forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
113 lines (99 loc) · 4.05 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddlenlp.data import JiebaTokenizer, Vocab
import jieba
tokenizer = jieba
def set_tokenizer(vocab):
global tokenizer
if vocab is not None:
tokenizer = JiebaTokenizer(vocab=vocab)
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = {}
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n").split("\t")[0]
vocab[token] = index
return vocab
def convert_tokens_to_ids(tokens, vocab):
""" Converts a token id (or a sequence of id) in a token string
(or a sequence of tokens), using the vocabulary.
"""
ids = []
unk_id = vocab.get('[UNK]', None)
for token in tokens:
wid = vocab.get(token, unk_id)
if wid:
ids.append(wid)
return ids
def convert_example(example, vocab, unk_token_id=1, is_test=False):
"""
Builds model inputs from a sequence for sequence classification tasks.
It use `jieba.cut` to tokenize text.
Args:
example(obj:`list[str]`): List of input data, containing text and label if it have label.
vocab(obj:`dict`): The vocabulary.
unk_token_id(obj:`int`, defaults to 1): The unknown token id.
is_test(obj:`False`, defaults to `False`): Whether the example contains label or not.
Returns:
input_ids(obj:`list[int]`): The list of token ids.s
valid_length(obj:`int`): The input sequence valid length.
label(obj:`numpy.array`, data type of int64, optional): The input label if not is_test.
"""
input_ids = []
for token in tokenizer.cut(example['text']):
token_id = vocab.get(token, unk_token_id)
input_ids.append(token_id)
valid_length = np.array([len(input_ids)])
input_ids = np.array(input_ids, dtype="int32")
if not is_test:
label = np.array(example["label"], dtype="int64")
return input_ids, valid_length, label
else:
return input_ids, valid_length
def pad_texts_to_max_seq_len(texts, max_seq_len, pad_token_id=0):
"""
Padded the texts to the max sequence length if the length of text is lower than it.
Unless it truncates the text.
Args:
texts(obj:`list`): Texts which contrains a sequence of word ids.
max_seq_len(obj:`int`): Max sequence length.
pad_token_id(obj:`int`, optinal, defaults to 0) : The pad token index.
"""
for index, text in enumerate(texts):
seq_len = len(text)
if seq_len < max_seq_len:
padded_tokens = [pad_token_id for _ in range(max_seq_len - seq_len)]
new_text = text + padded_tokens
texts[index] = new_text
elif seq_len > max_seq_len:
new_text = text[:max_seq_len]
texts[index] = new_text
def preprocess_prediction_data(data, vocab):
"""
It process the prediction data as the format used as training.
Args:
data (obj:`List[str]`): The prediction data whose each element is a tokenized text.
Returns:
examples (obj:`List(Example)`): The processed data whose each element is a Example (numedtuple) object.
A Example object contains `text`(word_ids) and `seq_len`(sequence length).
"""
examples = []
for text in data:
tokens = " ".join(tokenizer.cut(text)).split(' ')
ids = convert_tokens_to_ids(tokens, vocab)
examples.append([ids, len(ids)])
return examples