We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
We have to revisit it later when we have time.
In the nlp.py, when you change the input to exact the same as huggingface model.
if self.name == "model--BART--Shubham09": tensors[0] = numpy.array([[ 0, 40710, 3923, 12346, 16, 2351, 10, 3944, 14, 26232, 7396, 4687, 4, 2]]) tensors[1] = numpy.array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) tensors[2] = numpy.array([[ 2, 0, 40710, 3923, 12346]]) print("Change input of model--BART--Shubham09")
The output NAN for both golden and iree.
matching values with (rtol,atol) = [0.001, 0.001]: 0 of 251325 = 0.0% Test Result: TestResult(name='model--BART--Shubham09', input=TestTensors(<class 'numpy.ndarray'>): (array([[ 0, 40710, 3923, 12346, 16, 2351, 10, 3944, 14, 26232, 7396, 4687, 4, 2]]), array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), array([[ 2, 0, 40710, 3923, 12346]])), gold_output=TestTensors(<class 'numpy.ndarray'>): [array([[[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]]], dtype=float32)], output=TestTensors(<class 'numpy.ndarray'>): (array([[[nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan], [nan, nan, nan, ..., nan, nan, nan]]], dtype=float32),))
The way to get the huggingface model input.
from transformers import BartTokenizer, BartForConditionalGeneration # Initialize tokenizer and model tokenizer = BartTokenizer.from_pretrained('Shubham09/BART') model = BartForConditionalGeneration.from_pretrained('Shubham09/BART') # Example input and decoder sequences input_text = "Hugging Face is creating a tool that democratizes AI." decoder_text = "</s><s>Hugging Face" # Tokenize inputs inputs = tokenizer(input_text, return_tensors='pt') decoder_inputs = tokenizer(decoder_text, return_tensors='pt', add_special_tokens=False) print("decoder_input_ids: ") print(decoder_inputs['input_ids']) # Generate output outputs = model.generate( input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'], decoder_input_ids=decoder_inputs['input_ids'] ) print("input_ids: ") print(inputs['input_ids']) # numpy.array([[ 0, 40710, 3923, 12346, 16, 2351, 10, 3944, 14, 26232, 7396, 4687, 4, 2]]) print("attention_mask: ") print(inputs['attention_mask']) # array([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) print("decoder_input_ids: ") print(decoder_inputs['input_ids']) # array([[ 2, 0, 40710, 3923, 12346]]) # Decode the output decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded_output)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
We have to revisit it later when we have time.
In the nlp.py, when you change the input to exact the same as huggingface model.
The output NAN for both golden and iree.
The way to get the huggingface model input.
The text was updated successfully, but these errors were encountered: