diff --git a/dev/.buildinfo b/dev/.buildinfo index f70f918122f..c7368d1df9f 100644 --- a/dev/.buildinfo +++ b/dev/.buildinfo @@ -1,4 +1,4 @@ # Sphinx build info version 1 # This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. -config: 1cf2eef25447c1d874e49bc8eaeb4067 +config: 13e2d5700de8798320e1cd4d739e30f0 tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip b/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip index 6d78b3e9f5c..dada0273774 100644 Binary files a/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip and b/dev/_downloads/07fcc19ba03226cd3d83d4e40ec44385/auto_examples_python.zip differ diff --git a/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip b/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip index a3b757f0919..ad83a83ec61 100644 Binary files a/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip and b/dev/_downloads/6f1e7a639e0699d6164445b55e6c116d/auto_examples_jupyter.zip differ diff --git a/dev/_images/sphx_glr_plot_advanced_decoding_scikit_001.png b/dev/_images/sphx_glr_plot_advanced_decoding_scikit_001.png index e038e9361dd..0eed9801a3f 100644 Binary files a/dev/_images/sphx_glr_plot_advanced_decoding_scikit_001.png and b/dev/_images/sphx_glr_plot_advanced_decoding_scikit_001.png differ diff --git a/dev/_images/sphx_glr_plot_advanced_decoding_scikit_thumb.png b/dev/_images/sphx_glr_plot_advanced_decoding_scikit_thumb.png index 724ba4ac1b0..c0d22048a34 100644 Binary files a/dev/_images/sphx_glr_plot_advanced_decoding_scikit_thumb.png and b/dev/_images/sphx_glr_plot_advanced_decoding_scikit_thumb.png differ diff --git a/dev/_images/sphx_glr_plot_beta_series_001.png b/dev/_images/sphx_glr_plot_beta_series_001.png index f1251ce9c90..4027fea16fd 100644 Binary files a/dev/_images/sphx_glr_plot_beta_series_001.png and b/dev/_images/sphx_glr_plot_beta_series_001.png differ diff --git a/dev/_images/sphx_glr_plot_beta_series_002.png b/dev/_images/sphx_glr_plot_beta_series_002.png index decc26fee49..30e8f7d82a6 100644 Binary files a/dev/_images/sphx_glr_plot_beta_series_002.png and b/dev/_images/sphx_glr_plot_beta_series_002.png differ diff --git a/dev/_images/sphx_glr_plot_beta_series_003.png b/dev/_images/sphx_glr_plot_beta_series_003.png index e0f521fdfa6..f8b73d87f65 100644 Binary files a/dev/_images/sphx_glr_plot_beta_series_003.png and b/dev/_images/sphx_glr_plot_beta_series_003.png differ diff --git a/dev/_images/sphx_glr_plot_beta_series_004.png b/dev/_images/sphx_glr_plot_beta_series_004.png index 6771b6d11f9..455e64843ac 100644 Binary files a/dev/_images/sphx_glr_plot_beta_series_004.png and b/dev/_images/sphx_glr_plot_beta_series_004.png differ diff --git a/dev/_images/sphx_glr_plot_beta_series_005.png b/dev/_images/sphx_glr_plot_beta_series_005.png index 4ad6182dd47..90aec8618c2 100644 Binary files a/dev/_images/sphx_glr_plot_beta_series_005.png and b/dev/_images/sphx_glr_plot_beta_series_005.png differ diff --git a/dev/_images/sphx_glr_plot_beta_series_thumb.png b/dev/_images/sphx_glr_plot_beta_series_thumb.png index b6bbc7368cd..c9ce9bd23dc 100644 Binary files a/dev/_images/sphx_glr_plot_beta_series_thumb.png and b/dev/_images/sphx_glr_plot_beta_series_thumb.png differ diff --git a/dev/_images/sphx_glr_plot_bids_analysis_001.png b/dev/_images/sphx_glr_plot_bids_analysis_001.png index a59c27ff0c6..f9b30307aef 100644 Binary files a/dev/_images/sphx_glr_plot_bids_analysis_001.png and b/dev/_images/sphx_glr_plot_bids_analysis_001.png differ diff --git a/dev/_images/sphx_glr_plot_bids_analysis_002.png b/dev/_images/sphx_glr_plot_bids_analysis_002.png index e7c86d20ff8..5b4b4769848 100644 Binary files a/dev/_images/sphx_glr_plot_bids_analysis_002.png and b/dev/_images/sphx_glr_plot_bids_analysis_002.png differ diff --git a/dev/_images/sphx_glr_plot_bids_analysis_thumb.png b/dev/_images/sphx_glr_plot_bids_analysis_thumb.png index 9df186f6d8d..1c54e6364d2 100644 Binary files a/dev/_images/sphx_glr_plot_bids_analysis_thumb.png and b/dev/_images/sphx_glr_plot_bids_analysis_thumb.png differ diff --git a/dev/_images/sphx_glr_plot_design_matrix_001.png b/dev/_images/sphx_glr_plot_design_matrix_001.png index 39cc9b26ec5..a6f2dd8759a 100644 Binary files a/dev/_images/sphx_glr_plot_design_matrix_001.png and b/dev/_images/sphx_glr_plot_design_matrix_001.png differ diff --git a/dev/_images/sphx_glr_plot_design_matrix_thumb.png b/dev/_images/sphx_glr_plot_design_matrix_thumb.png index ffe036a337b..7756a1f0363 100644 Binary files a/dev/_images/sphx_glr_plot_design_matrix_thumb.png and b/dev/_images/sphx_glr_plot_design_matrix_thumb.png differ diff --git a/dev/_images/sphx_glr_plot_first_level_details_024.png b/dev/_images/sphx_glr_plot_first_level_details_024.png index b27d6ab1cd0..0c475fecb55 100644 Binary files a/dev/_images/sphx_glr_plot_first_level_details_024.png and b/dev/_images/sphx_glr_plot_first_level_details_024.png differ diff --git a/dev/_images/sphx_glr_plot_haxby_anova_svm_001.png b/dev/_images/sphx_glr_plot_haxby_anova_svm_001.png index 43c4cb3f00b..e7b00eabec6 100644 Binary files a/dev/_images/sphx_glr_plot_haxby_anova_svm_001.png and b/dev/_images/sphx_glr_plot_haxby_anova_svm_001.png differ diff --git a/dev/_images/sphx_glr_plot_haxby_anova_svm_thumb.png b/dev/_images/sphx_glr_plot_haxby_anova_svm_thumb.png index f8de4b29113..2ab57b3ec81 100644 Binary files a/dev/_images/sphx_glr_plot_haxby_anova_svm_thumb.png and b/dev/_images/sphx_glr_plot_haxby_anova_svm_thumb.png differ diff --git a/dev/_images/sphx_glr_plot_haxby_different_estimators_001.png b/dev/_images/sphx_glr_plot_haxby_different_estimators_001.png index 1006532ebad..04cef201606 100644 Binary files a/dev/_images/sphx_glr_plot_haxby_different_estimators_001.png and b/dev/_images/sphx_glr_plot_haxby_different_estimators_001.png differ diff --git a/dev/_images/sphx_glr_plot_haxby_different_estimators_002.png b/dev/_images/sphx_glr_plot_haxby_different_estimators_002.png index b00365054a5..6635587eee3 100644 Binary files a/dev/_images/sphx_glr_plot_haxby_different_estimators_002.png and b/dev/_images/sphx_glr_plot_haxby_different_estimators_002.png differ diff --git a/dev/_images/sphx_glr_plot_haxby_different_estimators_005.png b/dev/_images/sphx_glr_plot_haxby_different_estimators_005.png index 599f7bc2cd3..5afd6b3110e 100644 Binary files a/dev/_images/sphx_glr_plot_haxby_different_estimators_005.png and b/dev/_images/sphx_glr_plot_haxby_different_estimators_005.png differ diff --git a/dev/_images/sphx_glr_plot_haxby_different_estimators_thumb.png b/dev/_images/sphx_glr_plot_haxby_different_estimators_thumb.png index 2ef0f6e3d55..5f66494768a 100644 Binary files a/dev/_images/sphx_glr_plot_haxby_different_estimators_thumb.png and b/dev/_images/sphx_glr_plot_haxby_different_estimators_thumb.png differ diff --git a/dev/_images/sphx_glr_plot_haxby_grid_search_001.png b/dev/_images/sphx_glr_plot_haxby_grid_search_001.png index 6371ca22acb..18749d899b5 100644 Binary files a/dev/_images/sphx_glr_plot_haxby_grid_search_001.png and b/dev/_images/sphx_glr_plot_haxby_grid_search_001.png differ diff --git a/dev/_images/sphx_glr_plot_haxby_grid_search_thumb.png b/dev/_images/sphx_glr_plot_haxby_grid_search_thumb.png index 39b334150dc..f3e69b1f73c 100644 Binary files a/dev/_images/sphx_glr_plot_haxby_grid_search_thumb.png and b/dev/_images/sphx_glr_plot_haxby_grid_search_thumb.png differ diff --git a/dev/_images/sphx_glr_plot_haxby_mass_univariate_002.png b/dev/_images/sphx_glr_plot_haxby_mass_univariate_002.png index c91fb1853eb..d1e49790f27 100644 Binary files a/dev/_images/sphx_glr_plot_haxby_mass_univariate_002.png and b/dev/_images/sphx_glr_plot_haxby_mass_univariate_002.png differ diff --git a/dev/_images/sphx_glr_plot_haxby_searchlight_001.png b/dev/_images/sphx_glr_plot_haxby_searchlight_001.png index 78b8c9da9a2..531ce2666c3 100644 Binary files a/dev/_images/sphx_glr_plot_haxby_searchlight_001.png and b/dev/_images/sphx_glr_plot_haxby_searchlight_001.png differ diff --git a/dev/_images/sphx_glr_plot_haxby_searchlight_thumb.png b/dev/_images/sphx_glr_plot_haxby_searchlight_thumb.png index 7367d4f0337..a0ad492c1e7 100644 Binary files a/dev/_images/sphx_glr_plot_haxby_searchlight_thumb.png and b/dev/_images/sphx_glr_plot_haxby_searchlight_thumb.png differ diff --git a/dev/_images/sphx_glr_plot_localizer_mass_univariate_methods_001.png b/dev/_images/sphx_glr_plot_localizer_mass_univariate_methods_001.png index 713591a64ce..6f5021a44ae 100644 Binary files a/dev/_images/sphx_glr_plot_localizer_mass_univariate_methods_001.png and b/dev/_images/sphx_glr_plot_localizer_mass_univariate_methods_001.png differ diff --git a/dev/_images/sphx_glr_plot_localizer_mass_univariate_methods_thumb.png b/dev/_images/sphx_glr_plot_localizer_mass_univariate_methods_thumb.png index d77c8fb3606..3e326c8afd6 100644 Binary files a/dev/_images/sphx_glr_plot_localizer_mass_univariate_methods_thumb.png and b/dev/_images/sphx_glr_plot_localizer_mass_univariate_methods_thumb.png differ diff --git a/dev/_images/sphx_glr_plot_oasis_vbm_004.png b/dev/_images/sphx_glr_plot_oasis_vbm_004.png index dcbd5ef005e..90f21d7adf6 100644 Binary files a/dev/_images/sphx_glr_plot_oasis_vbm_004.png and b/dev/_images/sphx_glr_plot_oasis_vbm_004.png differ diff --git a/dev/_images/sphx_glr_plot_second_level_association_test_003.png b/dev/_images/sphx_glr_plot_second_level_association_test_003.png index 684a946c2d6..0162eed3448 100644 Binary files a/dev/_images/sphx_glr_plot_second_level_association_test_003.png and b/dev/_images/sphx_glr_plot_second_level_association_test_003.png differ diff --git a/dev/_images/sphx_glr_plot_second_level_one_sample_test_003.png b/dev/_images/sphx_glr_plot_second_level_one_sample_test_003.png index 3ecf69a0e47..cea8a42fa02 100644 Binary files a/dev/_images/sphx_glr_plot_second_level_one_sample_test_003.png and b/dev/_images/sphx_glr_plot_second_level_one_sample_test_003.png differ diff --git a/dev/_images/sphx_glr_plot_simulated_data_002.png b/dev/_images/sphx_glr_plot_simulated_data_002.png index 3c96692a348..f2db762278a 100644 Binary files a/dev/_images/sphx_glr_plot_simulated_data_002.png and b/dev/_images/sphx_glr_plot_simulated_data_002.png differ diff --git a/dev/_images/sphx_glr_plot_simulated_data_003.png b/dev/_images/sphx_glr_plot_simulated_data_003.png index 0ede147606a..81c649dfd76 100644 Binary files a/dev/_images/sphx_glr_plot_simulated_data_003.png and b/dev/_images/sphx_glr_plot_simulated_data_003.png differ diff --git a/dev/_images/sphx_glr_plot_simulated_data_006.png b/dev/_images/sphx_glr_plot_simulated_data_006.png index 7a2da39e299..c232d89b1df 100644 Binary files a/dev/_images/sphx_glr_plot_simulated_data_006.png and b/dev/_images/sphx_glr_plot_simulated_data_006.png differ diff --git a/dev/_sources/auto_examples/00_tutorials/plot_3d_and_4d_niimg.rst.txt b/dev/_sources/auto_examples/00_tutorials/plot_3d_and_4d_niimg.rst.txt index 9e6fa4dd638..83477ec37be 100644 --- a/dev/_sources/auto_examples/00_tutorials/plot_3d_and_4d_niimg.rst.txt +++ b/dev/_sources/auto_examples/00_tutorials/plot_3d_and_4d_niimg.rst.txt @@ -125,7 +125,7 @@ statistical map: .. code-block:: none - + @@ -154,7 +154,7 @@ Visualizing works better with a threshold .. code-block:: none - + @@ -263,7 +263,7 @@ We can then plot it .. code-block:: none - + @@ -474,7 +474,7 @@ image. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 16.097 seconds) + **Total running time of the script:** (0 minutes 19.974 seconds) **Estimated memory usage:** 127 MB diff --git a/dev/_sources/auto_examples/00_tutorials/plot_decoding_tutorial.rst.txt b/dev/_sources/auto_examples/00_tutorials/plot_decoding_tutorial.rst.txt index 4d0b3db1dfd..92106db17fc 100644 --- a/dev/_sources/auto_examples/00_tutorials/plot_decoding_tutorial.rst.txt +++ b/dev/_sources/auto_examples/00_tutorials/plot_decoding_tutorial.rst.txt @@ -197,7 +197,7 @@ Haxby study is available: .. code-block:: none - + @@ -757,122 +757,122 @@ We retrieve the SVC discriminating weights .. code-block:: none - [[-3.89376038e-02 -1.87166563e-02 -3.23027750e-02 -2.88745408e-02 - 4.18696005e-02 1.10743706e-02 1.69997332e-02 -5.50953665e-02 - -1.94203283e-02 -3.51225518e-02 1.08509754e-02 -1.28797743e-02 - -1.54677352e-02 -3.78907799e-02 -3.69168054e-02 2.28087031e-02 - 6.56425600e-03 -7.65763975e-03 1.67106824e-02 -8.02128273e-03 - 5.29516434e-02 -8.17593858e-02 -6.36993476e-02 2.41326798e-02 - 4.59877240e-02 -2.22603574e-02 -1.77306596e-02 2.22198674e-02 - -9.53199860e-03 5.76047026e-02 2.14301178e-02 -9.14222688e-02 - 4.03667341e-03 -2.89274909e-02 -3.89030746e-02 -3.35113743e-02 - 2.21400506e-03 8.73124714e-03 -3.37415458e-02 -2.41276913e-02 - -6.81648131e-02 1.65405831e-02 2.70782788e-02 -6.56842738e-03 - -1.21664165e-02 5.47673892e-02 8.13278340e-03 3.60954576e-02 - -1.52763601e-02 7.02912867e-02 1.28105984e-03 2.08005252e-02 - -4.09946977e-03 3.72429231e-02 -3.77396396e-02 -1.03858000e-02 - -2.38238659e-02 -5.48881383e-02 4.43028224e-02 -1.47419233e-01 - -2.34042888e-02 1.87115339e-02 6.65859020e-02 -9.07602252e-02 - -1.22036052e-02 -2.95654959e-03 3.22092250e-02 -3.04053841e-02 - 6.15343953e-02 1.12249612e-02 1.93775713e-02 -1.30542033e-02 - 4.42977539e-02 -2.23066264e-02 6.88146817e-02 1.69390196e-02 - 1.78946417e-02 1.00275900e-02 2.99186649e-02 -2.52171418e-02 - 1.06153205e-02 -6.31962693e-03 2.21510065e-03 -2.23349460e-02 - 1.42560202e-02 -1.53122960e-02 -1.98227549e-02 -4.32637284e-02 - -4.55126158e-02 3.41588978e-02 -2.79199116e-02 -2.80908073e-02 - -3.70159926e-02 -5.71451275e-02 -6.98950433e-02 3.20188660e-03 - -8.35466541e-03 -3.37626390e-02 3.04260812e-02 8.68460415e-03 - 6.19366271e-03 5.94177078e-02 9.07296977e-03 -1.48931920e-02 - 1.43559160e-02 -1.09027000e-02 2.67698014e-02 4.73786592e-02 - -2.96430580e-02 3.09423154e-02 1.57930498e-02 -3.16724570e-02 - -4.00106494e-02 -5.40263302e-02 2.82611902e-02 -1.12101678e-02 - -5.45403656e-02 6.32177602e-02 -1.49998545e-02 2.47542873e-03 - -4.56644990e-02 -1.83881957e-02 1.19958432e-02 -3.72172770e-02 - -2.25530446e-03 4.58654484e-02 4.79166823e-02 2.51822190e-03 - -4.31721589e-02 -5.35325828e-03 5.76995460e-02 7.40820701e-03 - -3.20590518e-02 4.35704116e-03 1.68303281e-02 -2.92570322e-02 - -2.24490885e-03 -8.30209476e-03 -1.00012326e-02 2.17134492e-02 - -1.92609283e-03 -1.33221739e-02 -2.80300418e-02 -1.75294113e-02 - -9.17833794e-03 -7.09937763e-03 -1.43032298e-02 5.06832359e-02 - -1.84812269e-02 -4.71507638e-02 1.72569008e-02 -4.76641272e-02 - -9.08754187e-04 4.00769478e-02 7.53992960e-02 7.25612778e-03 - 4.82604699e-02 4.50555262e-02 3.61201208e-02 -8.16509972e-03 - 1.95405395e-02 3.57882383e-02 4.89306657e-02 3.82972212e-02 - 6.23921111e-02 6.13675628e-02 -1.68749674e-02 1.66515519e-02 - 3.35524610e-02 -1.80213122e-02 4.46410544e-02 -3.53243197e-02 - -3.67293804e-02 -4.62252842e-03 4.86828340e-02 3.39667498e-02 - 6.21721751e-03 1.73611352e-02 2.01698054e-02 2.17098041e-02 - 2.91411780e-02 2.37776074e-02 4.84699326e-02 -9.22616466e-03 - -2.82637404e-02 -2.13781953e-02 1.80799044e-03 4.79687025e-02 - -9.78908230e-03 1.11432542e-02 -1.65017490e-02 -2.89091423e-02 - 2.42849316e-02 -1.22346141e-02 -2.92869641e-02 -2.89845849e-02 - -3.39531916e-02 -3.65280539e-03 2.65323396e-02 4.58043846e-02 - -5.93382017e-02 -2.13630364e-02 -3.09408735e-02 5.50179570e-02 - -3.38816360e-02 6.12618495e-03 1.41484571e-02 1.10215673e-02 - 5.33812379e-02 -2.12338838e-02 6.37432449e-03 -1.13075101e-02 - -2.64227155e-02 -2.22399544e-02 -5.31919685e-02 -3.98653677e-02 - -1.29727783e-01 -3.28091549e-02 -2.89711653e-02 -9.13463696e-03 - -7.28728614e-03 -3.71052076e-02 -6.34906531e-02 2.04395105e-03 - -8.26795965e-02 -6.71214290e-02 -2.29139859e-03 -2.33451749e-02 - 1.77914083e-02 -8.74668688e-02 -2.76498522e-03 -4.38276709e-02 - -1.28049846e-02 2.78034361e-02 -4.32695522e-02 -3.22686682e-02 - -2.28030189e-02 -2.57414336e-02 2.03622043e-02 -9.90247649e-03 - -3.15033025e-02 -1.81421274e-02 -1.12323194e-03 -4.17431666e-02 - -6.23481196e-02 2.54625426e-04 -6.73680180e-02 6.53966216e-02 - 1.06521897e-02 2.21984380e-02 -1.98726942e-02 -1.85519819e-02 - 4.05702552e-02 -3.02838675e-02 -8.10053145e-02 -7.42460487e-02 - -4.93850001e-02 -1.01768810e-02 1.09405965e-02 -4.49253892e-02 - 2.92749518e-02 7.05296583e-03 5.07532706e-03 -4.84042043e-03 - 2.48771773e-03 3.00653604e-02 -2.63081941e-03 4.64684380e-03 - 7.90208639e-02 1.04859040e-02 1.68079865e-02 -4.36718983e-02 - -1.08856527e-02 2.10242652e-02 -4.41965697e-02 3.16479092e-03 - 6.98670565e-02 8.61631389e-02 4.96234601e-02 6.03894012e-03 - 5.56496163e-02 -2.98919129e-02 4.13042238e-03 -3.21952477e-02 - -3.14991640e-02 -5.31278027e-02 2.67257773e-02 3.14428536e-02 - 6.67117303e-03 -1.28703296e-02 2.20151158e-02 5.68525619e-02 - 2.25604281e-02 -2.04616783e-02 5.10348226e-03 2.85357609e-02 - -1.81663212e-02 -8.48433293e-03 -3.18825202e-02 -1.18497549e-02 - -4.10845859e-02 3.11777817e-02 9.63461412e-03 -8.25901347e-03 - -3.12226092e-02 8.57642243e-03 -9.70197661e-03 1.32373762e-02 - 4.06448784e-02 8.23415696e-03 -3.27354344e-02 -4.33882965e-03 - -1.75530629e-02 6.88853725e-03 3.45131682e-02 7.03298604e-02 - 2.16785136e-02 5.32232890e-03 8.17562908e-02 6.40063936e-02 - -2.31150240e-03 -1.17557129e-02 1.75889145e-01 3.18130314e-02 - -3.15886943e-02 3.34027824e-02 2.22781597e-02 1.00231935e-02 - -4.74912164e-02 -2.12757235e-02 -3.98717431e-02 -6.04068794e-02 - -4.65060531e-02 1.03003048e-02 -3.05707809e-04 1.80743244e-02 - -1.75450774e-02 -8.72589719e-02 1.00662657e-01 4.46122593e-03 - 7.46869408e-02 -6.13410325e-02 2.81702329e-02 -1.40975845e-02 - 3.14637929e-02 -1.63834437e-02 3.66532814e-02 -5.15683796e-03 - 1.45093825e-02 6.35868454e-02 2.34598818e-02 8.81062185e-02 - 6.15345180e-02 -1.39361064e-02 2.07246203e-02 -3.15453216e-03 - 5.15425313e-02 -2.88767076e-02 1.60263859e-02 2.09703886e-02 - -3.29173258e-02 -2.59460066e-02 -5.60400653e-02 -3.64627969e-02 - 1.12882514e-02 2.17268103e-02 -1.51637181e-02 -7.82895027e-03 - 2.42548035e-02 9.47015179e-02 -2.63033357e-02 1.17316383e-04 - -5.24169273e-03 4.17988124e-02 8.85681454e-02 6.23623368e-03 - 1.86600318e-02 1.54629140e-02 3.50559230e-03 6.20622009e-03 - -1.19791430e-02 1.59526651e-02 7.12123850e-03 -8.93192977e-02 - -3.54338684e-03 1.23479140e-02 3.03928226e-02 -2.37295827e-02 - -3.82790724e-02 -4.98744477e-02 4.66896182e-02 -1.23292567e-02 - -1.10332085e-02 2.18104733e-02 2.18719788e-02 2.63537394e-02 - 1.05281529e-02 1.84616934e-02 8.36030782e-04 -6.65226323e-03 - 3.49397022e-02 1.49353549e-02 -1.11598717e-02 6.69109813e-03 - -2.00058802e-02 -3.99015502e-02 3.01871532e-02 -1.09867006e-02 - -4.11780265e-02 2.72055367e-02 1.16426448e-02 -1.55502639e-02 - 3.27699947e-02 3.95494853e-02 8.48720834e-03 2.19935057e-02 - -9.88678684e-03 -3.61420812e-02 -4.77021441e-02 1.90074601e-02 - -5.58286322e-02 -3.31740576e-02 -2.24913414e-02 -3.36175739e-02 - -4.07355354e-02 1.08860178e-02 1.12810065e-02 7.63145408e-02 - 4.04798562e-03 3.07014155e-02 2.89177309e-02 4.71615413e-03 - 5.13384205e-02 -4.10363570e-02 1.23271383e-03 -2.50404069e-02 - 5.85902255e-02 -1.04965712e-01 -4.41705043e-02 1.18520617e-02 - -5.83203949e-02 -4.82246052e-02 9.17655899e-03 1.03259773e-02 - -5.09181502e-03 -3.23391035e-02 -3.19388554e-02 -1.53769974e-02 - -5.21213629e-02 1.55619916e-02 2.93483362e-02 -1.92527236e-02 - 1.76694938e-02 2.67992080e-02 5.76553553e-02 -1.38164436e-02 - 2.60399754e-02 1.50400358e-02 1.27424571e-02 -2.29244554e-02 - -1.06663283e-02 9.81948632e-03 -4.77511522e-02 1.64241339e-02]] + [[-3.89376569e-02 -1.87166189e-02 -3.23027019e-02 -2.88746747e-02 + 4.18696295e-02 1.10743509e-02 1.69997539e-02 -5.50955322e-02 + -1.94204425e-02 -3.51226857e-02 1.08510855e-02 -1.28797390e-02 + -1.54677163e-02 -3.78908621e-02 -3.69167992e-02 2.28086754e-02 + 6.56421077e-03 -7.65762920e-03 1.67105978e-02 -8.02137534e-03 + 5.29516089e-02 -8.17594157e-02 -6.36992350e-02 2.41326068e-02 + 4.59876449e-02 -2.22603390e-02 -1.77308652e-02 2.22197334e-02 + -9.53197020e-03 5.76045447e-02 2.14300486e-02 -9.14225036e-02 + 4.03662682e-03 -2.89275414e-02 -3.89031189e-02 -3.35114501e-02 + 2.21398397e-03 8.73131942e-03 -3.37416402e-02 -2.41275771e-02 + -6.81648247e-02 1.65407721e-02 2.70784524e-02 -6.56836848e-03 + -1.21663542e-02 5.47675099e-02 8.13290175e-03 3.60954024e-02 + -1.52761977e-02 7.02912962e-02 1.28102393e-03 2.08008424e-02 + -4.09939732e-03 3.72429998e-02 -3.77395273e-02 -1.03858223e-02 + -2.38236657e-02 -5.48881195e-02 4.43027799e-02 -1.47419252e-01 + -2.34042142e-02 1.87115268e-02 6.65859055e-02 -9.07602636e-02 + -1.22035869e-02 -2.95642866e-03 3.22092928e-02 -3.04054116e-02 + 6.15345823e-02 1.12249329e-02 1.93774740e-02 -1.30541782e-02 + 4.42975945e-02 -2.23066310e-02 6.88146775e-02 1.69390139e-02 + 1.78946073e-02 1.00276681e-02 2.99186904e-02 -2.52171451e-02 + 1.06155509e-02 -6.31935786e-03 2.21501837e-03 -2.23347619e-02 + 1.42561169e-02 -1.53123316e-02 -1.98227360e-02 -4.32637757e-02 + -4.55124612e-02 3.41590111e-02 -2.79199796e-02 -2.80909196e-02 + -3.70158386e-02 -5.71451756e-02 -6.98950862e-02 3.20168872e-03 + -8.35457379e-03 -3.37627719e-02 3.04260406e-02 8.68457882e-03 + 6.19385090e-03 5.94177851e-02 9.07295257e-03 -1.48931062e-02 + 1.43558768e-02 -1.09027697e-02 2.67698248e-02 4.73787360e-02 + -2.96432492e-02 3.09422949e-02 1.57927804e-02 -3.16721036e-02 + -4.00106620e-02 -5.40261518e-02 2.82612692e-02 -1.12101157e-02 + -5.45401928e-02 6.32177893e-02 -1.49997058e-02 2.47546770e-03 + -4.56643777e-02 -1.83881593e-02 1.19958356e-02 -3.72171964e-02 + -2.25513978e-03 4.58657213e-02 4.79167280e-02 2.51823094e-03 + -4.31721181e-02 -5.35323425e-03 5.76994364e-02 7.40831932e-03 + -3.20591069e-02 4.35704791e-03 1.68303083e-02 -2.92569898e-02 + -2.24489590e-03 -8.30210056e-03 -1.00012844e-02 2.17135001e-02 + -1.92620345e-03 -1.33221764e-02 -2.80301464e-02 -1.75293921e-02 + -9.17795293e-03 -7.09933243e-03 -1.43032390e-02 5.06832377e-02 + -1.84812767e-02 -4.71507511e-02 1.72569074e-02 -4.76642243e-02 + -9.08861100e-04 4.00770299e-02 7.53995902e-02 7.25609100e-03 + 4.82605441e-02 4.50555715e-02 3.61202935e-02 -8.16495256e-03 + 1.95406451e-02 3.57882015e-02 4.89306332e-02 3.82973279e-02 + 6.23919778e-02 6.13675702e-02 -1.68751106e-02 1.66514417e-02 + 3.35522681e-02 -1.80212292e-02 4.46410864e-02 -3.53244442e-02 + -3.67292203e-02 -4.62254655e-03 4.86828817e-02 3.39667366e-02 + 6.21715332e-03 1.73611952e-02 2.01698042e-02 2.17097443e-02 + 2.91412961e-02 2.37777459e-02 4.84698989e-02 -9.22624556e-03 + -2.82638059e-02 -2.13781349e-02 1.80790135e-03 4.79687913e-02 + -9.78898501e-03 1.11431178e-02 -1.65020129e-02 -2.89090440e-02 + 2.42849793e-02 -1.22346516e-02 -2.92870977e-02 -2.89845050e-02 + -3.39532204e-02 -3.65278556e-03 2.65324161e-02 4.58043283e-02 + -5.93381835e-02 -2.13630673e-02 -3.09406538e-02 5.50179590e-02 + -3.38816404e-02 6.12613834e-03 1.41483557e-02 1.10215898e-02 + 5.33811916e-02 -2.12339103e-02 6.37423115e-03 -1.13075791e-02 + -2.64225988e-02 -2.22399516e-02 -5.31920798e-02 -3.98653667e-02 + -1.29727849e-01 -3.28091799e-02 -2.89710724e-02 -9.13467709e-03 + -7.28720612e-03 -3.71052046e-02 -6.34907877e-02 2.04387862e-03 + -8.26794234e-02 -6.71215532e-02 -2.29125338e-03 -2.33451680e-02 + 1.77914470e-02 -8.74667788e-02 -2.76490603e-03 -4.38275449e-02 + -1.28051207e-02 2.78034594e-02 -4.32695506e-02 -3.22687161e-02 + -2.28029479e-02 -2.57415240e-02 2.03623759e-02 -9.90252814e-03 + -3.15034303e-02 -1.81420286e-02 -1.12328538e-03 -4.17432276e-02 + -6.23479550e-02 2.54766092e-04 -6.73679541e-02 6.53966163e-02 + 1.06521738e-02 2.21983012e-02 -1.98726838e-02 -1.85519589e-02 + 4.05703432e-02 -3.02837292e-02 -8.10051870e-02 -7.42460038e-02 + -4.93849785e-02 -1.01771273e-02 1.09406470e-02 -4.49253905e-02 + 2.92747884e-02 7.05302617e-03 5.07538971e-03 -4.84049694e-03 + 2.48741019e-03 3.00654996e-02 -2.63084271e-03 4.64685479e-03 + 7.90210013e-02 1.04858093e-02 1.68080026e-02 -4.36719270e-02 + -1.08856432e-02 2.10241943e-02 -4.41965786e-02 3.16485450e-03 + 6.98670736e-02 8.61629338e-02 4.96233351e-02 6.03897625e-03 + 5.56494665e-02 -2.98920784e-02 4.13032548e-03 -3.21952280e-02 + -3.14991326e-02 -5.31276242e-02 2.67257924e-02 3.14428646e-02 + 6.67113750e-03 -1.28703524e-02 2.20151205e-02 5.68524505e-02 + 2.25603273e-02 -2.04617651e-02 5.10333778e-03 2.85356881e-02 + -1.81663697e-02 -8.48429650e-03 -3.18824429e-02 -1.18497140e-02 + -4.10844637e-02 3.11777631e-02 9.63477303e-03 -8.25915542e-03 + -3.12227047e-02 8.57644367e-03 -9.70201488e-03 1.32373185e-02 + 4.06448469e-02 8.23406757e-03 -3.27356354e-02 -4.33877093e-03 + -1.75530634e-02 6.88838512e-03 3.45131464e-02 7.03299980e-02 + 2.16784701e-02 5.32229897e-03 8.17563549e-02 6.40063765e-02 + -2.31138936e-03 -1.17557516e-02 1.75889119e-01 3.18128890e-02 + -3.15888172e-02 3.34028524e-02 2.22781246e-02 1.00231446e-02 + -4.74912216e-02 -2.12756955e-02 -3.98717655e-02 -6.04069569e-02 + -4.65060608e-02 1.03003120e-02 -3.05711558e-04 1.80743735e-02 + -1.75451987e-02 -8.72591028e-02 1.00662664e-01 4.46109943e-03 + 7.46869488e-02 -6.13411441e-02 2.81703843e-02 -1.40978793e-02 + 3.14638185e-02 -1.63834897e-02 3.66533173e-02 -5.15666693e-03 + 1.45093382e-02 6.35867368e-02 2.34598550e-02 8.81062148e-02 + 6.15344326e-02 -1.39361581e-02 2.07246929e-02 -3.15457439e-03 + 5.15424222e-02 -2.88767715e-02 1.60263173e-02 2.09701837e-02 + -3.29172453e-02 -2.59460569e-02 -5.60401570e-02 -3.64627826e-02 + 1.12882160e-02 2.17267472e-02 -1.51638185e-02 -7.82884895e-03 + 2.42549716e-02 9.47012371e-02 -2.63034234e-02 1.17323752e-04 + -5.24175603e-03 4.17987979e-02 8.85681175e-02 6.23648257e-03 + 1.86600445e-02 1.54629553e-02 3.50543487e-03 6.20600811e-03 + -1.19790136e-02 1.59526686e-02 7.12126289e-03 -8.93192974e-02 + -3.54345067e-03 1.23478749e-02 3.03928100e-02 -2.37294919e-02 + -3.82791515e-02 -4.98746332e-02 4.66896396e-02 -1.23292353e-02 + -1.10332642e-02 2.18105228e-02 2.18719684e-02 2.63538207e-02 + 1.05279990e-02 1.84618082e-02 8.36035958e-04 -6.65212529e-03 + 3.49396921e-02 1.49353131e-02 -1.11598376e-02 6.69097818e-03 + -2.00059153e-02 -3.99015334e-02 3.01872978e-02 -1.09867013e-02 + -4.11780764e-02 2.72052376e-02 1.16425770e-02 -1.55502397e-02 + 3.27700158e-02 3.95493921e-02 8.48722399e-03 2.19935247e-02 + -9.88663671e-03 -3.61421471e-02 -4.77021449e-02 1.90074377e-02 + -5.58286786e-02 -3.31738578e-02 -2.24914328e-02 -3.36175567e-02 + -4.07354767e-02 1.08861874e-02 1.12811065e-02 7.63144499e-02 + 4.04801659e-03 3.07014132e-02 2.89177166e-02 4.71610048e-03 + 5.13384180e-02 -4.10364432e-02 1.23255240e-03 -2.50403779e-02 + 5.85903815e-02 -1.04965650e-01 -4.41705748e-02 1.18520202e-02 + -5.83204038e-02 -4.82244633e-02 9.17658613e-03 1.03259613e-02 + -5.09184442e-03 -3.23390265e-02 -3.19386688e-02 -1.53771394e-02 + -5.21211851e-02 1.55619488e-02 2.93484466e-02 -1.92527985e-02 + 1.76694768e-02 2.67991926e-02 5.76553739e-02 -1.38163827e-02 + 2.60399830e-02 1.50401307e-02 1.27425133e-02 -2.29243926e-02 + -1.06664941e-02 9.81930805e-03 -4.77511796e-02 1.64244040e-02]] @@ -1002,7 +1002,7 @@ We can plot the weights, using the subject's anatomical as a background $( window ).on('load',function() { // Create brain slices var brain = brainsprite( - {"canvas": "3Dviewer", "sprite": "spriteImg", "nbSlice": {"X": 124, "Y": 256, "Z": 256}, "overlay": {"sprite": "overlayImg", "nbSlice": {"X": 124, "Y": 256, "Z": 256}, "opacity": 1}, "colorBackground": "#000000", "colorFont": "#FFFFFF", "crosshair": true, "affine": [[1.2000000476837158, 0.0, 0.0, -73.80000293254852], [0.0, 0.9375, 0.0, -119.53125], [0.0, 0.0, 0.9375, -119.53125], [0.0, 0.0, 0.0, 1.0]], "flagCoordinates": true, "title": "SVM weights", "flagValue": false, "numSlice": {"X": 50.8869827506137, "Y": 83.14770060746312, "Z": 117.91566820866842}, "colorMap": {"img": "colorMap", "min": -0.17588914930820465, "max": 0.17588914930820465}} + {"canvas": "3Dviewer", "sprite": "spriteImg", "nbSlice": {"X": 124, "Y": 256, "Z": 256}, "overlay": {"sprite": "overlayImg", "nbSlice": {"X": 124, "Y": 256, "Z": 256}, "opacity": 1}, "colorBackground": "#000000", "colorFont": "#FFFFFF", "crosshair": true, "affine": [[1.2000000476837158, 0.0, 0.0, -73.80000293254852], [0.0, 0.9375, 0.0, -119.53125], [0.0, 0.0, 0.9375, -119.53125], [0.0, 0.0, 0.0, 1.0]], "flagCoordinates": true, "title": "SVM weights", "flagValue": false, "numSlice": {"X": 50.88699175671044, "Y": 83.14770511513618, "Z": 117.91567701865729}, "colorMap": {"img": "colorMap", "min": -0.17588911950588226, "max": 0.17588911950588226}} ); }); </script> @@ -1077,7 +1077,7 @@ ______________ .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 39.634 seconds) + **Total running time of the script:** (0 minutes 43.816 seconds) **Estimated memory usage:** 916 MB diff --git a/dev/_sources/auto_examples/00_tutorials/plot_nilearn_101.rst.txt b/dev/_sources/auto_examples/00_tutorials/plot_nilearn_101.rst.txt index 4b37f8cbe64..ddb17369ac1 100644 --- a/dev/_sources/auto_examples/00_tutorials/plot_nilearn_101.rst.txt +++ b/dev/_sources/auto_examples/00_tutorials/plot_nilearn_101.rst.txt @@ -77,7 +77,7 @@ Let's quickly plot this file: .. code-block:: none - + @@ -125,7 +125,7 @@ Here we give as inputs the image filename and the smoothing value in mm .. code-block:: none - + @@ -154,7 +154,7 @@ instance to look at it .. code-block:: none - + @@ -183,7 +183,7 @@ We could also pass it to the smoothing function .. code-block:: none - + @@ -238,9 +238,9 @@ passed on to other nilearn tools, or saved to disk. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 6.310 seconds) + **Total running time of the script:** (0 minutes 6.202 seconds) -**Estimated memory usage:** 265 MB +**Estimated memory usage:** 255 MB .. _sphx_glr_download_auto_examples_00_tutorials_plot_nilearn_101.py: diff --git a/dev/_sources/auto_examples/00_tutorials/plot_python_101.rst.txt b/dev/_sources/auto_examples/00_tutorials/plot_python_101.rst.txt index 240a601db64..b9430d852ea 100644 --- a/dev/_sources/auto_examples/00_tutorials/plot_python_101.rst.txt +++ b/dev/_sources/auto_examples/00_tutorials/plot_python_101.rst.txt @@ -53,14 +53,14 @@ A simple example of basic Python numerics and how to plot it. .. code-block:: none - [] + [] .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 0.714 seconds) + **Total running time of the script:** (0 minutes 0.855 seconds) **Estimated memory usage:** 10 MB diff --git a/dev/_sources/auto_examples/00_tutorials/plot_single_subject_single_run.rst.txt b/dev/_sources/auto_examples/00_tutorials/plot_single_subject_single_run.rst.txt index 46dfb12cfdb..664d684ea2f 100644 --- a/dev/_sources/auto_examples/00_tutorials/plot_single_subject_single_run.rst.txt +++ b/dev/_sources/auto_examples/00_tutorials/plot_single_subject_single_run.rst.txt @@ -128,7 +128,7 @@ We can display the first functional image and the subject's anatomy: .. code-block:: none - + @@ -1261,7 +1261,7 @@ Oops, there is a lot of non-neural signal in there (ventricles, arteries)... .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 16.349 seconds) + **Total running time of the script:** (0 minutes 21.181 seconds) **Estimated memory usage:** 275 MB diff --git a/dev/_sources/auto_examples/00_tutorials/sg_execution_times.rst.txt b/dev/_sources/auto_examples/00_tutorials/sg_execution_times.rst.txt index ace87ad1fb6..f61e5b9b9b7 100644 --- a/dev/_sources/auto_examples/00_tutorials/sg_execution_times.rst.txt +++ b/dev/_sources/auto_examples/00_tutorials/sg_execution_times.rst.txt @@ -6,16 +6,16 @@ Computation times ================= -**01:19.105** total execution time for **auto_examples_00_tutorials** files: +**01:32.027** total execution time for **auto_examples_00_tutorials** files: +----------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_00_tutorials_plot_decoding_tutorial.py` (``plot_decoding_tutorial.py``) | 00:39.634 | 916.4 MB | +| :ref:`sphx_glr_auto_examples_00_tutorials_plot_decoding_tutorial.py` (``plot_decoding_tutorial.py``) | 00:43.816 | 916.3 MB | +----------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_00_tutorials_plot_single_subject_single_run.py` (``plot_single_subject_single_run.py``) | 00:16.349 | 275.1 MB | +| :ref:`sphx_glr_auto_examples_00_tutorials_plot_single_subject_single_run.py` (``plot_single_subject_single_run.py``) | 00:21.181 | 275.1 MB | +----------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_00_tutorials_plot_3d_and_4d_niimg.py` (``plot_3d_and_4d_niimg.py``) | 00:16.097 | 127.3 MB | +| :ref:`sphx_glr_auto_examples_00_tutorials_plot_3d_and_4d_niimg.py` (``plot_3d_and_4d_niimg.py``) | 00:19.974 | 127.4 MB | +----------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_00_tutorials_plot_nilearn_101.py` (``plot_nilearn_101.py``) | 00:06.310 | 265.4 MB | +| :ref:`sphx_glr_auto_examples_00_tutorials_plot_nilearn_101.py` (``plot_nilearn_101.py``) | 00:06.202 | 255.0 MB | +----------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_00_tutorials_plot_python_101.py` (``plot_python_101.py``) | 00:00.714 | 9.5 MB | +| :ref:`sphx_glr_auto_examples_00_tutorials_plot_python_101.py` (``plot_python_101.py``) | 00:00.855 | 9.6 MB | +----------------------------------------------------------------------------------------------------------------------+-----------+----------+ diff --git a/dev/_sources/auto_examples/01_plotting/plot_3d_map_to_surface_projection.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_3d_map_to_surface_projection.rst.txt index 05a09e04368..c55feb6c611 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_3d_map_to_surface_projection.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_3d_map_to_surface_projection.rst.txt @@ -199,7 +199,7 @@ of ``matplotlib``:
-
+


