forked from abhin2002/Food_Quantity_Prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
120 lines (112 loc) · 3.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import pandas as pd
# loading and preprocessing the data
csv_file = r"C:\Users\91964\OneDrive\Desktop\hackathon\final2.csv"
df = pd.read_csv(csv_file)
Norms = df.iloc[7]
Norms[15] = 1
Norm = []
# Creating the dataset
class Food_Quantity_Data(torch.utils.data.Dataset):
def __init__(self,df):
self.dataframe = df
print(df)
super().__init__()
def __getitem__(self,id):
id = id + 2
data = self.dataframe.iloc[id]
labels = [data[0]/7,data[1]/Norms[1]]
Norm_people =float(data[1]/Norms[1])
targets = []
for i in range(2,self.dataframe.shape[1],2):
targets.append((float(data[i])/(float(Norms[i])) - float(data[i+1])/(float(Norms[i+1])))*Norm_people)
Norm.append(Norms[i])
return labels,targets
def __len__(self):
return self.dataframe.shape[0]-2
# Creating the data Module
from pytorch_lightning import LightningDataModule
class Food_loader_Module(LightningDataModule):
def __init__(self,dataset,num_workers = 0,batch_size = 128):
self.dataset = dataset
self.num_workers = num_workers
self.batch_size = batch_size
super().__init__()
def train_dataset(self,df = df):
return Food_Quantity_Data(df)
def train_dataloader(self):
train_dataset = self.train_dataset()
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size = self.batch_size,
shuffle = True,
pin_memory=True,
drop_last=True,
num_workers=self.num_workers,
collate_fn=self.collate_fn
)
return train_loader
def val_dataloader(self):
valid_dataset = self.train_dataset()
valid_loader = torch.utils.data.DataLoader(
valid_dataset,
batch_size = self.batch_size,
shuffle = True,
pin_memory=True,
drop_last=True,
num_workers=self.num_workers,
collate_fn=self.collate_fn
)
return valid_loader
@staticmethod
def collate_fn(batch):
labels,targets = tuple(zip(*batch))
labels = torch.tensor(labels)
targets = torch.tensor(targets)
return labels,targets
class Model(torch.nn.Module):
def __init__(self,n_inputs,n_outputs):
super(Model,self).__init__()
self.n_inputs = n_inputs
self.n_outputs = n_outputs
self.hidden_layer_1 = torch.nn.Linear(n_inputs,n_outputs*2)
self.hidden_layer_2 = torch.nn.Linear(n_outputs*2,n_outputs*4)
self.hidden_layer_3 = torch.nn.Linear(n_outputs*4,n_outputs*2)
self.final_layer = torch.nn.Linear(n_outputs*2,n_outputs)
def forward(self,x):
x = x.float()
x = self.hidden_layer_1(x)
x = self.hidden_layer_2(x)
x = self.hidden_layer_3(x)
x = self.final_layer(x)
return x
from pytorch_lightning import LightningModule
class FNN_Model(LightningModule):
def __init__(self,lr = 0.1):
super().__init__()
self.model = Model(2,21)
self.lr = lr
self.loss_fn = torch.nn.MSELoss()
self.Norms = Norms
def forward(self, label, targets):
return self.model(label, targets)
def configure_optimizers(self):
return torch.optim.AdamW(self.model.parameters(), lr=self.lr)
def loss(self,output,target):
self.loss_fn(output,target)
def training_step(self, batch, batch_idx):
torch.cuda.empty_cache()
labels,targets = batch
outputs = self.model(labels)
loss = self.loss_fn(outputs,targets)
self.log("train_loss", loss, on_step=True, on_epoch=True, prog_bar=True,logger=True)
return loss
from pytorch_lightning import Trainer
def main():
FNN = FNN_Model()
trainer = Trainer(max_epochs=500, num_sanity_val_steps=0,accelerator="cpu",devices = [0])
dm = Food_loader_Module(df)
trainer.fit(FNN,dm)
torch.save(FNN.state_dict(), f'data_test')
if __name__ == "__main__":
main()