-
Notifications
You must be signed in to change notification settings - Fork 29
/
0033-Search-in-Rotated-Sorted-Array.py
72 lines (58 loc) · 2.01 KB
/
0033-Search-in-Rotated-Sorted-Array.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
'''
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
Your algorithm's runtime complexity must be in the order of O(log n).
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
'''
#Method NN
class Solution:
def search(self, nums: List[int], target: int) -> int:
if not nums:
return -1
lower, upper = 0, len(nums) - 1
while lower < upper:
mid = (lower + upper) // 2
if nums[mid] > nums[upper]:
lower = mid + 1
else:
upper = mid
if nums[lower] <= target <= nums[-1]:
return self.binary_search(nums, lower, len(nums) - 1, target)
else:
return self.binary_search(nums, 0, lower - 1, target)
def binary_search(self, nums, lower, upper, target):
while lower <= upper:
mid = (lower + upper) // 2
if nums[mid] == target:
return mid
elif nums[mid] > target:
upper = mid - 1
else:
lower = mid + 1
return - 1
#Method AK
class Solution(object):
def search(self, nums, target):
start, end = 0, len(nums) - 1
while start <= end:
mid = (start + end)//2
if nums[mid] == target:
return mid
elif nums[start] <= nums[mid]:
if nums[start] <= target < nums[mid]:
end = mid -1
else:
start = mid + 1
else:
if nums[end] >= target > nums[mid]:
start = mid + 1
else:
end = mid - 1
return -1