-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
319 lines (244 loc) · 10.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import _thread
from tkinter import *
from tkinter.font import Font
class Application(Frame):
def __init__(self, master=None):
super().__init__(master)
self.master = master
self.pack()
self.create_widgets()
self.configure(background='black')
def create_widgets(self):
self.text = Text(self)
self.text.configure(font=Font(family='Roboto Mono', size='14'))
self.text.configure(background='black')
self.text.configure(foreground='white')
self.text.configure(wrap=WORD)
self.text.configure(state=DISABLED)
self.text.configure(highlightthickness=0)
self.text.configure(cursor='hand')
self.text.pack()
def set_text(self, txt):
self.text.configure(state=NORMAL)
self.text.replace(1.0, END, txt)
self.text.yview_moveto(1)
self.text.configure(state=DISABLED)
def widget_drag_free_bind(widget):
"""Bind any widget or Tk master object with free drag"""
if isinstance(widget, Tk):
master = widget # root window
else:
master = widget.master
x, y = 0, 0
def mouse_motion(event):
global x, y
# Positive offset represent the mouse is moving to the lower right corner, negative moving to the upper left corner
offset_x, offset_y = event.x - x, event.y - y
new_x = master.winfo_x() + offset_x
new_y = master.winfo_y() + offset_y
new_geometry = f"+{new_x}+{new_y}"
master.geometry(new_geometry)
def mouse_press(event):
global x, y
x, y = event.x, event.y
widget.bind("<B1-Motion>", mouse_motion) # Hold the left mouse button and drag events
widget.bind("<Button-1>", mouse_press) # The left mouse button press event, long calculate by only once
root = Tk()
root.overrideredirect(1)
root.overrideredirect(0)
root.configure(background='black')
root.attributes('-alpha', 0.8)
root.attributes('-topmost', True)
root.geometry('400x40')
widget_drag_free_bind(root)
app = Application(master=root)
"""
MARK: GCP
"""
import sys
import time
from google.cloud import speech
import pyaudio
from six.moves import queue
# Audio recording parameters
STREAMING_LIMIT = 240000 # 4 minutes
SAMPLE_RATE = 16000
CHUNK_SIZE = int(SAMPLE_RATE / 10) # 100ms
GREEN = '\033[0;32m'
YELLOW = '\033[0;33m'
def get_current_time():
"""Return Current Time in MS."""
return int(round(time.time() * 1000))
class ResumableMicrophoneStream:
"""Opens a recording stream as a generator yielding the audio chunks."""
def __init__(self, rate, chunk_size):
self._rate = rate
self.chunk_size = chunk_size
self._num_channels = 1
self._buff = queue.Queue()
self.closed = True
self.start_time = get_current_time()
self.restart_counter = 0
self.audio_input = []
self.last_audio_input = []
self.result_end_time = 0
self.is_final_end_time = 0
self.final_request_end_time = 0
self.bridging_offset = 0
self.last_transcript_was_final = False
self.new_stream = True
self._audio_interface = pyaudio.PyAudio()
self._audio_stream = self._audio_interface.open(
format=pyaudio.paInt16,
channels=self._num_channels,
rate=self._rate,
input=True,
input_device_index=6,
frames_per_buffer=self.chunk_size,
# Run the audio stream asynchronously to fill the buffer object.
# This is necessary so that the input device's buffer doesn't
# overflow while the calling thread makes network requests, etc.
stream_callback=self._fill_buffer,
)
self.text_offset = 0
def __enter__(self):
self.closed = False
return self
def __exit__(self, type, value, traceback):
self._audio_stream.stop_stream()
self._audio_stream.close()
self.closed = True
# Signal the generator to terminate so that the client's
# streaming_recognize method will not block the process termination.
self._buff.put(None)
self._audio_interface.terminate()
def _fill_buffer(self, in_data, *args, **kwargs):
"""Continuously collect data from the audio stream, into the buffer."""
