Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

iree compile unet error #874

Open
yja1 opened this issue Oct 30, 2024 · 0 comments
Open

iree compile unet error #874

yja1 opened this issue Oct 30, 2024 · 0 comments

Comments

@yja1
Copy link

yja1 commented Oct 30, 2024

Error code: 1
Diagnostics:
iree-compile: Too many positional arguments specified!
Can specify at most 1 positional arguments: See: /opt/conda/envs/turb/lib/python3.11/site-packages/iree/compiler/tools/../_mlir_libs/iree-compile --help

Invoked with:
iree-compile /opt/conda/envs/turb/lib/python3.11/site-packages/iree/compiler/tools/../_mlir_libs/iree-compile - --iree-input-type=torch --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-hal-target-backends=rocm --mlir-print-debuginfo --mlir-print-op-on-diagnostic=false iree-hal-target-backends=rocm --iree-hip-target=gfx90a --iree-vm-bytecode-module-output-format=flatbuffer-binary --iree-dispatch-creation-enable-aggressive-fusion --iree-dispatch-creation-enable-fuse-horizontal-contractions --iree-opt-aggressively-propagate-transposes=true --iree-codegen-llvmgpu-use-vector-distribution=true --iree-opt-data-tiling=false --iree-codegen-gpu-native-math-precision=true --iree-vm-target-truncate-unsupported-floats --iree-global-opt-propagate-transposes=true --iree-opt-const-eval=false --iree-llvmgpu-enable-prefetch=true --iree-execution-model=async-external --iree-preprocessing-pass-pipeline=builtin.module(iree-preprocessing-transpose-convolution-pipeline,iree-preprocessing-pad-to-intrinsics, util.func(iree-preprocessing-generalize-linalg-matmul-experimental))

`import torch
from diffusers import UNet2DConditionModel
from shark_turbine.aot import *
import iree

class UnetModel(torch.nn.Module):
def init(self):
super().init()
self.unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0",
subfolder="unet",
low_cpu_mem_usage=False,)
def forward(
self,latent_model_input, timestep, prompt_embeds, text_embeds, time_ids, guidance_scale,):
added_cond_kwargs={"text_embeds":text_embeds,"time_ids":time_ids}
noise_pred=self.unet.forward(
latent_model_input, timestep, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=None,added_cond_kwargs=added_cond_kwargs,return_dict=False,)[0]
return noise_pred

dtype = torch.float16
model = UnetModel().to(dtype=dtype)
example_forward_args=[
torch.empty((1,4,128,128),dtype=dtype),
torch.empty(1,dtype=torch.long),
torch.empty((1,64,2048),dtype=dtype),
torch.empty((1,1280), dtype=dtype),
torch.empty((1,6), dtype=dtype),
torch.tensor([7.5], dtype=dtype),]

fxb = FxProgramsBuilder(model)
@fxb.export_program(args=((example_forward_args),))
def _forward(model, inputs):
return model.forward(*inputs)
class CompiledUnet(CompiledModule):
run_forward=_forward
inst = CompiledUnet(context=iree.compiler.ir.Context(), import_to="IMPORT")
module = CompiledModule.get_mlir_module(inst)
rocm_flags = ["iree-hal-target-backends=rocm",
"--iree-hip-target=gfx90a",
"--iree-vm-bytecode-module-output-format=flatbuffer-binary",
"--iree-dispatch-creation-enable-aggressive-fusion",
"--iree-dispatch-creation-enable-fuse-horizontal-contractions",
"--iree-opt-aggressively-propagate-transposes=true",
"--iree-codegen-llvmgpu-use-vector-distribution=true",
"--iree-opt-data-tiling=false",
"--iree-codegen-gpu-native-math-precision=true",
"--iree-vm-target-truncate-unsupported-floats",
"--iree-global-opt-propagate-transposes=true",
"--iree-opt-const-eval=false",
"--iree-llvmgpu-enable-prefetch=true",
"--iree-execution-model=async-external",
"--iree-preprocessing-pass-pipeline=builtin.module(iree-preprocessing-transpose-convolution-pipeline,iree-preprocessing-pad-to-intrinsics, util.func(iree-preprocessing-generalize-linalg-matmul-experimental))",]
compiled_bin=iree.compiler.compile_str(str(module), target_backends=["rocm"], input_type="torch", extra_args=rocm_flags)
with open(f"unet.vmfb","wb+") as f:
f.write(compiled_bin)

config = iree.runtime.Config("hip")
rt_module=iree.runtime.VmModule.mmap(config.vm_instance,"unet.vmfb")
rt=iree.runtime.create_hal_module(config.vm_instance, config.device)
vm_modules=[rt_module, rt]
ctx = iree.runtime.SystemContext(vm_modules=vm_modules, config=config)
unet_output = ctx.modules.compiled_unet"run_forward".to_host()
print(net_output)`

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant