-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomptpipeline.m
45 lines (39 loc) · 1.41 KB
/
comptpipeline.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
N = 7;
L = 2;
alpha = 0;
Tscale = 1;
[ rV, d0, c2v, bndryVs, bndryCs, T_bc, rB_bc ] = generate.hexLattice( N, L, alpha );
% [ rV, d0, c2v, bndryVs, bndryEs, bndryCs, T, T_bc, rB_bc ] = generate.hextLattice( N, L, alpha );
T_bc = 0 * Tscale * T_bc;
Fbc = bsxfun(@times,T_bc,rB_bc);
%%
% gammaVec = linspace(.05,5,5);
gammaVec = 3;
beta = .3;
nIter = 1;
for n = 1:nIter
n
for ii = 1:length(gammaVec)
a0 = abs((3*sqrt(3)/2 * L^2)*(1 + beta*randn(size(c2v,1),1)));
gamma = gammaVec(ii);
Lc = 0;
Tpull = 100;
Pb = gamma*(mean(a0) - (3*sqrt(3)/2 * L^2)) - .15;
l0 = abs(ones(size(d0,1),1) + .5*randn(size(d0,1),1));
kappaL = abs(1 + 0*randn(size(l0)));
vMsim = simP.vertexModel( rV, bndryVs, bndryCs, d0, c2v, gamma, a0, Pb, Fbc, l0, kappaL, Lc );
vMsim = vMsim.evolve(Tpull);
% [ kappa ] = vMsim.returnEndCurvature();
% k(ii,n) = median(kappa);
%
Struct = vMsim.returnStruct();
% R = median([Struct.Bdat.length]);
% for jj = 1:length(alphaVec)
% Struct = vMsim.returnStruct(alphaVec(jj)/R);
% % [ chi, chiC, chiCV ] = isogonal.buildControlDistribution( Struct, 0 );
% % c(ii,jj,n) = std(chi{1}(~isnan(chi{1})));
% % cV(ii,jj,n) = std(chiCV{1}(~isnan(chiCV{1})));
% % cC(ii,jj,n) = std(chiC{1}(~isnan(chiC{1})));
% end
end
end