-
Notifications
You must be signed in to change notification settings - Fork 0
/
checkMIpipeline.m
39 lines (34 loc) · 1.1 KB
/
checkMIpipeline.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
N = 9;
L = 2;
alpha = .05;
Tscale = 1;
betaVec = linspace(0,.5,300);
gamma = .1;
[ rV, d0, c2v, bndryVs, bndryCs, T_bc, rB_bc ] = generate.hexLattice( N, L, alpha );
T_bc = Tscale * T_bc;
Fbc = bsxfun(@times,0*T_bc,rB_bc);
for ii = 1:length(betaVec)
beta = betaVec(ii);
a0 = abs((3*sqrt(3)/2 * L^2)*(1 + beta*randn(size(c2v,1),1)));
Lc = 0;
l0 = ones(size(d0,1),1);
l0 = l0 + .25*randn(size(l0));
% l0 = .9*l0 + exprnd(.1*ones(size(l0)));
Tpull = 500;
Pb = gamma*(mean(a0) - (3*sqrt(3)/2 * L^2)) - 1;
vMsim = simP.vertexModel( rV, bndryVs, bndryCs, d0, c2v, gamma, a0, Pb, Fbc, l0, Lc );
vMsim = vMsim.evolve(Tpull);
[ kappa ] = vMsim.returnEndCurvature();
Struct = vMsim.returnStruct();
[T,P] = MI.invertMechABIC(Struct,0,1e-5);
[Ta,Pa] = MI.returnActualMech(Struct,0);
% mu = logspace(-7,2,10);
% clear corT corP
% for ii = 1:length(mu)
% [Tm,Pm] = MI.invertMechABIC(Struct,0,mu(ii));
% corT(ii) = corr(Tm,Ta);
% corP(ii) = corr(Pm,Pa);
% end
corT(ii) = corr(T,Ta);
[~,p(ii)] = kstest((Ta-mean(Ta))/std(Ta));
end