@@ -272,7 +272,7 @@ Plot 3D image for comparison .. code-block:: none - + @@ -1465,9 +1465,9 @@ interpolation with zero radius will achieve this. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 41.950 seconds) + **Total running time of the script:** (0 minutes 35.803 seconds) -**Estimated memory usage:** 424 MB +**Estimated memory usage:** 460 MB .. _sphx_glr_download_auto_examples_01_plotting_plot_3d_map_to_surface_projection.py: diff --git a/dev/_sources/auto_examples/01_plotting/plot_atlas.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_atlas.rst.txt index cb47cfa522b..e639901a531 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_atlas.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_atlas.rst.txt @@ -86,7 +86,7 @@ Visualizing the Harvard-Oxford atlas .. code-block:: none - + @@ -116,7 +116,7 @@ Visualizing the Juelich atlas .. code-block:: none - + @@ -184,9 +184,9 @@ Visualizing the Juelich atlas with contours .. rst-class:: sphx-glr-timing - **Total running time of the script:** (1 minutes 22.608 seconds) + **Total running time of the script:** (1 minutes 46.368 seconds) -**Estimated memory usage:** 443 MB +**Estimated memory usage:** 457 MB .. _sphx_glr_download_auto_examples_01_plotting_plot_atlas.py: diff --git a/dev/_sources/auto_examples/01_plotting/plot_carpet.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_carpet.rst.txt index 239f2f415c4..1e222f1e635 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_carpet.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_carpet.rst.txt @@ -204,9 +204,9 @@ Visualizing global patterns, separated by tissue type .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 9.327 seconds) + **Total running time of the script:** (0 minutes 11.000 seconds) -**Estimated memory usage:** 913 MB +**Estimated memory usage:** 963 MB .. _sphx_glr_download_auto_examples_01_plotting_plot_carpet.py: diff --git a/dev/_sources/auto_examples/01_plotting/plot_colormaps.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_colormaps.rst.txt index 4a703075254..261490970a6 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_colormaps.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_colormaps.rst.txt @@ -121,9 +121,9 @@ Plot matplotlib color maps .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 3.251 seconds) + **Total running time of the script:** (0 minutes 3.692 seconds) -**Estimated memory usage:** 18 MB +**Estimated memory usage:** 19 MB .. _sphx_glr_download_auto_examples_01_plotting_plot_colormaps.py: diff --git a/dev/_sources/auto_examples/01_plotting/plot_demo_glass_brain.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_demo_glass_brain.rst.txt index c48156e1d46..7538f7ed953 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_demo_glass_brain.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_demo_glass_brain.rst.txt @@ -72,7 +72,7 @@ Glass brain plotting: whole brain sagittal cuts .. code-block:: none - + @@ -109,7 +109,7 @@ the z view (option "display_mode"). .. code-block:: none - + @@ -146,7 +146,7 @@ Glass brain plotting: Hemispheric sagittal cuts .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 3.331 seconds) + **Total running time of the script:** (0 minutes 4.101 seconds) **Estimated memory usage:** 18 MB diff --git a/dev/_sources/auto_examples/01_plotting/plot_demo_glass_brain_extensive.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_demo_glass_brain_extensive.rst.txt index 5e2f1967b56..5e2c7022f8c 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_demo_glass_brain_extensive.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_demo_glass_brain_extensive.rst.txt @@ -104,7 +104,7 @@ a :class:`~nilearn.plotting.displays.OrthoProjector` is returned. .. code-block:: none - + @@ -135,7 +135,7 @@ setting ``colorbar=True``. .. code-block:: none - + @@ -173,7 +173,7 @@ axial projections by setting ``display_mode='xz'``, which returns a .. code-block:: none - + @@ -208,7 +208,7 @@ Additionally, we only visualize coronal and axial projections by setting .. code-block:: none - + @@ -240,7 +240,7 @@ Setting ``plot_abs=True`` and ``display_mode='yx'`` (returns a .. code-block:: none - + @@ -281,7 +281,7 @@ colorbar will not be centered around zero. .. code-block:: none - + @@ -319,7 +319,7 @@ losing colours due to the thresholding. .. code-block:: none - + @@ -363,7 +363,7 @@ enables an hemispheric sagittal view. The display object returned is then a .. code-block:: none - + @@ -401,7 +401,7 @@ enables an hemispheric sagittal view. The display object returned is then a .. code-block:: none - + @@ -444,7 +444,7 @@ If you are only interested in single projections, you can set .. code-block:: none - + @@ -828,7 +828,7 @@ Next, using the same display object, we plot positive sign of activation. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 26.643 seconds) + **Total running time of the script:** (0 minutes 33.498 seconds) **Estimated memory usage:** 9 MB diff --git a/dev/_sources/auto_examples/01_plotting/plot_demo_more_plotting.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_demo_more_plotting.rst.txt index 86cc5fd3e2f..a1d1b34bef8 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_demo_more_plotting.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_demo_more_plotting.rst.txt @@ -145,7 +145,7 @@ By default the ``colorbar`` argument is set to ``True`` in .. code-block:: none - + @@ -188,7 +188,7 @@ automatically. .. code-block:: none - + @@ -228,7 +228,7 @@ integers. .. code-block:: none - + @@ -270,7 +270,7 @@ again, selected automatically. .. code-block:: none - + @@ -310,7 +310,7 @@ a colorbar on the right side. .. code-block:: none - + @@ -353,7 +353,7 @@ slices to be displayed. .. code-block:: none - + @@ -393,7 +393,7 @@ The coordinates will be assigned in the order of direction as [x, y, z]. .. code-block:: none - + @@ -432,7 +432,7 @@ object. .. code-block:: none - + @@ -472,7 +472,7 @@ a :class:`~nilearn.plotting.displays.TiledSlicer` object. .. code-block:: none - + @@ -512,7 +512,7 @@ In addition, we show here the default option ``cut_coords=None``. .. code-block:: none - + @@ -551,7 +551,7 @@ an integer, i.e. ``cut_coords=3``. .. code-block:: none - + @@ -590,7 +590,7 @@ we specify the number of slices as a tuple of length 3. .. code-block:: none - + @@ -906,7 +906,7 @@ object returned. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 27.563 seconds) + **Total running time of the script:** (0 minutes 33.935 seconds) **Estimated memory usage:** 916 MB diff --git a/dev/_sources/auto_examples/01_plotting/plot_demo_plotting.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_demo_plotting.rst.txt index 1fc9460d324..0a41291f2d0 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_demo_plotting.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_demo_plotting.rst.txt @@ -130,7 +130,7 @@ Plotting statistical maps with function `plot_stat_map` .. code-block:: none - + @@ -256,7 +256,7 @@ brain is always a fixed background template .. code-block:: none - + @@ -287,7 +287,7 @@ Visualizing anatomical image of haxby dataset .. code-block:: none - + @@ -322,7 +322,7 @@ with coordinates positioned automatically on region of interest (roi) .. code-block:: none - + @@ -360,7 +360,7 @@ Plotting EPI image with function `plot_epi` .. code-block:: none - + @@ -385,7 +385,7 @@ in script mode (ie outside IPython) .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 13.158 seconds) + **Total running time of the script:** (0 minutes 15.087 seconds) **Estimated memory usage:** 916 MB diff --git a/dev/_sources/auto_examples/01_plotting/plot_dim_plotting.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_dim_plotting.rst.txt index 99da3e2a7e6..6e30e95a15b 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_dim_plotting.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_dim_plotting.rst.txt @@ -90,7 +90,7 @@ Plotting with enhancement of background image with dim=-.5 .. code-block:: none - + @@ -126,7 +126,7 @@ Plotting with no change of contrast in background image with dim=0 .. code-block:: none - + @@ -162,7 +162,7 @@ Plotting with decrease of contrast in background image with dim=.5 .. code-block:: none - + @@ -200,7 +200,7 @@ Plotting with more decrease in contrast with dim=1 .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 4.797 seconds) + **Total running time of the script:** (0 minutes 6.072 seconds) **Estimated memory usage:** 9 MB diff --git a/dev/_sources/auto_examples/01_plotting/plot_haxby_masks.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_haxby_masks.rst.txt index 598a9ec37af..9186c785d43 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_haxby_masks.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_haxby_masks.rst.txt @@ -134,7 +134,7 @@ Plot the masks .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 5.657 seconds) + **Total running time of the script:** (0 minutes 6.038 seconds) **Estimated memory usage:** 916 MB diff --git a/dev/_sources/auto_examples/01_plotting/plot_multiscale_parcellations.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_multiscale_parcellations.rst.txt index 76efb3fd163..4007bda9ddc 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_multiscale_parcellations.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_multiscale_parcellations.rst.txt @@ -123,7 +123,7 @@ Visualizing brain parcellations .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 2.516 seconds) + **Total running time of the script:** (0 minutes 3.407 seconds) **Estimated memory usage:** 9 MB diff --git a/dev/_sources/auto_examples/01_plotting/plot_overlay.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_overlay.rst.txt index 759523317eb..bd1f7c133a7 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_overlay.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_overlay.rst.txt @@ -163,7 +163,7 @@ Unlike :func:`nilearn.plotting.plot_stat_map` this works with 4D images .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 3.206 seconds) + **Total running time of the script:** (0 minutes 4.435 seconds) **Estimated memory usage:** 11 MB diff --git a/dev/_sources/auto_examples/01_plotting/plot_prob_atlas.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_prob_atlas.rst.txt index 84c7f2a18ab..c303530e176 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_prob_atlas.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_prob_atlas.rst.txt @@ -196,7 +196,7 @@ locally to get the same plots as above for each of the listed atlases. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 20.888 seconds) + **Total running time of the script:** (0 minutes 26.292 seconds) **Estimated memory usage:** 342 MB diff --git a/dev/_sources/auto_examples/01_plotting/plot_surf_atlas.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_surf_atlas.rst.txt index 3f964b40b48..46d75364f50 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_surf_atlas.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_surf_atlas.rst.txt @@ -1043,7 +1043,7 @@ interactive view of the connectome. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 7.249 seconds) + **Total running time of the script:** (0 minutes 8.314 seconds) **Estimated memory usage:** 35 MB diff --git a/dev/_sources/auto_examples/01_plotting/plot_surf_stat_map.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_surf_stat_map.rst.txt index 8a327847bd8..a0f629f3555 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_surf_stat_map.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_surf_stat_map.rst.txt @@ -404,7 +404,7 @@ creating the figure .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 18.180 seconds) + **Total running time of the script:** (0 minutes 20.477 seconds) **Estimated memory usage:** 302 MB diff --git a/dev/_sources/auto_examples/01_plotting/plot_surface_projection_strategies.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_surface_projection_strategies.rst.txt index c8477eb7b0c..6f7c583b80b 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_surface_projection_strategies.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_surface_projection_strategies.rst.txt @@ -205,7 +205,7 @@ position of samples along the line .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 1.106 seconds) + **Total running time of the script:** (0 minutes 1.413 seconds) **Estimated memory usage:** 10 MB diff --git a/dev/_sources/auto_examples/01_plotting/plot_visualization.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_visualization.rst.txt index 8764966121f..a1f47148fdb 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_visualization.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_visualization.rst.txt @@ -92,7 +92,7 @@ Visualization .. code-block:: none - + @@ -129,7 +129,7 @@ Simple computation of a mask from the fMRI data .. code-block:: none - + @@ -176,9 +176,9 @@ Applying the mask to extract the corresponding time series .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 20.527 seconds) + **Total running time of the script:** (0 minutes 19.933 seconds) -**Estimated memory usage:** 1354 MB +**Estimated memory usage:** 1364 MB .. _sphx_glr_download_auto_examples_01_plotting_plot_visualization.py: diff --git a/dev/_sources/auto_examples/01_plotting/plot_visualize_megatrawls_netmats.rst.txt b/dev/_sources/auto_examples/01_plotting/plot_visualize_megatrawls_netmats.rst.txt index 41179884d7c..cc22d1b3006 100644 --- a/dev/_sources/auto_examples/01_plotting/plot_visualize_megatrawls_netmats.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/plot_visualize_megatrawls_netmats.rst.txt @@ -87,7 +87,7 @@ correlation matrices .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 0.544 seconds) + **Total running time of the script:** (0 minutes 0.646 seconds) **Estimated memory usage:** 9 MB diff --git a/dev/_sources/auto_examples/01_plotting/sg_execution_times.rst.txt b/dev/_sources/auto_examples/01_plotting/sg_execution_times.rst.txt index a99bb1bfa21..813b74c0739 100644 --- a/dev/_sources/auto_examples/01_plotting/sg_execution_times.rst.txt +++ b/dev/_sources/auto_examples/01_plotting/sg_execution_times.rst.txt @@ -6,42 +6,42 @@ Computation times ================= -**04:52.499** total execution time for **auto_examples_01_plotting** files: +**05:40.510** total execution time for **auto_examples_01_plotting** files: -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_atlas.py` (``plot_atlas.py``) | 01:22.608 | 442.7 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_3d_map_to_surface_projection.py` (``plot_3d_map_to_surface_projection.py``) | 00:41.950 | 424.3 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_demo_more_plotting.py` (``plot_demo_more_plotting.py``) | 00:27.563 | 916.2 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_demo_glass_brain_extensive.py` (``plot_demo_glass_brain_extensive.py``) | 00:26.643 | 9.0 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_prob_atlas.py` (``plot_prob_atlas.py``) | 00:20.888 | 341.6 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_visualization.py` (``plot_visualization.py``) | 00:20.527 | 1353.9 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_surf_stat_map.py` (``plot_surf_stat_map.py``) | 00:18.180 | 301.8 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_demo_plotting.py` (``plot_demo_plotting.py``) | 00:13.158 | 916.4 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_carpet.py` (``plot_carpet.py``) | 00:09.327 | 913.0 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_surf_atlas.py` (``plot_surf_atlas.py``) | 00:07.249 | 34.6 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_haxby_masks.py` (``plot_haxby_masks.py``) | 00:05.657 | 916.4 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_dim_plotting.py` (``plot_dim_plotting.py``) | 00:04.797 | 9.2 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_demo_glass_brain.py` (``plot_demo_glass_brain.py``) | 00:03.331 | 17.6 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_colormaps.py` (``plot_colormaps.py``) | 00:03.251 | 18.5 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_overlay.py` (``plot_overlay.py``) | 00:03.206 | 10.8 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_multiscale_parcellations.py` (``plot_multiscale_parcellations.py``) | 00:02.516 | 9.0 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_surface_projection_strategies.py` (``plot_surface_projection_strategies.py``) | 00:01.106 | 9.8 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_01_plotting_plot_visualize_megatrawls_netmats.py` (``plot_visualize_megatrawls_netmats.py``) | 00:00.544 | 9.0 MB | -+-----------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_atlas.py` (``plot_atlas.py``) | 01:46.368 | 457.5 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_3d_map_to_surface_projection.py` (``plot_3d_map_to_surface_projection.py``) | 00:35.803 | 460.3 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_demo_more_plotting.py` (``plot_demo_more_plotting.py``) | 00:33.935 | 916.4 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_demo_glass_brain_extensive.py` (``plot_demo_glass_brain_extensive.py``) | 00:33.498 | 9.0 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_prob_atlas.py` (``plot_prob_atlas.py``) | 00:26.292 | 342.4 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_surf_stat_map.py` (``plot_surf_stat_map.py``) | 00:20.477 | 301.8 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_visualization.py` (``plot_visualization.py``) | 00:19.933 | 1363.7 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_demo_plotting.py` (``plot_demo_plotting.py``) | 00:15.087 | 916.4 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_carpet.py` (``plot_carpet.py``) | 00:10.1000 | 963.3 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_surf_atlas.py` (``plot_surf_atlas.py``) | 00:08.314 | 34.8 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_dim_plotting.py` (``plot_dim_plotting.py``) | 00:06.072 | 9.2 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_haxby_masks.py` (``plot_haxby_masks.py``) | 00:06.038 | 916.4 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_overlay.py` (``plot_overlay.py``) | 00:04.435 | 10.8 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_demo_glass_brain.py` (``plot_demo_glass_brain.py``) | 00:04.101 | 17.6 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_colormaps.py` (``plot_colormaps.py``) | 00:03.692 | 19.2 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_multiscale_parcellations.py` (``plot_multiscale_parcellations.py``) | 00:03.407 | 9.0 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_surface_projection_strategies.py` (``plot_surface_projection_strategies.py``) | 00:01.413 | 9.9 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ +| :ref:`sphx_glr_auto_examples_01_plotting_plot_visualize_megatrawls_netmats.py` (``plot_visualize_megatrawls_netmats.py``) | 00:00.646 | 9.0 MB | ++-----------------------------------------------------------------------------------------------------------------------------+------------+-----------+ diff --git a/dev/_sources/auto_examples/02_decoding/plot_haxby_anova_svm.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_haxby_anova_svm.rst.txt index cff39a0eb96..00a6ab580d8 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_haxby_anova_svm.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_haxby_anova_svm.rst.txt @@ -286,7 +286,7 @@ dynamic html viewer <!-- the colormap --> <img id="colorMap" class="hidden" src="" alt="colormap"> <!-- another sprite image, with an overlay--> - <img id="overlayImg" class="hidden" src="" alt="overlay"> + <img id="overlayImg" class="hidden" src="" alt="overlay"> </canvas> </div> @@ -304,7 +304,7 @@ dynamic html viewer $( window ).on('load',function() { // Create brain slices var brain = brainsprite( - {"canvas": "3Dviewer", "sprite": "spriteImg", "nbSlice": {"X": 124, "Y": 256, "Z": 256}, "overlay": {"sprite": "overlayImg", "nbSlice": {"X": 124, "Y": 256, "Z": 256}, "opacity": 1}, "colorBackground": "#000000", "colorFont": "#FFFFFF", "crosshair": true, "affine": [[1.2000000476837158, 0.0, 0.0, -73.80000293254852], [0.0, 0.9375, 0.0, -119.53125], [0.0, 0.0, 0.9375, -119.53125], [0.0, 0.0, 0.0, 1.0]], "flagCoordinates": true, "title": "SVM weights", "flagValue": false, "numSlice": {"X": 54.604099624538975, "Y": 102.4959151770787, "Z": 123.25624795006208}, "colorMap": {"img": "colorMap", "min": -0.019018568098545074, "max": 0.019018568098545074}} + {"canvas": "3Dviewer", "sprite": "spriteImg", "nbSlice": {"X": 124, "Y": 256, "Z": 256}, "overlay": {"sprite": "overlayImg", "nbSlice": {"X": 124, "Y": 256, "Z": 256}, "opacity": 1}, "colorBackground": "#000000", "colorFont": "#FFFFFF", "crosshair": true, "affine": [[1.2000000476837158, 0.0, 0.0, -73.80000293254852], [0.0, 0.9375, 0.0, -119.53125], [0.0, 0.0, 0.9375, -119.53125], [0.0, 0.0, 0.0, 1.0]], "flagCoordinates": true, "title": "SVM weights", "flagValue": false, "numSlice": {"X": 54.60410718699464, "Y": 102.4959481687527, "Z": 123.25628128296788}, "colorMap": {"img": "colorMap", "min": -0.019018566235899925, "max": 0.019018566235899925}} ); }); </script> @@ -335,7 +335,7 @@ Saving the results as a Nifti file may also be important .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 26.481 seconds) + **Total running time of the script:** (0 minutes 28.118 seconds) **Estimated memory usage:** 916 MB diff --git a/dev/_sources/auto_examples/02_decoding/plot_haxby_different_estimators.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_haxby_different_estimators.rst.txt index 461f1cdb3de..44619048d72 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_haxby_different_estimators.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_haxby_different_estimators.rst.txt @@ -166,21 +166,21 @@ Training the decoder The provided image has no sform in its header. Please check the provided file. Results may not be as expected. - logistic_l1: 106.13s + logistic_l1: 100.23s scissors vs all -- AUC: 0.00 +- 0.00 - face vs all -- AUC: 0.17 +- 0.37 - cat vs all -- AUC: 0.45 +- 0.46 + face vs all -- AUC: 0.08 +- 0.27 + cat vs all -- AUC: 0.53 +- 0.45 shoe vs all -- AUC: 0.00 +- 0.00 house vs all -- AUC: 1.00 +- 0.00 - scrambledpix vs all -- AUC: 0.98 +- 0.02 - bottle vs all -- AUC: 0.15 +- 0.35 + scrambledpix vs all -- AUC: 0.98 +- 0.01 + bottle vs all -- AUC: 0.16 +- 0.35 chair vs all -- AUC: 0.00 +- 0.00 ______________________________________________________________________ /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/image/resampling.py:493: UserWarning: The provided image has no sform in its header. Please check the provided file. Results may not be as expected. - logistic_l2: 334.93s + logistic_l2: 308.66s scissors vs all -- AUC: 0.90 +- 0.08 face vs all -- AUC: 0.97 +- 0.04 cat vs all -- AUC: 0.96 +- 0.04 @@ -194,7 +194,7 @@ Training the decoder The provided image has no sform in its header. Please check the provided file. Results may not be as expected. - ridge_classifier: 17.14s + ridge_classifier: 18.27s scissors vs all -- AUC: 0.94 +- 0.05 face vs all -- AUC: 0.98 +- 0.02 cat vs all -- AUC: 0.95 +- 0.04 @@ -208,7 +208,7 @@ Training the decoder The provided image has no sform in its header. Please check the provided file. Results may not be as expected. - svc_l1 : 27.89s + svc_l1 : 30.74s scissors vs all -- AUC: 0.92 +- 0.05 face vs all -- AUC: 0.98 +- 0.03 cat vs all -- AUC: 0.96 +- 0.04 @@ -222,7 +222,7 @@ Training the decoder The provided image has no sform in its header. Please check the provided file. Results may not be as expected. - svc_l2 : 81.87s + svc_l2 : 76.74s scissors vs all -- AUC: 0.90 +- 0.09 face vs all -- AUC: 0.96 +- 0.05 cat vs all -- AUC: 0.96 +- 0.04 @@ -440,9 +440,9 @@ Use the average EPI as a background .. rst-class:: sphx-glr-timing - **Total running time of the script:** (9 minutes 59.447 seconds) + **Total running time of the script:** (9 minutes 29.549 seconds) -**Estimated memory usage:** 1329 MB +**Estimated memory usage:** 1294 MB .. _sphx_glr_download_auto_examples_02_decoding_plot_haxby_different_estimators.py: diff --git a/dev/_sources/auto_examples/02_decoding/plot_haxby_frem.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_haxby_frem.rst.txt index 361d423d538..3da169cfaa8 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_haxby_frem.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_haxby_frem.rst.txt @@ -247,9 +247,9 @@ FREMRegressor object is also available to solve regression problems. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (9 minutes 48.706 seconds) + **Total running time of the script:** (7 minutes 40.233 seconds) -**Estimated memory usage:** 1965 MB +**Estimated memory usage:** 1952 MB .. _sphx_glr_download_auto_examples_02_decoding_plot_haxby_frem.py: diff --git a/dev/_sources/auto_examples/02_decoding/plot_haxby_full_analysis.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_haxby_full_analysis.rst.txt index ea18e7a829f..750885b17b6 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_haxby_full_analysis.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_haxby_full_analysis.rst.txt @@ -691,7 +691,7 @@ We make a simple bar plot to summarize the results .. rst-class:: sphx-glr-timing - **Total running time of the script:** (3 minutes 2.248 seconds) + **Total running time of the script:** (2 minutes 44.409 seconds) **Estimated memory usage:** 1355 MB diff --git a/dev/_sources/auto_examples/02_decoding/plot_haxby_glm_decoding.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_haxby_glm_decoding.rst.txt index 29db35e7035..5488ece3a0f 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_haxby_glm_decoding.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_haxby_glm_decoding.rst.txt @@ -198,7 +198,7 @@ Run the glm on data from each session ________________________________________________________________________________ [Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask... - _filter_and_mask(, , { 'clean_kwargs': {}, + _filter_and_mask(, , { 'clean_kwargs': {}, 'detrend': False, 'dtype': None, 'high_pass': None, @@ -212,7 +212,7 @@ Run the glm on data from each session 't_r': 2.5, 'target_affine': None, 'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None) - __________________________________________________filter_and_mask - 1.2s, 0.0min + __________________________________________________filter_and_mask - 1.4s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.glm.first_level.first_level.run_glm... run_glm(array([[-0.114769, ..., -2.149296], @@ -221,42 +221,42 @@ Run the glm on data from each session array([[0., ..., 1.], ..., [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None) - __________________________________________________________run_glm - 1.2s, 0.0min + __________________________________________________________run_glm - 1.3s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.44475 , ..., 0.379275]), ) + unmask(array([-1.44475 , ..., 0.379275]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.013524, ..., 0.844135]), ) + unmask(array([-0.013524, ..., 0.844135]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.217486, ..., -1.430348]), ) + unmask(array([ 0.217486, ..., -1.430348]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.106474, ..., -0.182434]), ) + unmask(array([-1.106474, ..., -0.182434]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-2.747494, ..., -1.660679]), ) + unmask(array([-2.747494, ..., -1.660679]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.080159, ..., -1.32614 ]), ) + unmask(array([ 0.080159, ..., -1.32614 ]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.253894, ..., -0.452682]), ) + unmask(array([-0.253894, ..., -0.452682]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([1.240914, ..., 0.244136]), ) + unmask(array([1.240914, ..., 0.244136]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask... - _filter_and_mask(, , { 'clean_kwargs': {}, + _filter_and_mask(, , { 'clean_kwargs': {}, 'detrend': False, 'dtype': None, 'high_pass': None, @@ -270,7 +270,7 @@ Run the glm on data from each session 't_r': 2.5, 'target_affine': None, 'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None) - __________________________________________________filter_and_mask - 1.0s, 0.0min + __________________________________________________filter_and_mask - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.glm.first_level.first_level.run_glm... run_glm(array([[ 12.660587, ..., -13.536042], @@ -279,42 +279,42 @@ Run the glm on data from each session array([[0., ..., 1.], ..., [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None) - __________________________________________________________run_glm - 1.0s, 0.0min + __________________________________________________________run_glm - 1.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.871458, ..., -0.990755]), ) + unmask(array([-1.871458, ..., -0.990755]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.627194, ..., -1.290147]), ) + unmask(array([ 0.627194, ..., -1.290147]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.153013, ..., -1.320123]), ) + unmask(array([-1.153013, ..., -1.320123]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-2.15748 , ..., 2.082416]), ) + unmask(array([-2.15748 , ..., 2.082416]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.997775, ..., -0.754066]), ) + unmask(array([-0.997775, ..., -0.754066]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([0.109412, ..., 1.330079]), ) + unmask(array([0.109412, ..., 1.330079]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 1.030863, ..., -1.731439]), ) + unmask(array([ 1.030863, ..., -1.731439]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.559734, ..., -0.720924]), ) + unmask(array([-0.559734, ..., -0.720924]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask... - _filter_and_mask(, , { 'clean_kwargs': {}, + _filter_and_mask(, , { 'clean_kwargs': {}, 'detrend': False, 'dtype': None, 'high_pass': None, @@ -328,7 +328,7 @@ Run the glm on data from each session 't_r': 2.5, 'target_affine': None, 'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None) - __________________________________________________filter_and_mask - 1.1s, 0.0min + __________________________________________________filter_and_mask - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.glm.first_level.first_level.run_glm... run_glm(array([[ 5.205584, ..., 26.587189], @@ -337,42 +337,42 @@ Run the glm on data from each session array([[0., ..., 1.], ..., [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None) - __________________________________________________________run_glm - 1.0s, 0.0min + __________________________________________________________run_glm - 1.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 1.695564, ..., -0.455092]), ) + unmask(array([ 1.695564, ..., -0.455092]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([1.457214, ..., 1.537178]), ) + unmask(array([1.457214, ..., 1.537178]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.803925, ..., 0.570463]), ) + unmask(array([-0.803925, ..., 0.570463]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-2.614932, ..., 0.232909]), ) + unmask(array([-2.614932, ..., 0.232909]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.527175, ..., -1.062723]), ) + unmask(array([-1.527175, ..., -1.062723]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-2.126756, ..., -2.274819]), ) + unmask(array([-2.126756, ..., -2.274819]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.635166, ..., -0.395548]), ) + unmask(array([ 0.635166, ..., -0.395548]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([0.250365, ..., 0.364311]), ) + unmask(array([0.250365, ..., 0.364311]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask... - _filter_and_mask(, , { 'clean_kwargs': {}, + _filter_and_mask(, , { 'clean_kwargs': {}, 'detrend': False, 'dtype': None, 'high_pass': None, @@ -386,7 +386,7 @@ Run the glm on data from each session 't_r': 2.5, 'target_affine': None, 'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None) - __________________________________________________filter_and_mask - 1.1s, 0.0min + __________________________________________________filter_and_mask - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.glm.first_level.first_level.run_glm... run_glm(array([[-2.026206, ..., 5.974948], @@ -395,42 +395,42 @@ Run the glm on data from each session array([[0., ..., 1.], ..., [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None) - __________________________________________________________run_glm - 1.0s, 0.0min + __________________________________________________________run_glm - 1.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.503142, ..., -1.639351]), ) + unmask(array([ 0.503142, ..., -1.639351]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.271132, ..., -0.047089]), ) + unmask(array([-0.271132, ..., -0.047089]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([0.318104, ..., 0.724813]), ) + unmask(array([0.318104, ..., 0.724813]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.073279, ..., -0.316956]), ) + unmask(array([-0.073279, ..., -0.316956]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 1.380183, ..., -0.690685]), ) + unmask(array([ 1.380183, ..., -0.690685]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.631912, ..., -0.753286]), ) + unmask(array([-1.631912, ..., -0.753286]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.155784, ..., -0.065658]), ) + unmask(array([-1.155784, ..., -0.065658]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.186135, ..., -0.69267 ]), ) + unmask(array([ 0.186135, ..., -0.69267 ]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask... - _filter_and_mask(, , { 'clean_kwargs': {}, + _filter_and_mask(, , { 'clean_kwargs': {}, 'detrend': False, 'dtype': None, 'high_pass': None, @@ -444,7 +444,7 @@ Run the glm on data from each session 't_r': 2.5, 'target_affine': None, 'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None) - __________________________________________________filter_and_mask - 1.0s, 0.0min + __________________________________________________filter_and_mask - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.glm.first_level.first_level.run_glm... run_glm(array([[ 53.033577, ..., -55.45955 ], @@ -453,42 +453,42 @@ Run the glm on data from each session array([[0., ..., 1.], ..., [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None) - __________________________________________________________run_glm - 1.0s, 0.0min + __________________________________________________________run_glm - 1.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.158342, ..., -0.068131]), ) + unmask(array([ 0.158342, ..., -0.068131]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.396497, ..., -0.424937]), ) + unmask(array([ 0.396497, ..., -0.424937]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.091867, ..., 0.463109]), ) + unmask(array([-0.091867, ..., 0.463109]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 1.054041, ..., -0.122921]), ) + unmask(array([ 1.054041, ..., -0.122921]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.025223, ..., 0.562991]), ) + unmask(array([-0.025223, ..., 0.562991]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.001653, ..., -0.968729]), ) + unmask(array([-0.001653, ..., -0.968729]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.274665, ..., -0.667 ]), ) + unmask(array([ 0.274665, ..., -0.667 ]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([0.564329, ..., 1.496068]), ) + unmask(array([0.564329, ..., 1.496068]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask... - _filter_and_mask(, , { 'clean_kwargs': {}, + _filter_and_mask(, , { 'clean_kwargs': {}, 'detrend': False, 'dtype': None, 'high_pass': None, @@ -502,7 +502,7 @@ Run the glm on data from each session 't_r': 2.5, 'target_affine': None, 'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None) - __________________________________________________filter_and_mask - 1.0s, 0.0min + __________________________________________________filter_and_mask - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.glm.first_level.first_level.run_glm... run_glm(array([[-27.150482, ..., -5.81308 ], @@ -511,42 +511,42 @@ Run the glm on data from each session array([[0., ..., 1.], ..., [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None) - __________________________________________________________run_glm - 1.0s, 0.0min + __________________________________________________________run_glm - 1.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.987059, ..., 1.41717 ]), ) + unmask(array([-0.987059, ..., 1.41717 ]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-2.24774 , ..., 0.674399]), ) + unmask(array([-2.24774 , ..., 0.674399]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.731234, ..., 1.341998]), ) + unmask(array([-0.731234, ..., 1.341998]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.714869, ..., 1.182988]), ) + unmask(array([-0.714869, ..., 1.182988]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.222674, ..., 0.480354]), ) + unmask(array([-1.222674, ..., 0.480354]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.366899, ..., -0.091153]), ) + unmask(array([-1.366899, ..., -0.091153]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.2708 , ..., -0.247146]), ) + unmask(array([-1.2708 , ..., -0.247146]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.251249, ..., -0.413063]), ) - ___________________________________________________________unmask - 0.1s, 0.0min + unmask(array([-1.251249, ..., -0.413063]), ) + ___________________________________________________________unmask - 0.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask... - _filter_and_mask(, , { 'clean_kwargs': {}, + _filter_and_mask(, , { 'clean_kwargs': {}, 'detrend': False, 'dtype': None, 'high_pass': None, @@ -560,7 +560,7 @@ Run the glm on data from each session 't_r': 2.5, 'target_affine': None, 'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None) - __________________________________________________filter_and_mask - 1.1s, 0.0min + __________________________________________________filter_and_mask - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.glm.first_level.first_level.run_glm... run_glm(array([[129.51173 , ..., -15.279282], @@ -569,42 +569,42 @@ Run the glm on data from each session array([[0., ..., 1.], ..., [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None) - __________________________________________________________run_glm - 1.0s, 0.0min + __________________________________________________________run_glm - 1.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.290412, ..., -0.609221]), ) + unmask(array([-1.290412, ..., -0.609221]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.090297, ..., -0.822602]), ) + unmask(array([ 0.090297, ..., -0.822602]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 1.747918, ..., -0.108861]), ) + unmask(array([ 1.747918, ..., -0.108861]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 1.095788, ..., -1.376995]), ) + unmask(array([ 1.095788, ..., -1.376995]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.807425, ..., 1.826947]), ) + unmask(array([-0.807425, ..., 1.826947]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([0.017351, ..., 0.622242]), ) + unmask(array([0.017351, ..., 0.622242]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.625042, ..., -0.231224]), ) + unmask(array([-0.625042, ..., -0.231224]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.056424, ..., -1.672737]), ) + unmask(array([ 0.056424, ..., -1.672737]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask... - _filter_and_mask(, , { 'clean_kwargs': {}, + _filter_and_mask(, , { 'clean_kwargs': {}, 'detrend': False, 'dtype': None, 'high_pass': None, @@ -618,7 +618,7 @@ Run the glm on data from each session 't_r': 2.5, 'target_affine': None, 'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None) - __________________________________________________filter_and_mask - 1.1s, 0.0min + __________________________________________________filter_and_mask - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.glm.first_level.first_level.run_glm... run_glm(array([[-15.915996, ..., 22.07737 ], @@ -627,42 +627,42 @@ Run the glm on data from each session array([[ 0. , ..., 1. ], ..., [-0.200737, ..., 1. ]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None) - __________________________________________________________run_glm - 1.0s, 0.0min + __________________________________________________________run_glm - 1.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.008536, ..., -0.066075]), ) + unmask(array([-0.008536, ..., -0.066075]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 1.168487, ..., -0.636238]), ) + unmask(array([ 1.168487, ..., -0.636238]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([1.145684, ..., 0.932773]), ) + unmask(array([1.145684, ..., 0.932773]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.580823, ..., -0.455655]), ) + unmask(array([ 0.580823, ..., -0.455655]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.685537, ..., 0.715791]), ) + unmask(array([-0.685537, ..., 0.715791]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.245273, ..., -0.099707]), ) + unmask(array([-0.245273, ..., -0.099707]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([1.79538 , ..., 1.913842]), ) + unmask(array([1.79538 , ..., 1.913842]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([3.519925, ..., 0.629218]), ) + unmask(array([3.519925, ..., 0.629218]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask... - _filter_and_mask(, , { 'clean_kwargs': {}, + _filter_and_mask(, , { 'clean_kwargs': {}, 'detrend': False, 'dtype': None, 'high_pass': None, @@ -676,7 +676,7 @@ Run the glm on data from each session 't_r': 2.5, 'target_affine': None, 'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None) - __________________________________________________filter_and_mask - 1.0s, 0.0min + __________________________________________________filter_and_mask - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.glm.first_level.first_level.run_glm... run_glm(array([[-0.292987, ..., 18.392956], @@ -685,42 +685,42 @@ Run the glm on data from each session array([[ 0. , ..., 1. ], ..., [-0.200737, ..., 1. ]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None) - __________________________________________________________run_glm - 1.0s, 0.0min + __________________________________________________________run_glm - 1.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.425611, ..., 2.348025]), ) + unmask(array([-1.425611, ..., 2.348025]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([0.31867 , ..., 0.408223]), ) + unmask(array([0.31867 , ..., 0.408223]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.534932, ..., -0.150519]), ) + unmask(array([-0.534932, ..., -0.150519]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([0.149007, ..., 0.640215]), ) + unmask(array([0.149007, ..., 0.640215]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([0.640699, ..., 1.50369 ]), ) + unmask(array([0.640699, ..., 1.50369 ]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.246384, ..., -1.346316]), ) + unmask(array([-0.246384, ..., -1.346316]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.162243, ..., -0.519251]), ) + unmask(array([-0.162243, ..., -0.519251]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.203695, ..., -1.335337]), ) + unmask(array([ 0.203695, ..., -1.335337]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask... - _filter_and_mask(, , { 'clean_kwargs': {}, + _filter_and_mask(, , { 'clean_kwargs': {}, 'detrend': False, 'dtype': None, 'high_pass': None, @@ -734,7 +734,7 @@ Run the glm on data from each session 't_r': 2.5, 'target_affine': None, 'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None) - __________________________________________________filter_and_mask - 1.0s, 0.0min + __________________________________________________filter_and_mask - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.glm.first_level.first_level.run_glm... run_glm(array([[-5.223948, ..., -5.959582], @@ -743,42 +743,42 @@ Run the glm on data from each session array([[0., ..., 1.], ..., [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None) - __________________________________________________________run_glm - 1.0s, 0.0min + __________________________________________________________run_glm - 1.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.034515, ..., 1.612397]), ) + unmask(array([-0.034515, ..., 1.612397]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([1.62798 , ..., 1.160445]), ) + unmask(array([1.62798 , ..., 1.160445]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([1.506632, ..., 0.459388]), ) + unmask(array([1.506632, ..., 0.459388]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.261016, ..., -0.747236]), ) + unmask(array([ 0.261016, ..., -0.747236]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.231796, ..., 1.098904]), ) + unmask(array([-0.231796, ..., 1.098904]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-2.148582, ..., 0.999934]), ) + unmask(array([-2.148582, ..., 0.999934]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-2.548262, ..., 0.09934 ]), ) + unmask(array([-2.548262, ..., 0.09934 ]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.222824, ..., 0.318977]), ) + unmask(array([-1.222824, ..., 0.318977]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask... - _filter_and_mask(, , { 'clean_kwargs': {}, + _filter_and_mask(, , { 'clean_kwargs': {}, 'detrend': False, 'dtype': None, 'high_pass': None, @@ -792,7 +792,7 @@ Run the glm on data from each session 't_r': 2.5, 'target_affine': None, 'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None) - __________________________________________________filter_and_mask - 1.0s, 0.0min + __________________________________________________filter_and_mask - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.glm.first_level.first_level.run_glm... run_glm(array([[-19.66533 , ..., -6.299562], @@ -804,39 +804,39 @@ Run the glm on data from each session __________________________________________________________run_glm - 1.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.175763, ..., -3.429485]), ) + unmask(array([-0.175763, ..., -3.429485]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-3.146358, ..., -2.947626]), ) + unmask(array([-3.146358, ..., -2.947626]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.806852, ..., -2.720554]), ) + unmask(array([-1.806852, ..., -2.720554]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.008926, ..., 0.4544 ]), ) + unmask(array([-0.008926, ..., 0.4544 ]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([1.279543, ..., 1.828183]), ) + unmask(array([1.279543, ..., 1.828183]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.463642, ..., 0.26599 ]), ) + unmask(array([-0.463642, ..., 0.26599 ]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.058735, ..., -1.191442]), ) + unmask(array([-1.058735, ..., -1.191442]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.390268, ..., -1.112207]), ) + unmask(array([ 0.390268, ..., -1.112207]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.nifti_masker._filter_and_mask... - _filter_and_mask(, , { 'clean_kwargs': {}, + _filter_and_mask(, , { 'clean_kwargs': {}, 'detrend': False, 'dtype': None, 'high_pass': None, @@ -850,7 +850,7 @@ Run the glm on data from each session 't_r': 2.5, 'target_affine': None, 'target_shape': None}, memory_level=1, memory=Memory(location=nilearn_cache/joblib), verbose=0, confounds=None, sample_mask=None, copy=True, dtype=None) - __________________________________________________filter_and_mask - 1.0s, 0.0min + __________________________________________________filter_and_mask - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.glm.first_level.first_level.run_glm... run_glm(array([[-1.095605, ..., 16.449202], @@ -859,38 +859,38 @@ Run the glm on data from each session array([[0., ..., 1.], ..., [0., ..., 1.]]), noise_model='ar1', bins=100, n_jobs=1, random_state=None) - __________________________________________________________run_glm - 1.0s, 0.0min + __________________________________________________________run_glm - 1.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.340751, ..., -1.056108]), ) + unmask(array([ 0.340751, ..., -1.056108]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([0.043261, ..., 1.144442]), ) + unmask(array([0.043261, ..., 1.144442]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([1.517954, ..., 0.611394]), ) + unmask(array([1.517954, ..., 0.611394]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-5.797134e-01, ..., 4.317655e-06]), ) + unmask(array([-5.797134e-01, ..., 4.317655e-06]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([ 0.398581, ..., -0.488427]), ) + unmask(array([ 0.398581, ..., -0.488427]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([0.714396, ..., 0.869941]), ) + unmask(array([0.714396, ..., 0.869941]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-0.924894, ..., 0.723724]), ) + unmask(array([-0.924894, ..., 0.723724]), ) ___________________________________________________________unmask - 0.1s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.masking.unmask... - unmask(array([-1.145297, ..., -0.821272]), ) + unmask(array([-1.145297, ..., -0.821272]), ) ___________________________________________________________unmask - 0.1s, 0.0min @@ -1059,32 +1059,32 @@ and have the contrast, we can quickly create a summary report.

