-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathunit_tests.py
126 lines (105 loc) · 4.45 KB
/
unit_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#!/usr/bin/env python3
"""
Tests for LambdaRank Tensorflow operation.
.. moduleauthor:: Nishant Sharma()
"""
from attrdict import AttrDict
import unittest
import numpy as np
import tensorflow as tf
from lambdarank import lambdarank_tf
from ref_impl import lambdarank_ref, calc_lambdas
from slide2vecRanking import Slide2VecRankingModel
def generateInputs():
"""
Generate inputs for running LambdaRank.
"""
numSlides = 10
numQueries = 5
queryVecLenIn=300
slideVecLen=50
input_length=1
maxRating = numSlides/2
max_k = 7
n_samples = numSlides * numQueries
X = np.random.rand(numSlides * numQueries, queryVecLenIn)
y = np.random.randint(0, maxRating+1, n_samples)
rids = np.array([int(i%numSlides) for i in range(n_samples)])
qids = np.array([int(i/numSlides) for i in range(n_samples)])
y_pred = np.random.rand(n_samples)
return AttrDict(locals())
def runTest1():
"""
In this test we match output of tensorflow RankNet implementation with reference
python implementation.
"""
for i in range(10):
np.random.seed(i)
inputs = generateInputs()
# Call python version.
ref_values = lambdarank_ref(inputs.qids, inputs.y, inputs.y_pred, inputs.max_k)
(ranknet_cost_ref, lambdarank_cost_ref, discrete_metric_ref, lambdas_ref) = ref_values
# Call tensorflow op version.
tf_values = lambdarank_tf(inputs.qids, inputs.y, inputs.y_pred, inputs.max_k)
(ranknet_cost_tf, lambdarank_cost_tf, discrete_metric_tf, lambdas_tf) = tf_values
# Match TF OP output with reference output.
# assert(abs(ranknet_cost_ref - ranknet_cost_tf) < 1e-5)
assert(abs(discrete_metric_ref - discrete_metric_tf) < 1e-5 * (discrete_metric_ref + discrete_metric_tf))
assert(abs(lambdarank_cost_ref - lambdarank_cost_tf) < 1e-5 * (lambdarank_cost_ref + lambdarank_cost_tf))
# import pdb;pdb.set_trace()
assert(np.linalg.norm(lambdas_ref - lambdas_tf) < 1e-5)
def runTest2():
"""
In this test, we check that lambdas are really working as gradients as they ought to.
We preturb each dimension of y_pred slightly by amount delta and see if output
lambdarank scores change by lambda[i]*delta amount or not.
"""
inputs = generateInputs()
from pyltr.metrics import NDCG
from pyltr.util.group import get_groups
metric = NDCG(k=7)
delta = 0.000001
# Emperical gradient of cost for ref and tf implementations.
cost_grad_ref_emp = np.zeros((inputs.n_samples))
cost_grad_tf_emp = np.zeros((inputs.n_samples))
# Call python version.
ref_values = lambdarank_ref(inputs.qids, inputs.y, inputs.y_pred, inputs.max_k)
(_, cost_p_ref, _, lambdas_p_ref) = ref_values
# Call tensorflow OP version.
tf_values = lambdarank_tf(inputs.qids, inputs.y, inputs.y_pred, inputs.max_k)
(_, cost_p_tf, _, lambdas_p_tf) = tf_values
# For each input, check if each sample is behaving as expected.
for i in range(inputs.n_samples):
# Change y_pred[i]
oldValue = inputs.y_pred[i]
inputs.y_pred[i] = oldValue + delta
# Call reference version.
ref_values = lambdarank_ref(inputs.qids, inputs.y, inputs.y_pred, metric)
(_, cost_ref, _, _) = ref_values
cost_grad_ref_emp[i] = (cost_ref-cost_p_ref)/delta
# Call tensorflow op version.
tf_values = lambdarank_tf(inputs.qids, inputs.y, inputs.y_pred, inputs.max_k)
(_, cost_tf, _, _) = tf_values
cost_grad_tf_emp[i] = (cost_tf-cost_p_tf)/delta
inputs.y_pred[i] = oldValue
# Assert the refernce and emperical gradients are very close.
assert(np.linalg.norm(lambdas_p_ref - lambdas_p_tf) < 1e-5)
assert(np.linalg.norm(lambdas_p_ref - cost_grad_ref_emp) < 1e-5)
assert(np.linalg.norm(lambdas_p_tf - cost_grad_tf_emp) < 1e-5)
def runTest3():
"""
In this test, we have a model and we try to improve ranking of this
"""
inputs = generateInputs()
scoringModel = Slide2VecRankingModel(
queryVecLenIn=inputs.queryVecLenIn,
slideVecLen=inputs.slideVecLen,
slideCount=inputs.numSlides,
input_length=inputs.input_length)
# lambdaRankModel._calc_cross_lambdas(1.0, y, y_pred, debugIndex=-1, full=True, debug=True)
scoringModel.fit(inputs.X, inputs.y, inputs.rids, inputs.qids, max_k=inputs.max_k)
scoringModel.predict(inputs.X, inputs.rids, inputs.qids)
if __name__ == "__main__":
runTest1()
runTest2()
runTest3()