forked from thuml/Transfer-Learning-Library
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mmt.py
464 lines (398 loc) · 22.4 KB
/
mmt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
"""
@author: Baixu Chen
@contact: [email protected]
"""
import random
import time
import warnings
import argparse
import os.path as osp
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import DataParallel
import torch.backends.cudnn as cudnn
from torch.optim import Adam
from torch.utils.data import DataLoader
from sklearn.cluster import KMeans, DBSCAN
import utils
import tllib.vision.datasets.reid as datasets
from tllib.vision.datasets.reid.convert import convert_to_pytorch_dataset
from tllib.vision.models.reid.identifier import ReIdentifier
from tllib.vision.models.reid.loss import CrossEntropyLossWithLabelSmooth, SoftTripletLoss, CrossEntropyLoss
from tllib.self_training.mean_teacher import EMATeacher
from tllib.vision.transforms import MultipleApply
from tllib.utils.metric.reid import extract_reid_feature, validate, visualize_ranked_results
from tllib.utils.data import ForeverDataIterator, RandomMultipleGallerySampler
from tllib.utils.metric import accuracy
from tllib.utils.meter import AverageMeter, ProgressMeter
from tllib.utils.logger import CompleteLogger
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def main(args: argparse.Namespace):
logger = CompleteLogger(args.log, args.phase)
print(args)
if args.seed is not None:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
cudnn.benchmark = True
# Data loading code
train_transform = utils.get_train_transform(args.height, args.width, args.train_resizing,
random_horizontal_flip=True, random_color_jitter=False,
random_gray_scale=False, random_erasing=True)
val_transform = utils.get_val_transform(args.height, args.width)
print("train_transform: ", train_transform)
print("val_transform: ", val_transform)
working_dir = osp.dirname(osp.abspath(__file__))
source_root = osp.join(working_dir, args.source_root)
target_root = osp.join(working_dir, args.target_root)
# source dataset
source_dataset = datasets.__dict__[args.source](root=osp.join(source_root, args.source.lower()))
val_loader = DataLoader(
convert_to_pytorch_dataset(list(set(source_dataset.query) | set(source_dataset.gallery)),
root=source_dataset.images_dir,
transform=val_transform),
batch_size=args.batch_size, num_workers=args.workers, shuffle=False, pin_memory=True)
# target dataset
target_dataset = datasets.__dict__[args.target](root=osp.join(target_root, args.target.lower()))
cluster_loader = DataLoader(
convert_to_pytorch_dataset(target_dataset.train, root=target_dataset.images_dir, transform=val_transform),
batch_size=args.batch_size, num_workers=args.workers, shuffle=False, pin_memory=True)
test_loader = DataLoader(
convert_to_pytorch_dataset(list(set(target_dataset.query) | set(target_dataset.gallery)),
root=target_dataset.images_dir, transform=val_transform),
batch_size=args.batch_size, num_workers=args.workers, shuffle=False, pin_memory=True)
# create model
model_1, model_1_ema = create_model(args, args.pretrained_model_1_path)
model_2, model_2_ema = create_model(args, args.pretrained_model_2_path)
# resume from the best checkpoint
if args.phase != 'train':
checkpoint = torch.load(logger.get_checkpoint_path('best'), map_location='cpu')
utils.copy_state_dict(model_1_ema, checkpoint)
# analysis the model
if args.phase == 'analysis':
# plot t-SNE
utils.visualize_tsne(source_loader=val_loader, target_loader=test_loader, model=model_1_ema,
filename=osp.join(logger.visualize_directory, 'analysis', 'TSNE.pdf'), device=device)
# visualize ranked results
visualize_ranked_results(test_loader, model_1_ema, target_dataset.query, target_dataset.gallery, device,
visualize_dir=logger.visualize_directory, width=args.width, height=args.height,
rerank=args.rerank)
return
if args.phase == 'test':
print("Test on Source domain:")
validate(val_loader, model_1_ema, source_dataset.query, source_dataset.gallery, device, cmc_flag=True,
rerank=args.rerank)
print("Test on target domain:")
validate(test_loader, model_1_ema, target_dataset.query, target_dataset.gallery, device, cmc_flag=True,
rerank=args.rerank)
return
# define loss function
num_classes = args.num_clusters
criterion_ce = CrossEntropyLossWithLabelSmooth(num_classes).to(device)
criterion_ce_soft = CrossEntropyLoss().to(device)
criterion_triplet = SoftTripletLoss(margin=0.0).to(device)
criterion_triplet_soft = SoftTripletLoss(margin=None).to(device)
# optionally resume from a checkpoint
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
utils.copy_state_dict(model_1, checkpoint['model_1'])
utils.copy_state_dict(model_1_ema, checkpoint['model_1_ema'])
utils.copy_state_dict(model_2, checkpoint['model_2'])
utils.copy_state_dict(model_2_ema, checkpoint['model_2_ema'])
args.start_epoch = checkpoint['epoch'] + 1
# start training
best_test_mAP = 0.
for epoch in range(args.start_epoch, args.epochs):
# run clustering algorithm and generate pseudo labels
if args.clustering_algorithm == 'kmeans':
train_target_iter = run_kmeans(cluster_loader, model_1, model_2, model_1_ema, model_2_ema, target_dataset,
train_transform, args)
elif args.clustering_algorithm == 'dbscan':
train_target_iter, num_classes = run_dbscan(cluster_loader, model_1, model_2, model_1_ema, model_2_ema,
target_dataset, train_transform, args)
# define cross entropy loss with current number of classes
criterion_ce = CrossEntropyLossWithLabelSmooth(num_classes).to(device)
# define optimizer
optimizer = Adam(model_1.module.get_parameters(base_lr=args.lr, rate=args.rate) + model_2.module.get_parameters(
base_lr=args.lr, rate=args.rate), args.lr, weight_decay=args.weight_decay)
# train for one epoch
train(train_target_iter, model_1, model_1_ema, model_2, model_2_ema, optimizer, criterion_ce, criterion_ce_soft,
criterion_triplet, criterion_triplet_soft, epoch, args)
if (epoch + 1) % args.eval_step == 0 or (epoch == args.epochs - 1):
# save checkpoint and remember best mAP
torch.save(
{
'model_1': model_1.state_dict(),
'model_1_ema': model_1_ema.state_dict(),
'model_2': model_2.state_dict(),
'model_2_ema': model_2_ema.state_dict(),
'epoch': epoch
}, logger.get_checkpoint_path(epoch)
)
print("Test model_1 on target domain...")
_, test_mAP_1 = validate(test_loader, model_1_ema, target_dataset.query, target_dataset.gallery,
device, cmc_flag=True, rerank=args.rerank)
print("Test model_2 on target domain...")
_, test_mAP_2 = validate(test_loader, model_2_ema, target_dataset.query, target_dataset.gallery,
device, cmc_flag=True, rerank=args.rerank)
if test_mAP_1 > test_mAP_2 and test_mAP_1 > best_test_mAP:
torch.save(model_1_ema.state_dict(), logger.get_checkpoint_path('best'))
best_test_mAP = test_mAP_1
if test_mAP_2 > test_mAP_1 and test_mAP_2 > best_test_mAP:
torch.save(model_2_ema.state_dict(), logger.get_checkpoint_path('best'))
best_test_mAP = test_mAP_2
print("best mAP on target = {}".format(best_test_mAP))
logger.close()
def create_model(args: argparse.Namespace, pretrained_model_path: str):
num_classes = args.num_clusters
backbone = utils.get_model(args.arch)
pool_layer = nn.Identity() if args.no_pool else None
model = ReIdentifier(backbone, num_classes, finetune=args.finetune, pool_layer=pool_layer).to(device)
model = DataParallel(model)
# load pretrained weights
pretrained_model = torch.load(pretrained_model_path)
utils.copy_state_dict(model, pretrained_model)
# EMA model
model_ema = EMATeacher(model, args.alpha)
return model, model_ema
def run_kmeans(cluster_loader: DataLoader, model_1: DataParallel, model_2: DataParallel, model_1_ema: EMATeacher,
model_2_ema: EMATeacher, target_dataset, train_transform, args: argparse.Namespace):
# run kmeans clustering algorithm
print('Clustering into {} classes'.format(args.num_clusters))
# collect feature with different ema teachers
feature_dict_1 = extract_reid_feature(cluster_loader, model_1_ema, device, normalize=True)
feature_1 = torch.stack(list(feature_dict_1.values())).cpu().numpy()
feature_dict_2 = extract_reid_feature(cluster_loader, model_2_ema, device, normalize=True)
feature_2 = torch.stack(list(feature_dict_2.values())).cpu().numpy()
# average feature_1, feature_2 to create final feature
feature = (feature_1 + feature_2) / 2
km = KMeans(n_clusters=args.num_clusters, random_state=args.seed).fit(feature)
cluster_labels = km.labels_
cluster_centers = km.cluster_centers_
print('Clustering finished')
# normalize cluster centers and convert to pytorch tensor
cluster_centers = torch.from_numpy(cluster_centers).float().to(device)
