Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

opt-350m pytorch model support #235

Open
AmosLewis opened this issue May 15, 2024 · 0 comments
Open

opt-350m pytorch model support #235

AmosLewis opened this issue May 15, 2024 · 0 comments
Labels

Comments

@AmosLewis
Copy link
Collaborator

python ./run.py --torchmlirbuild ../../torch-mlir/build --tolerance 0.001 0.001 --cachedir ./huggingface_cache --ireebuild ../../iree-build -f pytorch -g models --mode onnx --tests pytorch/models/opt-350M

failed to translate executables
opt-350m.default.pytorch.torch.mlir:385:12: error: 'iree_linalg_ext.scan' op expected type of operand #1 ('tensor<1x8xi64>') to match type of corresponding result ('tensor<1x?xi64>')
    %365 = torch.aten.cumsum %4, %int1, %none : !torch.vtensor<[1,8],si64>, !torch.int, !torch.none -> !torch.vtensor<[1,8],si64>
           ^
opt-350m.default.pytorch.torch.mlir:385:12: note: called from
    %365 = torch.aten.cumsum %4, %int1, %none : !torch.vtensor<[1,8],si64>, !torch.int, !torch.none -> !torch.vtensor<[1,8],si64>
           ^
opt-350m.default.pytorch.torch.mlir:385:12: note: see current operation: 
%12:2 = "iree_linalg_ext.scan"(%7, %9, %11) <{dimension = 1 : i64, inclusive = true, operandSegmentSizes = array<i32: 1, 2>}> ({
^bb0(%arg0: i64, %arg1: i64):
  %13 = "arith.addi"(%arg0, %arg1) <{overflowFlags = #arith.overflow<none>}> : (i64, i64) -> i64
  "iree_linalg_ext.yield"(%13) : (i64) -> ()
}) {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[1, 0]]>} : (tensor<1x?xi64>, tensor<1x8xi64>, tensor<1xi64>) -> (tensor<1x?xi64>, tensor<1xi64>)
    %365 = torch.aten.cumsum %4, %int1, %none : !torch.vtensor<[1,8],si64>, !torch.int, !torch.none -> !torch.vtensor<[1,8],si64>
           ^
opt-350m.default.pytorch.torch.mlir:385:12: error: failed to run translation of source executable to target executable for backend #hal.executable.target<"llvm-cpu", "embedded-elf-x86_64", {cpu = "znver3", cpu_features = "+prfchw,-cldemote,+avx,+aes,+sahf,+pclmul,-xop,+crc32,+xsaves,-avx512fp16,-usermsr,-sm4,-egpr,+sse4.1,-avx512ifma,+xsave,-avx512pf,+sse4.2,-tsxldtrk,-ptwrite,-widekl,-sm3,+invpcid,+64bit,+xsavec,-avx10.1-512,-avx512vpopcntdq,+cmov,-avx512vp2intersect,-avx512cd,+movbe,-avxvnniint8,-avx512er,-ccmp,-amx-int8,-kl,-avx10.1-256,-sha512,-avxvnni,-rtm,+adx,+avx2,-hreset,-movdiri,-serialize,+vpclmulqdq,-avx512vl,-uintr,-cf,+clflushopt,-raoint,-cmpccxadd,+bmi,-amx-tile,+sse,-gfni,-avxvnniint16,-amx-fp16,-ndd,+xsaveopt,+rdrnd,-avx512f,-amx-bf16,-avx512bf16,-avx512vnni,-push2pop2,+cx8,-avx512bw,+sse3,-pku,+fsgsbase,+clzero,-mwaitx,-lwp,+lzcnt,+sha,-movdir64b,-ppx,-wbnoinvd,-enqcmd,-prefetchwt1,-avxneconvert,-tbm,-pconfig,-amx-complex,+ssse3,+cx16,+bmi2,+fma,+popcnt,-avxifma,+f16c,-avx512bitalg,+rdpru,+clwb,+mmx,+sse2,+rdseed,-avx512vbmi2,-prefetchi,+rdpid,-fma4,-avx512vbmi,+shstk,+vaes,-waitpkg,-sgx,+fxsr,-avx512dq,+sse4a", data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", native_vector_size = 32 : i64, target_triple = "x86_64-unknown-unknown-eabi-elf"}>
