volume voxel + const row_max = row_pad_befor + boundVolSizeArr[0] - 1 // size [2, 2, 2] means 2 voxels total in each dim + const col_max = col_pad_befor + boundVolSizeArr[1] - 1 + const depth_max = depth_pad_befor + boundVolSizeArr[2] - 1 + + const row_pad_after = newHeight - row_max - 1 > 0 ? newHeight - row_max - 1 : 0 + const col_pad_after = newWidth - col_max - 1 > 0 ? newWidth - col_max - 1 : 0 + const depth_pad_after = newDepth - depth_max - 1 > 0 ? newDepth - depth_max - 1 : 0 + + return croppedTensor3d.pad([ + [row_pad_befor, row_pad_after], + [col_pad_befor, col_pad_after], + [depth_pad_befor, depth_pad_after] + ]) +} + +async function applyMriThreshold(tensor, percentage) { + // Perform asynchronous operations outside of tf.tidy + const maxTensor = tensor.max() + const thresholdTensor = maxTensor.mul(percentage) + const threshold = await thresholdTensor.data() // Extracts the threshold value + + // Dispose tensors not needed anymore + maxTensor.dispose() + thresholdTensor.dispose() + + // Use tf.tidy for synchronous operations + return tf.tidy(() => { + const dataForProcessing = tensor.clone() + + // Thresholding (assuming background has very low values compared to the head) + const mask = dataForProcessing.greater(threshold[0]) + // -- const denoisedMriData = dataForProcessing.mul(mask) + + // No need to manually dispose dataForProcessing and mask, as tf.tidy() will dispose them auto. + return mask + }) + + // -- return denoisedMriData +} + +async function binarizeVolumeDataTensor(volumeDataTensor) { + const alpha = 0 + // element-wise: (x > 0 ? 1 : alpha * x ); e.g. Tenosr [0, 0.9, 0.8, -3] => Tensor [0, 1, 1, 0] + return volumeDataTensor.step(alpha) +} + +async function generateBrainMask( + unstackOutVolumeTensor, + num_of_slices, + slice_height, + slice_width, + modelEntry, + opts, + callbackUI, + callbackImg, + niftiHeader, + niftiImage, + isFinalImage = true +) { + console.log('Generate Brain Masking ... ') + // Convert all slices into 1 Dim array to download + + let allOutputSlices3DCC = [] + // const allOutputSlices3DContours = [] + + // dataSync() using to flatten array. Takes around 1.5 s + for (let sliceTensorIdx = 0; sliceTensorIdx < unstackOutVolumeTensor.length; sliceTensorIdx++) { + allOutputSlices3DCC[sliceTensorIdx] = Array.from(unstackOutVolumeTensor[sliceTensorIdx].dataSync()) + } + const isPreModelPostProcessEnable = modelEntry.preModelPostProcess + // let isPreModelPostProcessEnable = inferenceModelsList[$$("selectModel").getValue() - 1]["preModelPostProcess"] + + if (isPreModelPostProcessEnable) { + console.log('Phase-1 Post processing enabled ... ') + allOutputSlices3DCC = tf.tidy(() => { + // Remove noisy regions using 3d CC + // const sliceWidth = niftiHeader.dims[1] + // const sliceHeight = niftiHeader.dims[2] + // return postProcessSlices3D(allOutputSlices3DCC, slice_height, slice_width) + const errTxt = 'postProcessSlices3D() should be upgraded to BWLabeler' + callbackUI(errTxt, -1, errTxt) + }) + console.log('Post processing done ') + } else { + console.log('Phase-1 Post processing disabled ... ') + } + // Use this conversion to download output slices as nii file. Takes around 30 ms + // does not use `push` to avoid stack overflows. In future: consider .set() with typed arrays + const allOutputSlices3DCC1DimArray = new Array(allOutputSlices3DCC[0].length * allOutputSlices3DCC.length) + let index = 0 + for (let sliceIdx = 0; sliceIdx < allOutputSlices3DCC.length; sliceIdx++) { + for (let i = 0; i < allOutputSlices3DCC[sliceIdx].length; i++) { + allOutputSlices3DCC1DimArray[index++] = allOutputSlices3DCC[sliceIdx][i] + } + } + let brainOut = [] + if (opts.isBrainCropMaskBased) { + // Mask-based + const brainMaskTensor1d = await binarizeVolumeDataTensor(tf.tensor1d(allOutputSlices3DCC1DimArray)) + brainOut = Array.from(brainMaskTensor1d.dataSync()) + } else { // Brain tissue + let allSlices = await getAllSlicesData1D(num_of_slices, niftiHeader, niftiImage) + brainOut = new Array(niftiHeader.dims[1] * niftiHeader.dims[2] * niftiHeader.dims[3]) + let idx = 0 + for(let sliceIdx = 0; sliceIdx < allOutputSlices3DCC.length; sliceIdx++ ) { + for(let pixelIdx = 0; pixelIdx < (slice_height * slice_width); pixelIdx++) { + //Filter smaller regions original MRI data + if(allOutputSlices3DCC[sliceIdx][pixelIdx] == 0) { + allSlices[sliceIdx][pixelIdx] = 0 + } + brainOut[idx++] = allSlices[sliceIdx][pixelIdx] + } + } + } + if (isFinalImage || opts.showPhase1Output) {//all done + callbackImg(brainOut, opts, modelEntry) + } + return tf.tensor(brainOut, [num_of_slices, slice_height, slice_width]) +} + +async function convByOutputChannelAndInputSlicing(input, filter, biases, stride, pad, dilationRate, sliceSize) { + const inChannels = input.shape[4] + const outChannels = filter.shape[4] + + // Create an empty array to hold the output channels + let outputChannels = null + + // Slice the input tensor and process one output channel at a time + for (let channel = 0; channel < outChannels; channel++) { + const numSlices = Math.ceil(inChannels / sliceSize) + const biasesSlice = biases.slice([channel], [1]) + let outputChannel = null + + for (let i = 0; i < numSlices; i++) { + const startChannel = i * sliceSize + const endChannel = Math.min((i + 1) * sliceSize, inChannels) + + // Only proceed if there are channels to process + if (startChannel < inChannels) { + const resultSlice = tf.tidy(() => { + const inputSlice = input.slice([0, 0, 0, 0, startChannel], [-1, -1, -1, -1, endChannel - startChannel]) + const filterSlice = filter.slice([0, 0, 0, startChannel, channel], [-1, -1, -1, endChannel - startChannel, 1]) + // Perform the convolution for the current slice and output channel + return tf.conv3d(inputSlice, filterSlice, stride, pad, 'NDHWC', dilationRate) + }) + + if (outputChannel === null) { + outputChannel = resultSlice + } else { + const updatedOutputChannel = outputChannel.add(resultSlice) + outputChannel.dispose() + resultSlice.dispose() + outputChannel = updatedOutputChannel + } + } + } + + // Add the biases to the accumulated convolutions for this channel + const biasedOutputChannel = outputChannel.add(biasesSlice) + outputChannel.dispose() + biasesSlice.dispose() + + // Accumulate the channel to the output array + if (outputChannels == null) { + outputChannels = biasedOutputChannel + } else { + const updatedOutputChannels = await tf.concat([outputChannels, biasedOutputChannel], 4) + biasedOutputChannel.dispose() + outputChannels.dispose() + outputChannels = updatedOutputChannels + } + } + + return outputChannels +} + +function processTensorInChunks(inputTensor, filterWeights, chunkSize) { + // Assuming inputTensor's shape: [batch, depth, height, width, inChannels] + // and filterWeights's shape: [filterDepth, filterHeight, filterWidth, inChannels, outChannels] + const stride = 1 + const pad = 0 + const dilationRate = 1 + const inChannels = inputTensor.shape[4] + const numSlices = Math.ceil(inChannels / chunkSize) + + let accumulatedResult = null + + for (let i = 0; i < numSlices; i++) { + const startChannel = i * chunkSize + const endChannel = Math.min((i + 1) * chunkSize, inChannels) + const channels = endChannel - startChannel + + const inputSlice = tf.tidy(() => { + // Slice the input tensor to get the current chunk + return inputTensor.slice([0, 0, 0, 0, startChannel], [-1, -1, -1, -1, channels]) + }) + + const filterSlice = tf.tidy(() => { + // Slice the filter weights to match the input tensor's current chunk + return filterWeights.slice([0, 0, 0, startChannel, 0], [-1, -1, -1, channels, -1]) + }) + + const resultSlice = tf.conv3d(inputSlice, filterSlice, stride, pad, 'NDHWC', dilationRate) + // Clean up the slices to free memory + inputSlice.dispose() + filterSlice.dispose() + + // Squeeze the result slice to remove dimensions of size 1 + const squeezedResultSlice = tf.squeeze(resultSlice) + resultSlice.dispose() // Dispose of the original resultSlice after squeezing + + if (accumulatedResult === null) { + accumulatedResult = squeezedResultSlice + } else { + // Accumulate the result by adding the new result slice to it + const newAccumulatedResult = accumulatedResult.add(squeezedResultSlice) + + // Dispose of the previous accumulatedResult and squeezedResultSlice + accumulatedResult.dispose() + // Dispose of squeezedResultSlice only if it wasn't assigned to accumulatedResult + if (accumulatedResult !== squeezedResultSlice) { + squeezedResultSlice.dispose() + } + // Update accumulatedResult with the new result + accumulatedResult = newAccumulatedResult + } + + tf.tidy(() => { + tf.matMul(tf.zeros([1, 1]), tf.zeros([1, 1])) + }) + } + + return accumulatedResult +} + +class SequentialConvLayer { + constructor(model, chunkSize, isChannelLast, callbackUI) { + this.model = model + this.outChannels = model.outputLayers[0].kernel.shape[4] + this.chunkSize = chunkSize + this.isChannelLast = isChannelLast + this.callbackUI = callbackUI + } + + /** + * Apply sequential convolution layer + * @since 3.0.0 + * @member SequentialConvLayer + * @param {tf.Tensor} inputTensor e.g. [ 1, 256, 256, 256, 5 ] + * @return {outC} + * + * convLayer.rank -> 3 + * typeof(convLayer) -> "object" + * convLayer: Object { dataFormat: "channelsLast", dilationRate: Array(3) [ 1, 1, 1 ], inputSpec: Array [ {…} ], + * name: "output", padding: "same", strides: Array(3) [ 1, 1, 1 ], ...} + * + * weights.shape -> Array(5) [ 1, 1, 1, 5, 3 ] + * weights.print() + * //=> Tensor + * [[[[[0.146999 , -1.4474995, -2.8961499], + * [1.1067894, 0.6897876 , -0.7573005], + * [-0.38512 , -0.2812168, -0.8637539], + * [0.9341159, -0.0344299, -2.3668685], + * [0.1052373, 1.266812 , 0.6542516 ]]]]] + * + * biases.shape -> Array [ 3 ] + * biases.print() + * //=> Tensor + * [-0.7850812, -2.3238883, 2.1639345] + * + * for idx = 0 -> filterWeights.shape -> Array(5) [ 1, 1, 1, 5, 1 ] + * filterWeights.print() + * //=> Tensor + * [[[[[0.146999 ], + * [1.1067894], + * [-0.38512 ], + * [0.9341159], + * [0.1052373]]]]] + * + * for idx = 0 -> filterBiases.shape -> Array [1] + * filterBiases.print() + * //=> Tensor + * [-0.7850812] + + */ + + async apply(inputTensor) { + const oldDeleteTextureThreshold = tf.ENV.get('WEBGL_DELETE_TEXTURE_THRESHOLD') + tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0) + + const self = this + // Important to avoid "undefined" class var members inside the timer. + // "this" has another meaning inside the timer. + + // document.getElementById("progressBarChild").parentElement.style.visibility = "visible" + const startTime = performance.now() + + const convLayer = self.model.layers[self.model.layers.length - 1] + const weights = convLayer.getWeights()[0] // + const biases = convLayer.getWeights()[1] + const outputShape = self.isChannelLast ? inputTensor.shape.slice(1, -1) : inputTensor.shape.slice(2) + // -- e.g. outputShape : [256,256,256] or cropped Dim + // -- if inputTensor [ 1, D, H, W, 50 ], channelLast true -> outputShape : outputShape [D, H, W] + // -- if inputTensor [ 1, 50, D, H, W ], channelLast false -> outputShape : outputShape [D, H, W] + + let outB = tf.mul(tf.ones(outputShape), -10000) + // -- e.g. outB.shape [256,256,256] + let outC = tf.zeros(outputShape) + // -- e.g. outC.shape [256,256,256] + let chIdx = 0 + + // console.log("---------------------------------------------------------") + console.log(' channel loop') + + while (true) { + tf.engine().startScope() // Start TensorFlow.js scope + console.log('=======================') + const memoryInfo0 = await tf.memory() + console.log(`| Number of Tensors: ${memoryInfo0.numTensors}`) + console.log(`| Number of Data Buffers: ${memoryInfo0.numDataBuffers}`) + console.log('Channel : ', chIdx) + + const result = await tf.tidy(() => { + const filterWeights = weights.slice([0, 0, 0, 0, chIdx], [-1, -1, -1, -1, 1]) + // -- e.g. filterWeights.shape [ 1, 1, 1, 5, 1 ] + const filterBiases = biases.slice([chIdx], [1]) + // -- e.g. filterBiases.shape [1] -> Tensor [-0.7850812] + const outA = processTensorInChunks( + inputTensor, + filterWeights, + Math.min(self.chunkSize, self.outChannels) + ).add(filterBiases) + const greater = tf.greater(outA, outB) + const newoutB = tf.where(greater, outA, outB) + const newoutC = tf.where(greater, tf.fill(outC.shape, chIdx), outC) + // Dispose the old tensors before reassigning + tf.dispose([outB, outC, filterWeights, filterBiases, outA, greater]) + // Dummy operation to trigger cleanup + tf.tidy(() => tf.matMul(tf.ones([1, 1]), tf.ones([1, 1]))) + return [newoutC, newoutB] + }) + console.log('=======================') + const memoryInfo = await tf.memory() + self.callbackUI(`Iteration ${chIdx}`, chIdx / self.outChannels) + console.log(`Number of Tensors: ${memoryInfo.numTensors}`) + console.log(`Number of Data Buffers: ${memoryInfo.numDataBuffers}`) + console.log(`Megabytes In Use: ${(memoryInfo.numBytes / 1048576).toFixed(3)} MB`) + if (memoryInfo.unreliable) { + console.log(`Unreliable: ${memoryInfo.unreliable}`) + } + // Dispose of previous values before assigning new tensors to outC and outB + if (typeof outC !== 'undefined') { + outC.dispose() + } + if (typeof outB !== 'undefined') { + outB.dispose() + } + // Assign the new values to outC and outB + outC = tf.keep(result[0]) + outB = tf.keep(result[1]) + // // Assign the new values to outC and outB + // outC = result[0] + // outB = result[1] + tf.engine().endScope() + + if (chIdx === self.outChannels - 1) { + // document.getElementById("progressBarChild").style.width = 0 + "%" + tf.dispose(outB) + const endTime = performance.now() + const executionTime = endTime - startTime + console.log(`Execution time for output layer: ${executionTime} milliseconds`) + tf.ENV.set('WEBGL_DELETE_TEXTURE_THRESHOLD', oldDeleteTextureThreshold) + return(outC) + } else { + chIdx++ + + // the seemingly strange sequence of operations + // below prevents tfjs from uncontrolably + // grabbing buffers, even when all tensors have + // already been disposed + + const outCShape = outC.shape + const outCdata = outC.dataSync() + const outBShape = outC.shape + const outBdata = outB.dataSync() + outC.dispose() + outB.dispose() + // tf.disposeVariables() + outC = tf.tensor(outCdata, outCShape) + outB = tf.tensor(outBdata, outBShape) + + // document.getElementById("progressBarChild").style.width = (chIdx + 1) * 100 / self.outChannels + "%" + } + } + } +} // <<<< End of class + +async function generateOutputSlicesV2( + img, + OutVolumeTensorShape, + OutVolumeTensorType, + num_of_slices, + numSegClasses, + slice_height, + slice_width, + modelEntry, + opts, + niftiImage +) { + // Convert all slices into 1 Dim array + // const allOutputSlices3DContours = [] + if (opts.isPostProcessEnable) { + const BWInstance = new BWLabeler() + const dim = new Uint32Array(OutVolumeTensorShape) + const conn = 26 // Example connectivity + const binarize = true + const onlyLargestClusterPerClass = true + const [labelCount, labeledImage] = BWInstance.bwlabel(img, dim, conn, binarize, onlyLargestClusterPerClass) + for (let i = 0; i < img.length; i++) { + img[i] *= labeledImage[i] + } + } // if isPostProcessEnable + const typedArrayConstructor = { + float32: Float32Array, + int32: Int32Array + // Add other cases as needed for different dtypes + }[OutVolumeTensorType] + // Create a new TypedArray from img with the same type as outLabelVolume + const allOutputSlices3DCC1DimArray = new Uint8Array(img) + + const modelType = modelEntry.type + + // return img + switch (modelType) { + case 'Brain_Masking': { + const brainMask = new Uint8Array(allOutputSlices3DCC1DimArray.length) + for (let i = 0; i < allOutputSlices3DCC1DimArray.length; i++) { + brainMask[i] = allOutputSlices3DCC1DimArray[i] !== 0 ? 