cluster_centers = F.normalize(cluster_centers, dim=1)
# reinitialize classifier head
model_1.module.head.weight.data.copy_(cluster_centers)
model_2.module.head.weight.data.copy_(cluster_centers)
model_1_ema.module.head.weight.data.copy_(cluster_centers)
model_2_ema.module.head.weight.data.copy_(cluster_centers)
# generate training set with pseudo labels
target_train_set = []
for (fname, _, cid), label in zip(target_dataset.train, cluster_labels):
target_train_set.append((fname, int(label), cid))
sampler = RandomMultipleGallerySampler(target_train_set, args.num_instances)
train_target_loader = DataLoader(
convert_to_pytorch_dataset(target_train_set, root=target_dataset.images_dir,
transform=MultipleApply([train_transform, train_transform])),
batch_size=args.batch_size, num_workers=args.workers, sampler=sampler, pin_memory=True, drop_last=True)
train_target_iter = ForeverDataIterator(train_target_loader)
return train_target_iter
def run_dbscan(cluster_loader: DataLoader, model_1: DataParallel, model_2: DataParallel, model_1_ema: EMATeacher,
model_2_ema: EMATeacher, target_dataset, train_transform, args: argparse.Namespace):
# run dbscan clustering algorithm
# collect feature with different ema teachers
feature_dict_1 = extract_reid_feature(cluster_loader, model_1_ema, device, normalize=True)
feature_1 = torch.stack(list(feature_dict_1.values())).cpu()
feature_dict_2 = extract_reid_feature(cluster_loader, model_2_ema, device, normalize=True)
feature_2 = torch.stack(list(feature_dict_2.values())).cpu()
# average feature_1, feature_2 to create final feature
feature = (feature_1 + feature_2) / 2
feature = F.normalize(feature, dim=1)
rerank_dist = utils.compute_rerank_dist(feature).numpy()
print('Clustering with dbscan algorithm')
dbscan = DBSCAN(eps=0.7, min_samples=4, metric='precomputed', n_jobs=-1)
cluster_labels = dbscan.fit_predict(rerank_dist)
print('Clustering finished')
# generate training set with pseudo labels and calculate cluster centers
target_train_set = []
cluster_centers = {}
for i, ((fname, _, cid), label) in enumerate(zip(target_dataset.train, cluster_labels)):
if label == -1:
continue
target_train_set.append((fname, label, cid))
if label not in cluster_centers:
cluster_centers[label] = []
cluster_centers[label].append(feature[i])
cluster_centers = [torch.stack(cluster_centers[idx]).mean(0) for idx in sorted(cluster_centers.keys())]
cluster_centers = torch.stack(cluster_centers)
# normalize cluster centers
cluster_centers = F.normalize(cluster_centers, dim=1).float().to(device)
# reinitialize classifier head
features_dim = model_1.module.features_dim
num_clusters = len(set(cluster_labels)) - (1 if -1 in cluster_labels else 0)
model_1.module.head = nn.Linear(features_dim, num_clusters, bias=False).to(device)
model_2.module.head = nn.Linear(features_dim, num_clusters, bias=False).to(device)
model_1_ema.module.head = nn.Linear(features_dim, num_clusters, bias=False).to(device)
model_2_ema.module.head = nn.Linear(features_dim, num_clusters, bias=False).to(device)
model_1.module.head.weight.data.copy_(cluster_centers)
model_2.module.head.weight.data.copy_(cluster_centers)
model_1_ema.module.head.weight.data.copy_(cluster_centers)
model_2_ema.module.head.weight.data.copy_(cluster_centers)
sampler = RandomMultipleGallerySampler(target_train_set, args.num_instances)
train_target_loader = DataLoader(
convert_to_pytorch_dataset(target_train_set, root=target_dataset.images_dir,
transform=MultipleApply([train_transform, train_transform])),
batch_size=args.batch_size, num_workers=args.workers, sampler=sampler, pin_memory=True, drop_last=True)
