-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
41 lines (32 loc) · 1.34 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
<HTML>
<HEAD>
<TITLE> nwf's notes on category theory </TITLE>
</HEAD>
<BODY>
<H1> nwf's notes on category theory </H1>
<UL>
<LI> <A href="ctcheat.pdf">ctcheat.pdf</a> The all-in-one (or at least,
as-far-as-I've-gotten-in-one) glossary. It attempts to make quantifiers
explicit in diagrams, because people have found that very helpful.</LI>
<LI> <A href="adjoints-diag.pdf">adjoints-diag.pdf</A> works out the left
and right adjoints to the diagonal product functor. Specifically, Σ ⊣ ∆ ⊣
Π. </LI>
<LI> <A href="bifunctors.pdf">bifunctors.pdf</a> Notes on bifunctors as in
the excellent paper <A
href="http://www.cs.ox.ac.uk/people/daniel.james/functor/functor.pdf">Functional
Pearl: F for Functor</A>. This attempts to slow down and flesh out the
discussion a little bit.</LI>
<LI> <A href="ends.pdf">ends.pdf</a> extends <A
href="bifunctors.pdf">bifunctors.pdf</a> to consider the ends of
profunctors, especially as pertains to functional programming languages with
higher-order (i.e. non-prenex) quantification.
<LI> <A href="monads.pdf">monads.pdf</a> is some old notes about categorical
monads and Haskell.</LI>
<LI> <A href="yoneda.pdf">yoneda.pdf</a> Some worked examples leading up to
the Yoneda Lemma.</LI>
</UL>
TeX for all of this is up at
<A href="https://github.com/nwf/ctcheat">github</A>. <p/>
More forthcoming, I'm sure.
</BODY>
</HTML>