Skip to content

Latest commit

 

History

History
111 lines (81 loc) · 2.75 KB

README.md

File metadata and controls

111 lines (81 loc) · 2.75 KB

#genre classification

###1. features

musical surface features:

1. zero_crossing_rate (mean, std)
2. root_mean_square (mean, std)
3. spectual_centroid (mean, std)
4. spectral_rolloff (mean, std)
5. spectral_flux (mean, std)

###2. classification

KNN with 8 nearest neighbors and weights on distance achieves 0.4179 test accuracy (5 fold CV) window_size = 512 => freq resolution = 22050/512 = 43 Hz

"rock"      : 0
"blues"     : 1,
"classical" : 2,
"country"   : 3,
"disco"     : 4,
"hiphop"    : 5,
"jazz"      : 6,
"metal"     : 7,
"pop"       : 8,
"reggae"    : 9,

    0  1  2  3  4  5  6  7  8  9
0 [27  0  0  5 15  3  7 17 14 12]
1 [ 0 73  1 19  2  3  1  1  0  0]
2 [ 0  4 88  8  0  0  0  0  0  0]
3 [10 17  3 41  6  1  4  5  4  9]
4 [16  8  0  4 30  4  5 11 14  8]
5 [ 2 15  1  6 16 38  1  9  6  6]
6 [12  5  8  4  5  2 23  7 13 21]
7 [13  2  0  2 10  6  6 26 20 15]
8 [17  0  0  4  7  3  7 14 34 14]
9 [16  0  0  4  8  2  9  8 15 38]

metal, pop , rock and reggae mess up together

window_size = 2048 => freq resolution = 10.7 Hz k = 16 accuracy = 0.437

[[48  1  0  7  3  2 13 11  5 10]
[ 0 72  2 17  4  5  0  0  0  0]
[ 0  3 88  9  0  0  0  0  0  0]
[19 17  3 39  6  0  6  3  2  5]
[11  8  0  4 27  3  7  9 17 14]
[14 18  1  5 10 40  1  2  4  5]
[25  4  8  8  2  1 20  6  6 20]
[21  3  0  1  8  0  1 18 37 11]
[ 3  0  0  2 11  0  4 21 45 14]
[ 5  0  0  0  5  0 10 18 22 40]]

###Results:

scikits.talkbox only works for python2.X, so need to create a new virtual environment to compute the mfcc features and store them into the .npy file then switch to python3 for classification.

##SVM with linear kernal For C: 0.010000, train_score=0.511500, test_score=0.463000 () For C: 1.000000, train_score=0.496750, test_score=0.468000 () For C: 5.000000, train_score=0.496750, test_score=0.460000 () For C: 10.000000, train_score=0.493500, test_score=0.463000 () #after normalized For C: 1000000.000000, train_score=0.674500, test_score=0.476000

##Random Forest For n_tree: 500.000000, train_score=0.999250, test_score=0.506000

[[61  0  0  2  3  0 10 10  6  8]
[ 0 90  1  6  0  3  0  0  0  0]
[ 0  4 92  4  0  0  0  0  0  0]
[17 12  1 43  2  2 10  4  4  5]
[17  1  0  3 29  4  4 11 20 11]
[13  9  1  4  8 49  5  3  4  4]
[28  2  6  7  2  2 30  2  3 18]
[24  0  0  0  2  0  1 21 44  8]
[ 9  0  0  0  7  1  4 22 46 11]
[ 5  0  0  1  3  1 10 14 21 45]]

##Neural Network

need pip install --upgrade https://github.com/Lasagne/Lasagne/archive/master.zip --user

input: 23 hidden: 200 output: 10

('train score: ', 0.4025) ('test score: ', 0.325)

TODO

  1. derive avg time between spikes