    %365 = torch.aten.cumsum %4, %int1, %none : !torch.vtensor<[1,8],si64>, !torch.int, !torch.none -> !torch.vtensor<[1,8],si64>
           ^
opt-350m.default.pytorch.torch.mlir:385:12: note: called from
    %365 = torch.aten.cumsum %4, %int1, %none : !torch.vtensor<[1,8],si64>, !torch.int, !torch.none -> !torch.vtensor<[1,8],si64>
           ^
opt-350m.default.pytorch.torch.mlir:385:12: note: see current operation: 
"hal.executable.variant"() ({
  "hal.executable.export"() ({
  ^bb0(%arg6: !hal.device):
    %14 = "arith.constant"() <{value = 1 : index}> : () -> index
    "hal.return"(%14, %14, %14) : (index, index, index) -> ()
  }) {hal.interface.bindings = [#hal.interface.binding<0, 0>, #hal.interface.binding<0, 1>, #hal.interface.binding<0, 2>], layout = #hal.pipeline.layout<push_constants = 0, sets = [<0, bindings = [<0, storage_buffer, ReadOnly>, <1, storage_buffer>, <2, storage_buffer>]>]>, ordinal = 0 : index, sym_name = "jit_eval_2_dispatch_0_scan_1x8xi64"} : () -> ()
  "builtin.module"() ({
    "func.func"() <{function_type = () -> (), sym_name = "jit_eval_2_dispatch_0_scan_1x8xi64"}> ({
      %0 = "arith.constant"() <{value = 8 : index}> : () -> index
      %1 = "arith.constant"() <{value = 0 : i64}> : () -> i64
      %2 = "arith.constant"() <{value = 0 : index}> : () -> index
      %3 = "arith.constant"() <{value = 64 : index}> : () -> index
      %4 = "hal.interface.binding.subspan"(%2) {alignment = 64 : index, binding = 0 : index, descriptor_flags = 1 : i32, descriptor_type = #hal.descriptor_type<storage_buffer>, operandSegmentSizes = array<i32: 1, 0>, set = 0 : index} : (index) -> !flow.dispatch.tensor<readonly:tensor<1x8xi64>>
      %5 = "hal.interface.binding.subspan"(%2) {alignment = 64 : index, binding = 1 : index, descriptor_type = #hal.descriptor_type<storage_buffer>, operandSegmentSizes = array<i32: 1, 0>, set = 0 : index} : (index) -> !flow.dispatch.tensor<writeonly:tensor<1x8xi64>>
      %6 = "hal.interface.binding.subspan"(%3) {alignment = 64 : index, binding = 2 : index, descriptor_type = #hal.descriptor_type<storage_buffer>, operandSegmentSizes = array<i32: 1, 0>, set = 0 : index} : (index) -> !flow.dispatch.tensor<writeonly:tensor<1xi64>>
      %7 = "flow.dispatch.tensor.load"(%4, %2, %0) <{operandSegmentSizes = array<i32: 1, 0, 1, 1, 0>, static_offsets = array<i64: -9223372036854775808, 0>, static_sizes = array<i64: 1, -9223372036854775808>, static_strides = array<i64: 1, 1>}> : (!flow.dispatch.tensor<readonly:tensor<1x8xi64>>, index, index) -> tensor<1x?xi64>
      %8 = "tensor.empty"() : () -> tensor<1x8xi64>
      %9 = "linalg.fill"(%1, %8) <{operandSegmentSizes = array<i32: 1, 1>}> ({
      ^bb0(%arg4: i64, %arg5: i64):
        "linalg.yield"(%arg4) : (i64) -> ()
      }) {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[1, 0], [0, 0], [0, 0], [0, 0]]>} : (i64, tensor<1x8xi64>) -> tensor<1x8xi64>
      %10 = "tensor.empty"() : () -> tensor<1xi64>
      %11 = "linalg.fill"(%1, %10) <{operandSegmentSizes = array<i32: 1, 1>}> ({
