-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcross_role_motif.py
54 lines (42 loc) · 2.18 KB
/
cross_role_motif.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import networkx as nx
from itertools import permutations, combinations
import numpy as np
# Function to find triad motifs (3-node subgraphs) in a directed graph
def find_triad_motifs_digraph(DG):
motifs = {} # Store detected motifs and their counts
# Iterate over all possible combinations of 3 nodes
for n1, n2, n3 in combinations(DG.nodes(), 3):
# Check for directed edges between the node combinations
edges = [(ni, nj) for ni, nj in permutations([n1, n2, n3], 2) if DG.has_edge(ni, nj)]
# Only consider if there are 2 or more directed edges in the triad
if len(edges) >= 2:
sg = DG.subgraph([n1, n2, n3]).copy()
matrix = nx.to_numpy_array(sg) # Convert subgraph to adjacency matrix
matrix_tuple = tuple(map(tuple, matrix.tolist())) # Convert matrix to tuple for hashing
# Count occurrences of motifs
motifs[matrix_tuple] = motifs.get(matrix_tuple, 0) + 1
return motifs
# Function to calculate the z-scores for triad motifs by comparing to random graphs
def calculate_zscore(DG, num_randomizations=1000):
original_motifs = find_triad_motifs_digraph(DG) # Find motifs in the original graph
random_motifs_counts = {motif: [] for motif in original_motifs.keys()} # Store counts from random graphs
# Generate random graphs and count motifs
for _ in range(num_randomizations):
random_DG = nx.DiGraph(nx.random_reference(DG.to_undirected(), connectivity=False))
random_motifs = find_triad_motifs_digraph(random_DG)
for motif in random_motifs_counts.keys():
random_motifs_counts[motif].append(random_motifs.get(motif, 0))
# Calculate z-scores for each motif
z_scores = {}
for motif, counts in random_motifs_counts.items():
mean = np.mean(counts)
std = np.std(counts)
z_scores[motif] = (original_motifs[motif] - mean) / std
return z_scores
# Read in a directed graph from a GraphML file
filename = ""
G = nx.read_graphml(f'{filename}.graphml')
# Calculate z-scores and print results
z_scores = calculate_zscore(G)
for motif, z in z_scores.items():
print(f"Motif {motif} has z-score {z:.2f}")