forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
115 lines (98 loc) · 4.46 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import argparse
import paddle
import paddle.nn.functional as F
import paddlenlp as ppnlp
from paddlenlp.data import JiebaTokenizer, Pad, Stack, Tuple, Vocab
from model import SimNet
from utils import preprocess_prediction_data
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument("--batch_size", type=int, default=64, help="Total examples' number of a batch for training.")
parser.add_argument("--vocab_path", type=str, default="./simnet_vocab.txt", help="The path to vocabulary.")
parser.add_argument('--network', type=str, default="lstm", help="Which network you would like to choose bow, cnn, lstm or gru ?")
parser.add_argument("--params_path", type=str, default='./checkpoints/final.pdparams', help="The path of model parameter to be loaded.")
args = parser.parse_args()
# yapf: enable
def predict(model, data, label_map, batch_size=1, pad_token_id=0):
"""
Predicts the data labels.
Args:
model (obj:`paddle.nn.Layer`): A model to classify texts.
data (obj:`List(Example)`): The processed data whose each element is a Example (numedtuple) object.
A Example object contains `text`(word_ids) and `seq_len`(sequence length).
label_map(obj:`dict`): The label id (key) to label str (value) map.
batch_size(obj:`int`, defaults to 1): The number of batch.
pad_token_id(obj:`int`, optional, defaults to 0): The pad token index.
Returns:
results(obj:`dict`): All the predictions labels.
"""
# Seperates data into some batches.
batches = [
data[idx:idx + batch_size] for idx in range(0, len(data), batch_size)
]
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=pad_token_id), # query_ids
Pad(axis=0, pad_val=pad_token_id), # title_ids
Stack(dtype="int64"), # query_seq_lens
Stack(dtype="int64"), # title_seq_lens
): [data for data in fn(samples)]
results = []
model.eval()
for batch in batches:
query_ids, title_ids, query_seq_lens, title_seq_lens = batchify_fn(
batch)
query_ids = paddle.to_tensor(query_ids)
title_ids = paddle.to_tensor(title_ids)
query_seq_lens = paddle.to_tensor(query_seq_lens)
title_seq_lens = paddle.to_tensor(title_seq_lens)
logits = model(query_ids, title_ids, query_seq_lens, title_seq_lens)
probs = F.softmax(logits, axis=1)
idx = paddle.argmax(probs, axis=1).numpy()
idx = idx.tolist()
labels = [label_map[i] for i in idx]
results.extend(labels)
return results
if __name__ == "__main__":
paddle.set_device(args.device)
# Loads vocab.
vocab = Vocab.load_vocabulary(
args.vocab_path, unk_token='[UNK]', pad_token='[PAD]')
tokenizer = JiebaTokenizer(vocab)
label_map = {0: 'dissimilar', 1: 'similar'}
# Constructs the newtork.
model = SimNet(
network=args.network, vocab_size=len(vocab), num_classes=len(label_map))
# Loads model parameters.
state_dict = paddle.load(args.params_path)
model.set_dict(state_dict)
print("Loaded parameters from %s" % args.params_path)
# Firstly pre-processing prediction data and then do predict.
data = [
['世界上什么东西最小', '世界上什么东西最小?'],
['光眼睛大就好看吗', '眼睛好看吗?'],
['小蝌蚪找妈妈怎么样', '小蝌蚪找妈妈是谁画的'],
]
examples = preprocess_prediction_data(data, tokenizer)
results = predict(
model,
examples,
label_map=label_map,
batch_size=args.batch_size,
pad_token_id=vocab.token_to_idx.get('[PAD]', 0))
for idx, text in enumerate(data):
print('Data: {} \t Label: {}'.format(text, results[idx]))