-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathretinex_pde_lib.c
351 lines (312 loc) · 9.89 KB
/
retinex_pde_lib.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
/*
* Copyright 2009-2011 IPOL Image Processing On Line http://www.ipol.im/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file retinex_pde_lib.c
* @brief laplacian, DFT and Poisson routines
*
* @author Nicolas Limare <[email protected]>
*/
#include <stdlib.h>
#include <math.h>
#include <float.h>
#include <fftw3.h>
#include "debug.h"
/* ensure consistency */
#include "retinex_pde_lib.h"
/* M_PI is a POSIX definition */
#ifndef M_PI
/** macro definition for Pi */
#define M_PI 3.14159265358979323846
#endif /* !M_PI */
#ifndef NDEBUG
#define LAPLACE 1
#define POISSON 2
#define FOURIER 3
#endif
/*
* number of threads to use for libfftw
* define to enable parallel FFT multi-threading
*/
/* #define FFTW_NTHREADS 4 */
/**
* @brief compute the discrete laplacian of a 2D array with a threshold
*
* This function computes the discrete laplacian, ie
* @f$ (F_{i - 1, j} - F_{i, j})
* + (F_{i + 1, j} - F_{i, j})
* + (F_{i, j - 1} - F_{i, j})
* + (F_{i, j + 1} - F_{i, j}) \f$.
* On the border, differences with "outside of the array" are 0.
* If the absolute value of difference is < t, 0 is used instead.
*
* This step takes a significant part of the computation time, and
* needs to be fast. In that case, we observed that (with our compiler
* and architecture):
* - pointer arithmetic is faster than data[i]
* - if() is faster than ( ? : )
*
* @param data_out output array
* @param data_in input array
* @param nx, ny array size
* @param t threshold
*
* @return data_out
*
* @todo split corner/border/inner
*/
static float *discrete_laplacian_threshold(float *data_out,
const float *data_in,
size_t nx, size_t ny, float t)
{
size_t i, j;
float *ptr_out;
float diff;
/* pointers to the current and neighbour values */
const float *ptr_in, *ptr_in_xm1, *ptr_in_xp1, *ptr_in_ym1, *ptr_in_yp1;
/* sanity check */
if (NULL == data_in || NULL == data_out) {
fprintf(stderr, "a pointer is NULL and should not be so\n");
abort();
}
DBG_CLOCK_TOGGLE(LAPLACE);
/* pointers to the data and neighbour values */
/*
* y-1
* x-1 ptr x+1
* y+1
* <---------------------nx------->
*/
ptr_in = data_in;
ptr_in_xm1 = data_in - 1;
ptr_in_xp1 = data_in + 1;
ptr_in_ym1 = data_in - nx;
ptr_in_yp1 = data_in + nx;
ptr_out = data_out;
/* iterate on j, i, following the array order */
for (j = 0; j < ny; j++) {
for (i = 0; i < nx; i++) {
*ptr_out = 0.;
/* row differences */
if (0 < i) {
diff = *ptr_in - *ptr_in_xm1;
if (fabs(diff) > t)
*ptr_out += diff;
}
if (nx - 1 > i) {
diff = *ptr_in - *ptr_in_xp1;
if (fabs(diff) > t)
*ptr_out += diff;
}
/* column differences */
if (0 < j) {
diff = *ptr_in - *ptr_in_ym1;
if (fabs(diff) > t)
*ptr_out += diff;
}
if (ny - 1 > j) {
diff = *ptr_in - *ptr_in_yp1;
if (fabs(diff) > t)
*ptr_out += diff;
}
ptr_in++;
ptr_in_xm1++;
ptr_in_xp1++;
ptr_in_ym1++;
ptr_in_yp1++;
ptr_out++;
}
}
DBG_CLOCK_TOGGLE(LAPLACE);
return data_out;
}
/**
* @brief compute a cosinus table
*
* Allocate and fill a table of n values cos(i Pi / n) for i in [0..n[.
*
* @param size the table size
*
* @return the table, allocated and filled
*/
static double *cos_table(size_t size)
{
double *table = NULL;
double pi_size;
size_t i;
/* allocate the cosinus table */
if (NULL == (table = (double *) malloc(sizeof(double) * size))) {
fprintf(stderr, "allocation error\n");
abort();
}
/*
* fill the cosinus table,
* table[i] = cos(i Pi / n) for i in [0..n[
*/
pi_size = M_PI / size;
for (i = 0; i < size; i++)
table[i] = cos(pi_size * i);
return table;
}
/**
* @brief perform a Poisson PDE in the Fourier DCT space
*
* @f$ u(i, j) = F(i, j) * m / (4 - 2 cos(i PI / nx)
* - 2 cos(j PI / ny)) @f$
* if @f$ (i, j) \neq (0, 0) @f$,
* @f$ u(0, 0) = 0 @f$
*
* When this function is successively used on arrays of identical
* size, the trigonometric computation is redundant and could be kept
* in memory for a faster code. However, in our use case, the speedup
* is marginal and we prefer to recompute this data and keep the code
* simple.
*
* @param data the dct complex coefficients, of size nx x ny
* @param nx, ny data array size
* @param m global multiplication parameter (DCT normalization)
*
* @return the data array, updated
*/
static float *retinex_poisson_dct(float *data, size_t nx, size_t ny, double m)
{
double *cosx = NULL, *cosy = NULL;
size_t i;
double m2;
DBG_CLOCK_TOGGLE(POISSON);
/*
* get the cosinus tables
* cosx[i] = cos(i Pi / nx) for i in [0..nx[
* cosy[i] = cos(i Pi / ny) for i in [0..ny[
*/
cosx = cos_table(nx);
cosy = cos_table(ny);
/*
* we will now multiply data[i, j] by
* m / (4 - 2 * cosx[i] - 2 * cosy[j]))
* and set data[0, 0] to 0
*/
m2 = m / 2.;
/*
* handle the first value, data[0, 0] = 0
* after that, by construction, we always have
* cosx[] + cosy[] != 2.
*/
data[0] = 0.;
/*
* continue with all the array:
* i % nx is the position on the x axis (column number)
* i / nx is the position on the y axis (row number)
*/
for (i = 1; i < nx * ny; i++)
data[i] *= m2 / (2. - cosx[i % nx] - cosy[i / nx]);
free(cosx);
free(cosy);
DBG_CLOCK_TOGGLE(POISSON);
return data;
}
/*
* RETINEX
*/
/**
* @brief retinex PDE implementation
*
* This function solves the Retinex PDE equation with forward and
* backward DCT.
*
* The input array is processed as follow:
*
* @li a discrete laplacian is computed with a threshold;
* @li this discrete laplacian array is symmetrised in both directions;
* @li this data is transformed by forward DFT (both steps can be
* handled by a simple DCT);
* @li the DFT data is modified by
* @f$ \hat{u}(i, j) = \frac{\hat{F}(i, j)}
* {4 - 2 \cos(\frac{i \pi}{n_x})
* - 2 \cos(\frac{j \pi}{n_y})} @f$;
* @li this data is transformed by backward DFT.
*
* @param data input/output array
* @param nx, ny dimension
* @param t retinex threshold
*
* @return data, or NULL if an error occured
*/
float *retinex_pde(float *data, size_t nx, size_t ny, float t)
{
fftwf_plan dct_fw, dct_bw;
float *data_fft, *data_tmp;
DBG_CLOCK_RESET(LAPLACE);
DBG_CLOCK_RESET(POISSON);
DBG_CLOCK_RESET(FOURIER);
/* check allocaton */
if (NULL == data) {
fprintf(stderr, "a pointer is NULL and should not be so\n");
abort();
}
/* allocate the float tmp array */
if (NULL == (data_tmp = (float *) fftwf_malloc(sizeof(float) * nx * ny))) {
fprintf(stderr, "allocation error\n");
abort();
}
/* compute the laplacian : data -> data_tmp */
(void) discrete_laplacian_threshold(data_tmp, data, nx, ny, t);
/* allocate the float-complex FFT array */
if (NULL == (data_fft = (float *) fftwf_malloc(sizeof(float) * nx * ny))) {
fprintf(stderr, "allocation error\n");
abort();
}
/* start threaded fftw if FFTW_NTHREADS is defined */
#ifdef FFTW_NTHREADS
if (0 == fftwf_init_threads()) {
fprintf(stderr, "fftw initialisation error\n");
abort();
}
fftwf_plan_with_nthreads(FFTW_NTHREADS);
#endif /* FFTW_NTHREADS */
/* create the DFT forward plan and run the DCT : data_tmp -> data_fft */
DBG_CLOCK_TOGGLE(FOURIER);
dct_fw = fftwf_plan_r2r_2d((int) ny, (int) nx,
data_tmp, data_fft,
FFTW_REDFT10, FFTW_REDFT10,
FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(dct_fw);
DBG_CLOCK_TOGGLE(FOURIER);
fftwf_free(data_tmp);
/* solve the Poisson PDE in Fourier space */
/* 1. / (float) (nx * ny)) is the DCT normalisation term, see libfftw */
(void) retinex_poisson_dct(data_fft, nx, ny, 1. / (double) (nx * ny));
/* create the DFT backward plan and run the iDCT : data_fft -> data */
DBG_CLOCK_TOGGLE(FOURIER);
dct_bw = fftwf_plan_r2r_2d((int) ny, (int) nx,
data_fft, data,
FFTW_REDFT01, FFTW_REDFT01,
FFTW_ESTIMATE | FFTW_DESTROY_INPUT);
fftwf_execute(dct_bw);
DBG_CLOCK_TOGGLE(FOURIER);
/* cleanup */
fftwf_destroy_plan(dct_fw);
fftwf_destroy_plan(dct_bw);
fftwf_free(data_fft);
fftwf_cleanup();
#ifdef FFTW_NTHREADS
fftwf_cleanup_threads();
#endif /* FFTW_NTHREADS */
DBG_PRINTF1("laplace\t%0.2fs\n", DBG_CLOCK_S(LAPLACE));
DBG_PRINTF1("poisson\t%0.2fs\n", DBG_CLOCK_S(POISSON));
DBG_PRINTF1("fourier\t%0.2fs\n", DBG_CLOCK_S(FOURIER));
return data;
}