      ^bb0(%arg2: i64, %arg3: i64):
        "linalg.yield"(%arg2) : (i64) -> ()
      }) {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[1], [0], [0], [0]]>} : (i64, tensor<1xi64>) -> tensor<1xi64>
      %12:2 = "iree_linalg_ext.scan"(%7, %9, %11) <{dimension = 1 : i64, inclusive = true, operandSegmentSizes = array<i32: 1, 2>}> ({
      ^bb0(%arg0: i64, %arg1: i64):
        %13 = "arith.addi"(%arg0, %arg1) <{overflowFlags = #arith.overflow<none>}> : (i64, i64) -> i64
        "iree_linalg_ext.yield"(%13) : (i64) -> ()
      }) {lowering_config = #iree_codegen.lowering_config<tile_sizes = [[1, 0]]>} : (tensor<1x?xi64>, tensor<1x8xi64>, tensor<1xi64>) -> (tensor<1x?xi64>, tensor<1xi64>)
      "flow.dispatch.tensor.store"(%12#0, %5, %2, %0) <{operandSegmentSizes = array<i32: 1, 1, 0, 1, 1, 0>, static_offsets = array<i64: -9223372036854775808, 0>, static_sizes = array<i64: 1, -9223372036854775808>, static_strides = array<i64: 1, 1>}> : (tensor<1x?xi64>, !flow.dispatch.tensor<writeonly:tensor<1x8xi64>>, index, index) -> ()
      "flow.dispatch.tensor.store"(%12#1, %6, %2) <{operandSegmentSizes = array<i32: 1, 1, 0, 1, 0, 0>, static_offsets = array<i64: -9223372036854775808>, static_sizes = array<i64: 1>, static_strides = array<i64: 1>}> : (tensor<1xi64>, !flow.dispatch.tensor<writeonly:tensor<1xi64>>, index) -> ()
      "func.return"() : () -> ()
    }) {translation_info = #iree_codegen.translation_info<CPUDefault>} : () -> ()
  }) : () -> ()
  "hal.executable.variant_end"() : () -> ()
}) {sym_name = "embedded_elf_x86_64", target = #hal.executable.target<"llvm-cpu", "embedded-elf-x86_64", {cpu = "znver3", cpu_features = "+prfchw,-cldemote,+avx,+aes,+sahf,+pclmul,-xop,+crc32,+xsaves,-avx512fp16,-usermsr,-sm4,-egpr,+sse4.1,-avx512ifma,+xsave,-avx512pf,+sse4.2,-tsxldtrk,-ptwrite,-widekl,-sm3,+invpcid,+64bit,+xsavec,-avx10.1-512,-avx512vpopcntdq,+cmov,-avx512vp2intersect,-avx512cd,+movbe,-avxvnniint8,-avx512er,-ccmp,-amx-int8,-kl,-avx10.1-256,-sha512,-avxvnni,-rtm,+adx,+avx2,-hreset,-movdiri,-serialize,+vpclmulqdq,-avx512vl,-uintr,-cf,+clflushopt,-raoint,-cmpccxadd,+bmi,-amx-tile,+sse,-gfni,-avxvnniint16,-amx-fp16,-ndd,+xsaveopt,+rdrnd,-avx512f,-amx-bf16,-avx512bf16,-avx512vnni,-push2pop2,+cx8,-avx512bw,+sse3,-pku,+fsgsbase,+clzero,-mwaitx,-lwp,+lzcnt,+sha,-movdir64b,-ppx,-wbnoinvd,-enqcmd,-prefetchwt1,-avxneconvert,-tbm,-pconfig,-amx-complex,+ssse3,+cx16,+bmi2,+fma,+popcnt,-avxifma,+f16c,-avx512bitalg,+rdpru,+clwb,+mmx,+sse2,+rdseed,-avx512vbmi2,-prefetchi,+rdpid,-fma4,-avx512vbmi,+shstk,+vaes,-waitpkg,-sgx,+fxsr,-avx512dq,+sse4a", data_layout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-i128:128-f80:128-n8:16:32:64-S128", native_vector_size = 32 : i64, target_triple = "x86_64-unknown-unknown-eabi-elf"}>} : () -> ()
    %365 = torch.aten.cumsum %4, %int1, %none : !torch.vtensor<[1,8],si64>, !torch.int, !torch.none -> !torch.vtensor<[1,8],si64>
           ^

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
Development

No branches or pull requests

1 participant