1 : 0 + } + // labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, brainMask) + // allOutputSlices3DCC1DimArray = brainMask + // --labelsHistogramMap = null + // maskBrainExtraction = true + return brainMask + // break + } + case 'Brain_Extraction': { + const maskedData = new Uint8Array(allOutputSlices3DCC1DimArray.length) + // const brainData = nifti2data(rawNiftiData) + + for (let i = 0; i < allOutputSlices3DCC1DimArray.length; i++) { + // Create the mask - 1 where the value is non-zero, 0 where it is zero. + const maskValue = allOutputSlices3DCC1DimArray[i] !== 0 ? 1 : 0 + // Apply the mask to the data - multiply by the mask value. + maskedData[i] = niftiImage[i] * maskValue + } + // labelArrayBuffer = createNiftiOutArrayBuffer(rawNiftiData, maskedData) + + // Update `allOutputSlices3DCC1DimArray` if needed. + // allOutputSlices3DCC1DimArray = maskedData + + // Other operations... + // maskBrainExtraction = true + return maskedData + // break + } + } + + return img +} + +async function inferenceFullVolumeSeqCovLayerPhase2( + opts, + modelEntry, + model, + slices_3d, + num_of_slices, + slice_height, + slice_width, + pipeline1_out, + callbackUI, + callbackImg, + statData, + niftiImage +) { + // --Phase-2, After remove the skull try to allocate brain volume and make inferece + + console.log(' ---- Start FullVolume Inference with Sequential Conv Layer for phase-II ---- ') + // console.log("BOB", callbackUI); console.log("UNCLE",callbackImg); return + const quantileNorm = modelEntry.enableQuantileNorm + if (quantileNorm) { + // Quantile normalize function needs specific models to be used + console.log('preModel Quantile normalization enabled') + slices_3d = await quantileNormalizeVolumeData(slices_3d) + } else { + // Min Max Nomalize MRI data to be from 0 to 1 + console.log('preModel Min Max normalization enabled') + slices_3d = await minMaxNormalizeVolumeData(slices_3d) + } + + let mask_3d + + if (pipeline1_out == null) { + // preModel is null + + // Check if thresholding the MRI to remove noisy voxels for better cropping is needed. + const autoThresholdValue = modelEntry.autoThreshold + + if (autoThresholdValue > 0 && autoThresholdValue <= 1) { + // Filtered MRI from noisy voxel below autoThresholdValue + mask_3d = await applyMriThreshold(slices_3d, autoThresholdValue) + } else { + console.log('No valid crop threshold value') + // binarize original image + mask_3d = await slices_3d.greater([0]).asType('bool') + } + } else { + mask_3d = await pipeline1_out.greater([0]).asType('bool') + // -- pipeline1_out.dispose() + } + + console.log(' mask_3d shape : ', mask_3d.shape) + const coords = await tf.whereAsync(mask_3d); + //-- Get each voxel coords (x, y, z) + + mask_3d.dispose(); + const row_min = coords.min(0).arraySync()[0]; + const row_max = coords.max(0).arraySync()[0]; + const col_min = coords.min(0).arraySync()[1]; + const col_max = coords.max(0).arraySync()[1]; + const depth_min = coords.min(0).arraySync()[2]; + const depth_max = coords.max(0).arraySync()[2]; + + console.log('row min and max :', row_min, row_max) + console.log('col min and max :', col_min, col_max) + console.log('depth min and max :', depth_min, depth_max) + + // -- Reference voxel that cropped volume started slice with it + const refVoxel = [row_min, col_min, depth_min] + // -- Starting form refVoxel, size of bounding volume + const boundVolSizeArr = [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1] + + coords.dispose() + + // -- Extract 3d object (e.g. brain) + const cropped_slices_3d = await slices_3d.slice( + [row_min, col_min, depth_min], + [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1] + ) + slices_3d.dispose() + + // -- Padding size add to cropped brain + const pad = modelEntry.cropPadding + + // Create margin around the bounding volume + let cropped_slices_3d_w_pad = await addZeroPaddingTo3dTensor(cropped_slices_3d, [pad, pad], [pad, pad], [pad, pad]) + console.log(' cropped slices_3d with padding shape: ', cropped_slices_3d_w_pad.shape) + + cropped_slices_3d.dispose() + + if (opts.drawBoundingVolume) { + let testVol = await removeZeroPaddingFrom3dTensor(cropped_slices_3d_w_pad, pad, pad, pad) + console.log(' outLabelVolume without padding shape : ', testVol.shape) + + testVol = await resizeWithZeroPadding(testVol, num_of_slices, slice_height, slice_width, refVoxel, boundVolSizeArr) + console.log(' outLabelVolume final shape after resizing : ', testVol.shape) + + draw3dObjBoundingVolume(tf.unstack(testVol), opts, modelEntry) + testVol.dispose() + + return 0 + } + + statData.Brainchop_Ver = 'FullVolume' + const res = await model + try { + let startTime = performance.now() + const inferenceStartTime = performance.now() + // maxLabelPredicted in whole volume of the brain + let maxLabelPredicted = 0 + const transpose = modelEntry.enableTranspose + + if (transpose) { + cropped_slices_3d_w_pad = await cropped_slices_3d_w_pad.transpose() + console.log('Input transposed for pre-model') + } else { + console.log('Transpose not enabled for pre-model') + } + + let i = 1 + const layersLength = res.layers.length + console.log('res.layers.length ', layersLength) + + const isChannelLast = isModelChnlLast(res) + const batchSize = opts.batchSize + const numOfChan = opts.numOfChan + let adjusted_input_shape + // -- Adjust model input shape + if (isChannelLast) { + res.layers[0].batchInputShape[1] = cropped_slices_3d_w_pad.shape[0] + res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[1] + res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[2] + + adjusted_input_shape = [ + batchSize, + res.layers[0].batchInputShape[1], + res.layers[0].batchInputShape[2], + res.layers[0].batchInputShape[3], + numOfChan + ] + } else { + res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[0] + res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[1] + res.layers[0].batchInputShape[4] = cropped_slices_3d_w_pad.shape[2] + + adjusted_input_shape = [ + batchSize, + numOfChan, + res.layers[0].batchInputShape[2], + res.layers[0].batchInputShape[3], + res.layers[0].batchInputShape[4] + ] + } + + console.log(' Model batch input shape : ', res.layers[0].batchInputShape) + // -- batchInputShape {Array} input_shape - e.g. [?, D, H, W, Ch] or [?, Ch, D, H, W] + + statData.Input_Shape = JSON.stringify(res.layers[0].batchInputShape) + statData.Output_Shape = JSON.stringify(res.output.shape) + statData.Channel_Last = await isChannelLast + statData.Model_Param = await getModelNumParameters(res) + statData.Model_Layers = await getModelNumLayers(res) + statData.Model = modelEntry.modelName + statData.Seq_Conv = modelEntry.enableSeqConv + //statData.Extra_Info = null + + // Determine the number of output channels in the last layer of the model + // e.g. 3, 50, 104 + const outputLayer = res.layers[res.layers.length - 1] + console.log('Output Layer : ', outputLayer) + + const expected_Num_labels = isChannelLast + ? outputLayer.outputShape[outputLayer.outputShape.length - 1] + : outputLayer.outputShape[1] + console.log('Num of output channels x: ', expected_Num_labels) + + const curTensor = [] + curTensor[0] = await cropped_slices_3d_w_pad.reshape(adjusted_input_shape) + while (true) { + try { + if (res.layers[i].activation.getClassName() !== 'linear') { + curTensor[i] = await res.layers[i].apply(curTensor[i - 1]) + } else { + curTensor[i] = await convByOutputChannelAndInputSlicing( + curTensor[i - 1], + res.layers[i].getWeights()[0], + res.layers[i].getWeights()[1], + res.layers[i].strides, + res.layers[i].padding, + res.layers[i].dilationRate, + 3 + ) // important for memory use + } + + tf.dispose(curTensor[i - 1]) + } catch (err) { + const errTxt = 'Your graphics card (e.g. Intel) may not be compatible with WebGL. ' + err.message + callbackUI(errTxt, -1, errTxt) + + tf.engine().endScope() + tf.engine().disposeVariables() + + statData.Inference_t = Infinity + statData.Postprocess_t = Infinity + statData.Status = 'Fail' + statData.Error_Type = err.message + statData.Extra_Err_Info = 'Failed while model layer ' + i + ' apply' + + wcallbackUI('', -1, '', statData) + + return 0 + } + + console.log('layer output Tensor shape : ', curTensor[i].shape) + console.log('layer count params ', res.layers[i].countParams()) + + res.layers[i].dispose() + curTensor[i - 1].dispose() + + callbackUI('Layer ' + i.toString(), (i + 1) / layersLength) + if (tf.memory().unreliable) { + const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons + callbackUI(unreliableReasons, NaN, unreliableReasons) + } + if (i === layersLength - 2) { + // Stop before the last layer or classification layer. + + + // // Create an instance of SequentialConvLayer + // The second parameter is important for memory, + // the larger it is, the more memory it uses + // it was 8, but I set it to 3, got a different error + // let seqConvLayer = new SequentialConvLayer(res, 10, isChannelLast) + const seqConvLayer = await new SequentialConvLayer(res, 10, isChannelLast, callbackUI) + + // Apply the last output tensor to the seq. instance + let outputTensor = null + const profileInfo = await tf.profile(async () => { + // Your tensor operations here + outputTensor = await seqConvLayer.apply(curTensor[i]) + }) + console.log('profileInfo : ', profileInfo) + + // -- document.getElementById("progressBarChild").style.width = 0 + "%"; + + // Dispose the previous layer input tensor + tf.dispose(curTensor[i]) + // delete the used class + // ? delete seqConvLayer + + // You can now use 'outputTensor' as needed + console.log(' Output tensor', outputTensor) + console.log(' Output tensor shape : ', outputTensor.shape) + // Array(3) [ 256, 256, 256 ] + + if (outputTensor.shape.length !== 3) { + const msg = 'Output tensor shape should be 3 dims but it is ' + outputTensor.shape.length + callbackUI(msg, -1, msg) + } + + const Inference_t = ((performance.now() - startTime) / 1000).toFixed(4) + + console.log(' find array max ') + const curBatchMaxLabel = await outputTensor.max().dataSync()[0] + if (maxLabelPredicted < curBatchMaxLabel) { + maxLabelPredicted = curBatchMaxLabel + } + + const numSegClasses = maxLabelPredicted + 1 + console.log('Predicted num of segmentation classes', numSegClasses) + statData.Actual_Labels = numSegClasses + statData.Expect_Labels = expected_Num_labels + statData.NumLabels_Match = numSegClasses === expected_Num_labels + if (numSegClasses !== expected_Num_labels) { + const msg = 'expected ' + expected_Num_labels + ' labels, but the predicted are ' + numSegClasses + callbackUI(msg, -1, msg) + } + + // -- Transpose back to fit Papaya display settings + let outLabelVolume = outputTensor.reshape([ + cropped_slices_3d_w_pad.shape[0], + cropped_slices_3d_w_pad.shape[1], + cropped_slices_3d_w_pad.shape[2] + ]) + tf.dispose(outputTensor) + + // Transpose MRI data to be match pytorch/keras input output + if (transpose) { + console.log('outLabelVolume transposed') + outLabelVolume = outLabelVolume.transpose() + } + + outLabelVolume = await removeZeroPaddingFrom3dTensor(outLabelVolume, pad, pad, pad) + console.log(' outLabelVolume without padding shape : ', outLabelVolume.shape) + outLabelVolume = await resizeWithZeroPadding( + outLabelVolume, + num_of_slices, + slice_height, + slice_width, + refVoxel, + boundVolSizeArr + ) + console.log(' outLabelVolume final shape after resizing : ', outLabelVolume.shape) + + // let filterOutWithPreMask = inferenceModelsList[$$("selectModel").getValue() - 1]["filterOutWithPreMask"] + const filterOutWithPreMask = modelEntry.filterOutWithPreMask + // To clean the skull area wrongly segmented inphase-2. + if (pipeline1_out != null && opts.isBrainCropMaskBased && filterOutWithPreMask) { + const bin = await binarizeVolumeDataTensor(pipeline1_out) + outLabelVolume = await outLabelVolume.mul(bin) + } + + startTime = performance.now() + // Generate output volume or slices + console.log('Generating correct output') + let outimg + try { + const img = await new Uint32Array(outLabelVolume.dataSync()) + const Vshape = outLabelVolume.shape + const Vtype = outLabelVolume.dtype + outimg = await generateOutputSlicesV2( + img, + Vshape, + Vtype, + num_of_slices, + numSegClasses, + slice_height, + slice_width, + modelEntry, + opts, + niftiImage + ) + console.log(' Phase-2 num of tensors after generateOutputSlicesV2: ', tf.memory().numTensors) + + tf.dispose(outLabelVolume) + tf.engine().endScope() + tf.engine().disposeVariables() + } catch (error) { + // -- Timing data to collect + tf.engine().endScope() + tf.engine().disposeVariables() + console.log('Error while generating output: ', error) + const msg = 'Failed while generating output due to limited browser memory available' + callbackUI(msg, -1, msg) + + statData.Inference_t = Inference_t + statData.Postprocess_t = Infinity + statData.Status = 'Fail' + statData.Error_Type = error.message + statData.Extra_Err_Info = 'Failed while generating output' + + wcallbackUI('', -1, '', statData) + + return 0 + } + const Postprocess_t = ((performance.now() - startTime) / 1000).toFixed(4) + + console.log( + 'Processing the whole brain volume in tfjs for multi-class output mask took : ', + ((performance.now() - inferenceStartTime) / 1000).toFixed(4) + ' Seconds' + ) + + // -- Timing data to collect + statData.Inference_t = Inference_t + statData.Postprocess_t = Postprocess_t + statData.Status = 'OK' + + wcallbackUI('', -1, '', statData) + callbackUI('Segmentation finished', 0) + callbackImg(outimg, opts, modelEntry) + return 0 + } else { + i++ + } + } + } catch (err) { + callbackUI(err.message, -1, err.message) + console.log( + 'If webgl context is lost, try to restore webgl context by visit the link ' + + 'here' + ) + if (tf.memory().unreliable) { + const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons + callbackUI(unreliableReasons, NaN, unreliableReasons) + } + } + // }) +} + +async function inferenceFullVolumePhase2( + model, + slices_3d, + num_of_slices, + slice_height, + slice_width, + pipeline1_out, + modelEntry, + statData, + opts, + callbackImg, + callbackUI, + niftiImage +) { + let outimg = [] + // --Phase-2, After remove the skull try to allocate brain volume and make inferece + console.log(' ---- Start FullVolume inference phase-II ---- ') + const quantileNorm = modelEntry.enableQuantileNorm + if (quantileNorm) { + // Quantile normalize function needs specific models to be used + console.log('preModel Quantile normalization enabled') + slices_3d = await quantileNormalizeVolumeData(slices_3d) + } else { + // Min Max Nomalize MRI data to be from 0 to 1 + console.log('preModel Min Max normalization enabled') + slices_3d = await minMaxNormalizeVolumeData(slices_3d) + } + let mask_3d + if (pipeline1_out == null) { + // preModel is null + + // Check if thresholding the MRI to remove noisy voxels for better cropping is needed. + const autoThresholdValue = modelEntry.autoThreshold + + if (autoThresholdValue > 0 && autoThresholdValue <= 1) { + // Filtered MRI from noisy voxel below autoThresholdValue + mask_3d = await applyMriThreshold(slices_3d, autoThresholdValue) + } else { + console.log('No valid crop threshold value') + // binarize original image + mask_3d = await slices_3d.greater([0]).asType('bool') + } + } else { + mask_3d = await pipeline1_out.greater([0]).asType('bool') + // -- pipeline1_out.dispose() + } + console.log(' mask_3d shape : ', mask_3d.shape) + const coords = await tf.whereAsync(mask_3d) + // -- Get each voxel coords (x, y, z) + mask_3d.dispose() + const coordsArr = coords.arraySync() + + let row_min = slice_height + let row_max = 0 + let col_min = slice_width + let col_max = 0 + let depth_min = num_of_slices + let depth_max = 0 + + for (let i = 0; i < coordsArr.length; i++) { + if (row_min > coordsArr[i][0]) { + row_min = coordsArr[i][0] + } else if (row_max < coordsArr[i][0]) { + row_max = coordsArr[i][0] + } + + if (col_min > coordsArr[i][1]) { + col_min = coordsArr[i][1] + } else if (col_max < coordsArr[i][1]) { + col_max = coordsArr[i][1] + } + + if (depth_min > coordsArr[i][2]) { + depth_min = coordsArr[i][2] + } else if (depth_max < coordsArr[i][2]) { + depth_max = coordsArr[i][2] + } + } + + console.log('row min and max :', row_min, row_max) + console.log('col min and max :', col_min, col_max) + console.log('depth min and max :', depth_min, depth_max) + + // -- Reference voxel that cropped volume started slice with it + const refVoxel = [row_min, col_min, depth_min] + console.log('refVoxel :', refVoxel) + + // -- Starting form refVoxel, size of bounding volume + const boundVolSizeArr = [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1] + + console.log('boundVolSizeArr :', boundVolSizeArr) + + coords.dispose() + + // -- Extract 3d object (e.g. brain) + const cropped_slices_3d = slices_3d.slice( + [row_min, col_min, depth_min], + [row_max - row_min + 1, col_max - col_min + 1, depth_max - depth_min + 1] + ) + + slices_3d.dispose() + + // -- Padding size add to cropped brain + const pad = modelEntry.cropPadding + + // Create margin around the bounding volume + let cropped_slices_3d_w_pad = await addZeroPaddingTo3dTensor(cropped_slices_3d, [pad, pad], [pad, pad], [pad, pad]) + console.log(' cropped slices_3d with padding shape: ', cropped_slices_3d_w_pad.shape) + + cropped_slices_3d.dispose() + + // -- Test dim after padding .. + // for (let i = 0; i < cropped_slices_3d_w_pad.rank; i++) { + // if(cropped_slices_3d_w_pad.shape[i] > 256) { + // console.log(" cropped_slices_3d_w_pad > 256 ") + // } + + // } + + if (opts.drawBoundingVolume) { + let testVol = await removeZeroPaddingFrom3dTensor(cropped_slices_3d_w_pad, pad, pad, pad) + console.log(' outLabelVolume without padding shape : ', testVol.shape) + + testVol = await resizeWithZeroPadding(testVol, num_of_slices, slice_height, slice_width, refVoxel, boundVolSizeArr) + console.log(' outLabelVolume final shape after resizing : ', testVol.shape) + // todo draw3dObjBoundingVolume() + draw3dObjBoundingVolume(tf.unstack(testVol), opts, modelEntry) + testVol.dispose() + + return 0 + } + + statData.Brainchop_Ver = 'FullVolume' + let startTime = performance.now() + let adjusted_input_shape = [] + const res = await model + try { + startTime = performance.now() + const inferenceStartTime = performance.now() + // maxLabelPredicted in whole volume of the brain + let maxLabelPredicted = 0 + const transpose = modelEntry.enableTranspose + + if (transpose) { + cropped_slices_3d_w_pad = cropped_slices_3d_w_pad.transpose() + console.log('Input transposed for pre-model') + } else { + console.log('Transpose not enabled for pre-model') + } + + let i = 1 + const layersLength = res.layers.length + console.log('res.layers.length ', layersLength) + + const isChannelLast = isModelChnlLast(res) + const batchSize = opts.batchSize + const numOfChan = opts.numOfChan + + // -- Adjust model input shape + if (isChannelLast) { + res.layers[0].batchInputShape[1] = cropped_slices_3d_w_pad.shape[0] + res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[1] + res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[2] + + adjusted_input_shape = [ + batchSize, + res.layers[0].batchInputShape[1], + res.layers[0].batchInputShape[2], + res.layers[0].batchInputShape[3], + numOfChan + ] + } else { + res.layers[0].batchInputShape[2] = cropped_slices_3d_w_pad.shape[0] + res.layers[0].batchInputShape[3] = cropped_slices_3d_w_pad.shape[1] + res.layers[0].batchInputShape[4] = cropped_slices_3d_w_pad.shape[2] + + adjusted_input_shape = [ + batchSize, + numOfChan, + res.layers[0].batchInputShape[2], + res.layers[0].batchInputShape[3], + res.layers[0].batchInputShape[4] + ] + } + + console.log(' Model batch input shape : ', res.layers[0].batchInputShape) + // -- batchInputShape {Array} input_shape - e.g. [?, D, H, W, Ch] or [?, Ch, D, H, W] + + statData.Input_Shape = JSON.stringify(res.layers[0].batchInputShape) + statData.Output_Shape = JSON.stringify(res.output.shape) + statData.Channel_Last = await isChannelLast + statData.Model_Param = await getModelNumParameters(res) + statData.Model_Layers = await getModelNumLayers(res) + statData.Model = modelEntry.modelName + //statData.Extra_Info = null + + const curTensor = [] + curTensor[0] = cropped_slices_3d_w_pad.reshape(adjusted_input_shape) + // console.log("curTensor[0] :", curTensor[0].dataSync()) + + while (true) { + try { + // -- curTensor[i] = res.layers[i].apply( curTensor[i-1]) + curTensor[i] = res.layers[i].apply(curTensor[i - 1]) + } catch (err) { + callbackUI(err.message, -1, err.message) + tf.engine().endScope() + tf.engine().disposeVariables() + + statData.Inference_t = Infinity + statData.Postprocess_t = Infinity + statData.Status = 'Fail' + statData.Error_Type = err.message + statData.Extra_Err_Info = 'Failed while model layer ' + i + ' apply' + + wcallbackUI('', -1, '', statData) + + return 0 + } + callbackUI('Layer ' + i.toString(), (i + 1) / layersLength) + console.log('layer output Tensor shape : ', curTensor[i].shape) + console.log('layer count params ', res.layers[i].countParams()) + res.layers[i].dispose() + curTensor[i - 1].dispose() + if (tf.memory().unreliable) { + const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons + callbackUI(unreliableReasons, NaN, unreliableReasons) + } + + if (i === layersLength - 1) { + + // prediction = res.layers[res.layers.length-1].apply(curTensor[i]) + // curTensor[i].print() + // outputDataBeforArgmx = Array.from(curTensor[i].dataSync()) + + const axis = isChannelLast ? -1 : 1 + console.log(' find argmax ') + console.log('last Tensor shape : ', curTensor[i].shape) + // -- curTensor[i].shape e.g. [ 1, 256, 256, 256, 3 ] + const expected_Num_labels = isChannelLast ? curTensor[i].shape[4] : curTensor[i].shape[1] + let prediction_argmax + + // Try for argMax with model output tensor. + + try { + const argMaxTime = performance.now() + console.log(' Try tf.argMax for fullVolume ..') + prediction_argmax = tf.argMax(curTensor[i], axis) + console.log('tf.argMax for fullVolume takes : ', ((performance.now() - argMaxTime) / 1000).toFixed(4)) + } catch (err1) { + // if channel last + if (axis === -1) { + try { + const argMaxLargeTime = performance.now() + console.log(' tf.argMax failed .. try argMaxLarge ..') + // todo tensor2LightBuffer() + const modelOutBuffer = tensor2LightBuffer( + curTensor[i].reshape([ + cropped_slices_3d_w_pad.shape[0], + cropped_slices_3d_w_pad.shape[1], + cropped_slices_3d_w_pad.shape[2], + expected_Num_labels + ]), + 'float16' + ) + // todo argMaxLarge() + prediction_argmax = argMaxLarge( + modelOutBuffer, + cropped_slices_3d_w_pad.shape[0], + cropped_slices_3d_w_pad.shape[1], + cropped_slices_3d_w_pad.shape[2], + expected_Num_labels, + 'float16' + ) + console.log( + 'argMaxLarge for fullVolume takes : ', + ((performance.now() - argMaxLargeTime) / 1000).toFixed(4) + ) + } catch (err2) { + const errTxt = "argMax buffer couldn't be created due to limited memory resources." + callbackUI(errTxt, -1, errTxt) + + tf.engine().endScope() + tf.engine().disposeVariables() + + statData.Inference_t = Infinity + statData.Postprocess_t = Infinity + statData.Status = 'Fail' + statData.Error_Type = err2.message + statData.Extra_Err_Info = 'prediction_argmax from argMaxLarge failed' + + wcallbackUI('', -1, '', statData) + return 0 + } + } else { + // if channel first .. + const errTxt = "argMax buffer couldn't be created due to limited memory resources." + callbackUI(errTxt, -1, errTxt) + + prediction_argmax.dispose() + + tf.engine().endScope() + tf.engine().disposeVariables() + + statData.Inference_t = Infinity + statData.Postprocess_t = Infinity + statData.Status = 'Fail' + statData.Error_Type = err1.message + statData.Extra_Err_Info = 'prediction_argmax from argMaxLarge not support yet channel first' + + wcallbackUI('', -1, '', statData) + + return 0 + } + } + + console.log(' prediction_argmax shape : ', prediction_argmax.shape) + // -- prediction_argmax.shape : [ 1, 256, 256, 256] + + const Inference_t = ((performance.now() - startTime) / 1000).toFixed(4) + + // outputDataBeforArgmx = Array.from(prediction_argmax.dataSync()) + tf.dispose(curTensor[i]) + // allPredictions.push({"id": allBatches[j].id, "coordinates": allBatches[j].coordinates, "data": Array.from(prediction_argmax.dataSync()) }) + console.log(' find array max ') + const curBatchMaxLabel = await prediction_argmax.max().dataSync()[0] + + if (maxLabelPredicted < curBatchMaxLabel) { + maxLabelPredicted = curBatchMaxLabel + } + + const numSegClasses = maxLabelPredicted + 1 + console.log('numSegClasses', numSegClasses) + statData.Actual_Labels = numSegClasses + statData.Expect_Labels = expected_Num_labels + statData.NumLabels_Match = numSegClasses === expected_Num_labels + + if (numSegClasses !