-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathdipy_registration.Rmd
278 lines (225 loc) · 8.38 KB
/
dipy_registration.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
---
jupyter:
jupytext:
notebook_metadata_filter: all,-language_info
split_at_heading: true
text_representation:
extension: .Rmd
format_name: rmarkdown
format_version: '1.2'
jupytext_version: 1.10.3
kernelspec:
display_name: Python 3
language: python
name: python3
---
# Registration with dipy
[Dipy](http://nipy.org/dipy) is a Python package for diffusion imaging.
Install in the usual way from the terminal:
```
pip3 install --user dipy
```
It has general image registration algorithms, including affine and non-linear
registration.
These are based on the model and algorithms implemented in the [ANTS](http://picsl.upenn.edu/software/ants/) toolbox.
ANTS is written in C++.
Python is an excellent language to work in for this problem because Python
code is easier for most scientists to read than C++. Dipy uses an optimized,
compiled Python / C fusion language called [Cython](http://cython.org/), that allows us to mix
Python code and C-like code, to give speed of execution close to that of
hand-written C code.
This page is closely based on the 3D registration tutorials in the
Dipy documentation:
* [dipy affine registration
tutorial](http://nipy.org/dipy/examples_built/affine_registration_3d.html);
* [dipy non-linear registration
tutorial](http://nipy.org/dipy/examples_built/syn_registration_3d.html#example-syn-registration-3d).
```{python}
# Set up our usual routines and configuration
import numpy as np
np.set_printoptions(precision=4, suppress=True)
import matplotlib.pyplot as plt
plt.rcParams['image.cmap'] = 'gray'
import nibabel as nib
import nipraxis
```
## Affine registration
Import the Dipy routines we are going to need:
```{python}
from dipy.viz import regtools
from dipy.align.imaffine import (AffineMap,
MutualInformationMetric,
AffineRegistration)
from dipy.align.transforms import (TranslationTransform3D,
RigidTransform3D,
AffineTransform3D)
```
Next we load the subject structural image and the template image. These images
have already had all voxels outside the brain set to zero. For the individual
subject image, the [OpenFMRI](https://openfmri.org/) project ran the [FSL](http://www.fmrib.ox.ac.uk/fsl) [Brain Extraction Tool](http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET) on
the image before uploading to the OpenFMRI website. The template comes with
an image defining in-brain voxels. The registration works better on images for
which we have masked out the skull and face.
```{python}
# Masked structural
masked_subj_fname = nipraxis.fetch_file('ds114_sub009_highres_brain_222.nii')
masked_subj_fname
```
```{python}
# Masked template
masked_template_fname = nipraxis.fetch_file(
'mni_icbm152_t1_tal_nlin_asym_09a_masked_222.nii')
masked_template_fname
```
```{python}
moving_img = nib.load(masked_subj_fname)
template_img = nib.load(masked_template_fname)
```
Dipy works on the image data arrays. It also needs the affine arrays of each
of the images:
```{python}
moving_data = moving_img.get_fdata()
moving_affine = moving_img.affine
template_data = template_img.get_fdata()
template_affine = template_img.affine
```
We use the nice Dipy routines to show the spatial correspondence of the
images, as recorded in the affines.
```{python}
identity = np.eye(4)
affine_map = AffineMap(identity,
template_data.shape, template_affine,
moving_data.shape, moving_affine)
resampled = affine_map.transform(moving_data)
regtools.overlay_slices(template_data, resampled, None, 0,
"Template", "Moving")
regtools.overlay_slices(template_data, resampled, None, 1,
"Template", "Moving")
regtools.overlay_slices(template_data, resampled, None, 2,
"Template", "Moving")
```
Next we define an affine registration, by giving a few standard parameters.
See the Dipy registration tutorial for the details of what these parameters
mean:
```{python}
# The mismatch metric
nbins = 32
sampling_prop = None
metric = MutualInformationMetric(nbins, sampling_prop)
```
```{python}
# The optimization strategy
level_iters = [10, 10, 5]
sigmas = [3.0, 1.0, 0.0]
factors = [4, 2, 1]
```
We set up the registration object, ready to do the registration:
```{python}
affreg = AffineRegistration(metric=metric,
level_iters=level_iters,
sigmas=sigmas,
factors=factors)
```
First we optimize the translations. We do the translations first to get these
in the ballpark. After that we will estimate translations and rotations
together, using the estimated translations as a starting point. Last we will
use the translations and rotations as a starting point for a full affine
registration.
```{python}
transform = TranslationTransform3D()
params0 = None
translation = affreg.optimize(template_data, moving_data, transform, params0,
template_affine, moving_affine)
```
We now have our estimated translations.
```{python}
translation.affine
```
The visualization tool now shows the images overlay much better than they did
before:
```{python}
transformed = translation.transform(moving_data)
regtools.overlay_slices(template_data, transformed, None, 0,
"Template", "Transformed")
regtools.overlay_slices(template_data, transformed, None, 1,
"Template", "Transformed")
regtools.overlay_slices(template_data, transformed, None, 2,
"Template", "Transformed")
```
Next we use the estimated translations as a starting point to optimize a
rigid-body transform. A rigid-body transform is a transform that does not
change the shape of the object. It allows only translations and rotations.
```{python}
transform = RigidTransform3D()
rigid = affreg.optimize(template_data, moving_data, transform, params0,
template_affine, moving_affine,
starting_affine=translation.affine)
```
```{python}
rigid.affine
```
The estimated rotations are small, so they don’t make much difference to the
overlay of the image.
```{python}
transformed = rigid.transform(moving_data)
regtools.overlay_slices(template_data, transformed, None, 0,
"Template", "Transformed")
regtools.overlay_slices(template_data, transformed, None, 1,
"Template", "Transformed")
regtools.overlay_slices(template_data, transformed, None, 2,
"Template", "Transformed")
```
Last, we do a full affine registration, using the rigid body estimate as a
starting point.
```{python}
transform = AffineTransform3D()
# Bump up the iterations to get an more exact fit
affreg.level_iters = [1000, 1000, 100]
affine = affreg.optimize(template_data, moving_data, transform, params0,
template_affine, moving_affine,
starting_affine=rigid.affine)
```
```{python}
affine.affine
```
```{python}
transformed = affine.transform(moving_data)
regtools.overlay_slices(template_data, transformed, None, 0,
"Template", "Transformed")
regtools.overlay_slices(template_data, transformed, None, 1,
"Template", "Transformed")
regtools.overlay_slices(template_data, transformed, None, 2,
"Template", "Transformed")
```
# Non-linear registration
```{python}
from dipy.align.imwarp import SymmetricDiffeomorphicRegistration
from dipy.align.imwarp import DiffeomorphicMap
from dipy.align.metrics import CCMetric
```
```{python}
# The mismatch metric
metric = CCMetric(3)
# The optimization strategy:
level_iters = [10, 10, 5]
# Registration object
sdr = SymmetricDiffeomorphicRegistration(metric, level_iters)
```
Do the registration:
```{python}
mapping = sdr.optimize(template_data, moving_data, template_affine,
moving_affine, affine.affine)
```
Resample using the new parameters:
```{python}
warped_moving = mapping.transform(moving_data)
```
Display the transformed (warped) image:
```{python}
regtools.overlay_slices(template_data, warped_moving, None, 0,
"Template", "Transformed")
regtools.overlay_slices(template_data, warped_moving, None, 1,
"Template", "Transformed")
regtools.overlay_slices(template_data, warped_moving, None, 2,
"Template", "Transformed")
```