train_target_iter = ForeverDataIterator(train_target_loader)
return train_target_iter, num_clusters
def train(train_target_iter: ForeverDataIterator, model_1: DataParallel, model_1_ema: EMATeacher, model_2: DataParallel,
model_2_ema: EMATeacher, optimizer: Adam, criterion_ce: CrossEntropyLossWithLabelSmooth,
criterion_ce_soft: CrossEntropyLoss, criterion_triplet: SoftTripletLoss,
criterion_triplet_soft: SoftTripletLoss, epoch: int, args: argparse.Namespace):
# train with pseudo labels
batch_time = AverageMeter('Time', ':4.2f')
data_time = AverageMeter('Data', ':3.1f')
# statistics for model_1
losses_ce_1 = AverageMeter('Model_1 CELoss', ':3.2f')
losses_triplet_1 = AverageMeter('Model_1 TripletLoss', ':3.2f')
cls_accs_1 = AverageMeter('Model_1 Cls Acc', ':3.1f')
# statistics for model_2
losses_ce_2 = AverageMeter('Model_2 CELoss', ':3.2f')
losses_triplet_2 = AverageMeter('Model_2 TripletLoss', ':3.2f')
cls_accs_2 = AverageMeter('Model_2 Cls Acc', ':3.1f')
losses_ce_soft = AverageMeter('Soft CELoss', ':3.2f')
losses_triplet_soft = AverageMeter('Soft TripletLoss', ':3.2f')
losses = AverageMeter('Loss', ':3.2f')
progress = ProgressMeter(
args.iters_per_epoch,
[batch_time, data_time, losses_ce_1, losses_triplet_1, cls_accs_1, losses_ce_2, losses_triplet_2, cls_accs_2,
losses_ce_soft, losses_triplet_soft, losses],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
model_1.train()
model_2.train()
model_1_ema.train()
model_2_ema.train()
end = time.time()
for i in range(args.iters_per_epoch):
# below we ignore subscript `t` and use `x_1`, `x_2` to denote different augmented versions of origin samples
# `x_t` from target domain
(x_1, x_2), _, labels, _ = next(train_target_iter)
x_1 = x_1.to(device)
x_2 = x_2.to(device)
labels = labels.to(device)
# measure data loading time
data_time.update(time.time() - end)
# compute output
y_1, f_1 = model_1(x_1)
y_2, f_2 = model_2(x_2)
# compute output by ema-teacher
y_1_teacher, f_1_teacher = model_1_ema(x_1)
y_2_teacher, f_2_teacher = model_2_ema(x_2)
# cross entropy loss
loss_ce_1 = criterion_ce(y_1, labels)
loss_ce_2 = criterion_ce(y_2, labels)
# triplet loss
loss_triplet_1 = criterion_triplet(f_1, f_1, labels)
loss_triplet_2 = criterion_triplet(f_2, f_2, labels)
# soft cross entropy loss
loss_ce_soft = criterion_ce_soft(y_1, y_2_teacher) + \
criterion_ce_soft(y_2, y_1_teacher)
# soft triplet loss
loss_triplet_soft = criterion_triplet_soft(f_1, f_2_teacher, labels) + \
criterion_triplet_soft(f_2, f_1_teacher, labels)
# final objective
loss = (loss_ce_1 + loss_ce_2) * (1 - args.trade_off_ce_soft) + \
(loss_triplet_1 + loss_triplet_2) * (1 - args.trade_off_triplet_soft) + \
loss_ce_soft * args.trade_off_ce_soft + \
loss_triplet_soft * args.trade_off_triplet_soft
# update statistics
batch_size = args.batch_size
cls_acc_1 = accuracy(y_1, labels)[0]
cls_acc_2 = accuracy(y_2, labels)[0]
# model 1
losses_ce_1.update(loss_ce_1.item(), batch_size)
losses_triplet_1.update(loss_triplet_1.item(), batch_size)
cls_accs_1.update(cls_acc_1.item(), batch_size)
# model 2
losses_ce_2.update(loss_ce_2.item(), batch_size)
losses_triplet_2.update(loss_triplet_2.item(), batch_size)
cls_accs_2.update(cls_acc_2.item(), batch_size)
losses_ce_soft.update(loss_ce_soft.item(), batch_size)
losses_triplet_soft.update(loss_triplet_soft.item(), batch_size)
losses.update(loss.item(), batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# update teacher
global_step = epoch * args.iters_per_epoch + i + 1
model_1_ema.set_alpha(min(args.alpha, 1 - 1 / global_step))
model_2_ema.set_alpha(min(args.alpha, 1 - 1 / global_step))
model_1_ema.update()
model_2_ema.update()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if __name__ == '__main__':
dataset_names = sorted(
name for name in datasets.__dict__
if not name.startswith("__") and callable(datasets.__dict__[name])
)
parser = argparse.ArgumentParser(description="MMT for Domain Adaptative ReID")
# dataset parameters
parser.add_argument('source_root', help='root path of the source dataset')
parser.add_argument('target_root', help='root path of the target dataset')
parser.add_argument('-s', '--source', type=str, help='source domain')
parser.add_argument('-t', '--target', type=str, help='target domain')
parser.add_argument('--train-resizing', type=str, default='default')
# model parameters
parser.add_argument('-a', '--arch', metavar='ARCH', default='reid_resnet50',
choices=utils.get_model_names(),
help='backbone architecture: ' +
' | '.join(utils.get_model_names()) +
' (default: reid_resnet50)')
parser.add_argument('--num-clusters', type=int, default=500)
parser.add_argument('--no-pool', action='store_true', help='no pool layer after the feature extractor.')
parser.add_argument('--alpha', type=float, default=0.999, help='ema alpha')
parser.add_argument('--finetune', action='store_true', help='whether use 10x smaller lr for backbone')
parser.add_argument('--rate', type=float, default=0.2)
# training parameters
parser.add_argument('--clustering-algorithm', type=str, default='dbscan', choices=['kmeans', 'dbscan'],
help='clustering algorithm to run, currently supported method: ["kmeans", "dbscan"]')
parser.add_argument('--resume', type=str, default=None,
help="Where restore model parameters from.")
parser.add_argument('--pretrained-model-1-path', type=str, help='path to pretrained (source-only) model_1')
parser.add_argument('--pretrained-model-2-path', type=str, help='path to pretrained (source-only) model_2')
parser.add_argument('--trade-off-ce-soft', type=float, default=0.5,
help='the trade off hyper parameter between cross entropy loss and soft cross entropy loss')
parser.add_argument('--trade-off-triplet-soft', type=float, default=0.8,
help='the trade off hyper parameter between triplet loss and soft triplet loss')
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('-b', '--batch-size', type=int, default=64)
parser.add_argument('--height', type=int, default=256, help="input height")
parser.add_argument('--width', type=int, default=128, help="input width")
parser.add_argument('--num-instances', type=int, default=4,
help="each minibatch consist of "
"(batch_size // num_instances) identities, and "
"each identity has num_instances instances, "
"default: 4")
parser.add_argument('--lr', type=float, default=0.00035,
help="learning rate")
parser.add_argument('--weight-decay', type=float, default=5e-4)
parser.add_argument('--epochs', type=int, default=40)
parser.add_argument('--start-epoch', default=0, type=int, help='start epoch')
parser.add_argument('--eval-step', type=int, default=1)
parser.add_argument('--iters-per-epoch', type=int, default=400)
parser.add_argument('--print-freq', type=int, default=40)
parser.add_argument('--seed', default=None, type=int, help='seed for initializing training.')
parser.add_argument('--rerank', action='store_true', help="evaluation only")
parser.add_argument("--log", type=str, default='mmt',
help="Where to save logs, checkpoints and debugging images.")
parser.add_argument("--phase", type=str, default='train', choices=['train', 'test', 'analysis'],
help="When phase is 'test', only test the model."
"When phase is 'analysis', only analysis the model.")
args = parser.parse_args()
main(args)