Design Matrix:

- Plot of Design Matrix used in Session 1. + Plot of Design Matrix used in Session 1.

Contrasts

- Plot of the contrast: bottle. - Plot of the contrast: house. - Plot of the contrast: chair. - Plot of the contrast: scrambledpix. - Plot of the contrast: face. - Plot of the contrast: shoe. - Plot of the contrast: cat. - Plot of the contrast: scissors. + Plot of the contrast: bottle. + Plot of the contrast: house. + Plot of the contrast: chair. + Plot of the contrast: scrambledpix. + Plot of the contrast: face. + Plot of the contrast: shoe. + Plot of the contrast: cat. + Plot of the contrast: scissors.

Mask

- Model did not supply a mask image.

Stat Maps with Cluster Tables

bottle

- Stat map plot for the contrast: bottle + Stat map plot for the contrast: bottle
Contrast Plot - Plot of the contrast: bottle. + Plot of the contrast: bottle.

@@ -7288,10 +7288,10 @@ and have the contrast, we can quickly create a summary report.

house

- Stat map plot for the contrast: house + Stat map plot for the contrast: house
Contrast Plot - Plot of the contrast: house. + Plot of the contrast: house.

@@ -8903,10 +8903,10 @@ and have the contrast, we can quickly create a summary report.

chair

- Stat map plot for the contrast: chair + Stat map plot for the contrast: chair
Contrast Plot - Plot of the contrast: chair. + Plot of the contrast: chair.

@@ -9390,10 +9390,10 @@ and have the contrast, we can quickly create a summary report.

scrambledpix

- Stat map plot for the contrast: scrambledpix + Stat map plot for the contrast: scrambledpix
Contrast Plot - Plot of the contrast: scrambledpix. + Plot of the contrast: scrambledpix.

@@ -9693,10 +9693,10 @@ and have the contrast, we can quickly create a summary report.

face

- Stat map plot for the contrast: face + Stat map plot for the contrast: face
Contrast Plot - Plot of the contrast: face. + Plot of the contrast: face.

@@ -10660,10 +10660,10 @@ and have the contrast, we can quickly create a summary report.

shoe

- Stat map plot for the contrast: shoe + Stat map plot for the contrast: shoe
Contrast Plot - Plot of the contrast: shoe. + Plot of the contrast: shoe.

@@ -10987,10 +10987,10 @@ and have the contrast, we can quickly create a summary report.

cat

- Stat map plot for the contrast: cat + Stat map plot for the contrast: cat
Contrast Plot - Plot of the contrast: cat. + Plot of the contrast: cat.

@@ -11626,10 +11626,10 @@ and have the contrast, we can quickly create a summary report.

scissors

- Stat map plot for the contrast: scissors + Stat map plot for the contrast: scissors
Contrast Plot - Plot of the contrast: scissors. + Plot of the contrast: scissors.

@@ -13671,7 +13671,7 @@ corresponding conditions labels and session labels .. rst-class:: sphx-glr-timing - **Total running time of the script:** (2 minutes 31.885 seconds) + **Total running time of the script:** (2 minutes 43.285 seconds) **Estimated memory usage:** 917 MB diff --git a/dev/_sources/auto_examples/02_decoding/plot_haxby_grid_search.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_haxby_grid_search.rst.txt index 4fa880cf96c..eae63b12f83 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_haxby_grid_search.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_haxby_grid_search.rst.txt @@ -199,10 +199,10 @@ excellent explanation of how cross-validation works. The provided image has no sform in its header. Please check the provided file. Results may not be as expected. - Fold 1 | Best SVM parameters: C=1000, penalty=l2, dual=True with score: 0.9008264462809916 + Fold 1 | Best SVM parameters: C=100, penalty=l1, dual=False with score: 0.9380165289256197 Fold 2 | Best SVM parameters: C=1000, penalty=l2, dual=True with score: 0.9177489177489176 - Fold 3 | Best SVM parameters: C=1000, penalty=l1, dual=False with score: 0.7554112554112554 - Fold 4 | Best SVM parameters: C=100, penalty=l1, dual=False with score: 0.8073593073593074 + Fold 3 | Best SVM parameters: C=1000, penalty=l1, dual=False with score: 0.7510822510822511 + Fold 4 | Best SVM parameters: C=1000, penalty=l1, dual=False with score: 0.8484848484848484 Fold 5 | Best SVM parameters: C=1000, penalty=l1, dual=False with score: 0.7554112554112554 @@ -255,8 +255,8 @@ Compute prediction scores with different values of screening percentile The provided image has no sform in its header. Please check the provided file. Results may not be as expected. Sreening Percentile: 2.000 - Mean CV score: 0.8226 - Validation score: 0.5000 + Mean CV score: 0.8367 + Validation score: 0.4444 /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/image/resampling.py:493: UserWarning: The provided image has no sform in its header. Please check the provided file. Results may not be as expected. @@ -269,29 +269,29 @@ Compute prediction scores with different values of screening percentile The provided image has no sform in its header. Please check the provided file. Results may not be as expected. Sreening Percentile: 8.000 - Mean CV score: 0.9067 - Validation score: 0.7222 + Mean CV score: 0.8570 + Validation score: 0.3889 /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/image/resampling.py:493: UserWarning: The provided image has no sform in its header. Please check the provided file. Results may not be as expected. Sreening Percentile: 16.000 - Mean CV score: 0.8630 - Validation score: 0.5000 + Mean CV score: 0.8459 + Validation score: 0.4444 /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/image/resampling.py:493: UserWarning: The provided image has no sform in its header. Please check the provided file. Results may not be as expected. Sreening Percentile: 32.000 - Mean CV score: 0.8270 - Validation score: 0.5556 + Mean CV score: 0.8652 + Validation score: 0.5000 /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/image/resampling.py:493: UserWarning: The provided image has no sform in its header. Please check the provided file. Results may not be as expected. Sreening Percentile: 64.000 - Mean CV score: 0.8722 - Validation score: 0.5556 + Mean CV score: 0.8937 + Validation score: 0.2778 @@ -355,10 +355,6 @@ pipeline. Liblinear failed to converge, increase the number of iterations. - /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/sklearn/svm/_base.py:1250: ConvergenceWarning: - - Liblinear failed to converge, increase the number of iterations. - /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/image/resampling.py:493: UserWarning: The provided image has no sform in its header. Please check the provided file. Results may not be as expected. @@ -383,10 +379,6 @@ pipeline. Liblinear failed to converge, increase the number of iterations. - /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/sklearn/svm/_base.py:1250: ConvergenceWarning: - - Liblinear failed to converge, increase the number of iterations. - /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/image/resampling.py:493: UserWarning: The provided image has no sform in its header. Please check the provided file. Results may not be as expected. @@ -399,10 +391,6 @@ pipeline. Liblinear failed to converge, increase the number of iterations. - /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/sklearn/svm/_base.py:1250: ConvergenceWarning: - - Liblinear failed to converge, increase the number of iterations. - /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/image/resampling.py:493: UserWarning: The provided image has no sform in its header. Please check the provided file. Results may not be as expected. @@ -411,6 +399,10 @@ pipeline. Liblinear failed to converge, increase the number of iterations. + /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/sklearn/svm/_base.py:1250: ConvergenceWarning: + + Liblinear failed to converge, increase the number of iterations. + /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/image/resampling.py:493: UserWarning: The provided image has no sform in its header. Please check the provided file. Results may not be as expected. @@ -455,11 +447,15 @@ pipeline. The provided image has no sform in its header. Please check the provided file. Results may not be as expected. + /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/sklearn/svm/_base.py:1250: ConvergenceWarning: + + Liblinear failed to converge, increase the number of iterations. + /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/image/resampling.py:493: UserWarning: The provided image has no sform in its header. Please check the provided file. Results may not be as expected. - Nested CV score: 0.6528 + Nested CV score: 0.6389 @@ -508,7 +504,7 @@ Plot the prediction scores using matplotlib .. rst-class:: sphx-glr-timing - **Total running time of the script:** (2 minutes 52.295 seconds) + **Total running time of the script:** (3 minutes 19.153 seconds) **Estimated memory usage:** 916 MB diff --git a/dev/_sources/auto_examples/02_decoding/plot_haxby_multiclass.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_haxby_multiclass.rst.txt index 576a568f4a7..701bf9ad73b 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_haxby_multiclass.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_haxby_multiclass.rst.txt @@ -293,9 +293,9 @@ last 2 sessions .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 51.611 seconds) + **Total running time of the script:** (0 minutes 55.472 seconds) -**Estimated memory usage:** 3114 MB +**Estimated memory usage:** 3125 MB .. _sphx_glr_download_auto_examples_02_decoding_plot_haxby_multiclass.py: diff --git a/dev/_sources/auto_examples/02_decoding/plot_haxby_searchlight.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_haxby_searchlight.rst.txt index f96ee6b54e0..448f564cdf1 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_haxby_searchlight.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_haxby_searchlight.rst.txt @@ -180,17 +180,17 @@ Searchlight computation The provided image has no sform in its header. Please check the provided file. Results may not be as expected. - Job #1, processed 0/739 voxels (0.00%, 423.5529899597168 seconds remaining) Job #1, processed 10/739 voxels (1.35%, 34.42149208210133 seconds remaining) Job #1, processed 20/739 voxels (2.71%, 34.54305851415515 seconds remaining) Job #1, processed 30/739 voxels (4.06%, 35.157494893802216 seconds remaining) Job #1, processed 40/739 voxels (5.41%, 34.86122745859424 seconds remaining) Job #1, processed 50/739 voxels (6.77%, 34.661052783799846 seconds remaining) Job #1, processed 60/739 voxels (8.12%, 34.372675688983186 seconds remaining) Job #1, processed 70/739 voxels (9.47%, 34.08667111094675 seconds remaining) Job #1, processed 80/739 voxels (10.83%, 33.7684923622857 seconds remaining) Job #1, processed 90/739 voxels (12.18%, 33.379006258568346 seconds remaining) Job #1, processed 100/739 voxels (13.53%, 33.03083991986773 seconds remaining) Job #1, processed 110/739 voxels (14.88%, 32.586199975782826 seconds remaining) Job #1, processed 120/739 voxels (16.24%, 32.15978596363162 seconds remaining) Job #1, processed 130/739 voxels (17.59%, 31.711641361660547 seconds remaining) Job #1, processed 140/739 voxels (18.94%, 31.270972081952763 seconds remaining) Job #1, processed 150/739 voxels (20.30%, 30.755453216618506 seconds remaining) Job #1, processed 160/739 voxels (21.65%, 30.29402021723036 seconds remaining) Job #1, processed 170/739 voxels (23.00%, 29.81004215323407 seconds remaining) Job #1, processed 180/739 voxels (24.36%, 29.31236735509926 seconds remaining) Job #1, processed 190/739 voxels (25.71%, 28.799020569688935 seconds remaining) Job #1, processed 200/739 voxels (27.06%, 28.317277947621086 seconds remaining) Job #1, processed 210/739 voxels (28.42%, 27.777513408727998 seconds remaining) Job #1, processed 220/739 voxels (29.77%, 27.288379843858895 seconds remaining) Job #1, processed 230/739 voxels (31.12%, 26.777092948977316 seconds remaining) Job #1, processed 240/739 voxels (32.48%, 26.26747730330294 seconds remaining) Job #1, processed 250/739 voxels (33.83%, 25.746052760046123 seconds remaining) Job #1, processed 260/739 voxels (35.18%, 25.246965673174486 seconds remaining) Job #1, processed 270/739 voxels (36.54%, 24.732606818914807 seconds remaining) Job #1, processed 280/739 voxels (37.89%, 24.219962345764106 seconds remaining) Job #1, processed 290/739 voxels (39.24%, 23.711942996210766 seconds remaining) Job #1, processed 300/739 voxels (40.60%, 23.181700518565812 seconds remaining) Job #1, processed 310/739 voxels (41.95%, 22.7886869171379 seconds remaining) Job #1, processed 320/739 voxels (43.30%, 22.260371486254158 seconds remaining) Job #1, processed 330/739 voxels (44.65%, 21.74094132693591 seconds remaining) Job #1, processed 340/739 voxels (46.01%, 21.20179596571165 seconds remaining) Job #1, processed 350/739 voxels (47.36%, 20.67687649581883 seconds remaining) Job #1, processed 360/739 voxels (48.71%, 20.154704478212363 seconds remaining) Job #1, processed 370/739 voxels (50.07%, 19.617340791527802 seconds remaining) Job #1, processed 380/739 voxels (51.42%, 19.095100287563927 seconds remaining) Job #1, processed 390/739 voxels (52.77%, 18.560887923086142 seconds remaining) Job #1, processed 400/739 voxels (54.13%, 18.029883483014263 seconds remaining) Job #1, processed 410/739 voxels (55.48%, 17.499291113837643 seconds remaining) Job #1, processed 420/739 voxels (56.83%, 16.974936456175186 seconds remaining) Job #1, processed 430/739 voxels (58.19%, 16.43869459536871 seconds remaining) Job #1, processed 440/739 voxels (59.54%, 15.913622330770343 seconds remaining) Job #1, processed 450/739 voxels (60.89%, 15.387065334495485 seconds remaining) Job #1, processed 460/739 voxels (62.25%, 14.849556732369235 seconds remaining) Job #1, processed 470/739 voxels (63.60%, 14.322819051502636 seconds remaining) Job #1, processed 480/739 voxels (64.95%, 13.791741715475997 seconds remaining) Job #1, processed 490/739 voxels (66.31%, 13.257999524831448 seconds remaining) Job #1, processed 500/739 voxels (67.66%, 12.724746535665146 seconds remaining) Job #1, processed 510/739 voxels (69.01%, 12.19614339824898 seconds remaining) Job #1, processed 520/739 voxels (70.37%, 11.657383538857767 seconds remaining) Job #1, processed 530/739 voxels (71.72%, 11.12868422738547 seconds remaining) Job #1, processed 540/739 voxels (73.07%, 10.594878677860471 seconds remaining) Job #1, processed 550/739 voxels (74.42%, 10.064893303171212 seconds remaining) Job #1, processed 560/739 voxels (75.78%, 9.530947763519004 seconds remaining) Job #1, processed 570/739 voxels (77.13%, 8.997821637076596 seconds remaining) Job #1, processed 580/739 voxels (78.48%, 8.467951340291354 seconds remaining) Job #1, processed 590/739 voxels (79.84%, 7.9290953676304 seconds remaining) Job #1, processed 600/739 voxels (81.19%, 7.399845320774074 seconds remaining) Job #1, processed 610/739 voxels (82.54%, 6.866417827460617 seconds remaining) Job #1, processed 620/739 voxels (83.90%, 6.332173366228357 seconds remaining) Job #1, processed 630/739 voxels (85.25%, 5.799393734973897 seconds remaining) Job #1, processed 640/739 voxels (86.60%, 5.2694825933381555 seconds remaining) Job #1, processed 650/739 voxels (87.96%, 4.732597809154484 seconds remaining) Job #1, processed 660/739 voxels (89.31%, 4.201810639137623 seconds remaining) Job #1, processed 670/739 voxels (90.66%, 3.6708271336718545 seconds remaining) Job #1, processed 680/739 voxels (92.02%, 3.135226057395033 seconds remaining) Job #1, processed 690/739 voxels (93.37%, 2.6047150005783024 seconds remaining) Job #1, processed 700/739 voxels (94.72%, 2.072481849306339 seconds remaining) Job #1, processed 710/739 voxels (96.08%, 1.5372519213194462 seconds remaining) Job #1, processed 720/739 voxels (97.43%, 1.0068069811561273 seconds remaining) Job #1, processed 730/739 voxels (98.78%, 0.477179497401949 seconds remaining) + Job #1, processed 0/739 voxels (0.00%, 398.51903915405273 seconds remaining) Job #1, processed 10/739 voxels (1.35%, 32.74592779300831 seconds remaining) Job #1, processed 20/739 voxels (2.71%, 33.26961219266772 seconds remaining) Job #1, processed 30/739 voxels (4.06%, 34.4924453279655 seconds remaining) Job #1, processed 40/739 voxels (5.41%, 34.39225396299098 seconds remaining) Job #1, processed 50/739 voxels (6.77%, 34.39063906423098 seconds remaining) Job #1, processed 60/739 voxels (8.12%, 34.21417625784287 seconds remaining) Job #1, processed 70/739 voxels (9.47%, 33.992973155683295 seconds remaining) Job #1, processed 80/739 voxels (10.83%, 33.78761242719459 seconds remaining) Job #1, processed 90/739 voxels (12.18%, 33.43267300015404 seconds remaining) Job #1, processed 100/739 voxels (13.53%, 33.1670110171051 seconds remaining) Job #1, processed 110/739 voxels (14.88%, 32.73174395612491 seconds remaining) Job #1, processed 120/739 voxels (16.24%, 32.472693038104204 seconds remaining) Job #1, processed 130/739 voxels (17.59%, 32.055215712363506 seconds remaining) Job #1, processed 140/739 voxels (18.94%, 31.658147292001193 seconds remaining) Job #1, processed 150/739 voxels (20.30%, 31.149022202186398 seconds remaining) Job #1, processed 160/739 voxels (21.65%, 30.72837687694999 seconds remaining) Job #1, processed 170/739 voxels (23.00%, 30.249118348826535 seconds remaining) Job #1, processed 180/739 voxels (24.36%, 29.764382138040855 seconds remaining) Job #1, processed 190/739 voxels (25.71%, 29.244608776618513 seconds remaining) Job #1, processed 200/739 voxels (27.06%, 28.780334193355845 seconds remaining) Job #1, processed 210/739 voxels (28.42%, 28.256463966262242 seconds remaining) Job #1, processed 220/739 voxels (29.77%, 27.78089032038611 seconds remaining) Job #1, processed 230/739 voxels (31.12%, 27.28565408147699 seconds remaining) Job #1, processed 240/739 voxels (32.48%, 26.78501583907405 seconds remaining) Job #1, processed 250/739 voxels (33.83%, 26.267267061062128 seconds remaining) Job #1, processed 260/739 voxels (35.18%, 25.771782545151527 seconds remaining) Job #1, processed 270/739 voxels (36.54%, 25.25602515042644 seconds remaining) Job #1, processed 280/739 voxels (37.89%, 24.72904358541912 seconds remaining) Job #1, processed 290/739 voxels (39.24%, 24.22302557787764 seconds remaining) Job #1, processed 300/739 voxels (40.60%, 23.682369580997033 seconds remaining) Job #1, processed 310/739 voxels (41.95%, 23.339620185836136 seconds remaining) Job #1, processed 320/739 voxels (43.30%, 22.802824118396153 seconds remaining) Job #1, processed 330/739 voxels (44.65%, 22.27046491450986 seconds remaining) Job #1, processed 340/739 voxels (46.01%, 21.73775532918763 seconds remaining) Job #1, processed 350/739 voxels (47.36%, 21.206930203212274 seconds remaining) Job #1, processed 360/739 voxels (48.71%, 20.686328933655517 seconds remaining) Job #1, processed 370/739 voxels (50.07%, 20.14278113882485 seconds remaining) Job #1, processed 380/739 voxels (51.42%, 19.61465763480039 seconds remaining) Job #1, processed 390/739 voxels (52.77%, 19.06713883488698 seconds remaining) Job #1, processed 400/739 voxels (54.13%, 18.53014798854121 seconds remaining) Job #1, processed 410/739 voxels (55.48%, 17.987518470237475 seconds remaining) Job #1, processed 420/739 voxels (56.83%, 17.45449518817591 seconds remaining) Job #1, processed 430/739 voxels (58.19%, 16.90656687787645 seconds remaining) Job #1, processed 440/739 voxels (59.54%, 16.366653753199913 seconds remaining) Job #1, processed 450/739 voxels (60.89%, 15.831809646450136 seconds remaining) Job #1, processed 460/739 voxels (62.25%, 15.276605055514109 seconds remaining) Job #1, processed 470/739 voxels (63.60%, 14.737885325209898 seconds remaining) Job #1, processed 480/739 voxels (64.95%, 14.194397469682817 seconds remaining) Job #1, processed 490/739 voxels (66.31%, 13.649432221539076 seconds remaining) Job #1, processed 500/739 voxels (67.66%, 13.103628425178112 seconds remaining) Job #1, processed 510/739 voxels (69.01%, 12.563971072206494 seconds remaining) Job #1, processed 520/739 voxels (70.37%, 12.010595443591958 seconds remaining) Job #1, processed 530/739 voxels (71.72%, 11.468317443009402 seconds remaining) Job #1, processed 540/739 voxels (73.07%, 10.91980392717216 seconds remaining) Job #1, processed 550/739 voxels (74.42%, 10.37436842226399 seconds remaining) Job #1, processed 560/739 voxels (75.78%, 9.829943313860396 seconds remaining) Job #1, processed 570/739 voxels (77.13%, 9.281192558432746 seconds remaining) Job #1, processed 580/739 voxels (78.48%, 8.736505194663026 seconds remaining) Job #1, processed 590/739 voxels (79.84%, 8.180469966842557 seconds remaining) Job #1, processed 600/739 voxels (81.19%, 7.636150323635459 seconds remaining) Job #1, processed 610/739 voxels (82.54%, 7.086524582787288 seconds remaining) Job #1, processed 620/739 voxels (83.90%, 6.535949787451339 seconds remaining) Job #1, processed 630/739 voxels (85.25%, 5.986167531558846 seconds remaining) Job #1, processed 640/739 voxels (86.60%, 5.440541961727189 seconds remaining) Job #1, processed 650/739 voxels (87.96%, 4.886940976607364 seconds remaining) Job #1, processed 660/739 voxels (89.31%, 4.338735097734141 seconds remaining) Job #1, processed 670/739 voxels (90.66%, 3.792385302025464 seconds remaining) Job #1, processed 680/739 voxels (92.02%, 3.2400423715073674 seconds remaining) Job #1, processed 690/739 voxels (93.37%, 2.6927826752355712 seconds remaining) Job #1, processed 700/739 voxels (94.72%, 2.1424595081322906 seconds remaining) Job #1, processed 710/739 voxels (96.08%, 1.5890424060980355 seconds remaining) Job #1, processed 720/739 voxels (97.43%, 1.040532521492862 seconds remaining) Job #1, processed 730/739 voxels (98.78%, 0.4930331943053948 seconds remaining) .. raw:: html
SearchLight(cv=KFold(n_splits=4, random_state=None, shuffle=False),
-                mask_img=<nibabel.nifti1.Nifti1Image object at 0x7fc8fd8325e0>,
-                process_mask_img=<nibabel.nifti1.Nifti1Image object at 0x7fc910efb280>,
+                mask_img=<nibabel.nifti1.Nifti1Image object at 0x7fac7bb6b100>,
+                process_mask_img=<nibabel.nifti1.Nifti1Image object at 0x7fac7bee37f0>,
                 radius=5.6, verbose=1)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

@@ -304,9 +304,9 @@ Use the fmri mean image as a surrogate of anatomical data .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 49.138 seconds) + **Total running time of the script:** (0 minutes 52.164 seconds) -**Estimated memory usage:** 917 MB +**Estimated memory usage:** 916 MB .. _sphx_glr_download_auto_examples_02_decoding_plot_haxby_searchlight.py: diff --git a/dev/_sources/auto_examples/02_decoding/plot_haxby_searchlight_surface.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_haxby_searchlight_surface.rst.txt index 0fac3b4fdbf..d50634ea229 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_haxby_searchlight_surface.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_haxby_searchlight_surface.rst.txt @@ -186,9 +186,9 @@ Visualization .. rst-class:: sphx-glr-timing - **Total running time of the script:** (2 minutes 0.175 seconds) + **Total running time of the script:** (2 minutes 8.983 seconds) -**Estimated memory usage:** 916 MB +**Estimated memory usage:** 917 MB .. _sphx_glr_download_auto_examples_02_decoding_plot_haxby_searchlight_surface.py: diff --git a/dev/_sources/auto_examples/02_decoding/plot_haxby_stimuli.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_haxby_stimuli.rst.txt index 7e76487a0bd..b766384f10c 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_haxby_stimuli.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_haxby_stimuli.rst.txt @@ -127,9 +127,9 @@ Cortex" (Science 2001) .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 6.964 seconds) + **Total running time of the script:** (0 minutes 7.266 seconds) -**Estimated memory usage:** 46 MB +**Estimated memory usage:** 44 MB .. _sphx_glr_download_auto_examples_02_decoding_plot_haxby_stimuli.py: diff --git a/dev/_sources/auto_examples/02_decoding/plot_mixed_gambles_frem.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_mixed_gambles_frem.rst.txt index 64a3e51a4a9..1e3a578c575 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_mixed_gambles_frem.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_mixed_gambles_frem.rst.txt @@ -223,7 +223,7 @@ We compare both of these models to a pipeline ensembling many models Solver terminated early (max_iter=10000). Consider pre-processing your data with StandardScaler or MinMaxScaler. - + @@ -279,9 +279,9 @@ few minutes. Example code is included below. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 52.765 seconds) + **Total running time of the script:** (0 minutes 54.854 seconds) -**Estimated memory usage:** 1831 MB +**Estimated memory usage:** 1835 MB .. _sphx_glr_download_auto_examples_02_decoding_plot_mixed_gambles_frem.py: diff --git a/dev/_sources/auto_examples/02_decoding/plot_miyawaki_encoding.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_miyawaki_encoding.rst.txt index 95b6cd8950c..6465fd32033 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_miyawaki_encoding.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_miyawaki_encoding.rst.txt @@ -496,7 +496,7 @@ set of regression coefficients. .. code-block:: none - + @@ -511,7 +511,7 @@ its location in the brain. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 22.236 seconds) + **Total running time of the script:** (0 minutes 26.682 seconds) **Estimated memory usage:** 417 MB diff --git a/dev/_sources/auto_examples/02_decoding/plot_miyawaki_reconstruction.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_miyawaki_reconstruction.rst.txt index 08b264645c8..7ceec923636 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_miyawaki_reconstruction.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_miyawaki_reconstruction.rst.txt @@ -93,7 +93,7 @@ First we load the Miyawaki dataset .. code-block:: none Fetching dataset...First functional nifti image (4D) is located at: /home/runner/work/nilearn/nilearn/nilearn_data/miyawaki2008/func/data_figure_run01.nii.gz - Done (0.15s). + Done (0.20s). @@ -200,7 +200,7 @@ Then we prepare and mask the data .. code-block:: none - Preprocessing data... Done (25.66s). + Preprocessing data... Done (29.78s). @@ -253,7 +253,7 @@ We define our prediction function .. code-block:: none - Training classifiers... Training classifiers 001/361... Training classifiers 002/361... Training classifiers 003/361... Training classifiers 004/361... Training classifiers 005/361... Training classifiers 006/361... Training classifiers 007/361... Training classifiers 008/361... Training classifiers 009/361... Training classifiers 010/361... Training classifiers 011/361... Training classifiers 012/361... Training classifiers 013/361... Training classifiers 014/361... Training classifiers 015/361... Training classifiers 016/361... Training classifiers 017/361... Training classifiers 018/361... Training classifiers 019/361... Training classifiers 020/361... Training classifiers 021/361... Training classifiers 022/361... Training classifiers 023/361... Training classifiers 024/361... Training classifiers 025/361... Training classifiers 026/361... Training classifiers 027/361... Training classifiers 028/361... Training classifiers 029/361... Training classifiers 030/361... Training classifiers 031/361... Training classifiers 032/361... Training classifiers 033/361... Training classifiers 034/361... Training classifiers 035/361... Training classifiers 036/361... Training classifiers 037/361... Training classifiers 038/361... Training classifiers 039/361... Training classifiers 040/361... Training classifiers 041/361... Training classifiers 042/361... Training classifiers 043/361... Training classifiers 044/361... Training classifiers 045/361... Training classifiers 046/361... Training classifiers 047/361... Training classifiers 048/361... Training classifiers 049/361... Training classifiers 050/361... Training classifiers 051/361... Training classifiers 052/361... Training classifiers 053/361... Training classifiers 054/361... Training classifiers 055/361... Training classifiers 056/361... Training classifiers 057/361... Training classifiers 058/361... Training classifiers 059/361... Training classifiers 060/361... Training classifiers 061/361... Training classifiers 062/361... Training classifiers 063/361... Training classifiers 064/361... Training classifiers 065/361... Training classifiers 066/361... Training classifiers 067/361... Training classifiers 068/361... Training classifiers 069/361... Training classifiers 070/361... Training classifiers 071/361... Training classifiers 072/361... Training classifiers 073/361... Training classifiers 074/361... Training classifiers 075/361... Training classifiers 076/361... Training classifiers 077/361... Training classifiers 078/361... Training classifiers 079/361... Training classifiers 080/361... Training classifiers 081/361... Training classifiers 082/361... Training classifiers 083/361... Training classifiers 084/361... Training classifiers 085/361... Training classifiers 086/361... Training classifiers 087/361... Training classifiers 088/361... Training classifiers 089/361... Training classifiers 090/361... Training classifiers 091/361... Training classifiers 092/361... Training classifiers 093/361... Training classifiers 094/361... Training classifiers 095/361... Training classifiers 096/361... Training classifiers 097/361... Training classifiers 098/361... Training classifiers 099/361... Training classifiers 100/361... Training classifiers 101/361... Training classifiers 102/361... Training classifiers 103/361... Training classifiers 104/361... Training classifiers 105/361... Training classifiers 106/361... Training classifiers 107/361... Training classifiers 108/361... Training classifiers 109/361... Training classifiers 110/361... Training classifiers 111/361... Training classifiers 112/361... Training classifiers 113/361... Training classifiers 114/361... Training classifiers 115/361... Training classifiers 116/361... Training classifiers 117/361... Training classifiers 118/361... Training classifiers 119/361... Training classifiers 120/361... Training classifiers 121/361... Training classifiers 122/361... Training classifiers 123/361... Training classifiers 124/361... Training classifiers 125/361... Training classifiers 126/361... Training classifiers 127/361... Training classifiers 128/361... Training classifiers 129/361... Training classifiers 130/361... Training classifiers 131/361... Training classifiers 132/361... Training classifiers 133/361... Training classifiers 134/361... Training classifiers 135/361... Training classifiers 136/361... Training classifiers 137/361... Training classifiers 138/361... Training classifiers 139/361... Training classifiers 140/361... Training classifiers 141/361... Training classifiers 142/361... Training classifiers 143/361... Training classifiers 144/361... Training classifiers 145/361... Training classifiers 146/361... Training classifiers 147/361... Training classifiers 148/361... Training classifiers 149/361... Training classifiers 150/361... Training classifiers 151/361... Training classifiers 152/361... Training classifiers 153/361... Training classifiers 154/361... Training classifiers 155/361... Training classifiers 156/361... Training classifiers 157/361... Training classifiers 158/361... Training classifiers 159/361... Training classifiers 160/361... Training classifiers 161/361... Training classifiers 162/361... Training classifiers 163/361... Training classifiers 164/361... Training classifiers 165/361... Training classifiers 166/361... Training classifiers 167/361... Training classifiers 168/361... Training classifiers 169/361... Training classifiers 170/361... Training classifiers 171/361... Training classifiers 172/361... Training classifiers 173/361... Training classifiers 174/361... Training classifiers 175/361... Training classifiers 176/361... Training classifiers 177/361... Training classifiers 178/361... Training classifiers 179/361... Training classifiers 180/361... Training classifiers 181/361... Training classifiers 182/361... Training classifiers 183/361... Training classifiers 184/361... Training classifiers 185/361... Training classifiers 186/361... Training classifiers 187/361... Training classifiers 188/361... Training classifiers 189/361... Training classifiers 190/361... Training classifiers 191/361... Training classifiers 192/361... Training classifiers 193/361... Training classifiers 194/361... Training classifiers 195/361... Training classifiers 196/361... Training classifiers 197/361... Training classifiers 198/361... Training classifiers 199/361... Training classifiers 200/361... Training classifiers 201/361... Training classifiers 202/361... Training classifiers 203/361... Training classifiers 204/361... Training classifiers 205/361... Training classifiers 206/361... Training classifiers 207/361... Training classifiers 208/361... Training classifiers 209/361... Training classifiers 210/361... Training classifiers 211/361... Training classifiers 212/361... Training classifiers 213/361... Training classifiers 214/361... Training classifiers 215/361... Training classifiers 216/361... Training classifiers 217/361... Training classifiers 218/361... Training classifiers 219/361... Training classifiers 220/361... Training classifiers 221/361... Training classifiers 222/361... Training classifiers 223/361... Training classifiers 224/361... Training classifiers 225/361... Training classifiers 226/361... Training classifiers 227/361... Training classifiers 228/361... Training classifiers 229/361... Training classifiers 230/361... Training classifiers 231/361... Training classifiers 232/361... Training classifiers 233/361... Training classifiers 234/361... Training classifiers 235/361... Training classifiers 236/361... Training classifiers 237/361... Training classifiers 238/361... Training classifiers 239/361... Training classifiers 240/361... Training classifiers 241/361... Training classifiers 242/361... Training classifiers 243/361... Training classifiers 244/361... Training classifiers 245/361... Training classifiers 246/361... Training classifiers 247/361... Training classifiers 248/361... Training classifiers 249/361... Training classifiers 250/361... Training classifiers 251/361... Training classifiers 252/361... Training classifiers 253/361... Training classifiers 254/361... Training classifiers 255/361... Training classifiers 256/361... Training classifiers 257/361... Training classifiers 258/361... Training classifiers 259/361... Training classifiers 260/361... Training classifiers 261/361... Training classifiers 262/361... Training classifiers 263/361... Training classifiers 264/361... Training classifiers 265/361... Training classifiers 266/361... Training classifiers 267/361... Training classifiers 268/361... Training classifiers 269/361... Training classifiers 270/361... Training classifiers 271/361... Training classifiers 272/361... Training classifiers 273/361... Training classifiers 274/361... Training classifiers 275/361... Training classifiers 276/361... Training classifiers 277/361... Training classifiers 278/361... Training classifiers 279/361... Training classifiers 280/361... Training classifiers 281/361... Training classifiers 282/361... Training classifiers 283/361... Training classifiers 284/361... Training classifiers 285/361... Training classifiers 286/361... Training classifiers 287/361... Training classifiers 288/361... Training classifiers 289/361... Training classifiers 290/361... Training classifiers 291/361... Training classifiers 292/361... Training classifiers 293/361... Training classifiers 294/361... Training classifiers 295/361... Training classifiers 296/361... Training classifiers 297/361... Training classifiers 298/361... Training classifiers 299/361... Training classifiers 300/361... Training classifiers 301/361... Training classifiers 302/361... Training classifiers 303/361... Training classifiers 304/361... Training classifiers 305/361... Training classifiers 306/361... Training classifiers 307/361... Training classifiers 308/361... Training classifiers 309/361... Training classifiers 310/361... Training classifiers 311/361... Training classifiers 312/361... Training classifiers 313/361... Training classifiers 314/361... Training classifiers 315/361... Training classifiers 316/361... Training classifiers 317/361... Training classifiers 318/361... Training classifiers 319/361... Training classifiers 320/361... Training classifiers 321/361... Training classifiers 322/361... Training classifiers 323/361... Training classifiers 324/361... Training classifiers 325/361... Training classifiers 326/361... Training classifiers 327/361... Training classifiers 328/361... Training classifiers 329/361... Training classifiers 330/361... Training classifiers 331/361... Training classifiers 332/361... Training classifiers 333/361... Training classifiers 334/361... Training classifiers 335/361... Training classifiers 336/361... Training classifiers 337/361... Training classifiers 338/361... Training classifiers 339/361... Training classifiers 340/361... Training classifiers 341/361... Training classifiers 342/361... Training classifiers 343/361... Training classifiers 344/361... Training classifiers 345/361... Training classifiers 346/361... Training classifiers 347/361... Training classifiers 348/361... Training classifiers 349/361... Training classifiers 350/361... Training classifiers 351/361... Training classifiers 352/361... Training classifiers 353/361... Training classifiers 354/361... Training classifiers 355/361... Training classifiers 356/361... Training classifiers 357/361... Training classifiers 358/361... Training classifiers 359/361... Training classifiers 360/361... Training classifiers 361/361... Training classifiers 361/361... Done (35.63s). + Training classifiers... Training classifiers 001/361... Training classifiers 002/361... Training classifiers 003/361... Training classifiers 004/361... Training classifiers 005/361... Training classifiers 006/361... Training classifiers 007/361... Training classifiers 008/361... Training classifiers 009/361... Training classifiers 010/361... Training classifiers 011/361... Training classifiers 012/361... Training classifiers 013/361... Training classifiers 014/361... Training classifiers 015/361... Training classifiers 016/361... Training classifiers 017/361... Training classifiers 018/361... Training classifiers 019/361... Training classifiers 020/361... Training classifiers 021/361... Training classifiers 022/361... Training classifiers 023/361... Training classifiers 024/361... Training classifiers 025/361... Training classifiers 026/361... Training classifiers 027/361... Training classifiers 028/361... Training classifiers 029/361... Training classifiers 030/361... Training classifiers 031/361... Training classifiers 032/361... Training classifiers 033/361... Training classifiers 034/361... Training classifiers 035/361... Training classifiers 036/361... Training classifiers 037/361... Training classifiers 038/361... Training classifiers 039/361... Training classifiers 040/361... Training classifiers 041/361... Training classifiers 042/361... Training classifiers 043/361... Training classifiers 044/361... Training classifiers 045/361... Training classifiers 046/361... Training classifiers 047/361... Training classifiers 048/361... Training classifiers 049/361... Training classifiers 050/361... Training classifiers 051/361... Training classifiers 052/361... Training classifiers 053/361... Training classifiers 054/361... Training classifiers 055/361... Training classifiers 056/361... Training classifiers 057/361... Training classifiers 058/361... Training classifiers 059/361... Training classifiers 060/361... Training classifiers 061/361... Training classifiers 062/361... Training classifiers 063/361... Training classifiers 064/361... Training classifiers 065/361... Training classifiers 066/361... Training classifiers 067/361... Training classifiers 068/361... Training classifiers 069/361... Training classifiers 070/361... Training classifiers 071/361... Training classifiers 072/361... Training classifiers 073/361... Training classifiers 074/361... Training classifiers 075/361... Training classifiers 076/361... Training classifiers 077/361... Training classifiers 078/361... Training classifiers 079/361... Training classifiers 080/361... Training classifiers 081/361... Training classifiers 082/361... Training classifiers 083/361... Training classifiers 084/361... Training classifiers 085/361... Training classifiers 086/361... Training classifiers 087/361... Training classifiers 088/361... Training classifiers 089/361... Training classifiers 090/361... Training classifiers 091/361... Training classifiers 092/361... Training classifiers 093/361... Training classifiers 094/361... Training classifiers 095/361... Training classifiers 096/361... Training classifiers 097/361... Training classifiers 098/361... Training classifiers 099/361... Training classifiers 100/361... Training classifiers 101/361... Training classifiers 102/361... Training classifiers 103/361... Training classifiers 104/361... Training classifiers 105/361... Training classifiers 106/361... Training classifiers 107/361... Training classifiers 108/361... Training classifiers 109/361... Training classifiers 110/361... Training classifiers 111/361... Training classifiers 112/361... Training classifiers 113/361... Training classifiers 114/361... Training classifiers 115/361... Training classifiers 116/361... Training classifiers 117/361... Training classifiers 118/361... Training classifiers 119/361... Training classifiers 120/361... Training classifiers 121/361... Training classifiers 122/361... Training classifiers 123/361... Training classifiers 124/361... Training classifiers 125/361... Training classifiers 126/361... Training classifiers 127/361... Training classifiers 128/361... Training classifiers 129/361... Training classifiers 130/361... Training classifiers 131/361... Training classifiers 132/361... Training classifiers 133/361... Training classifiers 134/361... Training classifiers 135/361... Training classifiers 136/361... Training classifiers 137/361... Training classifiers 138/361... Training classifiers 139/361... Training classifiers 140/361... Training classifiers 141/361... Training classifiers 142/361... Training classifiers 143/361... Training classifiers 144/361... Training classifiers 145/361... Training classifiers 146/361... Training classifiers 147/361... Training classifiers 148/361... Training classifiers 149/361... Training classifiers 150/361... Training classifiers 151/361... Training classifiers 152/361... Training classifiers 153/361... Training classifiers 154/361... Training classifiers 155/361... Training classifiers 156/361... Training classifiers 157/361... Training classifiers 158/361... Training classifiers 159/361... Training classifiers 160/361... Training classifiers 161/361... Training classifiers 162/361... Training classifiers 163/361... Training classifiers 164/361... Training classifiers 165/361... Training classifiers 166/361... Training classifiers 167/361... Training classifiers 168/361... Training classifiers 169/361... Training classifiers 170/361... Training classifiers 171/361... Training classifiers 172/361... Training classifiers 173/361... Training classifiers 174/361... Training classifiers 175/361... Training classifiers 176/361... Training classifiers 177/361... Training classifiers 178/361... Training classifiers 179/361... Training classifiers 180/361... Training classifiers 181/361... Training classifiers 182/361... Training classifiers 183/361... Training classifiers 184/361... Training classifiers 185/361... Training classifiers 186/361... Training classifiers 187/361... Training classifiers 188/361... Training classifiers 189/361... Training classifiers 190/361... Training classifiers 191/361... Training classifiers 192/361... Training classifiers 193/361... Training classifiers 194/361... Training classifiers 195/361... Training classifiers 196/361... Training classifiers 197/361... Training classifiers 198/361... Training classifiers 199/361... Training classifiers 200/361... Training classifiers 201/361... Training classifiers 202/361... Training classifiers 203/361... Training classifiers 204/361... Training classifiers 205/361... Training classifiers 206/361... Training classifiers 207/361... Training classifiers 208/361... Training classifiers 209/361... Training classifiers 210/361... Training classifiers 211/361... Training classifiers 212/361... Training classifiers 213/361... Training classifiers 214/361... Training classifiers 215/361... Training classifiers 216/361... Training classifiers 217/361... Training classifiers 218/361... Training classifiers 219/361... Training classifiers 220/361... Training classifiers 221/361... Training classifiers 222/361... Training classifiers 223/361... Training classifiers 224/361... Training classifiers 225/361... Training classifiers 226/361... Training classifiers 227/361... Training classifiers 228/361... Training classifiers 229/361... Training classifiers 230/361... Training classifiers 231/361... Training classifiers 232/361... Training classifiers 233/361... Training classifiers 234/361... Training classifiers 235/361... Training classifiers 236/361... Training classifiers 237/361... Training classifiers 238/361... Training classifiers 239/361... Training classifiers 240/361... Training classifiers 241/361... Training classifiers 242/361... Training classifiers 243/361... Training classifiers 244/361... Training classifiers 245/361... Training classifiers 246/361... Training classifiers 247/361... Training classifiers 248/361... Training classifiers 249/361... Training classifiers 250/361... Training classifiers 251/361... Training classifiers 252/361... Training classifiers 253/361... Training classifiers 254/361... Training classifiers 255/361... Training classifiers 256/361... Training classifiers 257/361... Training classifiers 258/361... Training classifiers 259/361... Training classifiers 260/361... Training classifiers 261/361... Training classifiers 262/361... Training classifiers 263/361... Training classifiers 264/361... Training classifiers 265/361... Training classifiers 266/361... Training classifiers 267/361... Training classifiers 268/361... Training classifiers 269/361... Training classifiers 270/361... Training classifiers 271/361... Training classifiers 272/361... Training classifiers 273/361... Training classifiers 274/361... Training classifiers 275/361... Training classifiers 276/361... Training classifiers 277/361... Training classifiers 278/361... Training classifiers 279/361... Training classifiers 280/361... Training classifiers 281/361... Training classifiers 282/361... Training classifiers 283/361... Training classifiers 284/361... Training classifiers 285/361... Training classifiers 286/361... Training classifiers 287/361... Training classifiers 288/361... Training classifiers 289/361... Training classifiers 290/361... Training classifiers 291/361... Training classifiers 292/361... Training classifiers 293/361... Training classifiers 294/361... Training classifiers 295/361... Training classifiers 296/361... Training classifiers 297/361... Training classifiers 298/361... Training classifiers 299/361... Training classifiers 300/361... Training classifiers 301/361... Training classifiers 302/361... Training classifiers 303/361... Training classifiers 304/361... Training classifiers 305/361... Training classifiers 306/361... Training classifiers 307/361... Training classifiers 308/361... Training classifiers 309/361... Training classifiers 310/361... Training classifiers 311/361... Training classifiers 312/361... Training classifiers 313/361... Training classifiers 314/361... Training classifiers 315/361... Training classifiers 316/361... Training classifiers 317/361... Training classifiers 318/361... Training classifiers 319/361... Training classifiers 320/361... Training classifiers 321/361... Training classifiers 322/361... Training classifiers 323/361... Training classifiers 324/361... Training classifiers 325/361... Training classifiers 326/361... Training classifiers 327/361... Training classifiers 328/361... Training classifiers 329/361... Training classifiers 330/361... Training classifiers 331/361... Training classifiers 332/361... Training classifiers 333/361... Training classifiers 334/361... Training classifiers 335/361... Training classifiers 336/361... Training classifiers 337/361... Training classifiers 338/361... Training classifiers 339/361... Training classifiers 340/361... Training classifiers 341/361... Training classifiers 342/361... Training classifiers 343/361... Training classifiers 344/361... Training classifiers 345/361... Training classifiers 346/361... Training classifiers 347/361... Training classifiers 348/361... Training classifiers 349/361... Training classifiers 350/361... Training classifiers 351/361... Training classifiers 352/361... Training classifiers 353/361... Training classifiers 354/361... Training classifiers 355/361... Training classifiers 356/361... Training classifiers 357/361... Training classifiers 358/361... Training classifiers 359/361... Training classifiers 360/361... Training classifiers 361/361... Training classifiers 361/361... Done (43.86s). @@ -353,7 +353,7 @@ Here we run the prediction: the decoding itself .. code-block:: none - Calculating scores and outputs... Done (1.94s). + Calculating scores and outputs... Done (3.22s). @@ -520,7 +520,7 @@ ground truth .. rst-class:: sphx-glr-timing - **Total running time of the script:** (1 minutes 5.755 seconds) + **Total running time of the script:** (1 minutes 19.917 seconds) **Estimated memory usage:** 417 MB diff --git a/dev/_sources/auto_examples/02_decoding/plot_oasis_vbm.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_oasis_vbm.rst.txt index 00723c22f3b..6e49ecf74f0 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_oasis_vbm.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_oasis_vbm.rst.txt @@ -310,7 +310,7 @@ Visualize the quality of predictions .. code-block:: none - + @@ -382,8 +382,8 @@ Inference with massively univariate model .. code-block:: none Massively univariate model - Job #1, processed 0/2000 permutations (0.00%, 193.35508346557617 seconds remaining) Job #1, processed 10/2000 permutations (0.50%, 33.88106632232666 seconds remaining) Job #1, processed 20/2000 permutations (1.00%, 32.99982690811157 seconds remaining) Job #1, processed 30/2000 permutations (1.50%, 31.650777101516727 seconds remaining) Job #1, processed 40/2000 permutations (2.00%, 30.821441411972046 seconds remaining) Job #1, processed 50/2000 permutations (2.50%, 30.287153720855713 seconds remaining) Job #1, processed 60/2000 permutations (3.00%, 29.87761966387431 seconds remaining) Job #1, processed 70/2000 permutations (3.50%, 29.612723350524902 seconds remaining) Job #1, processed 80/2000 permutations (4.00%, 29.344837188720703 seconds remaining) Job #1, processed 90/2000 permutations (4.50%, 29.459222502178616 seconds remaining) Job #1, processed 100/2000 permutations (5.00%, 29.228153705596924 seconds remaining) Job #1, processed 110/2000 permutations (5.50%, 28.98711250045083 seconds remaining) Job #1, processed 120/2000 permutations (6.00%, 28.789533456166584 seconds remaining) Job #1, processed 130/2000 permutations (6.50%, 28.59211802482605 seconds remaining) Job #1, processed 140/2000 permutations (7.00%, 28.36894031933376 seconds remaining) Job #1, processed 150/2000 permutations (7.50%, 28.289560397466026 seconds remaining) Job #1, processed 160/2000 permutations (8.00%, 28.156718134880066 seconds remaining) Job #1, processed 170/2000 permutations (8.50%, 28.001918876872345 seconds remaining) Job #1, processed 180/2000 permutations (9.00%, 27.812204202016193 seconds remaining) Job #1, processed 190/2000 permutations (9.50%, 27.642217723946825 seconds remaining) Job #1, processed 200/2000 permutations (10.00%, 27.466047763824463 seconds remaining) Job #1, processed 210/2000 permutations (10.50%, 28.085136072976248 seconds remaining) Job #1, processed 220/2000 permutations (11.00%, 27.970917159860786 seconds remaining) Job #1, processed 230/2000 permutations (11.50%, 27.755818356638372 seconds remaining) Job #1, processed 240/2000 permutations (12.00%, 27.54418913523356 seconds remaining) Job #1, processed 250/2000 permutations (12.50%, 27.34410548210144 seconds remaining) Job #1, processed 260/2000 permutations (13.00%, 27.13315646465008 seconds remaining) Job #1, processed 270/2000 permutations (13.50%, 26.93288341274968 seconds remaining) Job #1, processed 280/2000 permutations (14.00%, 26.820494515555247 seconds remaining) Job #1, processed 290/2000 permutations (14.50%, 26.627698881872767 seconds remaining) Job #1, processed 300/2000 permutations (15.00%, 26.425376335779827 seconds remaining) Job #1, processed 310/2000 permutations (15.50%, 26.24013083211837 seconds remaining) Job #1, processed 320/2000 permutations (16.00%, 26.04783457517624 seconds remaining) Job #1, processed 330/2000 permutations (16.50%, 25.859421347126816 seconds remaining) Job #1, processed 340/2000 permutations (17.00%, 25.666356984306788 seconds remaining) Job #1, processed 350/2000 permutations (17.50%, 25.55107263156346 seconds remaining) Job #1, processed 360/2000 permutations (18.00%, 25.36649367544386 seconds remaining) Job #1, processed 370/2000 permutations (18.50%, 25.18403061016186 seconds remaining) Job #1, processed 380/2000 permutations (19.00%, 25.002454481626813 seconds remaining) Job #1, processed 390/2000 permutations (19.50%, 24.829021429404236 seconds remaining) Job #1, processed 400/2000 permutations (20.00%, 24.649412155151367 seconds remaining) Job #1, processed 410/2000 permutations (20.50%, 24.471977111769885 seconds remaining) Job #1, processed 420/2000 permutations (21.00%, 24.353669053032284 seconds remaining) Job #1, processed 430/2000 permutations (21.50%, 24.271204028018683 seconds remaining) Job #1, processed 440/2000 permutations (22.00%, 24.10625813224099 seconds remaining) Job #1, processed 450/2000 permutations (22.50%, 23.937865813573204 seconds remaining) Job #1, processed 460/2000 permutations (23.00%, 23.76471433432206 seconds remaining) Job #1, processed 470/2000 permutations (23.50%, 23.591346700140768 seconds remaining) Job #1, processed 480/2000 permutations (24.00%, 23.45964435736338 seconds remaining) Job #1, processed 490/2000 permutations (24.50%, 23.29052507147497 seconds remaining) Job #1, processed 500/2000 permutations (25.00%, 23.116989612579346 seconds remaining) Job #1, processed 510/2000 permutations (25.50%, 22.952345894832234 seconds remaining) Job #1, processed 520/2000 permutations (26.00%, 22.784632407701935 seconds remaining) Job #1, processed 530/2000 permutations (26.50%, 22.650409307119983 seconds remaining) Job #1, processed 540/2000 permutations (27.00%, 22.482604371176826 seconds remaining) Job #1, processed 550/2000 permutations (27.50%, 22.345763683319092 seconds remaining) Job #1, processed 560/2000 permutations (28.00%, 22.181454726627898 seconds remaining) Job #1, processed 570/2000 permutations (28.50%, 22.016740267736868 seconds remaining) Job #1, processed 580/2000 permutations (29.00%, 21.852338749786902 seconds remaining) Job #1, processed 590/2000 permutations (29.50%, 21.689653218802757 seconds remaining) Job #1, processed 600/2000 permutations (30.00%, 21.527238368988037 seconds remaining) Job #1, processed 610/2000 permutations (30.50%, 21.621902434552304 seconds remaining) Job #1, processed 620/2000 permutations (31.00%, 21.45157064160993 seconds remaining) Job #1, processed 630/2000 permutations (31.50%, 21.29020854026552 seconds remaining) Job #1, processed 640/2000 permutations (32.00%, 21.120141208171844 seconds remaining) Job #1, processed 650/2000 permutations (32.50%, 20.951938720849846 seconds remaining) Job #1, processed 660/2000 permutations (33.00%, 20.7834114594893 seconds remaining) Job #1, processed 670/2000 permutations (33.50%, 20.62207928344385 seconds remaining) Job #1, processed 680/2000 permutations (34.00%, 20.490028128904456 seconds remaining) Job #1, processed 690/2000 permutations (34.50%, 20.326999557191048 seconds remaining) Job #1, processed 700/2000 permutations (35.00%, 20.159897668021067 seconds remaining) Job #1, processed 710/2000 permutations (35.50%, 19.991940202847335 seconds remaining) Job #1, processed 720/2000 permutations (36.00%, 19.825477176242405 seconds remaining) Job #1, processed 730/2000 permutations (36.50%, 19.660248753142685 seconds remaining) Job #1, processed 740/2000 permutations (37.00%, 19.49359797787022 seconds remaining) Job #1, processed 750/2000 permutations (37.50%, 19.349790811538696 seconds remaining) Job #1, processed 760/2000 permutations (38.00%, 19.183915652726824 seconds remaining) Job #1, processed 770/2000 permutations (38.50%, 19.019928542050447 seconds remaining) Job #1, processed 780/2000 permutations (39.00%, 18.85541388316032 seconds remaining) Job #1, processed 790/2000 permutations (39.50%, 18.731071879592122 seconds remaining) Job #1, processed 800/2000 permutations (40.00%, 18.56532096862793 seconds remaining) Job #1, processed 810/2000 permutations (40.50%, 18.42011696909681 seconds remaining) Job #1, processed 820/2000 permutations (41.00%, 18.256150094474233 seconds remaining) Job #1, processed 830/2000 permutations (41.50%, 18.092118381017663 seconds remaining) Job #1, processed 840/2000 permutations (42.00%, 17.927541085651942 seconds remaining) Job #1, processed 850/2000 permutations (42.50%, 17.765961913501517 seconds remaining) Job #1, processed 860/2000 permutations (43.00%, 17.604031878848406 seconds remaining) Job #1, processed 870/2000 permutations (43.50%, 17.440619581047148 seconds remaining) Job #1, processed 880/2000 permutations (44.00%, 17.295843427831475 seconds remaining) Job #1, processed 890/2000 permutations (44.50%, 17.134189817342865 seconds remaining) Job #1, processed 900/2000 permutations (45.00%, 16.974654383129543 seconds remaining) Job #1, processed 910/2000 permutations (45.50%, 16.812963373058444 seconds remaining) Job #1, processed 920/2000 permutations (46.00%, 16.653652823489647 seconds remaining) Job #1, processed 930/2000 permutations (46.50%, 16.49902750343405 seconds remaining) Job #1, processed 940/2000 permutations (47.00%, 16.338829314455072 seconds remaining) Job #1, processed 950/2000 permutations (47.50%, 16.19455764168187 seconds remaining) Job #1, processed 960/2000 permutations (48.00%, 16.033485929171242 seconds remaining) Job #1, processed 970/2000 permutations (48.50%, 15.874664343509478 seconds remaining) Job #1, processed 980/2000 permutations (49.00%, 15.715232338224139 seconds remaining) Job #1, processed 990/2000 permutations (49.50%, 15.555402546217946 seconds remaining) Job #1, processed 1000/2000 permutations (50.00%, 15.395453453063965 seconds remaining) Job #1, processed 1010/2000 permutations (50.50%, 15.347075906130346 seconds remaining) Job #1, processed 1020/2000 permutations (51.00%, 15.187024340910071 seconds remaining) Job #1, processed 1030/2000 permutations (51.50%, 15.025456715556025 seconds remaining) Job #1, processed 1040/2000 permutations (52.00%, 14.864180638239935 seconds remaining) Job #1, processed 1050/2000 permutations (52.50%, 14.70415194829305 seconds remaining) Job #1, processed 1060/2000 permutations (53.00%, 14.543467773581451 seconds remaining) Job #1, processed 1070/2000 permutations (53.50%, 14.383220218052374 seconds remaining) Job #1, processed 1080/2000 permutations (54.00%, 14.235538562138876 seconds remaining) Job #1, processed 1090/2000 permutations (54.50%, 14.077074129647071 seconds remaining) Job #1, processed 1100/2000 permutations (55.00%, 13.91778243671764 seconds remaining) Job #1, processed 1110/2000 permutations (55.50%, 13.758312996443328 seconds remaining) Job #1, processed 1120/2000 permutations (56.00%, 13.600948776517596 seconds remaining) Job #1, processed 1130/2000 permutations (56.50%, 13.441847961560814 seconds remaining) Job #1, processed 1140/2000 permutations (57.00%, 13.284148262258162 seconds remaining) Job #1, processed 1150/2000 permutations (57.50%, 13.13656997680664 seconds remaining) Job #1, processed 1160/2000 permutations (58.00%, 12.979894588733542 seconds remaining) Job #1, processed 1170/2000 permutations (58.50%, 12.821433809068468 seconds remaining) Job #1, processed 1180/2000 permutations (59.00%, 12.67323608721717 seconds remaining) Job #1, processed 1190/2000 permutations (59.50%, 12.51407267265961 seconds remaining) Job #1, processed 1200/2000 permutations (60.00%, 12.355065504709879 seconds remaining) Job #1, processed 1210/2000 permutations (60.50%, 12.196064700765058 seconds remaining) Job #1, processed 1220/2000 permutations (61.00%, 12.048168874177778 seconds remaining) Job #1, processed 1230/2000 permutations (61.50%, 11.89019058002689 seconds remaining) Job #1, processed 1240/2000 permutations (62.00%, 11.732203022126228 seconds remaining) Job #1, processed 1250/2000 permutations (62.50%, 11.581426048278809 seconds remaining) Job #1, processed 1260/2000 permutations (63.00%, 11.424798261551631 seconds remaining) Job #1, processed 1270/2000 permutations (63.50%, 11.266934475560825 seconds remaining) Job #1, processed 1280/2000 permutations (64.00%, 11.118078231811523 seconds remaining) Job #1, processed 1290/2000 permutations (64.50%, 10.960978419281716 seconds remaining) Job #1, processed 1300/2000 permutations (65.00%, 10.803261793576754 seconds remaining) Job #1, processed 1310/2000 permutations (65.50%, 10.645680542210586 seconds remaining) Job #1, processed 1320/2000 permutations (66.00%, 10.488268751086611 seconds remaining) Job #1, processed 1330/2000 permutations (66.50%, 10.331025148692884 seconds remaining) Job #1, processed 1340/2000 permutations (67.00%, 10.174037175392037 seconds remaining) Job #1, processed 1350/2000 permutations (67.50%, 10.024100603880704 seconds remaining) Job #1, processed 1360/2000 permutations (68.00%, 9.866543938131894 seconds remaining) Job #1, processed 1370/2000 permutations (68.50%, 9.709839669457317 seconds remaining) Job #1, processed 1380/2000 permutations (69.00%, 9.554099525230518 seconds remaining) Job #1, processed 1390/2000 permutations (69.50%, 9.396998853134594 seconds remaining) Job #1, processed 1400/2000 permutations (70.00%, 9.240907226290021 seconds remaining) Job #1, processed 1410/2000 permutations (70.50%, 9.120296295652999 seconds remaining) Job #1, processed 1420/2000 permutations (71.00%, 8.96954661020091 seconds remaining) Job #1, processed 1430/2000 permutations (71.50%, 8.812601806400538 seconds remaining) Job #1, processed 1440/2000 permutations (72.00%, 8.655020078023275 seconds remaining) Job #1, processed 1450/2000 permutations (72.50%, 8.498025030925355 seconds remaining) Job #1, processed 1460/2000 permutations (73.00%, 8.341322039904659 seconds remaining) Job #1, processed 1470/2000 permutations (73.50%, 8.184370606934943 seconds remaining) Job #1, processed 1480/2000 permutations (74.00%, 8.033222939517048 seconds remaining) Job #1, processed 1490/2000 permutations (74.50%, 7.877526576086979 seconds remaining) Job #1, processed 1500/2000 permutations (75.00%, 7.721157232920328 seconds remaining) Job #1, processed 1510/2000 permutations (75.50%, 7.564404269717387 seconds remaining) Job #1, processed 1520/2000 permutations (76.00%, 7.4079042735852685 seconds remaining) Job #1, processed 1530/2000 permutations (76.50%, 7.251990257524977 seconds remaining) Job #1, processed 1540/2000 permutations (77.00%, 7.096338755124575 seconds remaining) Job #1, processed 1550/2000 permutations (77.50%, 6.945256925398304 seconds remaining) Job #1, processed 1560/2000 permutations (78.00%, 6.7889189292223024 seconds remaining) Job #1, processed 1570/2000 permutations (78.50%, 6.633926332376565 seconds remaining) Job #1, processed 1580/2000 permutations (79.00%, 6.479456491108182 seconds remaining) Job #1, processed 1590/2000 permutations (79.50%, 6.323790116879925 seconds remaining) Job #1, processed 1600/2000 permutations (80.00%, 6.1681236028671265 seconds remaining) Job #1, processed 1610/2000 permutations (80.50%, 6.013084955096986 seconds remaining) Job #1, processed 1620/2000 permutations (81.00%, 5.861154129475723 seconds remaining) Job #1, processed 1630/2000 permutations (81.50%, 5.705546159685755 seconds remaining) Job #1, processed 1640/2000 permutations (82.00%, 5.550072216406101 seconds remaining) Job #1, processed 1650/2000 permutations (82.50%, 5.394633018609249 seconds remaining) Job #1, processed 1660/2000 permutations (83.00%, 5.2393038531383835 seconds remaining) Job #1, processed 1670/2000 permutations (83.50%, 5.084007127556259 seconds remaining) Job #1, processed 1680/2000 permutations (84.00%, 4.932221548897879 seconds remaining) Job #1, processed 1690/2000 permutations (84.50%, 4.777759911745963 seconds remaining) Job #1, processed 1700/2000 permutations (85.00%, 4.622888004078585 seconds remaining) Job #1, processed 1710/2000 permutations (85.50%, 4.468025093190154 seconds remaining) Job #1, processed 1720/2000 permutations (86.00%, 4.312921313352363 seconds remaining) Job #1, processed 1730/2000 permutations (86.50%, 4.157820307450487 seconds remaining) Job #1, processed 1740/2000 permutations (87.00%, 4.003143094051843 seconds remaining) Job #1, processed 1750/2000 permutations (87.50%, 3.850528342383248 seconds remaining) Job #1, processed 1760/2000 permutations (88.00%, 3.6962542858990752 seconds remaining) Job #1, processed 1770/2000 permutations (88.50%, 3.5451416403560314 seconds remaining) Job #1, processed 1780/2000 permutations (89.00%, 3.3902285875899065 seconds remaining) Job #1, processed 1790/2000 permutations (89.50%, 3.2353703203148014 seconds remaining) Job #1, processed 1800/2000 permutations (90.00%, 3.080731497870551 seconds remaining) Job #1, processed 1810/2000 permutations (90.50%, 2.9316416761493156 seconds remaining) Job #1, processed 1820/2000 permutations (91.00%, 2.780884855396145 seconds remaining) Job #1, processed 1830/2000 permutations (91.50%, 2.6263920466105146 seconds remaining) Job #1, processed 1840/2000 permutations (92.00%, 2.4714540813280186 seconds remaining) Job #1, processed 1850/2000 permutations (92.50%, 2.316464153495995 seconds remaining) Job #1, processed 1860/2000 permutations (93.00%, 2.161579506371611 seconds remaining) Job #1, processed 1870/2000 permutations (93.50%, 2.0068136880742036 seconds remaining) Job #1, processed 1880/2000 permutations (94.00%, 1.8531722667369435 seconds remaining) Job #1, processed 1890/2000 permutations (94.50%, 1.6983817304883684 seconds remaining) Job #1, processed 1900/2000 permutations (95.00%, 1.5437412387446352 seconds remaining) Job #1, processed 1910/2000 permutations (95.50%, 1.389124564475414 seconds remaining) Job #1, processed 1920/2000 permutations (96.00%, 1.2345227599143982 seconds remaining) Job #1, processed 1930/2000 permutations (96.50%, 1.0800421003232965 seconds remaining) Job #1, processed 1940/2000 permutations (97.00%, 0.9255976357410863 seconds remaining) Job #1, processed 1950/2000 permutations (97.50%, 0.7715532657427665 seconds remaining) Job #1, processed 1960/2000 permutations (98.00%, 0.6171818558050661 seconds remaining) Job #1, processed 1970/2000 permutations (98.50%, 0.4627971697579786 seconds remaining) Job #1, processed 1980/2000 permutations (99.00%, 0.3084801808752195 seconds remaining) Job #1, processed 1990/2000 permutations (99.50%, 0.1542104141197013 seconds remaining) - 1933 detections + Job #1, processed 0/2000 permutations (0.00%, 199.17726516723633 seconds remaining) Job #1, processed 10/2000 permutations (0.50%, 35.513943672180176 seconds remaining) Job #1, processed 20/2000 permutations (1.00%, 33.1911563873291 seconds remaining) Job #1, processed 30/2000 permutations (1.50%, 32.351922273635864 seconds remaining) Job #1, processed 40/2000 permutations (2.00%, 32.24910259246826 seconds remaining) Job #1, processed 50/2000 permutations (2.50%, 32.052040815353394 seconds remaining) Job #1, processed 60/2000 permutations (3.00%, 31.654243787129722 seconds remaining) Job #1, processed 70/2000 permutations (3.50%, 31.419612237385344 seconds remaining) Job #1, processed 80/2000 permutations (4.00%, 31.108074188232422 seconds remaining) Job #1, processed 90/2000 permutations (4.50%, 30.792543278800114 seconds remaining) Job #1, processed 100/2000 permutations (5.00%, 30.495018482208252 seconds remaining) Job #1, processed 110/2000 permutations (5.50%, 30.606887405568905 seconds remaining) Job #1, processed 120/2000 permutations (6.00%, 30.344160000483193 seconds remaining) Job #1, processed 130/2000 permutations (6.50%, 30.110843603427593 seconds remaining) Job #1, processed 140/2000 permutations (7.00%, 29.908904007502965 seconds remaining) Job #1, processed 150/2000 permutations (7.50%, 29.691253582636516 seconds remaining) Job #1, processed 160/2000 permutations (8.00%, 29.484394788742065 seconds remaining) Job #1, processed 170/2000 permutations (8.50%, 30.333533006555896 seconds remaining) Job #1, processed 180/2000 permutations (9.00%, 30.065338399675156 seconds remaining) Job #1, processed 190/2000 permutations (9.50%, 29.82857131958008 seconds remaining) Job #1, processed 200/2000 permutations (10.00%, 29.578924655914307 seconds remaining) Job #1, processed 210/2000 permutations (10.50%, 29.34360545022147 seconds remaining) Job #1, processed 220/2000 permutations (11.00%, 29.111905358054425 seconds remaining) Job #1, processed 230/2000 permutations (11.50%, 28.894121709077258 seconds remaining) Job #1, processed 240/2000 permutations (12.00%, 28.848892847696938 seconds remaining) Job #1, processed 250/2000 permutations (12.50%, 28.634715795516968 seconds remaining) Job #1, processed 260/2000 permutations (13.00%, 28.4279826604403 seconds remaining) Job #1, processed 270/2000 permutations (13.50%, 28.241629079536157 seconds remaining) Job #1, processed 280/2000 permutations (14.00%, 28.752962623323715 seconds remaining) Job #1, processed 290/2000 permutations (14.50%, 28.85086391712057 seconds remaining) Job #1, processed 300/2000 permutations (15.00%, 28.672829071680706 seconds remaining) Job #1, processed 310/2000 permutations (15.50%, 28.498755962617935 seconds remaining) Job #1, processed 320/2000 permutations (16.00%, 28.33128386735916 seconds remaining) Job #1, processed 330/2000 permutations (16.50%, 28.17229576544328 seconds remaining) Job #1, processed 340/2000 permutations (17.00%, 28.012633632211127 seconds remaining) Job #1, processed 350/2000 permutations (17.50%, 27.91798394066947 seconds remaining) Job #1, processed 360/2000 permutations (18.00%, 27.74693671862284 seconds remaining) Job #1, processed 370/2000 permutations (18.50%, 27.57120705939628 seconds remaining) Job #1, processed 380/2000 permutations (19.00%, 27.392409437581115 seconds remaining) Job #1, processed 390/2000 permutations (19.50%, 27.223212767870002 seconds remaining) Job #1, processed 400/2000 permutations (20.00%, 27.042736053466797 seconds remaining) Job #1, processed 410/2000 permutations (20.50%, 26.915415496360964 seconds remaining) Job #1, processed 420/2000 permutations (21.00%, 26.75501283009847 seconds remaining) Job #1, processed 430/2000 permutations (21.50%, 26.576377120128896 seconds remaining) Job #1, processed 440/2000 permutations (22.00%, 26.394596099853516 seconds remaining) Job #1, processed 450/2000 permutations (22.50%, 26.215197960535686 seconds remaining) Job #1, processed 460/2000 permutations (23.00%, 26.046176257340807 seconds remaining) Job #1, processed 470/2000 permutations (23.50%, 25.87035509880553 seconds remaining) Job #1, processed 480/2000 permutations (24.00%, 25.76705745855967 seconds remaining) Job #1, processed 490/2000 permutations (24.50%, 25.683832309683975 seconds remaining) Job #1, processed 500/2000 permutations (25.00%, 25.50395894050598 seconds remaining) Job #1, processed 510/2000 permutations (25.50%, 25.31357821296243 seconds remaining) Job #1, processed 520/2000 permutations (26.00%, 25.1761865065648 seconds remaining) Job #1, processed 530/2000 permutations (26.50%, 25.247260093688965 seconds remaining) Job #1, processed 540/2000 permutations (27.00%, 25.036041648299605 seconds remaining) Job #1, processed 550/2000 permutations (27.50%, 24.824515125968237 seconds remaining) Job #1, processed 560/2000 permutations (28.00%, 24.619867801666263 seconds remaining) Job #1, processed 570/2000 permutations (28.50%, 24.418846874906304 seconds remaining) Job #1, processed 580/2000 permutations (29.00%, 24.21589371253704 seconds remaining) Job #1, processed 590/2000 permutations (29.50%, 24.050797583693164 seconds remaining) Job #1, processed 600/2000 permutations (30.00%, 23.873605489730835 seconds remaining) Job #1, processed 610/2000 permutations (30.50%, 23.674583607032652 seconds remaining) Job #1, processed 620/2000 permutations (31.00%, 23.468385619501912 seconds remaining) Job #1, processed 630/2000 permutations (31.50%, 23.265546643544756 seconds remaining) Job #1, processed 640/2000 permutations (32.00%, 23.06389093399048 seconds remaining) Job #1, processed 650/2000 permutations (32.50%, 22.860860604506275 seconds remaining) Job #1, processed 660/2000 permutations (33.00%, 22.708413102410056 seconds remaining) Job #1, processed 670/2000 permutations (33.50%, 22.50513064683373 seconds remaining) Job #1, processed 680/2000 permutations (34.00%, 22.305337639415963 seconds remaining) Job #1, processed 690/2000 permutations (34.50%, 22.108019317405812 seconds remaining) Job #1, processed 700/2000 permutations (35.00%, 21.91792038508824 seconds remaining) Job #1, processed 710/2000 permutations (35.50%, 21.724454953636922 seconds remaining) Job #1, processed 720/2000 permutations (36.00%, 21.536582522922092 seconds remaining) Job #1, processed 730/2000 permutations (36.50%, 21.390912186609558 seconds remaining) Job #1, processed 740/2000 permutations (37.00%, 21.2080786808117 seconds remaining) Job #1, processed 750/2000 permutations (37.50%, 21.015162070592247 seconds remaining) Job #1, processed 760/2000 permutations (38.00%, 20.828021137337934 seconds remaining) Job #1, processed 770/2000 permutations (38.50%, 20.63775729204153 seconds remaining) Job #1, processed 780/2000 permutations (39.00%, 20.449570472423847 seconds remaining) Job #1, processed 790/2000 permutations (39.50%, 20.30224740052525 seconds remaining) Job #1, processed 800/2000 permutations (40.00%, 20.115921020507812 seconds remaining) Job #1, processed 810/2000 permutations (40.50%, 19.92978733262898 seconds remaining) Job #1, processed 820/2000 permutations (41.00%, 19.751883512589988 seconds remaining) Job #1, processed 830/2000 permutations (41.50%, 19.572362138564326 seconds remaining) Job #1, processed 840/2000 permutations (42.00%, 19.39012244769505 seconds remaining) Job #1, processed 850/2000 permutations (42.50%, 19.202644853030936 seconds remaining) Job #1, processed 860/2000 permutations (43.00%, 19.056230622668597 seconds remaining) Job #1, processed 870/2000 permutations (43.50%, 18.876980096444317 seconds remaining) Job #1, processed 880/2000 permutations (44.00%, 18.69908467206088 seconds remaining) Job #1, processed 890/2000 permutations (44.50%, 18.51772068323714 seconds remaining) Job #1, processed 900/2000 permutations (45.00%, 18.341179582807754 seconds remaining) Job #1, processed 910/2000 permutations (45.50%, 18.309931969904635 seconds remaining) Job #1, processed 920/2000 permutations (46.00%, 18.137983467267908 seconds remaining) Job #1, processed 930/2000 permutations (46.50%, 17.963656153730167 seconds remaining) Job #1, processed 940/2000 permutations (47.00%, 17.79442422947985 seconds remaining) Job #1, processed 950/2000 permutations (47.50%, 17.62170918364274 seconds remaining) Job #1, processed 960/2000 permutations (48.00%, 17.450869838396706 seconds remaining) Job #1, processed 970/2000 permutations (48.50%, 17.278935798664683 seconds remaining) Job #1, processed 980/2000 permutations (49.00%, 17.126092103062845 seconds remaining) Job #1, processed 990/2000 permutations (49.50%, 16.958812978532578 seconds remaining) Job #1, processed 1000/2000 permutations (50.00%, 16.784727573394775 seconds remaining) Job #1, processed 1010/2000 permutations (50.50%, 16.60744838667388 seconds remaining) Job #1, processed 1020/2000 permutations (51.00%, 16.429712669522154 seconds remaining) Job #1, processed 1030/2000 permutations (51.50%, 16.2538232710755 seconds remaining) Job #1, processed 1040/2000 permutations (52.00%, 16.099591915424053 seconds remaining) Job #1, processed 1050/2000 permutations (52.50%, 15.924583196640015 seconds remaining) Job #1, processed 1060/2000 permutations (53.00%, 15.751741476778715 seconds remaining) Job #1, processed 1070/2000 permutations (53.50%, 15.577624450220126 seconds remaining) Job #1, processed 1080/2000 permutations (54.00%, 15.40452950089066 seconds remaining) Job #1, processed 1090/2000 permutations (54.50%, 15.238275377028579 seconds remaining) Job #1, processed 1100/2000 permutations (55.00%, 15.074893062764948 seconds remaining) Job #1, processed 1110/2000 permutations (55.50%, 14.898109979457685 seconds remaining) Job #1, processed 1120/2000 permutations (56.00%, 14.723011136054993 seconds remaining) Job #1, processed 1130/2000 permutations (56.50%, 14.54880097060077 seconds remaining) Job #1, processed 1140/2000 permutations (57.00%, 14.373739698476959 seconds remaining) Job #1, processed 1150/2000 permutations (57.50%, 14.19889815993931 seconds remaining) Job #1, processed 1160/2000 permutations (58.00%, 14.026898490971533 seconds remaining) Job #1, processed 1170/2000 permutations (58.50%, 13.86537367462093 seconds remaining) Job #1, processed 1180/2000 permutations (59.00%, 13.696478148638192 seconds remaining) Job #1, processed 1190/2000 permutations (59.50%, 13.524208960412931 seconds remaining) Job #1, processed 1200/2000 permutations (60.00%, 13.349293549855549 seconds remaining) Job #1, processed 1210/2000 permutations (60.50%, 13.17642530725022 seconds remaining) Job #1, processed 1220/2000 permutations (61.00%, 13.002472846234433 seconds remaining) Job #1, processed 1230/2000 permutations (61.50%, 12.837158113960328 seconds remaining) Job #1, processed 1240/2000 permutations (62.00%, 12.665493019165531 seconds remaining) Job #1, processed 1250/2000 permutations (62.50%, 12.495159387588501 seconds remaining) Job #1, processed 1260/2000 permutations (63.00%, 12.321219750813077 seconds remaining) Job #1, processed 1270/2000 permutations (63.50%, 12.149836643474307 seconds remaining) Job #1, processed 1280/2000 permutations (64.00%, 12.030482992529869 seconds remaining) Job #1, processed 1290/2000 permutations (64.50%, 11.870701338893683 seconds remaining) Job #1, processed 1300/2000 permutations (65.00%, 11.697899451622595 seconds remaining) Job #1, processed 1310/2000 permutations (65.50%, 11.526410530541689 seconds remaining) Job #1, processed 1320/2000 permutations (66.00%, 11.355171767148104 seconds remaining) Job #1, processed 1330/2000 permutations (66.50%, 11.183196480112866 seconds remaining) Job #1, processed 1340/2000 permutations (67.00%, 11.026593404029732 seconds remaining) Job #1, processed 1350/2000 permutations (67.50%, 10.859094628581294 seconds remaining) Job #1, processed 1360/2000 permutations (68.00%, 10.690381667193245 seconds remaining) Job #1, processed 1370/2000 permutations (68.50%, 10.51962303593211 seconds remaining) Job #1, processed 1380/2000 permutations (69.00%, 10.346469454143358 seconds remaining) Job #1, processed 1390/2000 permutations (69.50%, 10.174411080724044 seconds remaining) Job #1, processed 1400/2000 permutations (70.00%, 10.015874147415161 seconds remaining) Job #1, processed 1410/2000 permutations (70.50%, 9.843887545538287 seconds remaining) Job #1, processed 1420/2000 permutations (71.00%, 9.683337856346453 seconds remaining) Job #1, processed 1430/2000 permutations (71.50%, 9.512344787170838 seconds remaining) Job #1, processed 1440/2000 permutations (72.00%, 9.341447485817804 seconds remaining) Job #1, processed 1450/2000 permutations (72.50%, 9.172630860887724 seconds remaining) Job #1, processed 1460/2000 permutations (73.00%, 9.004838087787366 seconds remaining) Job #1, processed 1470/2000 permutations (73.50%, 8.83708395925509 seconds remaining) Job #1, processed 1480/2000 permutations (74.00%, 8.675761963870075 seconds remaining) Job #1, processed 1490/2000 permutations (74.50%, 8.507062350343539 seconds remaining) Job #1, processed 1500/2000 permutations (75.00%, 8.337508996327717 seconds remaining) Job #1, processed 1510/2000 permutations (75.50%, 8.16878950516909 seconds remaining) Job #1, processed 1520/2000 permutations (76.00%, 8.000759651786403 seconds remaining) Job #1, processed 1530/2000 permutations (76.50%, 7.833552466498482 seconds remaining) Job #1, processed 1540/2000 permutations (77.00%, 7.669496883045543 seconds remaining) Job #1, processed 1550/2000 permutations (77.50%, 7.502389669418336 seconds remaining) Job #1, processed 1560/2000 permutations (78.00%, 7.333418736091027 seconds remaining) Job #1, processed 1570/2000 permutations (78.50%, 7.165155269537761 seconds remaining) Job #1, processed 1580/2000 permutations (79.00%, 6.996489902085895 seconds remaining) Job #1, processed 1590/2000 permutations (79.50%, 6.82833287700917 seconds remaining) Job #1, processed 1600/2000 permutations (80.00%, 6.6598716378211975 seconds remaining) Job #1, processed 1610/2000 permutations (80.50%, 6.4960789754523995 seconds remaining) Job #1, processed 1620/2000 permutations (81.00%, 6.327970372305976 seconds remaining) Job #1, processed 1630/2000 permutations (81.50%, 6.160059174145657 seconds remaining) Job #1, processed 1640/2000 permutations (82.00%, 5.993317121412696 seconds remaining) Job #1, processed 1650/2000 permutations (82.50%, 5.839470039714467 seconds remaining) Job #1, processed 1660/2000 permutations (83.00%, 5.676504522921091 seconds remaining) Job #1, processed 1670/2000 permutations (83.50%, 5.511418630976877 seconds remaining) Job #1, processed 1680/2000 permutations (84.00%, 5.342585245768229 seconds remaining) Job #1, processed 1690/2000 permutations (84.50%, 5.173767572323952 seconds remaining) Job #1, processed 1700/2000 permutations (85.00%, 5.0060363657334275 seconds remaining) Job #1, processed 1710/2000 permutations (85.50%, 4.837627862629137 seconds remaining) Job #1, processed 1720/2000 permutations (86.00%, 4.66951080810192 seconds remaining) Job #1, processed 1730/2000 permutations (86.50%, 4.504477782056511 seconds remaining) Job #1, processed 1740/2000 permutations (87.00%, 4.336401388562959 seconds remaining) Job #1, processed 1750/2000 permutations (87.50%, 4.168822152273996 seconds remaining) Job #1, processed 1760/2000 permutations (88.00%, 4.001176682385531 seconds remaining) Job #1, processed 1770/2000 permutations (88.50%, 3.833802291902445 seconds remaining) Job #1, processed 1780/2000 permutations (89.00%, 3.6671185600623657 seconds remaining) Job #1, processed 1790/2000 permutations (89.50%, 3.5023627760690017 seconds remaining) Job #1, processed 1800/2000 permutations (90.00%, 3.335512108272976 seconds remaining) Job #1, processed 1810/2000 permutations (90.50%, 3.1686967196385503 seconds remaining) Job #1, processed 1820/2000 permutations (91.00%, 3.0015880249358795 seconds remaining) Job #1, processed 1830/2000 permutations (91.50%, 2.8347237735498148 seconds remaining) Job #1, processed 1840/2000 permutations (92.00%, 2.667977291604747 seconds remaining) Job #1, processed 1850/2000 permutations (92.50%, 2.500975157763507 seconds remaining) Job #1, processed 1860/2000 permutations (93.00%, 2.3357583245923443 seconds remaining) Job #1, processed 1870/2000 permutations (93.50%, 2.168645508149091 seconds remaining) Job #1, processed 1880/2000 permutations (94.00%, 2.0014541859322406 seconds remaining) Job #1, processed 1890/2000 permutations (94.50%, 1.8345989272707983 seconds remaining) Job #1, processed 1900/2000 permutations (95.00%, 1.667719276327836 seconds remaining) Job #1, processed 1910/2000 permutations (95.50%, 1.5008065800392192 seconds remaining) Job #1, processed 1920/2000 permutations (96.00%, 1.3344888190428414 seconds remaining) Job #1, processed 1930/2000 permutations (96.50%, 1.1675266527758978 seconds remaining) Job #1, processed 1940/2000 permutations (97.00%, 1.0007966670793356 seconds remaining) Job #1, processed 1950/2000 permutations (97.50%, 0.8339726496965457 seconds remaining) Job #1, processed 1960/2000 permutations (98.00%, 0.6671483954604791 seconds remaining) Job #1, processed 1970/2000 permutations (98.50%, 0.5005419339020241 seconds remaining) Job #1, processed 1980/2000 permutations (99.00%, 0.3339619130799265 seconds remaining) Job #1, processed 1990/2000 permutations (99.50%, 0.16696625498671028 seconds remaining) + 1970 detections @@ -391,9 +391,9 @@ Inference with massively univariate model .. rst-class:: sphx-glr-timing - **Total running time of the script:** (1 minutes 9.758 seconds) + **Total running time of the script:** (1 minutes 16.966 seconds) -**Estimated memory usage:** 1861 MB +**Estimated memory usage:** 1879 MB .. _sphx_glr_download_auto_examples_02_decoding_plot_oasis_vbm.py: diff --git a/dev/_sources/auto_examples/02_decoding/plot_oasis_vbm_space_net.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_oasis_vbm_space_net.rst.txt index be38428ec1d..351150d643a 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_oasis_vbm_space_net.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_oasis_vbm_space_net.rst.txt @@ -249,7 +249,7 @@ SpaceNetRegressor class, to take advantage of a multi-core system. ________________________________________________________________________________ [Memory] Calling nilearn.decoding.space_net.path_scores... - path_scores(, array([[0., ..., 0.], + path_scores(, array([[0., ..., 0.], ..., [0., ..., 0.]]), array([73., ..., 62.]), array([[[ True, ..., True], ..., @@ -263,12 +263,12 @@ SpaceNetRegressor class, to take advantage of a multi-core system. None, [0.5], array([ 15, ..., 119]), array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]), {'max_iter': 200, 'tol': 0.0001}, n_alphas=10, eps=0.001, is_classif=False, key=(0, 0), debias=False, verbose=1, screening_percentile=1.2652228933482088) ........./usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/parallel.py:1792: UserWarning: - Persisting input arguments took 1.67s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. + Persisting input arguments took 1.45s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. - _____________________________________________________path_scores - 20.2s, 0.3min + _____________________________________________________path_scores - 24.1s, 0.4min ________________________________________________________________________________ [Memory] Calling nilearn.decoding.space_net.path_scores... - path_scores(, array([[0., ..., 0.], + path_scores(, array([[0., ..., 0.], ..., [0., ..., 0.]]), array([73., ..., 62.]), array([[[ True, ..., True], ..., @@ -282,12 +282,12 @@ SpaceNetRegressor class, to take advantage of a multi-core system. None, [0.5], array([ 0, ..., 119]), array([15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]), {'max_iter': 200, 'tol': 0.0001}, n_alphas=10, eps=0.001, is_classif=False, key=(0, 1), debias=False, verbose=1, screening_percentile=1.2652228933482088) ........./usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/parallel.py:1792: UserWarning: - Persisting input arguments took 1.67s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. + Persisting input arguments took 1.46s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. - _____________________________________________________path_scores - 19.6s, 0.3min + _____________________________________________________path_scores - 23.2s, 0.4min ________________________________________________________________________________ [Memory] Calling nilearn.decoding.space_net.path_scores... - path_scores(, array([[0., ..., 0.], + path_scores(, array([[0., ..., 0.], ..., [0., ..., 0.]]), array([73., ..., 62.]), array([[[ True, ..., True], ..., @@ -301,12 +301,12 @@ SpaceNetRegressor class, to take advantage of a multi-core system. None, [0.5], array([ 0, ..., 119]), array([30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]), {'max_iter': 200, 'tol': 0.0001}, n_alphas=10, eps=0.001, is_classif=False, key=(0, 2), debias=False, verbose=1, screening_percentile=1.2652228933482088) ........./usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/parallel.py:1792: UserWarning: - Persisting input arguments took 1.71s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. + Persisting input arguments took 1.45s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. - _____________________________________________________path_scores - 20.0s, 0.3min + _____________________________________________________path_scores - 25.0s, 0.4min ________________________________________________________________________________ [Memory] Calling nilearn.decoding.space_net.path_scores... - path_scores(, array([[0., ..., 0.], + path_scores(, array([[0., ..., 0.], ..., [0., ..., 0.]]), array([73., ..., 62.]), array([[[ True, ..., True], ..., @@ -320,12 +320,12 @@ SpaceNetRegressor class, to take advantage of a multi-core system. None, [0.5], array([ 0, ..., 119]), array([45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]), {'max_iter': 200, 'tol': 0.0001}, n_alphas=10, eps=0.001, is_classif=False, key=(0, 3), debias=False, verbose=1, screening_percentile=1.2652228933482088) ........./usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/parallel.py:1792: UserWarning: - Persisting input arguments took 1.67s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. + Persisting input arguments took 1.46s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. - _____________________________________________________path_scores - 20.0s, 0.3min + _____________________________________________________path_scores - 23.9s, 0.4min ________________________________________________________________________________ [Memory] Calling nilearn.decoding.space_net.path_scores... - path_scores(, array([[0., ..., 0.], + path_scores(, array([[0., ..., 0.], ..., [0., ..., 0.]]), array([73., ..., 62.]), array([[[ True, ..., True], ..., @@ -339,12 +339,12 @@ SpaceNetRegressor class, to take advantage of a multi-core system. None, [0.5], array([ 0, ..., 119]), array([60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74]), {'max_iter': 200, 'tol': 0.0001}, n_alphas=10, eps=0.001, is_classif=False, key=(0, 4), debias=False, verbose=1, screening_percentile=1.2652228933482088) ........./usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/parallel.py:1792: UserWarning: - Persisting input arguments took 1.67s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. + Persisting input arguments took 1.45s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. - _____________________________________________________path_scores - 20.1s, 0.3min + _____________________________________________________path_scores - 23.9s, 0.4min ________________________________________________________________________________ [Memory] Calling nilearn.decoding.space_net.path_scores... - path_scores(, array([[0., ..., 0.], + path_scores(, array([[0., ..., 0.], ..., [0., ..., 0.]]), array([73., ..., 62.]), array([[[ True, ..., True], ..., @@ -358,12 +358,12 @@ SpaceNetRegressor class, to take advantage of a multi-core system. None, [0.5], array([ 0, ..., 119]), array([75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]), {'max_iter': 200, 'tol': 0.0001}, n_alphas=10, eps=0.001, is_classif=False, key=(0, 5), debias=False, verbose=1, screening_percentile=1.2652228933482088) ........./usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/parallel.py:1792: UserWarning: - Persisting input arguments took 1.67s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. + Persisting input arguments took 1.51s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. - _____________________________________________________path_scores - 19.7s, 0.3min + _____________________________________________________path_scores - 24.6s, 0.4min ________________________________________________________________________________ [Memory] Calling nilearn.decoding.space_net.path_scores... - path_scores(, array([[0., ..., 0.], + path_scores(, array([[0., ..., 0.], ..., [0., ..., 0.]]), array([73., ..., 62.]), array([[[ True, ..., True], ..., @@ -379,12 +379,12 @@ SpaceNetRegressor class, to take advantage of a multi-core system. {'max_iter': 200, 'tol': 0.0001}, n_alphas=10, eps=0.001, is_classif=False, key=(0, 6), debias=False, verbose=1, screening_percentile=1.2652228933482088) ........./usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/parallel.py:1792: UserWarning: - Persisting input arguments took 1.67s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. + Persisting input arguments took 1.45s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. - _____________________________________________________path_scores - 20.0s, 0.3min + _____________________________________________________path_scores - 23.7s, 0.4min ________________________________________________________________________________ [Memory] Calling nilearn.decoding.space_net.path_scores... - path_scores(, array([[0., ..., 0.], + path_scores(, array([[0., ..., 0.], ..., [0., ..., 0.]]), array([73., ..., 62.]), array([[[ True, ..., True], ..., @@ -400,10 +400,10 @@ SpaceNetRegressor class, to take advantage of a multi-core system. {'max_iter': 200, 'tol': 0.0001}, n_alphas=10, eps=0.001, is_classif=False, key=(0, 7), debias=False, verbose=1, screening_percentile=1.2652228933482088) ........./usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/parallel.py:1792: UserWarning: - Persisting input arguments took 1.67s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. + Persisting input arguments took 1.45s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. - _____________________________________________________path_scores - 19.8s, 0.3min - Time Elapsed: 205.07490968704224 seconds, 3.4179151614507037 minutes. + _____________________________________________________path_scores - 23.5s, 0.4min + Time Elapsed: 235.76075649261475 seconds, 3.929345941543579 minutes. [NiftiMasker.transform_single_imgs] Loading data from Nifti1Image( shape=(91, 109, 91, 80), affine=array([[ -2., 0., 0., 90.], @@ -486,7 +486,7 @@ Visualize the resulting maps .. rst-class:: sphx-glr-timing - **Total running time of the script:** (3 minutes 34.636 seconds) + **Total running time of the script:** (4 minutes 6.871 seconds) **Estimated memory usage:** 2487 MB diff --git a/dev/_sources/auto_examples/02_decoding/plot_simulated_data.rst.txt b/dev/_sources/auto_examples/02_decoding/plot_simulated_data.rst.txt index 7b1ab707df8..68e349dbe5c 100644 --- a/dev/_sources/auto_examples/02_decoding/plot_simulated_data.