self._buff.put(in_data)
return None, pyaudio.paContinue
def generator(self):
"""Stream Audio from microphone to API and to local buffer"""
while not self.closed:
data = []
if self.new_stream and self.last_audio_input:
chunk_time = STREAMING_LIMIT / len(self.last_audio_input)
if chunk_time != 0:
if self.bridging_offset < 0:
self.bridging_offset = 0
if self.bridging_offset > self.final_request_end_time:
self.bridging_offset = self.final_request_end_time
chunks_from_ms = round((self.final_request_end_time -
self.bridging_offset) / chunk_time)
self.bridging_offset = (round((
len(self.last_audio_input) - chunks_from_ms)
* chunk_time))
for i in range(chunks_from_ms, len(self.last_audio_input)):
data.append(self.last_audio_input[i])
self.new_stream = False
# Use a blocking get() to ensure there's at least one chunk of
# data, and stop iteration if the chunk is None, indicating the
# end of the audio stream.
chunk = self._buff.get()
self.audio_input.append(chunk)
if chunk is None:
return
data.append(chunk)
# Now consume whatever other data's still buffered.
while True:
try:
chunk = self._buff.get(block=False)
if chunk is None:
return
data.append(chunk)
self.audio_input.append(chunk)
except queue.Empty:
break
yield b''.join(data)
def listen_print_loop(responses, stream):
"""Iterates through server responses and prints them.
The responses passed is a generator that will block until a response
is provided by the server.
Each response may contain multiple results, and each result may contain
multiple alternatives; for details, see https://goo.gl/tjCPAU. Here we
print only the transcription for the top alternative of the top result.
In this case, responses are provided for interim results as well. If the
response is an interim one, print a line feed at the end of it, to allow
the next result to overwrite it, until the response is a final one. For the
final one, print a newline to preserve the finalized transcription.
"""
for response in responses:
if get_current_time() - stream.start_time > STREAMING_LIMIT:
stream.start_time = get_current_time()
break
if not response.results:
continue
result = response.results[0]
if not result.alternatives:
continue
transcript = result.alternatives[0].transcript
result_seconds = 0
result_nanos = 0
if result.result_end_time.seconds:
result_seconds = result.result_end_time.seconds
if result.result_end_time.nanos:
result_nanos = result.result_end_time.nanos
stream.result_end_time = int((result_seconds * 1000)
+ (result_nanos / 1000000))
corrected_time = (stream.result_end_time - stream.bridging_offset
+ (STREAMING_LIMIT * stream.restart_counter))
# Display interim results, but with a carriage return at the end of the
# line, so subsequent lines will overwrite them.
sys.stdout.write(GREEN)
sys.stdout.write('\033[K')
sys.stdout.write(str(corrected_time) + ': ' + transcript + '\n')
if not result.is_final:
stream.last_transcript_was_final = False
app.set_text(transcript)
if result.is_final:
stream.is_final_end_time = stream.result_end_time
stream.last_transcript_was_final = True
def main():
"""start bidirectional streaming from microphone input to speech API"""
client = speech.SpeechClient()
config = speech.types.RecognitionConfig(
encoding=speech.enums.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=SAMPLE_RATE,
language_code='en-US',
max_alternatives=1)
streaming_config = speech.types.StreamingRecognitionConfig(
config=config,
interim_results=True)
mic_manager = ResumableMicrophoneStream(SAMPLE_RATE, CHUNK_SIZE)
print(mic_manager.chunk_size)
sys.stdout.write(YELLOW)
sys.stdout.write('\nListening\n\n')
sys.stdout.write('End (ms) Transcript Results/Status\n')
sys.stdout.write('=====================================================\n')
with mic_manager as stream:
while not stream.closed:
sys.stdout.write(YELLOW)
sys.stdout.write('\n' + str(
STREAMING_LIMIT * stream.restart_counter) + ': NEW REQUEST\n')
stream.audio_input = []
audio_generator = stream.generator()
requests = (speech.types.StreamingRecognizeRequest(
audio_content=content)for content in audio_generator)
responses = client.streaming_recognize(streaming_config,
requests)
# Now, put the transcription responses to use.
listen_print_loop(responses, stream)
if stream.result_end_time > 0:
stream.final_request_end_time = stream.is_final_end_time
stream.result_end_time = 0
stream.last_audio_input = []
stream.last_audio_input = stream.audio_input
stream.audio_input = []
stream.restart_counter = stream.restart_counter + 1
if not stream.last_transcript_was_final:
sys.stdout.write('\n')
stream.new_stream = True
_thread.start_new_thread(main, ())
"""
END: GCP
"""
app.mainloop()