-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_epoch.py
55 lines (45 loc) · 1.67 KB
/
train_epoch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
from sklearn import metrics
import torch.nn.functional as F
import wandb
import time
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def train_epoch(model, optimizer, data_loader, loss_history, scheduler):
total_samples = len(data_loader.dataset)
model.train()
running_loss = 0.0
old_time = time.time()
correct_samples = 0
for i, (data, target) in enumerate(data_loader):
optimizer.zero_grad()
output = F.log_softmax(model(data), dim=1)
target = target.to(device)
output = output.to(device)
_, pred = torch.max(output, dim=1)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
scheduler.step()
running_loss += loss.item()
correct_samples += pred.eq(target).sum()
target = target.cpu().detach().numpy()
pred = pred.cpu().detach().numpy()
f1_score = metrics.f1_score(target, pred, average='micro')
if i % 100 == 0:
new_time = time.time()
print('[' + '{:5}'.format(i * len(data)) + '/' + '{:5}'.format(total_samples) +
' (' + '{:3.0f}'.format(100 * i / len(data_loader)) + '%)] Loss: ' +
'{:6.4f}'.format(loss.item()))
loss_history.append(loss.item())
wandb.log({
'train_loss': loss.item(),
'train_f1_score': f1_score
})
print(f'Execution time: {new_time - old_time}')
old_time = time.time()
acc = 100.0 * correct_samples / total_samples
wandb.log({
'train_accuracy': acc
})
print(f'Accuracy: ' + '{:4.2f}'.format(acc) + '%')
return acc