From 634a85b6adc4ef166065e3f39092ca854a2d44e0 Mon Sep 17 00:00:00 2001 From: Oege Dijk Date: Sat, 28 Dec 2024 22:15:09 +0100 Subject: [PATCH] fix deprecation warnings --- RELEASE_NOTES.md | 7 ++++++- explainerdashboard/explainer_methods.py | 15 +++++++++------ explainerdashboard/explainers.py | 4 ++-- 3 files changed, 17 insertions(+), 9 deletions(-) diff --git a/RELEASE_NOTES.md b/RELEASE_NOTES.md index c4ac0a6..6489a3b 100644 --- a/RELEASE_NOTES.md +++ b/RELEASE_NOTES.md @@ -1,6 +1,11 @@ # Release Notes +## Version 0.4.8: + +### Bug Fixes +- fix deprecated needs_proba parameter in make_scorer + ## Version 0.4.7: @@ -10,7 +15,7 @@ - Remove is_categorical_dtype as it is getting deprecated ### Improvements -- M +- - diff --git a/explainerdashboard/explainer_methods.py b/explainerdashboard/explainer_methods.py index 6997197..a8e11ef 100644 --- a/explainerdashboard/explainer_methods.py +++ b/explainerdashboard/explainer_methods.py @@ -53,19 +53,22 @@ from joblib import Parallel, delayed -def append_dict_to_df(df, row_dict): +def append_dict_to_df(df: pd.DataFrame, row_dict: dict) -> pd.DataFrame: """Appends a row to the dataframe 'df' and returns the new dataframe. Args: df (pd.DataFrame) data frame - row_dict (dict): row data Returns: pd.DataFrame """ - return pd.concat([df, pd.DataFrame([row_dict])], ignore_index=True) + if not row_dict: + return df + # Create new DataFrame with same dtypes as input df + new_row_df = pd.DataFrame([row_dict], columns=df.columns).astype(df.dtypes) + return pd.concat([df, new_row_df], ignore_index=True) class IndexNotFoundError(Exception): @@ -625,11 +628,11 @@ def permutation_importances( if isinstance(metric, str): scorer = make_scorer( - metric, greater_is_better=greater_is_better, needs_proba=needs_proba + metric, greater_is_better=greater_is_better, response_method="predict_proba" if needs_proba else "predict" ) elif not needs_proba or pos_label is None: scorer = make_scorer( - metric, greater_is_better=greater_is_better, needs_proba=needs_proba + metric, greater_is_better=greater_is_better, response_method="predict" ) else: scorer = make_one_vs_all_scorer(metric, pos_label, greater_is_better) @@ -1105,7 +1108,7 @@ def get_precision_df( for i in range(n_classes): new_row_dict["precision_" + str(i)] = np.mean(targets == i) - new_row_df = pd.DataFrame(new_row_dict, columns=precision_df.columns) + new_row_df = pd.DataFrame(new_row_dict, columns=precision_df.columns).astype(precision_df.dtypes) precision_df = pd.concat([precision_df, new_row_df]) last_p_max = preds.max() diff --git a/explainerdashboard/explainers.py b/explainerdashboard/explainers.py index 34b9cfe..fb876cb 100644 --- a/explainerdashboard/explainers.py +++ b/explainerdashboard/explainers.py @@ -954,7 +954,7 @@ def ordered_cats(self, col, topx=None, sort="alphabet", pos_label=None): index=self.get_col(col), ) .abs() - .groupby(level=0) + .groupby(level=0, observed=False) .mean() .sort_values(ascending=False) .index.tolist() @@ -966,7 +966,7 @@ def ordered_cats(self, col, topx=None, sort="alphabet", pos_label=None): index=self.get_col(col), ) .abs() - .groupby(level=0) + .groupby(level=0, observed=False) .mean() .sort_values(ascending=False) .nlargest(topx)