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/plot_simulated_data.rst.txt @@ -346,14 +346,14 @@ models, a `coef_` attribute that stores the coefficients **w** estimated * .. image-sg:: /auto_examples/02_decoding/images/sphx_glr_plot_simulated_data_002.png - :alt: bayesian_ridge: prediction score 0.114, training time: 0.16s + :alt: bayesian_ridge: prediction score 0.114, training time: 0.18s :srcset: /auto_examples/02_decoding/images/sphx_glr_plot_simulated_data_002.png :class: sphx-glr-multi-img * .. image-sg:: /auto_examples/02_decoding/images/sphx_glr_plot_simulated_data_003.png - :alt: enet_cv: prediction score 0.528, training time: 0.17s + :alt: enet_cv: prediction score 0.528, training time: 0.20s :srcset: /auto_examples/02_decoding/images/sphx_glr_plot_simulated_data_003.png :class: sphx-glr-multi-img @@ -374,7 +374,7 @@ models, a `coef_` attribute that stores the coefficients **w** estimated * .. image-sg:: /auto_examples/02_decoding/images/sphx_glr_plot_simulated_data_006.png - :alt: SearchLight: training time: 6.75s + :alt: SearchLight: training time: 7.88s :srcset: /auto_examples/02_decoding/images/sphx_glr_plot_simulated_data_006.png :class: sphx-glr-multi-img @@ -390,11 +390,11 @@ models, a `coef_` attribute that stores the coefficients **w** estimated .. code-block:: none - bayesian_ridge: prediction score 0.114, training time: 0.16s - enet_cv: prediction score 0.528, training time: 0.17s + bayesian_ridge: prediction score 0.114, training time: 0.18s + enet_cv: prediction score 0.528, training time: 0.20s ridge_cv: prediction score 0.328, training time: 0.04s svr: prediction score 0.345, training time: 0.00s - Job #1, processed 0/432 voxels (0.00%, 149.17373657226562 seconds remaining) Job #1, processed 10/432 voxels (2.31%, 7.027371826626005 seconds remaining) Job #1, processed 20/432 voxels (4.63%, 6.089019840788378 seconds remaining) Job #1, processed 30/432 voxels (6.94%, 6.1595019675812726 seconds remaining) Job #1, processed 40/432 voxels (9.26%, 6.172333086541096 seconds remaining) Job #1, processed 50/432 voxels (11.57%, 6.141358983238504 seconds remaining) Job #1, processed 60/432 voxels (13.89%, 5.865934282519819 seconds remaining) Job #1, processed 70/432 voxels (16.20%, 5.871921403908435 seconds remaining) Job #1, processed 80/432 voxels (18.52%, 5.827789413233813 seconds remaining) Job #1, processed 90/432 voxels (20.83%, 5.600518872516979 seconds remaining) Job #1, processed 100/432 voxels (23.15%, 5.373743949647084 seconds remaining) Job #1, processed 110/432 voxels (25.46%, 5.246711791638585 seconds remaining) Job #1, processed 120/432 voxels (27.78%, 5.069793725545841 seconds remaining) Job #1, processed 130/432 voxels (30.09%, 4.83650835188729 seconds remaining) Job #1, processed 140/432 voxels (32.41%, 4.661968212883917 seconds remaining) Job #1, processed 150/432 voxels (34.72%, 4.47019035585465 seconds remaining) Job #1, processed 160/432 voxels (37.04%, 4.26368102502102 seconds remaining) Job #1, processed 170/432 voxels (39.35%, 4.069130167421876 seconds remaining) Job #1, processed 180/432 voxels (41.67%, 3.8926596977397754 seconds remaining) Job #1, processed 190/432 voxels (43.98%, 3.709022220994951 seconds remaining) Job #1, processed 200/432 voxels (46.30%, 3.514144799106837 seconds remaining) Job #1, processed 210/432 voxels (48.61%, 3.3399107627382105 seconds remaining) Job #1, processed 220/432 voxels (50.93%, 3.16847290820465 seconds remaining) Job #1, processed 230/432 voxels (53.24%, 2.9933172669471606 seconds remaining) Job #1, processed 240/432 voxels (55.56%, 2.8215259566763646 seconds remaining) Job #1, processed 250/432 voxels (57.87%, 2.661768739038497 seconds remaining) Job #1, processed 260/432 voxels (60.19%, 2.5015419558604153 seconds remaining) Job #1, processed 270/432 voxels (62.50%, 2.341996192932129 seconds remaining) Job #1, processed 280/432 voxels (64.81%, 2.1851535574040866 seconds remaining) Job #1, processed 290/432 voxels (67.13%, 2.0369652241721488 seconds remaining) Job #1, processed 300/432 voxels (69.44%, 1.8967847236290507 seconds remaining) Job #1, processed 310/432 voxels (71.76%, 1.7473552631029445 seconds remaining) Job #1, processed 320/432 voxels (74.07%, 1.6038452658364215 seconds remaining) Job #1, processed 330/432 voxels (76.39%, 1.4662169594620516 seconds remaining) Job #1, processed 340/432 voxels (78.70%, 1.324311626911769 seconds remaining) Job #1, processed 350/432 voxels (81.02%, 1.1812117592960607 seconds remaining) Job #1, processed 360/432 voxels (83.33%, 1.040544947956442 seconds remaining) Job #1, processed 370/432 voxels (85.65%, 0.9012828492589391 seconds remaining) Job #1, processed 380/432 voxels (87.96%, 0.7566080319984444 seconds remaining) Job #1, processed 390/432 voxels (90.28%, 0.6151656543569434 seconds remaining) Job #1, processed 400/432 voxels (92.59%, 0.4682085561963466 seconds remaining) Job #1, processed 410/432 voxels (94.91%, 0.3227542390713841 seconds remaining) Job #1, processed 420/432 voxels (97.22%, 0.17583854270555244 seconds remaining) Job #1, processed 430/432 voxels (99.54%, 0.02907403118523636 seconds remaining) SearchLight: training time: 6.75s + Job #1, processed 0/432 voxels (0.00%, 324.4614601135254 seconds remaining) Job #1, processed 10/432 voxels (2.31%, 8.953365216523537 seconds remaining) Job #1, processed 20/432 voxels (4.63%, 7.34987274719881 seconds remaining) Job #1, processed 30/432 voxels (6.94%, 7.265941551164522 seconds remaining) Job #1, processed 40/432 voxels (9.26%, 7.174667192586813 seconds remaining) Job #1, processed 50/432 voxels (11.57%, 7.111260733938259 seconds remaining) Job #1, processed 60/432 voxels (13.89%, 6.759288719182739 seconds remaining) Job #1, processed 70/432 voxels (16.20%, 6.752336787588802 seconds remaining) Job #1, processed 80/432 voxels (18.52%, 6.692062504090707 seconds remaining) Job #1, processed 90/432 voxels (20.83%, 6.42448271425424 seconds remaining) Job #1, processed 100/432 voxels (23.15%, 6.160509134214331 seconds remaining) Job #1, processed 110/432 voxels (25.46%, 6.005493772938226 seconds remaining) Job #1, processed 120/432 voxels (27.78%, 5.799524130625549 seconds remaining) Job #1, processed 130/432 voxels (30.09%, 5.525443087308737 seconds remaining) Job #1, processed 140/432 voxels (32.41%, 5.319591650437588 seconds remaining) Job #1, processed 150/432 voxels (34.72%, 5.093009843254968 seconds remaining) Job #1, processed 160/432 voxels (37.04%, 4.853707295514595 seconds remaining) Job #1, processed 170/432 voxels (39.35%, 4.627933700021067 seconds remaining) Job #1, processed 180/432 voxels (41.67%, 4.4222490534039745 seconds remaining) Job #1, processed 190/432 voxels (43.98%, 4.210902569347103 seconds remaining) Job #1, processed 200/432 voxels (46.30%, 3.985412262943342 seconds remaining) Job #1, processed 210/432 voxels (48.61%, 3.78647003353341 seconds remaining) Job #1, processed 220/432 voxels (50.93%, 3.5897688298288135 seconds remaining) Job #1, processed 230/432 voxels (53.24%, 3.389544669351212 seconds remaining) Job #1, processed 240/432 voxels (55.56%, 3.193717332603778 seconds remaining) Job #1, processed 250/432 voxels (57.87%, 3.011337817755515 seconds remaining) Job #1, processed 260/432 voxels (60.19%, 2.82959393845739 seconds remaining) Job #1, processed 270/432 voxels (62.50%, 2.64797043800354 seconds remaining) Job #1, processed 280/432 voxels (64.81%, 2.469549035937711 seconds remaining) Job #1, processed 290/432 voxels (67.13%, 2.3007878205574843 seconds remaining) Job #1, processed 300/432 voxels (69.44%, 2.1420420419235935 seconds remaining) Job #1, processed 310/432 voxels (71.76%, 1.972759404974504 seconds remaining) Job #1, processed 320/432 voxels (74.07%, 1.8104664170180356 seconds remaining) Job #1, processed 330/432 voxels (76.39%, 1.6547073640347714 seconds remaining) Job #1, processed 340/432 voxels (78.70%, 1.4949012217709492 seconds remaining) Job #1, processed 350/432 voxels (81.02%, 1.332932230043753 seconds remaining) Job #1, processed 360/432 voxels (83.33%, 1.1741245928237551 seconds remaining) Job #1, processed 370/432 voxels (85.65%, 1.0167625528013777 seconds remaining) Job #1, processed 380/432 voxels (87.96%, 0.8536542927801425 seconds remaining) Job #1, processed 390/432 voxels (90.28%, 0.6942918508729947 seconds remaining) Job #1, processed 400/432 voxels (92.59%, 0.5283574937988733 seconds remaining) Job #1, processed 410/432 voxels (94.91%, 0.36419495153623094 seconds remaining) Job #1, processed 420/432 voxels (97.22%, 0.19835860227464386 seconds remaining) Job #1, processed 430/432 voxels (99.54%, 0.0328008385099315 seconds remaining) SearchLight: training time: 7.88s @@ -428,9 +428,9 @@ slow. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 8.808 seconds) + **Total running time of the script:** (0 minutes 10.406 seconds) -**Estimated memory usage:** 10 MB +**Estimated memory usage:** 9 MB .. _sphx_glr_download_auto_examples_02_decoding_plot_simulated_data.py: diff --git a/dev/_sources/auto_examples/02_decoding/sg_execution_times.rst.txt b/dev/_sources/auto_examples/02_decoding/sg_execution_times.rst.txt index 939239dbf19..896b386be86 100644 --- a/dev/_sources/auto_examples/02_decoding/sg_execution_times.rst.txt +++ b/dev/_sources/auto_examples/02_decoding/sg_execution_times.rst.txt @@ -6,38 +6,38 @@ Computation times ================= -**39:42.909** total execution time for **auto_examples_02_decoding** files: +**38:44.328** total execution time for **auto_examples_02_decoding** files: +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_different_estimators.py` (``plot_haxby_different_estimators.py``) | 09:59.447 | 1329.1 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_different_estimators.py` (``plot_haxby_different_estimators.py``) | 09:29.549 | 1293.9 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_frem.py` (``plot_haxby_frem.py``) | 09:48.706 | 1965.5 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_frem.py` (``plot_haxby_frem.py``) | 07:40.233 | 1952.1 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_oasis_vbm_space_net.py` (``plot_oasis_vbm_space_net.py``) | 03:34.636 | 2487.4 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_oasis_vbm_space_net.py` (``plot_oasis_vbm_space_net.py``) | 04:06.871 | 2487.5 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_full_analysis.py` (``plot_haxby_full_analysis.py``) | 03:02.248 | 1354.9 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_grid_search.py` (``plot_haxby_grid_search.py``) | 03:19.153 | 916.4 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_grid_search.py` (``plot_haxby_grid_search.py``) | 02:52.295 | 916.4 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_full_analysis.py` (``plot_haxby_full_analysis.py``) | 02:44.409 | 1355.3 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_glm_decoding.py` (``plot_haxby_glm_decoding.py``) | 02:31.885 | 916.8 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_glm_decoding.py` (``plot_haxby_glm_decoding.py``) | 02:43.285 | 916.9 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_searchlight_surface.py` (``plot_haxby_searchlight_surface.py``) | 02:00.175 | 916.4 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_searchlight_surface.py` (``plot_haxby_searchlight_surface.py``) | 02:08.983 | 916.5 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_oasis_vbm.py` (``plot_oasis_vbm.py``) | 01:09.758 | 1861.5 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_miyawaki_reconstruction.py` (``plot_miyawaki_reconstruction.py``) | 01:19.917 | 416.8 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_miyawaki_reconstruction.py` (``plot_miyawaki_reconstruction.py``) | 01:05.755 | 416.8 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_oasis_vbm.py` (``plot_oasis_vbm.py``) | 01:16.966 | 1879.4 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_mixed_gambles_frem.py` (``plot_mixed_gambles_frem.py``) | 00:52.765 | 1831.3 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_multiclass.py` (``plot_haxby_multiclass.py``) | 00:55.472 | 3125.1 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_multiclass.py` (``plot_haxby_multiclass.py``) | 00:51.611 | 3114.4 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_mixed_gambles_frem.py` (``plot_mixed_gambles_frem.py``) | 00:54.854 | 1834.8 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_searchlight.py` (``plot_haxby_searchlight.py``) | 00:49.138 | 916.6 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_searchlight.py` (``plot_haxby_searchlight.py``) | 00:52.164 | 916.4 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_anova_svm.py` (``plot_haxby_anova_svm.py``) | 00:26.481 | 916.5 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_anova_svm.py` (``plot_haxby_anova_svm.py``) | 00:28.118 | 916.4 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_miyawaki_encoding.py` (``plot_miyawaki_encoding.py``) | 00:22.236 | 416.8 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_miyawaki_encoding.py` (``plot_miyawaki_encoding.py``) | 00:26.682 | 416.8 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_simulated_data.py` (``plot_simulated_data.py``) | 00:08.808 | 9.5 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_simulated_data.py` (``plot_simulated_data.py``) | 00:10.406 | 9.4 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_stimuli.py` (``plot_haxby_stimuli.py``) | 00:06.964 | 46.0 MB | +| :ref:`sphx_glr_auto_examples_02_decoding_plot_haxby_stimuli.py` (``plot_haxby_stimuli.py``) | 00:07.266 | 44.2 MB | +-----------------------------------------------------------------------------------------------------------------------+-----------+-----------+ diff --git a/dev/_sources/auto_examples/03_connectivity/plot_atlas_comparison.rst.txt b/dev/_sources/auto_examples/03_connectivity/plot_atlas_comparison.rst.txt index af6e3929995..84a1e7b34e1 100644 --- a/dev/_sources/auto_examples/03_connectivity/plot_atlas_comparison.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/plot_atlas_comparison.rst.txt @@ -177,7 +177,7 @@ Extract coordinates on Yeo atlas - parcellations .. code-block:: none - + @@ -350,9 +350,9 @@ Iterate over fetched atlases to extract coordinates - probabilistic .. rst-class:: sphx-glr-timing - **Total running time of the script:** (2 minutes 22.719 seconds) + **Total running time of the script:** (2 minutes 28.225 seconds) -**Estimated memory usage:** 1689 MB +**Estimated memory usage:** 1723 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_atlas_comparison.py: diff --git a/dev/_sources/auto_examples/03_connectivity/plot_compare_decomposition.rst.txt b/dev/_sources/auto_examples/03_connectivity/plot_compare_decomposition.rst.txt index 3d949d283f5..13508aba4aa 100644 --- a/dev/_sources/auto_examples/03_connectivity/plot_compare_decomposition.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/plot_compare_decomposition.rst.txt @@ -149,20 +149,16 @@ However, the images need to be in :term:`MNI` template space. [{self.__class__.__name__}.fit] Computing mask /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/memory.py:693: UserWarning: - Cannot inspect object functools.partial(, mask_type='whole-brain'), ignore list will not work. + Cannot inspect object functools.partial(, mask_type='whole-brain'), ignore list will not work. Template whole-brain mask computation - /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/masking.py:647: UserWarning: - - Persisting input arguments took 0.52s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. - /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/memory.py:887: UserWarning: - Cannot inspect object functools.partial(, mask_type='whole-brain'), ignore list will not work. + Cannot inspect object functools.partial(, mask_type='whole-brain'), ignore list will not work. /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/memory.py:693: UserWarning: - Cannot inspect object functools.partial(, mask_type='whole-brain'), ignore list will not work. + Cannot inspect object functools.partial(, mask_type='whole-brain'), ignore list will not work. [MultiNiftiMasker.transform] Resampling mask [CanICA] Loading data @@ -301,8 +297,8 @@ However, the images need to be in :term:`MNI` template space. FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. - _________________________________________________________fastica - 12.1s, 0.2min - [Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 12.1s + _________________________________________________________fastica - 10.5s, 0.2min + [Parallel(n_jobs=1)]: Done 1 tasks | elapsed: 10.5s ________________________________________________________________________________ [Memory] Calling sklearn.decomposition._fastica.fastica... fastica(array([[ 0.004071, ..., 0.000497], @@ -312,7 +308,7 @@ However, the images need to be in :term:`MNI` template space. FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. - _________________________________________________________fastica - 12.5s, 0.2min + _________________________________________________________fastica - 11.0s, 0.2min ________________________________________________________________________________ [Memory] Calling sklearn.decomposition._fastica.fastica... fastica(array([[ 0.004071, ..., 0.000497], @@ -322,7 +318,7 @@ However, the images need to be in :term:`MNI` template space. FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. - _________________________________________________________fastica - 12.1s, 0.2min + _________________________________________________________fastica - 11.9s, 0.2min ________________________________________________________________________________ [Memory] Calling sklearn.decomposition._fastica.fastica... fastica(array([[ 0.004071, ..., 0.000497], @@ -332,8 +328,8 @@ However, the images need to be in :term:`MNI` template space. FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. - _________________________________________________________fastica - 11.7s, 0.2min - [Parallel(n_jobs=1)]: Done 4 tasks | elapsed: 48.4s + _________________________________________________________fastica - 10.8s, 0.2min + [Parallel(n_jobs=1)]: Done 4 tasks | elapsed: 44.3s ________________________________________________________________________________ [Memory] Calling sklearn.decomposition._fastica.fastica... fastica(array([[ 0.004071, ..., 0.000497], @@ -343,7 +339,7 @@ However, the images need to be in :term:`MNI` template space. FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. - _________________________________________________________fastica - 11.3s, 0.2min + _________________________________________________________fastica - 11.9s, 0.2min ________________________________________________________________________________ [Memory] Calling sklearn.decomposition._fastica.fastica... fastica(array([[ 0.004071, ..., 0.000497], @@ -353,7 +349,7 @@ However, the images need to be in :term:`MNI` template space. FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. - _________________________________________________________fastica - 12.0s, 0.2min + _________________________________________________________fastica - 11.4s, 0.2min ________________________________________________________________________________ [Memory] Calling sklearn.decomposition._fastica.fastica... fastica(array([[ 0.004071, ..., 0.000497], @@ -363,8 +359,8 @@ However, the images need to be in :term:`MNI` template space. FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. - _________________________________________________________fastica - 12.5s, 0.2min - [Parallel(n_jobs=1)]: Done 7 tasks | elapsed: 1.4min + _________________________________________________________fastica - 11.9s, 0.2min + [Parallel(n_jobs=1)]: Done 7 tasks | elapsed: 1.3min ________________________________________________________________________________ [Memory] Calling sklearn.decomposition._fastica.fastica... fastica(array([[ 0.004071, ..., 0.000497], @@ -374,7 +370,7 @@ However, the images need to be in :term:`MNI` template space. FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. - _________________________________________________________fastica - 11.6s, 0.2min + _________________________________________________________fastica - 10.7s, 0.2min ________________________________________________________________________________ [Memory] Calling sklearn.decomposition._fastica.fastica... fastica(array([[ 0.004071, ..., 0.000497], @@ -384,7 +380,7 @@ However, the images need to be in :term:`MNI` template space. FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. - _________________________________________________________fastica - 12.5s, 0.2min + _________________________________________________________fastica - 12.1s, 0.2min ________________________________________________________________________________ [Memory] Calling sklearn.decomposition._fastica.fastica... fastica(array([[ 0.004071, ..., 0.000497], @@ -394,7 +390,7 @@ However, the images need to be in :term:`MNI` template space. FastICA did not converge. Consider increasing tolerance or the maximum number of iterations. - _________________________________________________________fastica - 11.7s, 0.2min + _________________________________________________________fastica - 13.0s, 0.2min @@ -431,7 +427,7 @@ To visualize we plot the outline of all components on one figure linewidths is ignored by contourf - + @@ -696,19 +692,15 @@ Create a dictionary learning estimator [{self.__class__.__name__}.fit] Computing mask /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/memory.py:693: UserWarning: - Cannot inspect object functools.partial(, mask_type='whole-brain'), ignore list will not work. - - /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/masking.py:647: UserWarning: - - Persisting input arguments took 0.52s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. + Cannot inspect object functools.partial(, mask_type='whole-brain'), ignore list will not work. /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/memory.py:887: UserWarning: - Cannot inspect object functools.partial(, mask_type='whole-brain'), ignore list will not work. + Cannot inspect object functools.partial(, mask_type='whole-brain'), ignore list will not work. /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/joblib/memory.py:693: UserWarning: - Cannot inspect object functools.partial(, mask_type='whole-brain'), ignore list will not work. + Cannot inspect object functools.partial(, mask_type='whole-brain'), ignore list will not work. [MultiNiftiMasker.transform] Resampling mask [DictLearning] Loading data @@ -838,13 +830,13 @@ Create a dictionary learning estimator randomized_svd(array([[-0.001315, ..., 0.004387], ..., [ 0.011243, ..., 0.004194]]), n_components=20, transpose=True, random_state=0, n_iter=3) - ___________________________________________________randomized_svd - 0.7s, 0.0min + ___________________________________________________randomized_svd - 0.8s, 0.0min ________________________________________________________________________________ [Memory] Calling sklearn.decomposition._fastica.fastica... fastica(array([[ 0.00289 , ..., -0.002135], ..., [ 0.005107, ..., -0.012507]]), whiten='arbitrary-variance', fun='cube', random_state=209652396) - __________________________________________________________fastica - 3.1s, 0.1min + __________________________________________________________fastica - 2.7s, 0.0min [DictLearning] Computing initial loadings ________________________________________________________________________________ [Memory] Calling nilearn.decomposition.dict_learning._compute_loadings... @@ -868,7 +860,7 @@ Create a dictionary learning estimator 'n_iter' is deprecated in version 1.1 and will be removed in version 1.4. Use 'max_iter' instead. - _____________________________________________dict_learning_online - 2.7s, 0.0min + _____________________________________________dict_learning_online - 3.0s, 0.1min [Example] Saving results @@ -907,7 +899,7 @@ First plot all DictLearning components together linewidths is ignored by contourf - + @@ -1131,9 +1123,9 @@ to calculate the score per component [-0., ..., 0.]]), per_component=True) /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/decomposition/_base.py:543: UserWarning: - Persisting input arguments took 1.69s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. + Persisting input arguments took 1.47s to run.If this happens often in your code, it can cause performance problems (results will be correct in all cases). The reason for this is probably some large input arguments for a wrapped function. - ______________________________________________explained_variance - 57.8s, 1.0min + ______________________________________________explained_variance - 63.0s, 1.0min @@ -1150,9 +1142,9 @@ to calculate the score per component .. rst-class:: sphx-glr-timing - **Total running time of the script:** (6 minutes 39.769 seconds) + **Total running time of the script:** (7 minutes 18.761 seconds) -**Estimated memory usage:** 2530 MB +**Estimated memory usage:** 2591 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_compare_decomposition.py: diff --git a/dev/_sources/auto_examples/03_connectivity/plot_data_driven_parcellations.rst.txt b/dev/_sources/auto_examples/03_connectivity/plot_data_driven_parcellations.rst.txt index 97dbf36d2fd..362a2c5f388 100644 --- a/dev/_sources/auto_examples/03_connectivity/plot_data_driven_parcellations.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/plot_data_driven_parcellations.rst.txt @@ -185,13 +185,13 @@ all can be done at once using `Parcellations` object. ..., [-0.005033, ..., -0.000234]]), connectivity=<24256x24256 sparse matrix of type '' with 162682 stored elements in COOrdinate format>, n_clusters=1000, return_distance=False) - ________________________________________________________ward_tree - 2.3s, 0.0min - ____________________________________________________estimator_fit - 2.5s, 0.0min + ________________________________________________________ward_tree - 2.6s, 0.0min + ____________________________________________________estimator_fit - 2.8s, 0.0min /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/masking.py:974: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32. - Ward agglomeration 1000 clusters: 7.98s + Ward agglomeration 1000 clusters: 9.03s [MultiNiftiMasker.fit] Loading data from [/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz]. [{self.__class__.__name__}.fit] Computing mask /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/_utils/cache_mixin.py:241: UserWarning: @@ -216,13 +216,13 @@ all can be done at once using `Parcellations` object. ..., [-0.005033, ..., -0.000234]]), connectivity=<24256x24256 sparse matrix of type '' with 162682 stored elements in COOrdinate format>, n_clusters=2000, return_distance=False) - ________________________________________________________ward_tree - 2.1s, 0.0min - ____________________________________________________estimator_fit - 2.3s, 0.0min + ________________________________________________________ward_tree - 2.3s, 0.0min + ____________________________________________________estimator_fit - 2.5s, 0.0min /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/masking.py:974: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32. - Ward agglomeration 2000 clusters: 5.34s + Ward agglomeration 2000 clusters: 6.15s @@ -356,7 +356,7 @@ clustering by averaging the signal on each parcel. ) ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... - _filter_and_extract(, , + _filter_and_extract(, , { 'background_label': 0, 'clean_kwargs': {}, 'detrend': False, @@ -365,9 +365,9 @@ clustering by averaging the signal on each parcel. 'high_variance_confounds': False, 'keep_masked_labels': True, 'labels': None, - 'labels_img': , + 'labels_img': , 'low_pass': None, - 'mask_img': , + 'mask_img': , 'reports': True, 'smoothing_fwhm': 2.0, 'standardize': False, @@ -380,9 +380,9 @@ clustering by averaging the signal on each parcel. [NiftiLabelsMasker.transform_single_imgs] Smoothing images [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals - _______________________________________________filter_and_extract - 1.8s, 0.0min + _______________________________________________filter_and_extract - 2.0s, 0.0min - + @@ -447,7 +447,7 @@ standardization and smoothing, the clusters will form as regions. [-0.00577 , ..., -0.000616]]), MiniBatchKMeans(n_clusters=50, n_init=3, random_state=0)) ____________________________________________________estimator_fit - 0.5s, 0.0min - KMeans clusters: 6.07s + KMeans clusters: 6.60s @@ -551,7 +551,7 @@ with the previous method. ..., [-0.00577 , ..., -0.000616]]), HierarchicalKMeans(n_clusters=50)) - ____________________________________________________estimator_fit - 1.9s, 0.0min + ____________________________________________________estimator_fit - 1.2s, 0.0min /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/nilearn/masking.py:974: UserWarning: Data array used to create a new image contains 64-bit ints. This is likely due to creating the array with numpy and passing `int` as the `dtype`. Many tools such as FSL and SPM cannot deal with int64 in Nifti images, so for compatibility the data has been converted to int32. @@ -698,7 +698,7 @@ You can just skip the plotting code, the important part is the figure .. code-block:: none - + @@ -772,7 +772,7 @@ More about ReNA clustering algorithm in the original paper _estimator_fit(array([[-0.005457, ..., -0.005033], ..., [-0.009986, ..., -0.000234]]), - ReNA(mask_img=, + ReNA(mask_img=, memory=Memory(location=nilearn_cache/joblib), n_clusters=5000, scaling=True), 'rena') @@ -781,9 +781,9 @@ More about ReNA clustering algorithm in the original paper recursive_neighbor_agglomeration(array([[-0.005457, ..., -0.005033], ..., [-0.009986, ..., -0.000234]]), - , 5000, n_iter=10, threshold=1e-07, verbose=0) + , 5000, n_iter=10, threshold=1e-07, verbose=0) _________________________________recursive_neighbor_agglomeration - 1.1s, 0.0min - ____________________________________________________estimator_fit - 1.3s, 0.0min + ____________________________________________________estimator_fit - 1.2s, 0.0min [Parcellations.wrapped] loading data from Nifti1Image( shape=(50, 59, 50), affine=array([[ 4., 0., 0., -96.], @@ -800,7 +800,7 @@ More about ReNA clustering algorithm in the original paper ) ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... - _filter_and_extract(, , + _filter_and_extract(, , { 'background_label': 0, 'clean_kwargs': {}, 'detrend': False, @@ -809,9 +809,9 @@ More about ReNA clustering algorithm in the original paper 'high_variance_confounds': False, 'keep_masked_labels': True, 'labels': None, - 'labels_img': , + 'labels_img': , 'low_pass': None, - 'mask_img': , + 'mask_img': , 'reports': True, 'smoothing_fwhm': 2.0, 'standardize': False, @@ -824,8 +824,8 @@ More about ReNA clustering algorithm in the original paper [NiftiLabelsMasker.transform_single_imgs] Smoothing images [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals - _______________________________________________filter_and_extract - 1.9s, 0.0min - ReNA 5000 clusters: 7.73s + _______________________________________________filter_and_extract - 2.1s, 0.0min + ReNA 5000 clusters: 8.39s @@ -869,7 +869,7 @@ First, we display the parcellations of the brain image stored in attribute .. code-block:: none - + @@ -955,7 +955,7 @@ obtained with Ward. ) ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... - _filter_and_extract(, , + _filter_and_extract(, , { 'background_label': 0, 'clean_kwargs': {}, 'detrend': False, @@ -964,9 +964,9 @@ obtained with Ward. 'high_variance_confounds': False, 'keep_masked_labels': True, 'labels': None, - 'labels_img': , + 'labels_img': , 'low_pass': None, - 'mask_img': , + 'mask_img': , 'reports': True, 'smoothing_fwhm': 2.0, 'standardize': False, @@ -979,9 +979,9 @@ obtained with Ward. [NiftiLabelsMasker.transform_single_imgs] Smoothing images [NiftiLabelsMasker.transform_single_imgs] Extracting region signals [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals - _______________________________________________filter_and_extract - 1.9s, 0.0min + _______________________________________________filter_and_extract - 2.2s, 0.0min - + @@ -997,9 +997,9 @@ some cases. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 51.622 seconds) + **Total running time of the script:** (0 minutes 56.171 seconds) -**Estimated memory usage:** 2145 MB +**Estimated memory usage:** 2175 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_data_driven_parcellations.py: diff --git a/dev/_sources/auto_examples/03_connectivity/plot_extract_regions_dictlearning_maps.rst.txt b/dev/_sources/auto_examples/03_connectivity/plot_extract_regions_dictlearning_maps.rst.txt index a609c49b325..52b429a3eba 100644 --- a/dev/_sources/auto_examples/03_connectivity/plot_extract_regions_dictlearning_maps.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/plot_extract_regions_dictlearning_maps.rst.txt @@ -126,7 +126,7 @@ functional datasets linewidths is ignored by contourf - + @@ -189,7 +189,7 @@ more intense non-voxels will be survived. .. code-block:: none - + @@ -295,7 +295,7 @@ connectome relations. .. code-block:: none - + @@ -378,9 +378,9 @@ related to original network given as 4. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (2 minutes 21.065 seconds) + **Total running time of the script:** (2 minutes 45.622 seconds) -**Estimated memory usage:** 1147 MB +**Estimated memory usage:** 1148 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_extract_regions_dictlearning_maps.py: diff --git a/dev/_sources/auto_examples/03_connectivity/plot_group_level_connectivity.rst.txt b/dev/_sources/auto_examples/03_connectivity/plot_group_level_connectivity.rst.txt index 07b34d08680..9eb68bfaae3 100644 --- a/dev/_sources/auto_examples/03_connectivity/plot_group_level_connectivity.