forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
150 lines (130 loc) · 5.58 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import argparse
import os
import random
import time
import paddle
import paddlenlp as ppnlp
from paddlenlp.data import JiebaTokenizer, Pad, Stack, Tuple, Vocab
from paddlenlp.datasets import load_dataset
from model import SimNet
from utils import convert_example
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("--epochs", type=int, default=10, help="Number of epoches for training.")
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument("--lr", type=float, default=5e-4, help="Learning rate used to train.")
parser.add_argument("--save_dir", type=str, default='checkpoints/', help="Directory to save model checkpoint")
parser.add_argument("--batch_size", type=int, default=64, help="Total examples' number of a batch for training.")
parser.add_argument("--vocab_path", type=str, default="./simnet_vocab.txt", help="The directory to dataset.")
parser.add_argument('--network', type=str, default="lstm", help="Which network you would like to choose bow, cnn, lstm or gru ?")
parser.add_argument("--init_from_ckpt", type=str, default=None, help="The path of checkpoint to be loaded.")
args = parser.parse_args()
# yapf: enable
def create_dataloader(dataset,
trans_fn=None,
mode='train',
batch_size=1,
batchify_fn=None):
"""
Creats dataloader.
Args:
dataset(obj:`paddle.io.Dataset`): Dataset instance.
trans_fn(obj:`callable`, optional, defaults to `None`): function to convert a data sample to input ids, etc.
mode(obj:`str`, optional, defaults to obj:`train`): If mode is 'train', it will shuffle the dataset randomly.
batch_size(obj:`int`, optional, defaults to 1): The sample number of a mini-batch.
batchify_fn(obj:`callable`, optional, defaults to `None`): function to generate mini-batch data by merging
the sample list, None for only stack each fields of sample in axis
0(same as :attr::`np.stack(..., axis=0)`).
Returns:
dataloader(obj:`paddle.io.DataLoader`): The dataloader which generates batches.
"""
if trans_fn:
dataset = dataset.map(trans_fn)
shuffle = True if mode == 'train' else False
if mode == "train":
sampler = paddle.io.DistributedBatchSampler(
dataset=dataset, batch_size=batch_size, shuffle=True)
else:
sampler = paddle.io.BatchSampler(
dataset=dataset, batch_size=batch_size, shuffle=shuffle)
dataloader = paddle.io.DataLoader(
dataset,
batch_sampler=sampler,
return_list=True,
collate_fn=batchify_fn)
return dataloader
if __name__ == "__main__":
paddle.set_device(args.device)
# Loads vocab.
if not os.path.exists(args.vocab_path):
raise RuntimeError('The vocab_path can not be found in the path %s' %
args.vocab_path)
vocab = Vocab.load_vocabulary(
args.vocab_path, unk_token='[UNK]', pad_token='[PAD]')
# Loads dataset.
train_ds, dev_ds, test_ds = load_dataset(
"lcqmc", splits=["train", "dev", "test"])
# Constructs the newtork.
model = SimNet(
network=args.network,
vocab_size=len(vocab),
num_classes=len(train_ds.label_list))
model = paddle.Model(model)
# Reads data and generates mini-batches.
batchify_fn = lambda samples, fn=Tuple(
Pad(axis=0, pad_val=vocab.token_to_idx.get('[PAD]', 0)), # query_ids
Pad(axis=0, pad_val=vocab.token_to_idx.get('[PAD]', 0)), # title_ids
Stack(dtype="int64"), # query_seq_lens
Stack(dtype="int64"), # title_seq_lens
Stack(dtype="int64") # label
): [data for data in fn(samples)]
tokenizer = ppnlp.data.JiebaTokenizer(vocab)
trans_fn = partial(convert_example, tokenizer=tokenizer, is_test=False)
train_loader = create_dataloader(
train_ds,
trans_fn=trans_fn,
batch_size=args.batch_size,
mode='train',
batchify_fn=batchify_fn)
dev_loader = create_dataloader(
dev_ds,
trans_fn=trans_fn,
batch_size=args.batch_size,
mode='validation',
batchify_fn=batchify_fn)
test_loader = create_dataloader(
test_ds,
trans_fn=trans_fn,
batch_size=args.batch_size,
mode='test',
batchify_fn=batchify_fn)
optimizer = paddle.optimizer.Adam(
parameters=model.parameters(), learning_rate=args.lr)
# Defines loss and metric.
criterion = paddle.nn.CrossEntropyLoss()
metric = paddle.metric.Accuracy()
model.prepare(optimizer, criterion, metric)
# Loads pre-trained parameters.
if args.init_from_ckpt:
model.load(args.init_from_ckpt)
print("Loaded checkpoint from %s" % args.init_from_ckpt)
# Starts training and evaluating.
model.fit(
train_loader,
dev_loader,
epochs=args.epochs,
save_dir=args.save_dir, )