== expected_Num_labels) { + // errTxt = "expected " + expected_Num_labels + " labels, but the predicted are " + numSegClasses + ". For possible solutions please refer to FAQ .", "alert-error" + const errTxt = 'expected ' + expected_Num_labels + ' labels, but the predicted are ' + numSegClasses + callbackUI(errTxt, -1, errTxt) + } + + // -- Transpose back to fit Papaya display settings + let outLabelVolume = prediction_argmax.reshape([ + cropped_slices_3d_w_pad.shape[0], + cropped_slices_3d_w_pad.shape[1], + cropped_slices_3d_w_pad.shape[2] + ]) + tf.dispose(prediction_argmax) + + // Transpose MRI data to be match pytorch/keras input output + if (transpose) { + console.log('outLabelVolume transposed') + outLabelVolume = outLabelVolume.transpose() + } + outLabelVolume = await removeZeroPaddingFrom3dTensor(outLabelVolume, pad, pad, pad) + console.log(' outLabelVolume without padding shape : ', outLabelVolume.shape) + outLabelVolume = await resizeWithZeroPadding( + outLabelVolume, + num_of_slices, + slice_height, + slice_width, + refVoxel, + boundVolSizeArr + ) + console.log(' outLabelVolume final shape after resizing : ', outLabelVolume.shape) + + const filterOutWithPreMask = modelEntry.filterOutWithPreMask + // To clean the skull area wrongly segmented in phase-2. + if (pipeline1_out != null && opts.isBrainCropMaskBased && filterOutWithPreMask) { + const bin = binarizeVolumeDataTensor(pipeline1_out) + outLabelVolume = outLabelVolume.mul(bin) + } + + startTime = performance.now() + // Generate output volume or slices + console.log('Generating correct output') + + try { + const img = new Uint32Array(outLabelVolume.dataSync()) + const Vshape = outLabelVolume.shape + const Vtype = outLabelVolume.dtype + tf.dispose(outLabelVolume) + tf.engine().endScope() + tf.engine().disposeVariables() + outimg = await generateOutputSlicesV2( + img, + Vshape, + Vtype, + num_of_slices, + numSegClasses, + slice_height, + slice_width, + modelEntry, + opts, + niftiImage + ) + console.log(' Phase-2 num of tensors after generateOutputSlicesV2: ', tf.memory().numTensors) + } catch (error) { + // -- Timing data to collect + tf.engine().endScope() + tf.engine().disposeVariables() + + const errTxt = 'Failed while generating output due to limited browser memory available' + callbackUI(errTxt, -1, errTxt) + statData.Inference_t = Inference_t + statData.Postprocess_t = Infinity + statData.Status = 'Fail' + statData.Error_Type = error.message + statData.Extra_Err_Info = 'Failed while generating output' + + wcallbackUI('', -1, '', statData) + + return 0 + } + + const Postprocess_t = ((performance.now() - startTime) / 1000).toFixed(4) + + tf.engine().disposeVariables() + + console.log( + 'Processing the whole brain volume in tfjs for multi-class output mask took : ', + ((performance.now() - inferenceStartTime) / 1000).toFixed(4) + ' Seconds' + ) + + // -- Timing data to collect + statData.Inference_t = Inference_t + statData.Postprocess_t = Postprocess_t + statData.Status = 'OK' + callbackUI('Segmentation finished', 0) + wcallbackUI('', -1, '', statData) + callbackImg(outimg, opts, modelEntry) + + return 0 + } + i++ + } + } catch (err) { + callbackUI(err.message, -1, err.message) + console.log( + 'If webgl context is lost, try to restore webgl context by visit the link ' + + 'here' + ) + } +} + +async function inferenceFullVolumePhase1( + model, + slices_3d, + num_of_slices, + slice_height, + slice_width, + isModelFullVol, + modelEntry, + statData, + opts, + callbackImg, + callbackUI, + niftiHeader, + niftiImage +) { + statData.No_SubVolumes = 1 + // load pre-model for inference first, can be null if no pre-model such as GWM models + if (modelEntry.preModelId) { + const preModel = await load_model(opts.rootURL + inferenceModelsList[modelEntry.preModelId - 1].path) + const transpose = inferenceModelsList[modelEntry.preModelId - 1].enableTranspose + const quantileNorm = inferenceModelsList[modelEntry.preModelId - 1].enableQuantileNorm + let preModel_slices_3d = null + + // -- If pre-model is not null then slices_3d mask will be generated.. + // -- The mask is needed to remove the skull and set noise in background to 0, and get the brain bounding volume properly + const slices_3d_mask = null + + if (quantileNorm) { + // Quantile normalize function needs specific models to be used + console.log('preModel Quantile normalization enabled') + preModel_slices_3d = await quantileNormalizeVolumeData(slices_3d) + } else { + // Min Max Nomalize MRI data to be from 0 to 1 + console.log('preModel Min Max normalization enabled') + preModel_slices_3d = await minMaxNormalizeVolumeData(slices_3d) + } + + // -- Transpose MRI data to be match pytorch/keras input output + // -- Check if pre-model needs transpose.. + if (transpose) { + preModel_slices_3d = preModel_slices_3d.transpose() + console.log('Input transposed for pre-model') + } else { + console.log('Transpose not enabled for pre-model') + } + + statData.Brainchop_Ver = 'PreModel_FV' // e.g. "PreModel_FV" + + // preModel.then(function (res) { + const res = await preModel + + try { + const inferenceStartTime = performance.now() + const preModelObject = res + + // read input shape from model.json object + const preModelBatchInputShape = preModelObject.layers[0].batchInputShape + console.log(' Pre-Model batch input shape : ', preModelBatchInputShape) + + // -- Verify input shape + if (preModelBatchInputShape.length !== 5) { + const errTxt = 'The pre-model input shape must be 5D ' + callbackUI(errTxt, -1, errTxt) + return 0 + } + + const isPreModelChannelLast = await isModelChnlLast(preModelObject) + const batchSize = opts.batchSize + const numOfChan = opts.numOfChan + let batch_D, batch_H, batch_W + let preModel_input_shape + if (isPreModelChannelLast) { + console.log('Pre-Model Channel Last') + if (isNaN(preModelBatchInputShape[4]) || preModelBatchInputShape[4] !== 1) { + const errTxt = 'The number of channels for pre-model input shape must be 1' + callbackUI(errTxt, -1, errTxt) + return 0 + } + + batch_D = preModelBatchInputShape[1] + batch_H = preModelBatchInputShape[2] + batch_W = preModelBatchInputShape[3] + + preModel_input_shape = [batchSize, batch_D, batch_H, batch_W, numOfChan] + } else { + console.log('Pre-Model Channel First') + if (isNaN(preModelBatchInputShape[1]) || preModelBatchInputShape[1] !== 1) { + const errTxt = 'The number of channels for pre-model input shape must be 1' + callbackUI(errTxt, -1, errTxt) + return 0 + } + + batch_D = preModelBatchInputShape[2] + batch_H = preModelBatchInputShape[3] + batch_W = preModelBatchInputShape[4] + + preModel_input_shape = [batchSize, numOfChan, batch_D, batch_H, batch_W] + } + + statData.Input_Shape = JSON.stringify(preModel_input_shape) + statData.Output_Shape = JSON.stringify(preModelObject.output.shape) + statData.Channel_Last = await isPreModelChannelLast + statData.Model_Param = await getModelNumParameters(preModelObject) + statData.Model_Layers = await getModelNumLayers(preModelObject) + + // maxLabelPredicted in whole volume of the brain + let maxLabelPredicted = 0 + + let i = 1 + const layersLength = res.layers.length + + const curTensor = [] + // -- reshape MRI to model input shape + curTensor[0] = preModel_slices_3d.reshape(preModel_input_shape) + + // Dispose the volume + tf.dispose(preModel_slices_3d) + while (true) { + try { + curTensor[i] = res.layers[i].apply(curTensor[i - 1]) + } catch (err) { + const errTxt = 'Your graphics card (e.g. Intel) may not be compatible with WebGL. ' + err.message + callbackUI(errTxt, -1, errTxt) + + tf.engine().endScope() + tf.engine().disposeVariables() + + statData.Inference_t = Infinity + statData.Postprocess_t = Infinity + statData.Status = 'Fail' + statData.Error_Type = err.message + statData.Extra_Err_Info = 'PreModel Failed while model layer ' + i + ' apply' + + wcallbackUI('', -1, '', statData) + + return 0 + } + + res.layers[i].dispose() + curTensor[i - 1].dispose() + + callbackUI('Layer ' + i.toString(), (i + 1) / layersLength) + if (tf.memory().unreliable) { + const unreliableReasons = 'unreliable reasons :' + tf.memory().reasons + callbackUI(unreliableReasons, NaN, unreliableReasons) + } + + if (i === layersLength - 1) { + + // -- prediction = res.layers[res.layers.length-1].apply(curTensor[i]) + // -- curTensor[i].print() + // -- outputDataBeforArgmx = Array.from(curTensor[i].dataSync()) + + const axis = isPreModelChannelLast ? -1 : 1 + console.log(' find argmax ') + console.log('last Tensor shape : ', curTensor[i].shape) + // -- curTensor[i].shape : [ 1, 256, 256, 256, 3 ] + const expected_Num_labels = isPreModelChannelLast ? curTensor[i].shape[4] : curTensor[i].shape[1] + let prediction_argmax + + // Try for argMax with model output tensor. + + try { + console.log(' Try tf.argMax for fullVolume ..') + prediction_argmax = await tf.argMax(curTensor[i], axis) + } catch (err1) { + // if channel last + if (axis === -1) { + try { + const argMaxLargeTime = performance.now() + console.log(' tf.argMax failed .. try argMaxLarge ..') + const modelOutBuffer = tensor2LightBuffer( + curTensor[i].reshape([num_of_slices, slice_height, slice_width, expected_Num_labels]), + 'float16' + ) + prediction_argmax = argMaxLarge( + modelOutBuffer, + num_of_slices, + slice_height, + slice_width, + expected_Num_labels, + 'float16' + ) + console.log( + 'argMaxLarge for fullVolume takes : ', + ((performance.now() - argMaxLargeTime) / 1000).toFixed(4) + ) + } catch (err2) { + const errTxt = "argMax buffer couldn't be created due to limited memory resources." + callbackUI(errTxt, -1, errTxt) + + prediction_argmax.dispose() + + tf.engine().endScope() + tf.engine().disposeVariables() + + statData.Inference_t = Infinity + statData.Postprocess_t = Infinity + statData.Status = 'Fail' + statData.Error_Type = err2.message + statData.Extra_Err_Info = 'preModel prediction_argmax from argMaxLarge failed' + + wcallbackUI('', -1, '', statData) + + return 0 + } + } else { + // if channel first .. + const errTxt = "argMax buffer couldn't be created due to limited memory resources." + callbackUI(errTxt, -1, errTxt) + + prediction_argmax.dispose() + + tf.engine().endScope() + tf.engine().disposeVariables() + + statData.Inference_t = Infinity + statData.Postprocess_t = Infinity + statData.Status = 'Fail' + statData.Error_Type = err1.message + statData.Extra_Err_Info = 'preModel prediction_argmax from argMaxLarge not support yet channel first' + + wcallbackUI('', -1, '', statData) + + return 0 + } + } + + console.log(' Pre-model prediction_argmax shape : ', prediction_argmax.shape) + // -- prediction_argmax.shape : [ 1, 256, 256, 256] + + const Inference_t = ((performance.now() - inferenceStartTime) / 1000).toFixed(4) + + tf.dispose(curTensor[i]) + + console.log(' Pre-model find array max ') + const curBatchMaxLabel = await prediction_argmax.max().dataSync()[0] + + if (maxLabelPredicted < curBatchMaxLabel) { + maxLabelPredicted = curBatchMaxLabel + } + + const numSegClasses = maxLabelPredicted + 1 + console.log('Pre-model numSegClasses', numSegClasses) + + statData.Actual_Labels = numSegClasses + statData.Expect_Labels = expected_Num_labels + statData.NumLabels_Match = numSegClasses === expected_Num_labels + + // -- Transpose back to fit Papaya display settings + let outLabelVolume = await prediction_argmax.reshape([num_of_slices, slice_height, slice_width]) + tf.dispose(prediction_argmax) + // Transpose MRI data to be match pytorch/keras input output + if (transpose) { + console.log('Pre-model outLabelVolume transposed') + outLabelVolume = outLabelVolume.transpose() + } + const startTime = performance.now() + // Generate output volume or slices + console.log('Generating pre-model output') + let slices_3d_mask + try { + const unstackOutVolumeTensor = await tf.unstack(outLabelVolume) + slices_3d_mask = await generateBrainMask( + unstackOutVolumeTensor, + num_of_slices, + slice_height, + slice_width, + modelEntry, + opts, + callbackUI, + callbackImg, + niftiHeader, + niftiImage, + false + ) + await tf.dispose(outLabelVolume) + console.log(' Phase-1 num of tensors after generateBrainMask: ', tf.memory().numTensors) + } catch (error) { + // -- Timing data to collect + tf.engine().endScope() + tf.engine().disposeVariables() + + const errTxt = 'Failed while generating pre-model output due to limited browser memory available' + callbackUI(errTxt, -1, errTxt) + + statData.Inference_t = Inference_t + statData.Postprocess_t = Infinity + statData.Status = 'Fail' + statData.Error_Type = error.message + statData.Extra_Err_Info = 'Pre-model failed while generating output' + + wcallbackUI('', -1, '', statData) + + return 0 + } + const Postprocess_t = ((performance.now() - startTime) / 1000).toFixed(4) + console.log( + 'Pre-model processing the whole brain volume in tfjs tooks for multi-class output mask : ', + ((performance.now() - inferenceStartTime) / 1000).toFixed(4) + ' Seconds' + ) + + // -- Timing data to collect + statData.Inference_t = Inference_t + statData.Postprocess_t = Postprocess_t + statData.Status = 'OK' + + wcallbackUI('', -1, '', statData) + + if (slices_3d_mask == null) { + const msg = 'slice_3d_mask failed ...' + callbackUI(msg, -1, msg) + return 0 + } else { + // --Phase-2, After remove the skull try to allocate brain volume and make inferece + console.log('--- pre-model done ---') + // --mask_3d = slices_3d_mask.greater([0]).asType('bool') + // --slices_3d_mask.dispose() + + if (isModelFullVol) { + if (modelEntry.enableSeqConv) { + // Mask cropping & seq conv + // Non-Atlas model (e.g. GWM) needs sequential convolution layer. + // Sequential convolution layer to be used after cropping - slow but reliable on most machines + console.log('------ Mask Cropping & Seq Convoluton ------') + await inferenceFullVolumeSeqCovLayerPhase2( + opts, + modelEntry, + model, + slices_3d, + num_of_slices, + slice_height, + slice_width, + slices_3d_mask, + callbackUI, + callbackImg, + statData, + niftiImage + ) + return 0 + // inferenceFullVolumeSeqCovLayerPhase2(model, slices_3d.transpose(), num_of_slices, slice_height, slice_width, slices_3d_mask) + } else { + // Mask cropping BUT no seq conv + console.log('------ Mask Cropping - NO Seq Convoluton ------') + await inferenceFullVolumePhase2( + model, + slices_3d, + num_of_slices, + slice_height, + slice_width, + slices_3d_mask, + modelEntry, + statData, + opts, + callbackImg, + callbackUI, + niftiImage + ) + // inferenceFullVolumePhase2(model, slices_3d.transpose(), num_of_slices, slice_height, slice_width, slices_3d_mask) + } + } else { + // -- In version 3.0.0 this function not used + await inferenceSubVolumes(model, slices_3d, num_of_slices, slice_height, slice_width, slices_3d_mask) + // inferenceSubVolumes(model, slices_3d.transpose(), num_of_slices, slice_height, slice_width, slices_3d_mask) + } + } + } + i++ + } + } catch (err) { + callbackUI(err.message, -1, err.message) + console.log( + 'If webgl context is lost, try to restore webgl context by visit the link ' + + 'here' + ) + + // document.getElementById("webGl2Status").style.backgroundColor = isWebGL2ContextLost() ? "Red" : "Green" + // document.getElementById("memoryStatus").style.backgroundColor = tf.memory().unreliable ? "Red" : "Green" + } + // }) + + // -- if(...) end + } else { + // No preModel + + // --Phase-2, After remove the skull try to allocate brain volume and make inferece + console.log('--- No pre-model is selected ---') + console.log('------ Run voxel cropping ------') + // -- mask_3d = slices_3d.greater([0]).asType('bool') + + if (isModelFullVol) { + if (modelEntry.enableSeqConv) { + // Voxel cropping & seq conv + // Non-Atlas model (e.g. GWM) needs sequential convolution layer. + // Sequential convolution layer to be used after cropping - slow but reliable on most machines + console.log('------ Seq Convoluton ------') + await inferenceFullVolumeSeqCovLayerPhase2( + opts, + modelEntry, + model, + slices_3d, + num_of_slices, + slice_height, + slice_width, + null, + callbackUI, + callbackImg, + statData, + niftiImage + ) + } else { + // Voxel cropping BUT no seq conv + // todo: we do not use result const outimg = await + inferenceFullVolumePhase2( + model, + slices_3d, + num_of_slices, + slice_height, + slice_width, + null, + modelEntry, + statData, + opts, + callbackImg, + callbackUI, + niftiImage + ) + } + } else { + // -- In version 3.0.0 this function not used + inferenceSubVolumes(model, slices_3d, num_of_slices, slice_height, slice_width, null) + } + } +} + +async function enableProductionMode(textureF16Flag = true) { + // -- tf.setBackend('cpu') + tf.setBackend('webgl'); + // -- tf.removeBackend('cpu') + // -- Calling enableProdMode() method + await tf.enableProdMode() + // -- Setting debug mode of the environment + tf.env().set('DEBUG', false) + tf.env().set('WEBGL_FORCE_F16_TEXTURES', textureF16Flag) + // -- set this flag so that textures are deleted when tensors are disposed. + tf.env().set('WEBGL_DELETE_TEXTURE_THRESHOLD', 0) + // -- tf.env().set('WEBGL_PACK', false) + // -- Put ready after sets above + await tf.ready() + // -- Printing output + console.log('tf env() flags :', tf.env().flags) + console.log('tf env() features :', tf.env().features) + console.log('tf env total features: ', Object.keys(tf.env().features).length) + console.log('tf backend: ', tf.getBackend()) +} + +async function runInferenceWW(opts, modelEntry, niftiHeader, niftiImage, callbackImg, callbackUI) { + const statData = [] + statData.startTime = performance.now() + callbackUI('Segmentation started', 0) + const batchSize = opts.batchSize + const numOfChan = opts.numOfChan + if (isNaN(batchSize) || batchSize !== 1) { + const errTxt = 'The batch Size for input shape must be 1' + callbackUI(errTxt, -1, errTxt) + return 0 + } + if (isNaN(numOfChan) || numOfChan !== 1) { + const errTxt = 'The number of channels for input shape must be 1' + callbackUI(errTxt, -1, errTxt) + return 0 + } + tf.engine().startScope() + console.log('Batch size: ', batchSize) + console.log('Num of Channels: ', numOfChan) + const model = await load_model(opts.rootURL + modelEntry.path) + await enableProductionMode(true) + statData.TF_Backend = tf.getBackend() + const modelObject = model + let batchInputShape = [] + // free global variable of 16777216 voxel + // allOutputSlices3DCC1DimArray = [] + // outputSceneRendered = false + // read input shape from model.json object + batchInputShape = modelObject.layers[0].batchInputShape + console.log(' Model batch input shape : ', batchInputShape) + // -- Verify input shape + if (batchInputShape.length !== 5) { + const errTxt = 'The model input shape must be 5D' + callbackUI(errTxt, -1, errTxt) + return 0 + } + let batch_D, batch_H, batch_W + let input_shape + const slice_width = niftiHeader.dims[1] + const slice_height = niftiHeader.dims[2] + const num_of_slices = niftiHeader.dims[3] + const isChannelLast = await isModelChnlLast(modelObject) + if (isChannelLast) { + console.log('Model Channel Last') + if (isNaN(batchInputShape[4]) || batchInputShape[4] !== 1) { + const errTxt = 'The number of channels for input shape must be 1' + callbackUI(errTxt, -1, errTxt) + return 0 + } + batch_D = batchInputShape[1] + batch_H = batchInputShape[2] + batch_W = batchInputShape[3] + + input_shape = [batchSize, batch_D, batch_H, batch_W, numOfChan] + } else { + console.log('Model Channel First') + if (isNaN(batchInputShape[1]) || batchInputShape[1] !== 1) { + const errTxt = 'The number of channels for input shape must be 1' + callbackUI(errTxt, -1, errTxt) + return 0 + } + batch_D = batchInputShape[2] + batch_H = batchInputShape[3] + batch_W = batchInputShape[4] + input_shape = [batchSize, numOfChan, batch_D, batch_H, batch_W] + } + // //-- Atlas version check + // if ( (batch_D > 30) && (batch_H == 256) && (batch_W == 256) ) { + // const errTxt = "The subvolume dimension in z-axis shouldn't exceed 30 number of slices for browser limitation" + // callbackUI(errTxt, -1, errTxt) + // return 0 + // } + // --Check whether the model will make inference at once as FullVolumeModel + let isModelFullVol + if (batch_D === 256 && batch_H === 256 && batch_W === 256) { + isModelFullVol = true + } else { + isModelFullVol = false + } + statData.isModelFullVol = isModelFullVol + // Model output number of segmentations + let allSlices = await getAllSlicesData1D(num_of_slices, niftiHeader, niftiImage) + const allSlices_2D = await getAllSlices2D(allSlices, slice_height, slice_width) + // free array from mem + allSlices = null + // Get slices_3d tensor + let slices_3d = await getSlices3D(allSlices_2D) + // free tensor from mem + tf.dispose(allSlices_2D) + const transpose = modelEntry.enableTranspose + const enableCrop = modelEntry.enableCrop + if (isModelFullVol) { + if (enableCrop) { + // FullVolume with Crop option before inference .. + // pre-model to mask the volume, can also be null and the cropping will be on the MRI. + await inferenceFullVolumePhase1( + model, + slices_3d, + num_of_slices, + slice_height, + slice_width, + isModelFullVol, + modelEntry, + statData, + opts, + callbackImg, + callbackUI, + niftiHeader, + niftiImage + ) + } else { + // Transpose MRI data to be match pytorch/keras input output + console.log('Cropping Disabled') + + if (transpose) { + slices_3d = slices_3d.transpose() + console.log('Input transposed') + } else { + console.log('Transpose NOT Enabled') + } + + const enableSeqConv = modelEntry.enableSeqConv + + if (enableSeqConv) { + console.log('Seq Convoluton Enabled') + await inferenceFullVolumeSeqCovLayer( + model, + slices_3d, + input_shape, + isChannelLast, + num_of_slices, + slice_height, + slice_width + ) + } else { + console.log('Seq Convoluton Disabled') + await inferenceFullVolume( + model, + slices_3d, + input_shape, + isChannelLast, + num_of_slices, + slice_height, + slice_width + ) + } + } + } +} + +self.addEventListener('message', function(event) { + runInferenceWW(event.data.opts, event.data.modelEntry, event.data.niftiHeader, event.data.niftiImage, wcallbackImg, wcallbackUI) +}, false) diff --git a/brainchop.png b/brainchop.png new file mode 100644 index 0000000..4abe595 Binary files /dev/null and b/brainchop.png differ diff --git a/bwlabels.js b/bwlabels.js index 61343aa..d83dc7b 100644 --- a/bwlabels.js +++ b/bwlabels.js @@ -158,7 +158,7 @@ export class BWLabeler { // translation table unifies a region that has been assigned multiple classes fill_tratab(tt, nabo, nr_set, tn) { // let cntr = 0 - tn.fill(0) + //tn.fill(0) const INT_MAX = 2147483647 let ltn = INT_MAX for (let i = 0; i < nr_set; i++) { diff --git a/index.html b/index.html index 8437b3a..c67cd14 100644 --- a/index.html +++ b/index.html @@ -10,8 +10,14 @@