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/plot_group_level_connectivity.rst.txt @@ -300,7 +300,7 @@ Now we display as a connectome the mean correlation matrix over all children. .. code-block:: none - + @@ -384,7 +384,7 @@ Most of direct connections are weaker than full connections. .. code-block:: none - + @@ -588,9 +588,9 @@ kind should be preferred. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (1 minutes 29.860 seconds) + **Total running time of the script:** (1 minutes 38.834 seconds) -**Estimated memory usage:** 1145 MB +**Estimated memory usage:** 1144 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_group_level_connectivity.py: diff --git a/dev/_sources/auto_examples/03_connectivity/plot_inverse_covariance_connectome.rst.txt b/dev/_sources/auto_examples/03_connectivity/plot_inverse_covariance_connectome.rst.txt index 20d60e0e9f6..dbd4e96bf8b 100644 --- a/dev/_sources/auto_examples/03_connectivity/plot_inverse_covariance_connectome.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/plot_inverse_covariance_connectome.rst.txt @@ -113,15 +113,15 @@ Extract time series ________________________________________________________________________________ [Memory] Calling nilearn.image.resampling.resample_img... - resample_img(, interpolation='continuous', target_shape=(50, 59, 50), target_affine=array([[ 4., 0., 0., -96.], + resample_img(, interpolation='continuous', target_shape=(50, 59, 50), target_affine=array([[ 4., 0., 0., -96.], [ 0., 4., 0., -132.], [ 0., 0., 4., -78.], [ 0., 0., 0., 1.]])) - _____________________________________________________resample_img - 1.4s, 0.0min + _____________________________________________________resample_img - 1.3s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', - , { 'allow_overlap': True, + , { 'allow_overlap': True, 'clean_kwargs': {}, 'detrend': False, 'dtype': None, @@ -141,7 +141,7 @@ Extract time series [NiftiMapsMasker.transform_single_imgs] Loading data from /home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz [NiftiMapsMasker.transform_single_imgs] Extracting region signals [NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals - _______________________________________________filter_and_extract - 1.8s, 0.0min + _______________________________________________filter_and_extract - 2.4s, 0.0min @@ -214,7 +214,7 @@ Display the connectome matrix .. code-block:: none - + @@ -246,7 +246,7 @@ And now display the corresponding graph .. code-block:: none - + @@ -283,7 +283,7 @@ we negate it to get partial correlations .. code-block:: none - + @@ -730,9 +730,9 @@ for more details. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 14.036 seconds) + **Total running time of the script:** (0 minutes 16.026 seconds) -**Estimated memory usage:** 1144 MB +**Estimated memory usage:** 1143 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_inverse_covariance_connectome.py: diff --git a/dev/_sources/auto_examples/03_connectivity/plot_multi_subject_connectome.rst.txt b/dev/_sources/auto_examples/03_connectivity/plot_multi_subject_connectome.rst.txt index 2bcfe288e34..7d1cccd4522 100644 --- a/dev/_sources/auto_examples/03_connectivity/plot_multi_subject_connectome.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/plot_multi_subject_connectome.rst.txt @@ -158,11 +158,11 @@ Extracting region signals ________________________________________________________________________________ [Memory] Calling nilearn.image.image.high_variance_confounds... high_variance_confounds('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz') - __________________________________________high_variance_confounds - 0.8s, 0.0min + __________________________________________high_variance_confounds - 1.3s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', - , { 'allow_overlap': True, + , { 'allow_overlap': True, 'clean_kwargs': {}, 'detrend': True, 'dtype': None, @@ -189,16 +189,16 @@ Extracting region signals [NiftiMapsMasker.transform_single_imgs] Resampling images [NiftiMapsMasker.transform_single_imgs] Extracting region signals [NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals - _______________________________________________filter_and_extract - 7.6s, 0.1min + _______________________________________________filter_and_extract - 7.4s, 0.1min Processing file /home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz ________________________________________________________________________________ [Memory] Calling nilearn.image.image.high_variance_confounds... high_variance_confounds('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz') - __________________________________________high_variance_confounds - 0.8s, 0.0min + __________________________________________high_variance_confounds - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar001_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', - , { 'allow_overlap': True, + , { 'allow_overlap': True, 'clean_kwargs': {}, 'detrend': True, 'dtype': None, @@ -225,16 +225,16 @@ Extracting region signals [NiftiMapsMasker.transform_single_imgs] Resampling images [NiftiMapsMasker.transform_single_imgs] Extracting region signals [NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals - _______________________________________________filter_and_extract - 7.6s, 0.1min + _______________________________________________filter_and_extract - 7.4s, 0.1min Processing file /home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz ________________________________________________________________________________ [Memory] Calling nilearn.image.image.high_variance_confounds... high_variance_confounds('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz') - __________________________________________high_variance_confounds - 0.8s, 0.0min + __________________________________________high_variance_confounds - 1.3s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar002_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', - , { 'allow_overlap': True, + , { 'allow_overlap': True, 'clean_kwargs': {}, 'detrend': True, 'dtype': None, @@ -261,16 +261,16 @@ Extracting region signals [NiftiMapsMasker.transform_single_imgs] Resampling images [NiftiMapsMasker.transform_single_imgs] Extracting region signals [NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals - _______________________________________________filter_and_extract - 7.8s, 0.1min + _______________________________________________filter_and_extract - 7.4s, 0.1min Processing file /home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz ________________________________________________________________________________ [Memory] Calling nilearn.image.image.high_variance_confounds... high_variance_confounds('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz') - __________________________________________high_variance_confounds - 0.8s, 0.0min + __________________________________________high_variance_confounds - 1.2s, 0.0min ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar003_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', - , { 'allow_overlap': True, + , { 'allow_overlap': True, 'clean_kwargs': {}, 'detrend': True, 'dtype': None, @@ -297,7 +297,7 @@ Extracting region signals [NiftiMapsMasker.transform_single_imgs] Resampling images [NiftiMapsMasker.transform_single_imgs] Extracting region signals [NiftiMapsMasker.transform_single_imgs] Cleaning extracted signals - _______________________________________________filter_and_extract - 7.7s, 0.1min + _______________________________________________filter_and_extract - 7.3s, 0.1min @@ -382,7 +382,7 @@ Computing group-sparse precision matrices [GroupSparseCovarianceCV.fit] Final optimization [GroupSparseCovarianceCV.fit] tolerance reached at iteration number 19: 8.841e-04 ....................[GraphicalLassoCV] Done refinement 1 out of 4: 0s - ....................[GraphicalLassoCV] Done refinement 2 out of 4: 0s + ....................[GraphicalLassoCV] Done refinement 2 out of 4: 1s ....................[GraphicalLassoCV] Done refinement 3 out of 4: 1s ....................[GraphicalLassoCV] Done refinement 4 out of 4: 2s [graphical_lasso] Iteration 0, cost 1.68e+02, dual gap 1.123e+00 @@ -508,9 +508,9 @@ Displaying results .. rst-class:: sphx-glr-timing - **Total running time of the script:** (1 minutes 40.330 seconds) + **Total running time of the script:** (1 minutes 38.972 seconds) -**Estimated memory usage:** 553 MB +**Estimated memory usage:** 559 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_multi_subject_connectome.py: diff --git a/dev/_sources/auto_examples/03_connectivity/plot_probabilistic_atlas_extraction.rst.txt b/dev/_sources/auto_examples/03_connectivity/plot_probabilistic_atlas_extraction.rst.txt index 70d7d114543..c13106fc2d7 100644 --- a/dev/_sources/auto_examples/03_connectivity/plot_probabilistic_atlas_extraction.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/plot_probabilistic_atlas_extraction.rst.txt @@ -113,7 +113,7 @@ Extract the time series memory_level is currently set to 0 but a Memory object has been provided. Setting memory_level to 1. [Memory]0.0s, 0.0min : Loading resample_img... - ________________________________________resample_img cache loaded - 0.0s, 0.0min + ________________________________________resample_img cache loaded - 0.1s, 0.0min [Memory]0.2s, 0.0min : Loading _filter_and_extract... __________________________________filter_and_extract cache loaded - 0.0s, 0.0min @@ -390,20 +390,20 @@ Here, we only include maps 2, 6, 7, 16, and 21 in the report: image @@ -599,7 +599,7 @@ Build and display a correlation matrix .. code-block:: none - + @@ -1054,9 +1054,9 @@ for more details. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 7.065 seconds) + **Total running time of the script:** (0 minutes 9.052 seconds) -**Estimated memory usage:** 377 MB +**Estimated memory usage:** 307 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_probabilistic_atlas_extraction.py: diff --git a/dev/_sources/auto_examples/03_connectivity/plot_seed_to_voxel_correlation.rst.txt b/dev/_sources/auto_examples/03_connectivity/plot_seed_to_voxel_correlation.rst.txt index caf4d794378..9a3b8935c5c 100644 --- a/dev/_sources/auto_examples/03_connectivity/plot_seed_to_voxel_correlation.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/plot_seed_to_voxel_correlation.rst.txt @@ -474,9 +474,9 @@ object, that we can save. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 12.604 seconds) + **Total running time of the script:** (0 minutes 15.313 seconds) -**Estimated memory usage:** 737 MB +**Estimated memory usage:** 725 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_seed_to_voxel_correlation.py: diff --git a/dev/_sources/auto_examples/03_connectivity/plot_signal_extraction.rst.txt b/dev/_sources/auto_examples/03_connectivity/plot_signal_extraction.rst.txt index c0b9255ea98..3ef4a1bc825 100644 --- a/dev/_sources/auto_examples/03_connectivity/plot_signal_extraction.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/plot_signal_extraction.rst.txt @@ -179,7 +179,7 @@ Using the NiftiLabelsMasker ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', - , + , { 'background_label': 0, 'clean_kwargs': {}, 'detrend': False, @@ -188,7 +188,7 @@ Using the NiftiLabelsMasker 'high_variance_confounds': False, 'keep_masked_labels': True, 'labels': None, - 'labels_img': , + 'labels_img': , 'low_pass': None, 'mask_img': None, 'reports': True, @@ -259,7 +259,7 @@ Compute and display a correlation matrix .. code-block:: none - + @@ -317,7 +317,7 @@ connectivity matrix looks like without confound removal. ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', - , + , { 'background_label': 0, 'clean_kwargs': {}, 'detrend': False, @@ -326,7 +326,7 @@ connectivity matrix looks like without confound removal. 'high_variance_confounds': False, 'keep_masked_labels': True, 'labels': None, - 'labels_img': , + 'labels_img': , 'low_pass': None, 'mask_img': None, 'reports': True, @@ -342,7 +342,7 @@ connectivity matrix looks like without confound removal. [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 1.2s, 0.0min - + @@ -425,7 +425,7 @@ cerebrospinal fluid signal with high-pass filtering. ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', - , + , { 'background_label': 0, 'clean_kwargs': {}, 'detrend': False, @@ -434,7 +434,7 @@ cerebrospinal fluid signal with high-pass filtering. 'high_variance_confounds': False, 'keep_masked_labels': True, 'labels': None, - 'labels_img': , + 'labels_img': , 'low_pass': None, 'mask_img': None, 'reports': True, @@ -463,7 +463,7 @@ cerebrospinal fluid signal with high-pass filtering. [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 1.2s, 0.0min - + @@ -549,7 +549,7 @@ strategy. ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', - , + , { 'background_label': 0, 'clean_kwargs': {}, 'detrend': False, @@ -558,7 +558,7 @@ strategy. 'high_variance_confounds': False, 'keep_masked_labels': True, 'labels': None, - 'labels_img': , + 'labels_img': , 'low_pass': None, 'mask_img': None, 'reports': True, @@ -587,7 +587,7 @@ strategy. [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 1.2s, 0.0min - + @@ -662,7 +662,7 @@ simple strategy and see its impact. ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', - , + , { 'background_label': 0, 'clean_kwargs': {}, 'detrend': False, @@ -671,7 +671,7 @@ simple strategy and see its impact. 'high_variance_confounds': False, 'keep_masked_labels': True, 'labels': None, - 'labels_img': , + 'labels_img': , 'low_pass': None, 'mask_img': None, 'reports': True, @@ -700,7 +700,7 @@ simple strategy and see its impact. [NiftiLabelsMasker.transform_single_imgs] Cleaning extracted signals _______________________________________________filter_and_extract - 1.2s, 0.0min - + @@ -805,7 +805,7 @@ the motion default to basic. [ 0., 0., 2., -72.], [ 0., 0., 0., 1.]]) ) - [Memory]12.0s, 0.2min : Loading _filter_and_extract... + [Memory]12.4s, 0.2min : Loading _filter_and_extract... __________________________________filter_and_extract cache loaded - 0.0s, 0.0min [NiftiLabelsMasker.wrapped] loading data from Nifti1Image( shape=(91, 109, 91), @@ -814,7 +814,7 @@ the motion default to basic. [ 0., 0., 2., -72.], [ 0., 0., 0., 1.]]) ) - [Memory]12.6s, 0.2min : Loading _filter_and_extract... + [Memory]13.0s, 0.2min : Loading _filter_and_extract... __________________________________filter_and_extract cache loaded - 0.0s, 0.0min @@ -830,9 +830,9 @@ References .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 15.127 seconds) + **Total running time of the script:** (0 minutes 15.448 seconds) -**Estimated memory usage:** 486 MB +**Estimated memory usage:** 513 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_signal_extraction.py: diff --git a/dev/_sources/auto_examples/03_connectivity/plot_simulated_connectome.rst.txt b/dev/_sources/auto_examples/03_connectivity/plot_simulated_connectome.rst.txt index 633e52cc64a..a6bf34c0bdd 100644 --- a/dev/_sources/auto_examples/03_connectivity/plot_simulated_connectome.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/plot_simulated_connectome.rst.txt @@ -188,7 +188,7 @@ Run connectome estimations and plot the results .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 3.408 seconds) + **Total running time of the script:** (0 minutes 3.665 seconds) **Estimated memory usage:** 9 MB diff --git a/dev/_sources/auto_examples/03_connectivity/plot_sphere_based_connectome.rst.txt b/dev/_sources/auto_examples/03_connectivity/plot_sphere_based_connectome.rst.txt index 082e205cc60..94a51e542c2 100644 --- a/dev/_sources/auto_examples/03_connectivity/plot_sphere_based_connectome.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/plot_sphere_based_connectome.rst.txt @@ -154,7 +154,7 @@ band-pass filtered and **standardized to 1 variance**. ________________________________________________________________________________ [Memory] Calling nilearn.maskers.base_masker._filter_and_extract... _filter_and_extract('/home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz', - , + , { 'allow_overlap': False, 'clean_kwargs': {'butterworth__padtype': 'even'}, 'detrend': True, @@ -172,7 +172,7 @@ band-pass filtered and **standardized to 1 variance**. [NiftiSpheresMasker.transform_single_imgs] Loading data from /home/runner/work/nilearn/nilearn/nilearn_data/development_fmri/development_fmri/sub-pixar123_task-pixar_space-MNI152NLin2009cAsym_desc-preproc_bold.nii.gz [NiftiSpheresMasker.transform_single_imgs] Extracting region signals [NiftiSpheresMasker.transform_single_imgs] Cleaning extracted signals - _______________________________________________filter_and_extract - 2.2s, 0.0min + _______________________________________________filter_and_extract - 2.5s, 0.0min @@ -274,7 +274,7 @@ We display the graph of connections with .. code-block:: none - + @@ -896,7 +896,7 @@ We just fit our regions signals into the `GraphicalLassoCV` object [GraphicalLassoCV] Done refinement 1 out of 4: 1s [GraphicalLassoCV] Done refinement 2 out of 4: 5s [GraphicalLassoCV] Done refinement 3 out of 4: 11s - [GraphicalLassoCV] Done refinement 4 out of 4: 16s + [GraphicalLassoCV] Done refinement 4 out of 4: 17s /usr/share/miniconda3/envs/testenv/lib/python3.9/site-packages/numpy/core/_methods.py:173: RuntimeWarning: invalid value encountered in subtract @@ -994,7 +994,7 @@ and display the graph of connections with `nilearn.plotting.plot_connectome`. .. code-block:: none - + @@ -1041,7 +1041,7 @@ aggregating edge strength from the graph would help. Use the function .. code-block:: none - + @@ -1112,7 +1112,7 @@ one for the positive and one for the negative structure. .. code-block:: none - + @@ -1262,7 +1262,7 @@ We repeat the same steps for Dosenbach's atlas. invalid value encountered in subtract - + @@ -1309,9 +1309,9 @@ See Also .. rst-class:: sphx-glr-timing - **Total running time of the script:** (1 minutes 0.304 seconds) + **Total running time of the script:** (1 minutes 3.194 seconds) -**Estimated memory usage:** 578 MB +**Estimated memory usage:** 577 MB .. _sphx_glr_download_auto_examples_03_connectivity_plot_sphere_based_connectome.py: diff --git a/dev/_sources/auto_examples/03_connectivity/sg_execution_times.rst.txt b/dev/_sources/auto_examples/03_connectivity/sg_execution_times.rst.txt index ef4b337f0ea..9b0f666dd98 100644 --- a/dev/_sources/auto_examples/03_connectivity/sg_execution_times.rst.txt +++ b/dev/_sources/auto_examples/03_connectivity/sg_execution_times.rst.txt @@ -6,30 +6,30 @@ Computation times ================= -**17:17.907** total execution time for **auto_examples_03_connectivity** files: +**18:49.283** total execution time for **auto_examples_03_connectivity** files: +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_03_connectivity_plot_compare_decomposition.py` (``plot_compare_decomposition.py``) | 06:39.769 | 2529.9 MB | +| :ref:`sphx_glr_auto_examples_03_connectivity_plot_compare_decomposition.py` (``plot_compare_decomposition.py``) | 07:18.761 | 2591.4 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_03_connectivity_plot_atlas_comparison.py` (``plot_atlas_comparison.py``) | 02:22.719 | 1689.5 MB | +| :ref:`sphx_glr_auto_examples_03_connectivity_plot_extract_regions_dictlearning_maps.py` (``plot_extract_regions_dictlearning_maps.py``) | 02:45.622 | 1147.5 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_03_connectivity_plot_extract_regions_dictlearning_maps.py` (``plot_extract_regions_dictlearning_maps.py``) | 02:21.065 | 1147.4 MB | +| :ref:`sphx_glr_auto_examples_03_connectivity_plot_atlas_comparison.py` (``plot_atlas_comparison.py``) | 02:28.225 | 1723.2 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_03_connectivity_plot_multi_subject_connectome.py` (``plot_multi_subject_connectome.py``) | 01:40.330 | 552.7 MB | +| :ref:`sphx_glr_auto_examples_03_connectivity_plot_multi_subject_connectome.py` (``plot_multi_subject_connectome.py``) | 01:38.972 | 558.7 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_03_connectivity_plot_group_level_connectivity.py` (``plot_group_level_connectivity.py``) | 01:29.860 | 1145.2 MB | +| :ref:`sphx_glr_auto_examples_03_connectivity_plot_group_level_connectivity.py` (``plot_group_level_connectivity.py``) | 01:38.834 | 1144.4 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_03_connectivity_plot_sphere_based_connectome.py` (``plot_sphere_based_connectome.py``) | 01:00.304 | 577.8 MB | +| :ref:`sphx_glr_auto_examples_03_connectivity_plot_sphere_based_connectome.py` (``plot_sphere_based_connectome.py``) | 01:03.194 | 577.3 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_03_connectivity_plot_data_driven_parcellations.py` (``plot_data_driven_parcellations.py``) | 00:51.622 | 2144.6 MB | +| :ref:`sphx_glr_auto_examples_03_connectivity_plot_data_driven_parcellations.py` (``plot_data_driven_parcellations.py``) | 00:56.171 | 2175.2 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_03_connectivity_plot_signal_extraction.py` (``plot_signal_extraction.py``) | 00:15.127 | 486.5 MB | +| :ref:`sphx_glr_auto_examples_03_connectivity_plot_inverse_covariance_connectome.py` (``plot_inverse_covariance_connectome.py``) | 00:16.026 | 1143.4 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_03_connectivity_plot_inverse_covariance_connectome.py` (``plot_inverse_covariance_connectome.py``) | 00:14.036 | 1143.5 MB | +| :ref:`sphx_glr_auto_examples_03_connectivity_plot_signal_extraction.py` (``plot_signal_extraction.py``) | 00:15.448 | 513.0 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_03_connectivity_plot_seed_to_voxel_correlation.py` (``plot_seed_to_voxel_correlation.py``) | 00:12.604 | 736.7 MB | +| :ref:`sphx_glr_auto_examples_03_connectivity_plot_seed_to_voxel_correlation.py` (``plot_seed_to_voxel_correlation.py``) | 00:15.313 | 724.8 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_03_connectivity_plot_probabilistic_atlas_extraction.py` (``plot_probabilistic_atlas_extraction.py``) | 00:07.065 | 376.6 MB | +| :ref:`sphx_glr_auto_examples_03_connectivity_plot_probabilistic_atlas_extraction.py` (``plot_probabilistic_atlas_extraction.py``) | 00:09.052 | 306.7 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ -| :ref:`sphx_glr_auto_examples_03_connectivity_plot_simulated_connectome.py` (``plot_simulated_connectome.py``) | 00:03.408 | 9.0 MB | +| :ref:`sphx_glr_auto_examples_03_connectivity_plot_simulated_connectome.py` (``plot_simulated_connectome.py``) | 00:03.665 | 9.0 MB | +-----------------------------------------------------------------------------------------------------------------------------------------+-----------+-----------+ diff --git a/dev/_sources/auto_examples/04_glm_first_level/plot_adhd_dmn.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/plot_adhd_dmn.rst.txt index 36bf8d80bcc..276452a0718 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/plot_adhd_dmn.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/plot_adhd_dmn.rst.txt @@ -298,9 +298,9 @@ We have several ways to access the report: .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 18.341 seconds) + **Total running time of the script:** (0 minutes 19.864 seconds) -**Estimated memory usage:** 586 MB +**Estimated memory usage:** 588 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_adhd_dmn.py: diff --git a/dev/_sources/auto_examples/04_glm_first_level/plot_bids_features.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/plot_bids_features.rst.txt index 101f926d599..e29707dddf3 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/plot_bids_features.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/plot_bids_features.rst.txt @@ -570,9 +570,9 @@ View the generated files .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 43.291 seconds) + **Total running time of the script:** (0 minutes 45.126 seconds) -**Estimated memory usage:** 526 MB +**Estimated memory usage:** 428 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_bids_features.py: diff --git a/dev/_sources/auto_examples/04_glm_first_level/plot_design_matrix.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/plot_design_matrix.rst.txt index 222c4f39474..fb81d8be6a0 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/plot_design_matrix.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/plot_design_matrix.rst.txt @@ -254,7 +254,7 @@ Here are the three designs side by side. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 3.135 seconds) + **Total running time of the script:** (0 minutes 3.296 seconds) **Estimated memory usage:** 9 MB diff --git a/dev/_sources/auto_examples/04_glm_first_level/plot_fiac_analysis.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/plot_fiac_analysis.rst.txt index 572fbaab867..0c2e4d7b3ad 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/plot_fiac_analysis.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/plot_fiac_analysis.rst.txt @@ -321,7 +321,7 @@ Compute the statistics for the first session. .. code-block:: none - + @@ -355,7 +355,7 @@ Compute the statistics for the second session. .. code-block:: none - + @@ -468,7 +468,7 @@ We have several ways to access the report: .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 56.851 seconds) + **Total running time of the script:** (0 minutes 57.709 seconds) **Estimated memory usage:** 367 MB diff --git a/dev/_sources/auto_examples/04_glm_first_level/plot_fir_model.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/plot_fir_model.rst.txt index e1d1216f211..5d6d92a510e 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/plot_fir_model.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/plot_fir_model.rst.txt @@ -272,9 +272,9 @@ conditions. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 11.907 seconds) + **Total running time of the script:** (0 minutes 12.435 seconds) -**Estimated memory usage:** 132 MB +**Estimated memory usage:** 194 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_fir_model.py: diff --git a/dev/_sources/auto_examples/04_glm_first_level/plot_first_level_details.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/plot_first_level_details.rst.txt index d8d438b70aa..7b06f44b417 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/plot_first_level_details.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/plot_first_level_details.rst.txt @@ -1298,9 +1298,9 @@ are specific to this dataset and may vary with other ones. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (2 minutes 29.489 seconds) + **Total running time of the script:** (2 minutes 34.906 seconds) -**Estimated memory usage:** 141 MB +**Estimated memory usage:** 195 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_first_level_details.py: diff --git a/dev/_sources/auto_examples/04_glm_first_level/plot_fixed_effects.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/plot_fixed_effects.rst.txt index 9593030ed37..cbb1a02c914 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/plot_fixed_effects.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/plot_fixed_effects.rst.txt @@ -182,7 +182,7 @@ Statistics for the first session .. code-block:: none - + @@ -217,7 +217,7 @@ Statistics for the second session .. code-block:: none - + @@ -264,7 +264,7 @@ Fixed effects statistics The behavior of this function will be changed in release 0.13 to have an additionalreturn value 'fixed_fx_z_score_img' by default. Please set return_z_score to True. - + @@ -292,9 +292,9 @@ t statistic (not a z statistic) .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 15.096 seconds) + **Total running time of the script:** (0 minutes 15.489 seconds) -**Estimated memory usage:** 548 MB +**Estimated memory usage:** 549 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_fixed_effects.py: diff --git a/dev/_sources/auto_examples/04_glm_first_level/plot_hrf.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/plot_hrf.rst.txt index b36b570c523..c6e847b3b54 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/plot_hrf.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/plot_hrf.rst.txt @@ -255,7 +255,7 @@ Sample and plot response functions .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 1.666 seconds) + **Total running time of the script:** (0 minutes 1.697 seconds) **Estimated memory usage:** 9 MB diff --git a/dev/_sources/auto_examples/04_glm_first_level/plot_localizer_surface_analysis.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/plot_localizer_surface_analysis.rst.txt index 5e1f5d5b044..1b218bf7779 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/plot_localizer_surface_analysis.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/plot_localizer_surface_analysis.rst.txt @@ -517,9 +517,9 @@ Finally, we create contrast-specific maps and plot them. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 14.405 seconds) + **Total running time of the script:** (0 minutes 14.774 seconds) -**Estimated memory usage:** 233 MB +**Estimated memory usage:** 132 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_localizer_surface_analysis.py: diff --git a/dev/_sources/auto_examples/04_glm_first_level/plot_predictions_residuals.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/plot_predictions_residuals.rst.txt index a4f99b351ee..52fa4d7bb93 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/plot_predictions_residuals.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/plot_predictions_residuals.rst.txt @@ -130,7 +130,7 @@ Calculate and plot contrast .. code-block:: none - + @@ -324,7 +324,7 @@ we can use an F-test as shown in the next section. .. code-block:: none - + @@ -375,16 +375,16 @@ all the other columns in the design matrix such as drift and motion. .. code-block:: none - + .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 29.529 seconds) + **Total running time of the script:** (0 minutes 29.388 seconds) -**Estimated memory usage:** 615 MB +**Estimated memory usage:** 710 MB .. _sphx_glr_download_auto_examples_04_glm_first_level_plot_predictions_residuals.py: diff --git a/dev/_sources/auto_examples/04_glm_first_level/plot_spm_multimodal_faces.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/plot_spm_multimodal_faces.rst.txt index d00b3b97227..66bb1739d18 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/plot_spm_multimodal_faces.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/plot_spm_multimodal_faces.rst.txt @@ -388,7 +388,7 @@ also displays some responses in the frontal lobe. .. rst-class:: sphx-glr-timing - **Total running time of the script:** (1 minutes 28.279 seconds) + **Total running time of the script:** (1 minutes 32.893 seconds) **Estimated memory usage:** 877 MB diff --git a/dev/_sources/auto_examples/04_glm_first_level/plot_write_events_file.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/plot_write_events_file.rst.txt index b497f11bfb1..44c2f2394d3 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/plot_write_events_file.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/plot_write_events_file.rst.txt @@ -373,7 +373,7 @@ Optionally, the events can be visualized using the .. rst-class:: sphx-glr-timing - **Total running time of the script:** (0 minutes 3.611 seconds) + **Total running time of the script:** (0 minutes 3.816 seconds) **Estimated memory usage:** 9 MB diff --git a/dev/_sources/auto_examples/04_glm_first_level/sg_execution_times.rst.txt b/dev/_sources/auto_examples/04_glm_first_level/sg_execution_times.rst.txt index d2a40827400..064be745050 100644 --- a/dev/_sources/auto_examples/04_glm_first_level/sg_execution_times.rst.txt +++ b/dev/_sources/auto_examples/04_glm_first_level/sg_execution_times.rst.txt @@ -6,30 +6,30 @@ Computation times ================= -**07:15.600** total execution time for **auto_examples_04_glm_first_level** files: +**07:31.392** total execution time for **auto_examples_04_glm_first_level** files: +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_first_level_details.py` (``plot_first_level_details.py``) | 02:29.489 | 140.8 MB | +| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_first_level_details.py` (``plot_first_level_details.py``) | 02:34.906 | 195.0 MB | +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_spm_multimodal_faces.py` (``plot_spm_multimodal_faces.py``) | 01:28.279 | 877.3 MB | +| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_spm_multimodal_faces.py` (``plot_spm_multimodal_faces.py``) | 01:32.893 | 876.9 MB | +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_fiac_analysis.py` (``plot_fiac_analysis.py``) | 00:56.851 | 367.1 MB | +| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_fiac_analysis.py` (``plot_fiac_analysis.py``) | 00:57.709 | 367.1 MB | +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_bids_features.py` (``plot_bids_features.py``) | 00:43.291 | 526.1 MB | +| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_bids_features.py` (``plot_bids_features.py``) | 00:45.126 | 428.4 MB | +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_predictions_residuals.py` (``plot_predictions_residuals.py``) | 00:29.529 | 615.2 MB | +| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_predictions_residuals.py` (``plot_predictions_residuals.py``) | 00:29.388 | 710.3 MB | +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_adhd_dmn.py` (``plot_adhd_dmn.py``) | 00:18.341 | 586.3 MB | +| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_adhd_dmn.py` (``plot_adhd_dmn.py``) | 00:19.864 | 588.2 MB | +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_fixed_effects.py` (``plot_fixed_effects.py``) | 00:15.096 | 547.5 MB | +| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_fixed_effects.py` (``plot_fixed_effects.py``) | 00:15.489 | 549.3 MB | +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_localizer_surface_analysis.py` (``plot_localizer_surface_analysis.py``) | 00:14.405 | 232.5 MB | +| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_localizer_surface_analysis.py` (``plot_localizer_surface_analysis.py``) | 00:14.774 | 132.5 MB | +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_fir_model.py` (``plot_fir_model.py``) | 00:11.907 | 132.3 MB | +| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_fir_model.py` (``plot_fir_model.py``) | 00:12.435 | 194.0 MB | +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_write_events_file.py` (``plot_write_events_file.py``) | 00:03.611 | 9.0 MB | +| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_write_events_file.py` (``plot_write_events_file.py``) | 00:03.816 | 9.0 MB | +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_design_matrix.py` (``plot_design_matrix.py``) | 00:03.135 | 9.2 MB | +| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_design_matrix.py` (``plot_design_matrix.py``) | 00:03.296 | 9.1 MB | +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ -| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_hrf.py` (``plot_hrf.py``) | 00:01.666 | 9.0 MB | +| :ref:`sphx_glr_auto_examples_04_glm_first_level_plot_hrf.py` (``plot_hrf.py``) | 00:01.697 | 9.0 MB | +------------------------------------------------------------------------------------------------------------------------------+-----------+----------+ diff --git a/dev/_sources/auto_examples/05_glm_second_level/plot_oasis.rst.txt b/dev/_sources/auto_examples/05_glm_second_level/plot_oasis.rst.txt index b5ba1a6bf90..92226934913 100644 --- a/dev/_sources/auto_examples/05_glm_second_level/plot_oasis.rst.txt +++ b/dev/_sources/auto_examples/05_glm_second_level/plot_oasis.rst.txt @@ -247,8 +247,8 @@ also smooth a little bit to improve statistical behavior. .. raw:: html
-
SecondLevelModel(mask_img=<nibabel.nifti1.Nifti1Image object at 0x7fc910066760>,
-                     smoothing_fwhm=2.0)
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
@@ -788,7 +788,7 @@

Visualizing one volume in a 4D file -plot 3d and 4d niimg
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fc9110b6fa0>
+plot 3d and 4d niimg
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fac7c912d00>
 

@@ -860,7 +860,7 @@

Looping through selected volumes in a 4D filenilearn.image.concat_imgs to group a list of 3D images into a 4D image.

-

Total running time of the script: (0 minutes 16.097 seconds)

+

Total running time of the script: (0 minutes 19.974 seconds)

Estimated memory usage: 127 MB

-plot decoding tutorial
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fc910ff8130>
+plot decoding tutorial
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fac7c4451f0>
 

@@ -1132,122 +1132,122 @@

Turning the weights into a nifti imageprint(coef_) -
[[-3.89376038e-02 -1.87166563e-02 -3.23027750e-02 -2.88745408e-02
-   4.18696005e-02  1.10743706e-02  1.69997332e-02 -5.50953665e-02
-  -1.94203283e-02 -3.51225518e-02  1.08509754e-02 -1.28797743e-02
-  -1.54677352e-02 -3.78907799e-02 -3.69168054e-02  2.28087031e-02
-   6.56425600e-03 -7.65763975e-03  1.67106824e-02 -8.02128273e-03
-   5.29516434e-02 -8.17593858e-02 -6.36993476e-02  2.41326798e-02
-   4.59877240e-02 -2.22603574e-02 -1.77306596e-02  2.22198674e-02
-  -9.53199860e-03  5.76047026e-02  2.14301178e-02 -9.14222688e-02
-   4.03667341e-03 -2.89274909e-02 -3.89030746e-02 -3.35113743e-02
-   2.21400506e-03  8.73124714e-03 -3.37415458e-02 -2.41276913e-02
-  -6.81648131e-02  1.65405831e-02  2.70782788e-02 -6.56842738e-03
-  -1.21664165e-02  5.47673892e-02  8.13278340e-03  3.60954576e-02
-  -1.52763601e-02  7.02912867e-02  1.28105984e-03  2.08005252e-02
-  -4.09946977e-03  3.72429231e-02 -3.77396396e-02 -1.03858000e-02
-  -2.38238659e-02 -5.48881383e-02  4.43028224e-02 -1.47419233e-01
-  -2.34042888e-02  1.87115339e-02  6.65859020e-02 -9.07602252e-02
-  -1.22036052e-02 -2.95654959e-03  3.22092250e-02 -3.04053841e-02
-   6.15343953e-02  1.12249612e-02  1.93775713e-02 -1.30542033e-02
-   4.42977539e-02 -2.23066264e-02  6.88146817e-02  1.69390196e-02
-   1.78946417e-02  1.00275900e-02  2.99186649e-02 -2.52171418e-02
-   1.06153205e-02 -6.31962693e-03  2.21510065e-03 -2.23349460e-02
-   1.42560202e-02 -1.53122960e-02 -1.98227549e-02 -4.32637284e-02
-  -4.55126158e-02  3.41588978e-02 -2.79199116e-02 -2.80908073e-02
-  -3.70159926e-02 -5.71451275e-02 -6.98950433e-02  3.20188660e-03
-  -8.35466541e-03 -3.37626390e-02  3.04260812e-02  8.68460415e-03
-   6.19366271e-03  5.94177078e-02  9.07296977e-03 -1.48931920e-02
-   1.43559160e-02 -1.09027000e-02  2.67698014e-02  4.73786592e-02
-  -2.96430580e-02  3.09423154e-02  1.57930498e-02 -3.16724570e-02
-  -4.00106494e-02 -5.40263302e-02  2.82611902e-02 -1.12101678e-02
-  -5.45403656e-02  6.32177602e-02 -1.49998545e-02  2.47542873e-03
-  -4.56644990e-02 -1.83881957e-02  1.19958432e-02 -3.72172770e-02
-  -2.25530446e-03  4.58654484e-02  4.79166823e-02  2.51822190e-03
-  -4.31721589e-02 -5.35325828e-03  5.76995460e-02  7.40820701e-03
-  -3.20590518e-02  4.35704116e-03  1.68303281e-02 -2.92570322e-02
-  -2.24490885e-03 -8.30209476e-03 -1.00012326e-02  2.17134492e-02
-  -1.92609283e-03 -1.33221739e-02 -2.80300418e-02 -1.75294113e-02
-  -9.17833794e-03 -7.09937763e-03 -1.43032298e-02  5.06832359e-02
-  -1.84812269e-02 -4.71507638e-02  1.72569008e-02 -4.76641272e-02
-  -9.08754187e-04  4.00769478e-02  7.53992960e-02  7.25612778e-03
-   4.82604699e-02  4.50555262e-02  3.61201208e-02 -8.16509972e-03
-   1.95405395e-02  3.57882383e-02  4.89306657e-02  3.82972212e-02
-   6.23921111e-02  6.13675628e-02 -1.68749674e-02  1.66515519e-02
-   3.35524610e-02 -1.80213122e-02  4.46410544e-02 -3.53243197e-02
-  -3.67293804e-02 -4.62252842e-03  4.86828340e-02  3.39667498e-02
-   6.21721751e-03  1.73611352e-02  2.01698054e-02  2.17098041e-02
-   2.91411780e-02  2.37776074e-02  4.84699326e-02 -9.22616466e-03
-  -2.82637404e-02 -2.13781953e-02  1.80799044e-03  4.79687025e-02
-  -9.78908230e-03  1.11432542e-02 -1.65017490e-02 -2.89091423e-02
-   2.42849316e-02 -1.22346141e-02 -2.92869641e-02 -2.89845849e-02
-  -3.39531916e-02 -3.65280539e-03  2.65323396e-02  4.58043846e-02
-  -5.93382017e-02 -2.13630364e-02 -3.09408735e-02  5.50179570e-02
-  -3.38816360e-02  6.12618495e-03  1.41484571e-02  1.10215673e-02
-   5.33812379e-02 -2.12338838e-02  6.37432449e-03 -1.13075101e-02
-  -2.64227155e-02 -2.22399544e-02 -5.31919685e-02 -3.98653677e-02
-  -1.29727783e-01 -3.28091549e-02 -2.89711653e-02 -9.13463696e-03
-  -7.28728614e-03 -3.71052076e-02 -6.34906531e-02  2.04395105e-03
-  -8.26795965e-02 -6.71214290e-02 -2.29139859e-03 -2.33451749e-02
-   1.77914083e-02 -8.74668688e-02 -2.76498522e-03 -4.38276709e-02
-  -1.28049846e-02  2.78034361e-02 -4.32695522e-02 -3.22686682e-02
-  -2.28030189e-02 -2.57414336e-02  2.03622043e-02 -9.90247649e-03
-  -3.15033025e-02 -1.81421274e-02 -1.12323194e-03 -4.17431666e-02
-  -6.23481196e-02  2.54625426e-04 -6.73680180e-02  6.53966216e-02
-   1.06521897e-02  2.21984380e-02 -1.98726942e-02 -1.85519819e-02
-   4.05702552e-02 -3.02838675e-02 -8.10053145e-02 -7.42460487e-02
-  -4.93850001e-02 -1.01768810e-02  1.09405965e-02 -4.49253892e-02
-   2.92749518e-02  7.05296583e-03  5.07532706e-03 -4.84042043e-03
-   2.48771773e-03  3.00653604e-02 -2.63081941e-03  4.64684380e-03
-   7.90208639e-02  1.04859040e-02  1.68079865e-02 -4.36718983e-02
-  -1.08856527e-02  2.10242652e-02 -4.41965697e-02  3.16479092e-03
-   6.98670565e-02  8.61631389e-02  4.96234601e-02  6.03894012e-03
-   5.56496163e-02 -2.98919129e-02  4.13042238e-03 -3.21952477e-02
-  -3.14991640e-02 -5.31278027e-02  2.67257773e-02  3.14428536e-02
-   6.67117303e-03 -1.28703296e-02  2.20151158e-02  5.68525619e-02
-   2.25604281e-02 -2.04616783e-02  5.10348226e-03  2.85357609e-02
-  -1.81663212e-02 -8.48433293e-03 -3.18825202e-02 -1.18497549e-02
-  -4.10845859e-02  3.11777817e-02  9.63461412e-03 -8.25901347e-03
-  -3.12226092e-02  8.57642243e-03 -9.70197661e-03  1.32373762e-02
-   4.06448784e-02  8.23415696e-03 -3.27354344e-02 -4.33882965e-03
-  -1.75530629e-02  6.88853725e-03  3.45131682e-02  7.03298604e-02
-   2.16785136e-02  5.32232890e-03  8.17562908e-02  6.40063936e-02
-  -2.31150240e-03 -1.17557129e-02  1.75889145e-01  3.18130314e-02
-  -3.15886943e-02  3.34027824e-02  2.22781597e-02  1.00231935e-02
-  -4.74912164e-02 -2.12757235e-02 -3.98717431e-02 -6.04068794e-02
-  -4.65060531e-02  1.03003048e-02 -3.05707809e-04  1.80743244e-02
-  -1.75450774e-02 -8.72589719e-02  1.00662657e-01  4.46122593e-03
-   7.46869408e-02 -6.13410325e-02  2.81702329e-02 -1.40975845e-02
-   3.14637929e-02 -1.63834437e-02  3.66532814e-02 -5.15683796e-03
-   1.45093825e-02  6.35868454e-02  2.34598818e-02  8.81062185e-02
-   6.15345180e-02 -1.39361064e-02  2.07246203e-02 -3.15453216e-03
-   5.15425313e-02 -2.88767076e-02  1.60263859e-02  2.09703886e-02
-  -3.29173258e-02 -2.59460066e-02 -5.60400653e-02 -3.64627969e-02
-   1.12882514e-02  2.17268103e-02 -1.51637181e-02 -7.82895027e-03
-   2.42548035e-02  9.47015179e-02 -2.63033357e-02  1.17316383e-04
-  -5.24169273e-03  4.17988124e-02  8.85681454e-02  6.23623368e-03
-   1.86600318e-02  1.54629140e-02  3.50559230e-03  6.20622009e-03
-  -1.19791430e-02  1.59526651e-02  7.12123850e-03 -8.93192977e-02
-  -3.54338684e-03  1.23479140e-02  3.03928226e-02 -2.37295827e-02
-  -3.82790724e-02 -4.98744477e-02  4.66896182e-02 -1.23292567e-02
-  -1.10332085e-02  2.18104733e-02  2.18719788e-02  2.63537394e-02
-   1.05281529e-02  1.84616934e-02  8.36030782e-04 -6.65226323e-03
-   3.49397022e-02  1.49353549e-02 -1.11598717e-02  6.69109813e-03
-  -2.00058802e-02 -3.99015502e-02  3.01871532e-02 -1.09867006e-02
-  -4.11780265e-02  2.72055367e-02  1.16426448e-02 -1.55502639e-02
-   3.27699947e-02  3.95494853e-02  8.48720834e-03  2.19935057e-02
-  -9.88678684e-03 -3.61420812e-02 -4.77021441e-02  1.90074601e-02
-  -5.58286322e-02 -3.31740576e-02 -2.24913414e-02 -3.36175739e-02
-  -4.07355354e-02  1.08860178e-02  1.12810065e-02  7.63145408e-02
-   4.04798562e-03  3.07014155e-02  2.89177309e-02  4.71615413e-03
-   5.13384205e-02 -4.10363570e-02  1.23271383e-03 -2.50404069e-02
-   5.85902255e-02 -1.04965712e-01 -4.41705043e-02  1.18520617e-02
-  -5.83203949e-02 -4.82246052e-02  9.17655899e-03  1.03259773e-02
-  -5.09181502e-03 -3.23391035e-02 -3.19388554e-02 -1.53769974e-02
-  -5.21213629e-02  1.55619916e-02  2.93483362e-02 -1.92527236e-02
-   1.76694938e-02  2.67992080e-02  5.76553553e-02 -1.38164436e-02
-   2.60399754e-02  1.50400358e-02  1.27424571e-02 -2.29244554e-02
-  -1.06663283e-02  9.81948632e-03 -4.77511522e-02  1.64241339e-02]]
+
[[-3.89376569e-02 -1.87166189e-02 -3.23027019e-02 -2.88746747e-02
+   4.18696295e-02  1.10743509e-02  1.69997539e-02 -5.50955322e-02
+  -1.94204425e-02 -3.51226857e-02  1.08510855e-02 -1.28797390e-02
+  -1.54677163e-02 -3.78908621e-02 -3.69167992e-02  2.28086754e-02
+   6.56421077e-03 -7.65762920e-03  1.67105978e-02 -8.02137534e-03
+   5.29516089e-02 -8.17594157e-02 -6.36992350e-02  2.41326068e-02
+   4.59876449e-02 -2.22603390e-02 -1.77308652e-02  2.22197334e-02
+  -9.53197020e-03  5.76045447e-02  2.14300486e-02 -9.14225036e-02
+   4.03662682e-03 -2.89275414e-02 -3.89031189e-02 -3.35114501e-02
+   2.21398397e-03  8.73131942e-03 -3.37416402e-02 -2.41275771e-02
+  -6.81648247e-02  1.65407721e-02  2.70784524e-02 -6.56836848e-03
+  -1.21663542e-02  5.47675099e-02  8.13290175e-03  3.60954024e-02
+  -1.52761977e-02  7.02912962e-02  1.28102393e-03  2.08008424e-02
+  -4.09939732e-03  3.72429998e-02 -3.77395273e-02 -1.03858223e-02
+  -2.38236657e-02 -5.48881195e-02  4.43027799e-02 -1.47419252e-01
+  -2.34042142e-02  1.87115268e-02  6.65859055e-02 -9.07602636e-02
+  -1.22035869e-02 -2.95642866e-03  3.22092928e-02 -3.04054116e-02
+   6.15345823e-02  1.12249329e-02  1.93774740e-02 -1.30541782e-02
+   4.42975945e-02 -2.23066310e-02  6.88146775e-02  1.69390139e-02
+   1.78946073e-02  1.00276681e-02  2.99186904e-02 -2.52171451e-02
+   1.06155509e-02 -6.31935786e-03  2.21501837e-03 -2.23347619e-02
+   1.42561169e-02 -1.53123316e-02 -1.98227360e-02 -4.32637757e-02
+  -4.55124612e-02  3.41590111e-02 -2.79199796e-02 -2.80909196e-02
+  -3.70158386e-02 -5.71451756e-02 -6.98950862e-02  3.20168872e-03
+  -8.35457379e-03 -3.37627719e-02  3.04260406e-02  8.68457882e-03
+   6.19385090e-03  5.94177851e-02  9.07295257e-03 -1.48931062e-02
+   1.43558768e-02 -1.09027697e-02  2.67698248e-02  4.73787360e-02
+  -2.96432492e-02  3.09422949e-02  1.57927804e-02 -3.16721036e-02
+  -4.00106620e-02 -5.40261518e-02  2.82612692e-02 -1.12101157e-02
+  -5.45401928e-02  6.32177893e-02 -1.49997058e-02  2.47546770e-03
+  -4.56643777e-02 -1.83881593e-02  1.19958356e-02 -3.72171964e-02
+  -2.25513978e-03  4.58657213e-02  4.79167280e-02  2.51823094e-03
+  -4.31721181e-02 -5.35323425e-03  5.76994364e-02  7.40831932e-03
+  -3.20591069e-02  4.35704791e-03  1.68303083e-02 -2.92569898e-02
+  -2.24489590e-03 -8.30210056e-03 -1.00012844e-02  2.17135001e-02
+  -1.92620345e-03 -1.33221764e-02 -2.80301464e-02 -1.75293921e-02
+  -9.17795293e-03 -7.09933243e-03 -1.43032390e-02  5.06832377e-02
+  -1.84812767e-02 -4.71507511e-02  1.72569074e-02 -4.76642243e-02
+  -9.08861100e-04  4.00770299e-02  7.53995902e-02  7.25609100e-03
+   4.82605441e-02  4.50555715e-02  3.61202935e-02 -8.16495256e-03
+   1.95406451e-02  3.57882015e-02  4.89306332e-02  3.82973279e-02
+   6.23919778e-02  6.13675702e-02 -1.68751106e-02  1.66514417e-02
+   3.35522681e-02 -1.80212292e-02  4.46410864e-02 -3.53244442e-02
+  -3.67292203e-02 -4.62254655e-03  4.86828817e-02  3.39667366e-02
+   6.21715332e-03  1.73611952e-02  2.01698042e-02  2.17097443e-02
+   2.91412961e-02  2.37777459e-02  4.84698989e-02 -9.22624556e-03
+  -2.82638059e-02 -2.13781349e-02  1.80790135e-03  4.79687913e-02
+  -9.78898501e-03  1.11431178e-02 -1.65020129e-02 -2.89090440e-02
+   2.42849793e-02 -1.22346516e-02 -2.92870977e-02 -2.89845050e-02
+  -3.39532204e-02 -3.65278556e-03  2.65324161e-02  4.58043283e-02
+  -5.93381835e-02 -2.13630673e-02 -3.09406538e-02  5.50179590e-02
+  -3.38816404e-02  6.12613834e-03  1.41483557e-02  1.10215898e-02
+   5.33811916e-02 -2.12339103e-02  6.37423115e-03 -1.13075791e-02
+  -2.64225988e-02 -2.22399516e-02 -5.31920798e-02 -3.98653667e-02
+  -1.29727849e-01 -3.28091799e-02 -2.89710724e-02 -9.13467709e-03
+  -7.28720612e-03 -3.71052046e-02 -6.34907877e-02  2.04387862e-03
+  -8.26794234e-02 -6.71215532e-02 -2.29125338e-03 -2.33451680e-02
+   1.77914470e-02 -8.74667788e-02 -2.76490603e-03 -4.38275449e-02
+  -1.28051207e-02  2.78034594e-02 -4.32695506e-02 -3.22687161e-02
+  -2.28029479e-02 -2.57415240e-02  2.03623759e-02 -9.90252814e-03
+  -3.15034303e-02 -1.81420286e-02 -1.12328538e-03 -4.17432276e-02
+  -6.23479550e-02  2.54766092e-04 -6.73679541e-02  6.53966163e-02
+   1.06521738e-02  2.21983012e-02 -1.98726838e-02 -1.85519589e-02
+   4.05703432e-02 -3.02837292e-02 -8.10051870e-02 -7.42460038e-02
+  -4.93849785e-02 -1.01771273e-02  1.09406470e-02 -4.49253905e-02
+   2.92747884e-02  7.05302617e-03  5.07538971e-03 -4.84049694e-03
+   2.48741019e-03  3.00654996e-02 -2.63084271e-03  4.64685479e-03
+   7.90210013e-02  1.04858093e-02  1.68080026e-02 -4.36719270e-02
+  -1.08856432e-02  2.10241943e-02 -4.41965786e-02  3.16485450e-03
+   6.98670736e-02  8.61629338e-02  4.96233351e-02  6.03897625e-03
+   5.56494665e-02 -2.98920784e-02  4.13032548e-03 -3.21952280e-02
+  -3.14991326e-02 -5.31276242e-02  2.67257924e-02  3.14428646e-02
+   6.67113750e-03 -1.28703524e-02  2.20151205e-02  5.68524505e-02
+   2.25603273e-02 -2.04617651e-02  5.10333778e-03  2.85356881e-02
+  -1.81663697e-02 -8.48429650e-03 -3.18824429e-02 -1.18497140e-02
+  -4.10844637e-02  3.11777631e-02  9.63477303e-03 -8.25915542e-03
+  -3.12227047e-02  8.57644367e-03 -9.70201488e-03  1.32373185e-02
+   4.06448469e-02  8.23406757e-03 -3.27356354e-02 -4.33877093e-03
+  -1.75530634e-02  6.88838512e-03  3.45131464e-02  7.03299980e-02
+   2.16784701e-02  5.32229897e-03  8.17563549e-02  6.40063765e-02
+  -2.31138936e-03 -1.17557516e-02  1.75889119e-01  3.18128890e-02
+  -3.15888172e-02  3.34028524e-02  2.22781246e-02  1.00231446e-02
+  -4.74912216e-02 -2.12756955e-02 -3.98717655e-02 -6.04069569e-02
+  -4.65060608e-02  1.03003120e-02 -3.05711558e-04  1.80743735e-02
+  -1.75451987e-02 -8.72591028e-02  1.00662664e-01  4.46109943e-03
+   7.46869488e-02 -6.13411441e-02  2.81703843e-02 -1.40978793e-02
+   3.14638185e-02 -1.63834897e-02  3.66533173e-02 -5.15666693e-03
+   1.45093382e-02  6.35867368e-02  2.34598550e-02  8.81062148e-02
+   6.15344326e-02 -1.39361581e-02  2.07246929e-02 -3.15457439e-03
+   5.15424222e-02 -2.88767715e-02  1.60263173e-02  2.09701837e-02
+  -3.29172453e-02 -2.59460569e-02 -5.60401570e-02 -3.64627826e-02
+   1.12882160e-02  2.17267472e-02 -1.51638185e-02 -7.82884895e-03
+   2.42549716e-02  9.47012371e-02 -2.63034234e-02  1.17323752e-04
+  -5.24175603e-03  4.17987979e-02  8.85681175e-02  6.23648257e-03
+   1.86600445e-02  1.54629553e-02  3.50543487e-03  6.20600811e-03
+  -1.19790136e-02  1.59526686e-02  7.12126289e-03 -8.93192974e-02
+  -3.54345067e-03  1.23478749e-02  3.03928100e-02 -2.37294919e-02
+  -3.82791515e-02 -4.98746332e-02  4.66896396e-02 -1.23292353e-02
+  -1.10332642e-02  2.18105228e-02  2.18719684e-02  2.63538207e-02
+   1.05279990e-02  1.84618082e-02  8.36035958e-04 -6.65212529e-03
+   3.49396921e-02  1.49353131e-02 -1.11598376e-02  6.69097818e-03
+  -2.00059153e-02 -3.99015334e-02  3.01872978e-02 -1.09867013e-02
+  -4.11780764e-02  2.72052376e-02  1.16425770e-02 -1.55502397e-02
+   3.27700158e-02  3.95493921e-02  8.48722399e-03  2.19935247e-02
+  -9.88663671e-03 -3.61421471e-02 -4.77021449e-02  1.90074377e-02
+  -5.58286786e-02 -3.31738578e-02 -2.24914328e-02 -3.36175567e-02
+  -4.07354767e-02  1.08861874e-02  1.12811065e-02  7.63144499e-02
+   4.04801659e-03  3.07014132e-02  2.89177166e-02  4.71610048e-03
+   5.13384180e-02 -4.10364432e-02  1.23255240e-03 -2.50403779e-02
+   5.85903815e-02 -1.04965650e-01 -4.41705748e-02  1.18520202e-02
+  -5.83204038e-02 -4.82244633e-02  9.17658613e-03  1.03259613e-02
+  -5.09184442e-03 -3.23390265e-02 -3.19386688e-02 -1.53771394e-02
+  -5.21211851e-02  1.55619488e-02  2.93484466e-02 -1.92527985e-02
+   1.76694768e-02  2.67991926e-02  5.76553739e-02 -1.38163827e-02
+   2.60399830e-02  1.50401307e-02  1.27425133e-02 -2.29243926e-02
+  -1.06664941e-02  9.81930805e-03 -4.77511796e-02  1.64244040e-02]]
 

It’s a numpy array with only one coefficient per voxel:

@@ -1316,7 +1316,7 @@

Plotting the SVM weightsSpaceNet: decoding with spatial structure for better maps


-

Total running time of the script: (0 minutes 39.634 seconds)

+

Total running time of the script: (0 minutes 43.816 seconds)

Estimated memory usage: 916 MB

-plot nilearn 101
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fc911290c10>
+plot nilearn 101
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fac7ca2cd00>
 

This is not a very pretty plot. We just used the simplest possible @@ -754,7 +754,7 @@

Simple image manipulation: smoothingsmooth_anat_img

-
<nibabel.nifti1.Nifti1Image object at 0x7fc9175da5e0>
+
<nibabel.nifti1.Nifti1Image object at 0x7fac7ca23130>
 

This is an in-memory object. We can pass it to nilearn function, for @@ -762,7 +762,7 @@

Simple image manipulation: smoothing

-plot nilearn 101
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fc914faa2b0>
+plot nilearn 101
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fac7c95ec40>
 

We could also pass it to the smoothing function

@@ -770,7 +770,7 @@

Simple image manipulation: smoothingplotting.plot_img(more_smooth_anat_img)

-plot nilearn 101
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fc911215d60>
+plot nilearn 101
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fac7c966670>
 

@@ -792,8 +792,8 @@

Saving results to a fileTotal running time of the script: (0 minutes 6.310 seconds)

-

Estimated memory usage: 265 MB

+

Total running time of the script: (0 minutes 6.202 seconds)

+

Estimated memory usage: 255 MB

-plot python 101
[<matplotlib.lines.Line2D object at 0x7fc91757c6a0>]
+plot python 101
[<matplotlib.lines.Line2D object at 0x7fac86caf490>]
 
-

Total running time of the script: (0 minutes 0.714 seconds)

+

Total running time of the script: (0 minutes 0.855 seconds)

Estimated memory usage: 10 MB

@@ -1879,8 +1879,8 @@

Impact of plot parameters on visualization
-

Total running time of the script: (0 minutes 41.950 seconds)

-

Estimated memory usage: 424 MB

+

Total running time of the script: (0 minutes 35.803 seconds)

+

Estimated memory usage: 460 MB

-plot atlas
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fc9106f2d00>
+plot atlas
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fac7bedc400>
 

@@ -744,7 +744,7 @@

Visualizing the Juelich atlas
plotting.plot_roi(atlas_ju_filename, title="Juelich atlas")
 
-plot atlas
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fc917f757f0>
+plot atlas
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fac7c7de970>
 

@@ -771,8 +771,8 @@

Visualizing the Juelich atlas with contoursplotting.show() -plot atlas

Total running time of the script: (1 minutes 22.608 seconds)

-

Estimated memory usage: 443 MB

+plot atlas

Total running time of the script: (1 minutes 46.368 seconds)

+

Estimated memory usage: 457 MB

-

Total running time of the script: (0 minutes 9.327 seconds)

-

Estimated memory usage: 913 MB

+

Total running time of the script: (0 minutes 11.000 seconds)

+

Estimated memory usage: 963 MB

-Accent, Blues, BrBG, BuGn, BuPu, CMRmap, Dark2, GnBu, Greens, Greys, OrRd, Oranges, PRGn, Paired, Pastel1, Pastel2, PiYG, PuBu, PuBuGn, PuOr, PuRd, Purples, RdBu, RdGy, RdPu, RdYlBu, RdYlGn, Reds, Set1, Set2, Set3, Spectral, Wistia, YlGn, YlGnBu, YlOrBr, YlOrRd, afmhot, autumn, binary, bone, brg, bwr, cool, coolwarm, copper, cubehelix, flag, gist_earth, gist_gray, gist_heat, gist_ncar, gist_rainbow, gist_stern, gist_yarg, gnuplot, gnuplot2, gray, hot, hsv, jet, nipy_spectral, ocean, pink, prism, rainbow, seismic, spring, summer, tab10, tab20, tab20b, tab20c, terrain, winter

Total running time of the script: (0 minutes 3.251 seconds)

-

Estimated memory usage: 18 MB

+Accent, Blues, BrBG, BuGn, BuPu, CMRmap, Dark2, GnBu, Greens, Greys, OrRd, Oranges, PRGn, Paired, Pastel1, Pastel2, PiYG, PuBu, PuBuGn, PuOr, PuRd, Purples, RdBu, RdGy, RdPu, RdYlBu, RdYlGn, Reds, Set1, Set2, Set3, Spectral, Wistia, YlGn, YlGnBu, YlOrBr, YlOrRd, afmhot, autumn, binary, bone, brg, bwr, cool, coolwarm, copper, cubehelix, flag, gist_earth, gist_gray, gist_heat, gist_ncar, gist_rainbow, gist_stern, gist_yarg, gnuplot, gnuplot2, gray, hot, hsv, jet, nipy_spectral, ocean, pink, prism, rainbow, seismic, spring, summer, tab10, tab20, tab20b, tab20c, terrain, winter

Total running time of the script: (0 minutes 3.692 seconds)

+

Estimated memory usage: 19 MB

-plot demo glass brain
<nilearn.plotting.displays._projectors.OrthoProjector object at 0x7fc910ffe910>
+plot demo glass brain
<nilearn.plotting.displays._projectors.OrthoProjector object at 0x7fac7c7f5730>
 

@@ -741,7 +741,7 @@

Glass brain plotting: black background) -plot demo glass brain -plot demo glass brain

Total running time of the script: (0 minutes 3.331 seconds)

+plot demo glass brain

Total running time of the script: (0 minutes 4.101 seconds)

Estimated memory usage: 18 MB

-plot demo glass brain extensive
<nilearn.plotting.displays._projectors.OrthoProjector object at 0x7fc8fc5a5670>
+plot demo glass brain extensive
<nilearn.plotting.displays._projectors.OrthoProjector object at 0x7fac67ccea90>
 

The same figure, with a colorbar, can be produced by @@ -756,7 +756,7 @@

Demo glass brain plotting
plot_glass_brain(stat_img, threshold=3, colorbar=True)
 

-plot demo glass brain extensive
<nilearn.plotting.displays._projectors.OrthoProjector object at 0x7fc9108dec10>
+plot demo glass brain extensive
<nilearn.plotting.displays._projectors.OrthoProjector object at 0x7fac7c733dc0>
 

Here, we show how to set a black background, and we only view sagittal and @@ -771,7 +771,7 @@

Demo glass brain plotting)

-plot demo glass brain extensive -plot demo glass brain extensive -plot demo glass brain extensive -plot demo glass brain extensive -plot demo glass brain extensive -plot demo glass brain extensive -plot demo glass brain extensive -plot demo glass brain extensive -plot demo glass brain extensive

Total running time of the script: (0 minutes 26.643 seconds)

+plot demo glass brain extensive

Total running time of the script: (0 minutes 33.498 seconds)

Estimated memory usage: 9 MB

-plot demo more plotting
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fc91032bf10>
+plot demo more plotting
<nilearn.plotting.displays._slicers.OrthoSlicer object at 0x7fac7c512670>
 
@@ -796,7 +796,7 @@

Visualizing in - single view ‘axial’ with number of cuts=5)

-plot demo more plotting -plot demo more plotting -plot demo more plotting -plot demo more plotting
<nilearn.plotting.displays._slicers.ZSlicer object at 0x7fc91029e160>
+plot demo more plotting
<nilearn.plotting.displays._slicers.ZSlicer object at 0x7fac7c7333a0>
 
@@ -874,7 +874,7 @@

Visualize in - two views ‘sagittal’ and ‘axial’ with given coordinat )

-plot demo more plotting
-plot demo more plotting
<nilearn.plotting.displays._slicers.YXSlicer object at 0x7fc91025d4f0>
+plot demo more plotting
<nilearn.plotting.displays._slicers.YXSlicer object at 0x7fac7c393070>
 
@@ -909,7 +909,7 @@

Now, views are changed to ‘coronal’ and ‘axial’ views with coordinat )

-plot demo more plotting
-plot demo more plotting -plot demo more plotting -plot demo more plotting -plot demo more plotting -

Total running time of the script: (0 minutes 27.563 seconds)

+

Total running time of the script: (0 minutes 33.935 seconds)

Estimated memory usage: 916 MB