diff --git a/echotorch/nn/ESN.py b/echotorch/nn/ESN.py index 005cd4f..933de9a 100644 --- a/echotorch/nn/ESN.py +++ b/echotorch/nn/ESN.py @@ -163,7 +163,7 @@ def forward(self, u, y=None): if self.feedbacks and self.training: hidden_states = self.esn_cell(u, y) elif self.feedbacks and not self.training: - hidden_states = self.esn_cell(u, w_out=self.w_out) + hidden_states = self.esn_cell(u, w_out=self.output.w_out) else: hidden_states = self.esn_cell(u) # end if diff --git a/echotorch/nn/ESNCell.py b/echotorch/nn/ESNCell.py index 00391ed..64f4364 100644 --- a/echotorch/nn/ESNCell.py +++ b/echotorch/nn/ESNCell.py @@ -143,8 +143,11 @@ def forward(self, u, y=None, w_out=None): # Add everything x = u_win + x_w + y_wfdb + self.w_bias elif self.feedbacks and not self.training and w_out is not None: + # Add bias + bias_hidden = torch.cat((Variable(torch.ones(1)), self.hidden), dim=0) + # Compute past output - yt = w_out.mv(self.hidden) + yt = w_out.t().mv(bias_hidden) # Normalize if self.normalize_feedbacks: diff --git a/echotorch/nn/RRCell.py b/echotorch/nn/RRCell.py index b7dd5b8..e43f92f 100644 --- a/echotorch/nn/RRCell.py +++ b/echotorch/nn/RRCell.py @@ -81,9 +81,12 @@ def reset(self): Reset learning :return: """ - self.xTx.data = torch.zeros(self.x_size, self.x_size) + """self.xTx.data = torch.zeros(self.x_size, self.x_size) self.xTy.data = torch.zeros(self.x_size, self.output_dim) - self.w_out.data = torch.zeros(1, self.input_dim) + self.w_out.data = torch.zeros(1, self.input_dim)""" + self.xTx.data.fill_(0.0) + self.xTy.data.fill_(0.0) + self.w_out.data.fill_(0.0) # Training mode again self.train(True) diff --git a/examples/generation/narma10_esn_feedbacks.py b/examples/generation/narma10_esn_feedbacks.py new file mode 100644 index 0000000..9fca247 --- /dev/null +++ b/examples/generation/narma10_esn_feedbacks.py @@ -0,0 +1,103 @@ +# -*- coding: utf-8 -*- +# +# File : examples/timeserie_prediction/switch_attractor_esn +# Description : NARMA 30 prediction with ESN. +# Date : 26th of January, 2018 +# +# This file is part of EchoTorch. EchoTorch is free software: you can +# redistribute it and/or modify it under the terms of the GNU General Public +# License as published by the Free Software Foundation, version 2. +# +# This program is distributed in the hope that it will be useful, but WITHOUT +# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more +# details. +# +# You should have received a copy of the GNU General Public License along with +# this program; if not, write to the Free Software Foundation, Inc., 51 +# Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. +# +# Copyright Nils Schaetti + + +# Imports +import torch +from echotorch.datasets.NARMADataset import NARMADataset +import echotorch.nn as etnn +import echotorch.utils +from torch.autograd import Variable +from torch.utils.data.dataloader import DataLoader +import numpy as np +import mdp + +# Dataset params +train_sample_length = 5000 +test_sample_length = 1000 +n_train_samples = 1 +n_test_samples = 1 +batch_size = 1 +spectral_radius = 0.9 +leaky_rate = 1.0 +input_dim = 1 +n_hidden = 100 + +# Use CUDA? +use_cuda = False +use_cuda = torch.cuda.is_available() if use_cuda else False + +# Manual seed +mdp.numx.random.seed(1) +np.random.seed(2) +torch.manual_seed(1) + +# NARMA30 dataset +narma10_train_dataset = NARMADataset(train_sample_length, n_train_samples, system_order=10, seed=1) +narma10_test_dataset = NARMADataset(test_sample_length, n_test_samples, system_order=10, seed=10) + +# Data loader +trainloader = DataLoader(narma10_train_dataset, batch_size=batch_size, shuffle=False, num_workers=2) +testloader = DataLoader(narma10_test_dataset, batch_size=batch_size, shuffle=False, num_workers=2) + +# ESN cell +esn = etnn.ESN( + input_dim=input_dim, + hidden_dim=n_hidden, + output_dim=1, + spectral_radius=spectral_radius, + learning_algo='inv', + # leaky_rate=leaky_rate, + feedbacks=True +) +if use_cuda: + esn.cuda() +# end if + +# For each batch +for data in trainloader: + # Inputs and outputs + inputs, targets = data + + # To variable + inputs, targets = Variable(inputs), Variable(targets) + if use_cuda: inputs, targets = inputs.cuda(), targets.cuda() + + # Accumulate xTx and xTy + esn(inputs, targets) +# end for + +# Finalize training +esn.finalize() + +# Test MSE +dataiter = iter(testloader) +test_u, test_y = dataiter.next() +test_u, test_y = Variable(test_u), Variable(test_y) +gen_u = Variable(torch.zeros(batch_size, test_sample_length, input_dim)) +if use_cuda: test_u, test_y, gen_u = test_u.cuda(), test_y.cuda(), gen_u.cuda() +y_predicted = esn(test_u) +print(u"Test MSE: {}".format(echotorch.utils.mse(y_predicted.data, test_y.data))) +print(u"Test NRMSE: {}".format(echotorch.utils.nrmse(y_predicted.data, test_y.data))) +print(u"") + +y_generated = esn(gen_u) +print(y_generated)