We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
python ./run.py --torchmlirbuild ../../torch-mlir/build --tolerance 0.001 0.001 --cachedir ./huggingface_cache --ireebuild ../../iree-build -f pytorch -g models --mode onnx --tests pytorch/models/opt-350M
failed to translate executables opt-350m.default.pytorch.torch.mlir:385:12: error: 'iree_linalg_ext.scan' op expected type of operand #1 ('tensor<1x8xi64>') to match type of corresponding result ('tensor<1x?xi64>') %365 = torch.aten.cumsum %4, %int1, %none : !torch.vtensor<[1,8],si64>, !torch.int, !torch.none -> !torch.vtensor<[1,8],si64> ^ opt-350m.default.pytorch.torch.mlir:385:12: note: called from %365 = torch.aten.cumsum %4, %int1, %none : !torch.vtensor<[1,8],si64>, !torch.int, !torch.none -> !torch.vtensor<[1,8],si64> ^ opt-350m.default.pytorch.torch.mlir:385:12: note: see current operation: %12:2 = "iree_linalg_ext.scan"(%7, %9, %11) <{dimension = 1 : i64, inclusive = true, operandSegmentSizes = array<i32: 1, 2>}> ({ ^bb0(%arg0: i64, %arg1: i64): %13 = "arith.addi"(%arg0, %arg1) <{overflowFlags = #arith.overflow<none>}> : (i64, i64) -> i64 "iree_linalg_ext.yield"(%13) : (i64) -> () }) {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[1, 0]]>} : (tensor<1x?xi64>, tensor<1x8xi64>, tensor<1xi64>) -> (tensor<1x?xi64>, tensor<1xi64>) %365 = torch.aten.cumsum %4, %int1, %none : !torch.vtensor<[1,8],si64>, !torch.int, !torch.none -> !torch.vtensor<[1,8],si64> ^ opt-350m.default.pytorch.torch.mlir:385:12: error: failed to run translation of source executable to target executable for backend #hal.executable.target<"llvm-cpu", "embedded-elf-x86_64", {cpu = "znver3", cpu_features = "+prfchw,-cldemote,+avx,+aes,+sahf,+pclmul,-xop,+crc32,+xsaves,-avx512fp16,-usermsr,-sm4,-egpr,+sse4.1,-avx512ifma,+xsave,-avx512pf,+sse4.2,-tsxldtrk,-ptwrite,-widekl,-sm3,+invpcid,+64bit,+xsavec,-avx10.1-512,-avx512vpopcntdq,+cmov,-avx512vp2intersect,-avx512cd,+movbe,-avxvnniint8,-avx512er,-ccmp,-amx-int8,-kl,-avx10.1-256,-sha512,-avxvnni,-rtm,+adx,+avx2,-hreset,-movdiri,-serialize,+vpclmulqdq,-avx512vl,-uintr,-cf,+clflushopt,-raoint,-cmpccxadd,+bmi,-amx-tile,+sse,-gfni,-avxvnniint16,-amx-fp16,-ndd,+xsaveopt,+rdrnd,-avx512f,-amx-bf16,-avx512bf16,-avx512vnni,-push2pop2,+cx8,-avx512bw,+sse3,-pku,+fsgsbase,+clzero,-mwaitx,-lwp,+lzcnt,+sha,-movdir64b,-ppx,-wbnoinvd,-enqcmd,-prefetchwt1,-avxneconvert,-tbm,-pconfig,-amx-complex,+ssse3,+cx16,+bmi2,+fma,+popcnt,-avxifma,+f16c,-avx512bitalg,+rdpru,+clwb,+mmx,+sse2,+rdseed,-avx512vbmi2,-prefetchi,+rdpid,-fma4,-avx512vbmi,+shstk,+vaes,-waitpkg,-sgx,+fxsr,-avx512dq,+sse4a", data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", native_vector_size = 32 : i64, target_triple = "x86_64-unknown-unknown-eabi-elf"}> %365 = torch.aten.cumsum %4, %int1, %none : !torch.vtensor<[1,8],si64>, !torch.int, !torch.none -> !torch.vtensor<[1,8],si64> ^ opt-350m.default.pytorch.torch.mlir:385:12: note: called from %365 = torch.aten.cumsum %4, %int1, %none : !torch.vtensor<[1,8],si64>, !torch.int, !torch.none -> !torch.vtensor<[1,8],si64> ^ opt-350m.default.pytorch.torch.mlir:385:12: note: see current operation: "hal.executable.variant"() ({ "hal.executable.export"() ({ ^bb0(%arg6: !hal.device): %14 = "arith.constant"() <{value = 1 : index}> : () -> index "hal.return"(%14, %14, %14) : (index, index, index) -> () }) {hal.interface.bindings = [#hal.interface.binding<0, 0>, #hal.interface.binding<0, 1>, #hal.interface.binding<0, 2>], layout = #hal.pipeline.layout<push_constants = 0, sets = [<0, bindings = [<0, storage_buffer, ReadOnly>, <1, storage_buffer>, <2, storage_buffer>]>]>, ordinal = 0 : index, sym_name = "jit_eval_2_dispatch_0_scan_1x8xi64"} : () -> () "builtin.module"() ({ "func.func"() <{function_type = () -> (), sym_name = "jit_eval_2_dispatch_0_scan_1x8xi64"}> ({ %0 = "arith.constant"() <{value = 8 : index}> : () -> index %1 = "arith.constant"() <{value = 0 : i64}> : () -> i64 %2 = "arith.constant"() <{value = 0 : index}> : () -> index %3 = "arith.constant"() <{value = 64 : index}> : () -> index %4 = "hal.interface.binding.subspan"(%2) {alignment = 64 : index, binding = 0 : index, descriptor_flags = 1 : i32, descriptor_type = #hal.descriptor_type<storage_buffer>, operandSegmentSizes = array<i32: 1, 0>, set = 0 : index} : (index) -> !flow.dispatch.tensor<readonly:tensor<1x8xi64>> %5 = "hal.interface.binding.subspan"(%2) {alignment = 64 : index, binding = 1 : index, descriptor_type = #hal.descriptor_type<storage_buffer>, operandSegmentSizes = array<i32: 1, 0>, set = 0 : index} : (index) -> !flow.dispatch.tensor<writeonly:tensor<1x8xi64>> %6 = "hal.interface.binding.subspan"(%3) {alignment = 64 : index, binding = 2 : index, descriptor_type = #hal.descriptor_type<storage_buffer>, operandSegmentSizes = array<i32: 1, 0>, set = 0 : index} : (index) -> !flow.dispatch.tensor<writeonly:tensor<1xi64>> %7 = "flow.dispatch.tensor.load"(%4, %2, %0) <{operandSegmentSizes = array<i32: 1, 0, 1, 1, 0>, static_offsets = array<i64: -9223372036854775808, 0>, static_sizes = array<i64: 1, -9223372036854775808>, static_strides = array<i64: 1, 1>}> : (!flow.dispatch.tensor<readonly:tensor<1x8xi64>>, index, index) -> tensor<1x?xi64> %8 = "tensor.empty"() : () -> tensor<1x8xi64> %9 = "linalg.fill"(%1, %8) <{operandSegmentSizes = array<i32: 1, 1>}> ({ ^bb0(%arg4: i64, %arg5: i64): "linalg.yield"(%arg4) : (i64) -> () }) {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[1, 0], [0, 0], [0, 0], [0, 0]]>} : (i64, tensor<1x8xi64>) -> tensor<1x8xi64> %10 = "tensor.empty"() : () -> tensor<1xi64> %11 = "linalg.fill"(%1, %10) <{operandSegmentSizes = array<i32: 1, 1>}> ({ ^bb0(%arg2: i64, %arg3: i64): "linalg.yield"(%arg2) : (i64) -> () }) {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[1], [0], [0], [0]]>} : (i64, tensor<1xi64>) -> tensor<1xi64> %12:2 = "iree_linalg_ext.scan"(%7, %9, %11) <{dimension = 1 : i64, inclusive = true, operandSegmentSizes = array<i32: 1, 2>}> ({ ^bb0(%arg0: i64, %arg1: i64): %13 = "arith.addi"(%arg0, %arg1) <{overflowFlags = #arith.overflow<none>}> : (i64, i64) -> i64 "iree_linalg_ext.yield"(%13) : (i64) -> () }) {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[1, 0]]>} : (tensor<1x?xi64>, tensor<1x8xi64>, tensor<1xi64>) -> (tensor<1x?xi64>, tensor<1xi64>) "flow.dispatch.tensor.store"(%12#0, %5, %2, %0) <{operandSegmentSizes = array<i32: 1, 1, 0, 1, 1, 0>, static_offsets = array<i64: -9223372036854775808, 0>, static_sizes = array<i64: 1, -9223372036854775808>, static_strides = array<i64: 1, 1>}> : (tensor<1x?xi64>, !flow.dispatch.tensor<writeonly:tensor<1x8xi64>>, index, index) -> () "flow.dispatch.tensor.store"(%12#1, %6, %2) <{operandSegmentSizes = array<i32: 1, 1, 0, 1, 0, 0>, static_offsets = array<i64: -9223372036854775808>, static_sizes = array<i64: 1>, static_strides = array<i64: 1>}> : (tensor<1xi64>, !flow.dispatch.tensor<writeonly:tensor<1xi64>>, index) -> () "func.return"() : () -> () }) {translation_info = #iree_codegen.translation_info<CPUDefault>} : () -> () }) : () -> () "hal.executable.variant_end"() : () -> () }) {sym_name = "embedded_elf_x86_64", target = #hal.executable.target<"llvm-cpu", "embedded-elf-x86_64", {cpu = "znver3", cpu_features = "+prfchw,-cldemote,+avx,+aes,+sahf,+pclmul,-xop,+crc32,+xsaves,-avx512fp16,-usermsr,-sm4,-egpr,+sse4.1,-avx512ifma,+xsave,-avx512pf,+sse4.2,-tsxldtrk,-ptwrite,-widekl,-sm3,+invpcid,+64bit,+xsavec,-avx10.1-512,-avx512vpopcntdq,+cmov,-avx512vp2intersect,-avx512cd,+movbe,-avxvnniint8,-avx512er,-ccmp,-amx-int8,-kl,-avx10.1-256,-sha512,-avxvnni,-rtm,+adx,+avx2,-hreset,-movdiri,-serialize,+vpclmulqdq,-avx512vl,-uintr,-cf,+clflushopt,-raoint,-cmpccxadd,+bmi,-amx-tile,+sse,-gfni,-avxvnniint16,-amx-fp16,-ndd,+xsaveopt,+rdrnd,-avx512f,-amx-bf16,-avx512bf16,-avx512vnni,-push2pop2,+cx8,-avx512bw,+sse3,-pku,+fsgsbase,+clzero,-mwaitx,-lwp,+lzcnt,+sha,-movdir64b,-ppx,-wbnoinvd,-enqcmd,-prefetchwt1,-avxneconvert,-tbm,-pconfig,-amx-complex,+ssse3,+cx16,+bmi2,+fma,+popcnt,-avxifma,+f16c,-avx512bitalg,+rdpru,+clwb,+mmx,+sse2,+rdseed,-avx512vbmi2,-prefetchi,+rdpid,-fma4,-avx512vbmi,+shstk,+vaes,-waitpkg,-sgx,+fxsr,-avx512dq,+sse4a", data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", native_vector_size = 32 : i64, target_triple = "x86_64-unknown-unknown-eabi-elf"}>} : () -> () %365 = torch.aten.cumsum %4, %int1, %none : !torch.vtensor<[1,8],si64>, !torch.int, !torch.none -> !torch.vtensor<[1,8],si64> ^
The text was updated successfully, but these errors were encountered:
No branches or pull requests
python ./run.py --torchmlirbuild ../../torch-mlir/build --tolerance 0.001 0.001 --cachedir ./huggingface_cache --ireebuild ../../iree-build -f pytorch -g models --mode onnx --tests pytorch/models/opt-350M
The text was updated successfully, but these errors were encountered: