Skip to content

Latest commit

 

History

History
235 lines (162 loc) · 6.13 KB

README.md

File metadata and controls

235 lines (162 loc) · 6.13 KB

mud-aw.py 🧱🐍

A Python API for MUD worlds

Handle hundreds of bots across multiple chains on multiple worlds

Python tools for:

  • Querying MUD tables
  • Creating Python game wrappers
  • Interacting with MUD worlds

Use Cases

  • Create data dashboards for MUD worlds
  • Automate in-game actions
  • Build game-specific libraries for player interactions

Installation

pip install mud-aw.py

or build from source

cd mud-aw.py
pip install -e .

Possibilities

from mud import World, Player
from IPython.display import display

#Create world objects
biomes = World(rpc, world_address, abi_dir, indexer_url, mud_config_path)
cafecosmos = World(c_rpc, c_world_address, c_abi_dir, c_indexer_url, c_mud_config_path)
primodium = World(p_rpc, p_world_address, p_abi_dir, p_indexer_url, p_mud_config_path)

#Load player(s) and link worlds
player = Player(env_key_name="PLAYER1")
player.add_world(biomes, "biomes")
player.add_world(cafecosmos, "cafecosmos")
player.add_world(primodium, "primodium")

#Execute onchain actions
player.biomes.mine(...) 
player.cafecosmos.placeItem(...)
player.primodium.fight(...)

#Query indexer
player.biomes.indexer.Map.get(x=1, y=2, z=1) #filter by row
player.cafecosmos.indexer.Inventory.get(landId=1337)
player.primodium.indexer.Alliance.get() #returns every entry in that table

#Download multiple or single world tables from the indexer as Pandas DataFrames with optional filtering params
biomes_tables_dfs = player.biomes.indexer.dl_tables_as_dataframes() #dl every table as dataframes
cafecosmos_inventories_df = player.cafecosmos.indexer.Inventory.to_dataframe() #dl individual tables

#Display DataFrames
display(biomes_tables_dfs["Map"])
display(cafecosmos_inventories_df)

Key Components

MUD Indexer SDK

The MUD Indexer SDK provides a simplified interface for querying MUD tables.

Inputs:

  • MUD Indexer URL
  • World Address
  • Path to the mud.config.ts file

fast_compressed_mud_sdk

  1. Individual Table Downloads: Query individual tables and download their data as Pandas DataFrames.
    crafting_recipe_df = sdk.tables.CraftingRecipe.to_dataframe()
  2. Batch Table Downloads: Download all tables as DataFrames for analysis.
    all_tables = sdk.dl_tables_as_dataframes()
    print(all_tables["CraftingRecipe"].head())

World Class

The World class allows you to interact with a MUD world and its smart contract functions. It dynamically registers functions based on the ABI, providing type-safe access and auto-completion in your IDE.

Features:

  • Smart Contract Integration: Interact with world contract functions directly.
  • Dynamic Typing: Input arguments and return types are dynamically typed based on the ABI.
  • Integrated Indexer: Optionally link the MUD Indexer for seamless access to table data.

Player Class

The Player class simplifies interactions with a MUD world for a specific player. It can:

  • Derive the player address from a private key
  • Automatically sign and send transactions
  • Dynamically wrap world functions for player-specific interactions

Usage

1. Initialize the World

The World class connects to a MUD world and optionally integrates the MUD Indexer.

from mud import World

abi_dir = "./path/to/abis_directory"
rpc = "https://rpc.mudchain.com"
world_address = "0x123...abc"
indexer_url = "https://indexer.mudchain.com"
mud_config_path = "./path/to/mud.config.ts"

# Initialize the World with an optional indexer
world = World(
    rpc=rpc,
    world_address=world_address,
    abi_dir=abi_dir,
    indexer_url=indexer_url,
    mud_config_path=mud_config_path
)

2. Access Contract Functions

Functions from the world's ABI are dynamically registered on the World instance with type-safe signatures.

# Call a smart contract function directly
land_items = world.getLandItems(user="0x123...")
print(land_items)

# Use IDE auto-completion for arguments and types
world.placeItem(x=1, y=2, z=3, itemId=42)

3. Query Tables with the Indexer

If the world is linked to a MUD Indexer, you can query tables directly.

# Fetch all entries from the Inventory table
inventories = world.indexer.Inventory.get()

# Filter entries by playerId and itemId
player_inventory = world.indexer.Inventory.get(playerId=PLAYER_ID, itemId=ITEM_ID)

# Limit results
limited_inventories = world.indexer.Inventory.get(limit=500)

Table Querying Methods:

  • Download Individual Tables

    crafting_recipe_df = sdk.tables.CraftingRecipe.to_dataframe()
    print(crafting_recipe_df)
  • Batch Download All Tables

    all_tables_df = sdk.dl_tables_as_dataframes()
    print(all_tables_df["CraftingRecipe"])

4. Initialize a Player

The Player class wraps interactions for a specific player.

from mud import Player

private_key = "0xYourPrivateKey"

# Initialize the Player
player = Player(private_key=private_key)

# Link the World to the Player
player.add_world(world, "cafecosmos")

# Call functions directly through the Player
player.cafecosmos.placeItem(x=1, y=1, z=1, itemId=100)

You can also load the private key from an environment variable:

player = Player(env_key_name="PLAYER1")

Features

  • Dynamic Table Registration: Automatically register tables and schemas defined in a MUD configuration file.
  • SQL-like Queries: Query tables with filtering.
  • Smart Contract Interactions: Access world contract functions dynamically.
  • Player-Specific Wrappers: Automate transactions and player actions.
  • Individual and Batch Table Downloads: Flexible methods for accessing table data as DataFrames.

Contributing

  1. Fork the repository.
  2. Create a new feature branch.
  3. Submit a pull request.