forked from meower1/Reality-SNI-Finder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
40 lines (32 loc) · 1.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from subprocess import check_output, run, CalledProcessError
from re import findall
from pandas import DataFrame
from tabulate import tabulate
# Read the sni.txt file and split it into a list of domain names
with open("sni.txt", "r") as my_file:
data = my_file.read()
sni_list = data.split("\n")
# Remove any empty strings from the sni_list
sni_list = list(filter(None, sni_list))
# Test all the domains in sni.txt file and put the results in a list called result
result = []
try:
for i in sni_list:
x = check_output(f"./tlsping {i}:443", shell=True).rstrip().decode('utf-8')
result.append(x)
except CalledProcessError:
pass
# Extract all the avg tlsping values from the domains
avg_value_list = []
for j in result:
# Use regular expressions to extract the "avg" value
avg_value = findall(r"avg/.*?ms.*?(\d+\.?\d*)ms", j )[0]
avg_value_list.append(avg_value)
# Create a dictionary with the domain names as keys and the avg values as values
domain_ping_dict = {sni_list[i]: float(avg_value_list[i]) for i in range(len(sni_list))}
# Sort the dictionary by the values in ascending order
sorted_dict = dict(sorted(domain_ping_dict.items(), key=lambda item: item[1]))
# Convert the sorted dictionary to a pandas DataFrame and print it using tabulate
df = DataFrame(sorted_dict.items(), columns=['domains', 'pings(ms)'])
run('clear')
print(tabulate(df, headers='keys', tablefmt='psql'))