Example scripts support all models in PyTorch-Image-Models. You need to install timm to use PyTorch-Image-Models.
pip install timm
Supported methods include:
-
An Information-theoretic Approach to Transferability in Task Transfer Learning (H-Score, ICIP 2019)
-
LEEP: A New Measure to Evaluate Transferability of Learned Representations (LEEP, ICML 2020)
The shell files give the scripts to ranking pre-trained models on a given dataset. For example, if you want to use LogME to calculate the transfer performance of ResNet50(ImageNet pre-trained) on Aircraft, use the following script
# Using LogME to ranking pre-trained ResNet50 on Aircraft
# Assume you have put the datasets under the path `data/cub200`,
# or you are glad to download the datasets automatically from the Internet to this path
CUDA_VISIBLE_DEVICES=0 python logme.py ./data/FGVCAircraft -d Aircraft -a resnet50 -l fc --save_features
We use LEEP, NCE HScore and LogME to compute scores by applying 10 pre-trained models to different datasets. The correlation(Weighted kendall Tau/Pearson Correlation) between scores and fine-tuned accuracies are presented.
Model | Finetuned Acc | HScore | LEEP | LogME | NCE |
---|---|---|---|---|---|
GoogleNet | 82.7 | 28.37 | -4.310 | 0.934 | -4.248 |
Inception V3 | 88.8 | 43.89 | -4.202 | 0.953 | -4.170 |
ResNet50 | 86.6 | 46.23 | -4.215 | 0.946 | -4.201 |
ResNet101 | 85.6 | 46.13 | -4.230 | 0.948 | -4.222 |
ResNet152 | 85.3 | 46.25 | -4.230 | 0.950 | -4.229 |
DenseNet121 | 85.4 | 31.53 | -4.228 | 0.938 | -4.215 |
DenseNet169 | 84.5 | 41.81 | -4.245 | 0.943 | -4.270 |
Densenet201 | 84.6 | 46.01 | -4.206 | 0.942 | -4.189 |
MobileNet V2 | 82.8 | 34.43 | -4.198 | 0.941 | -4.208 |
MNasNet | 72.8 | 35.28 | -4.192 | 0.948 | -4.195 |
Pearson Corr | - | 0.688 | 0.127 | 0.582 | 0.173 |
Weighted Tau | - | 0.664 | -0.264 | 0.595 | 0.002 |
Model | Finetuned Acc | HScore | LEEP | LogME | NCE |
---|---|---|---|---|---|
GoogleNet | 91.7 | 75.88 | -1.462 | 1.228 | -0.665 |
Inception V3 | 94.3 | 93.73 | -1.119 | 1.387 | -0.560 |
ResNet50 | 91.8 | 91.65 | -1.020 | 1.262 | -0.616 |
ResNet101 | 93.1 | 92.54 | -0.899 | 1.305 | -0.603 |
ResNet152 | 93.2 | 92.91 | -0.875 | 1.324 | -0.605 |
DenseNet121 | 91.9 | 75.02 | -0.979 | 1.172 | -0.609 |
DenseNet169 | 92.5 | 86.37 | -0.864 | 1.212 | -0.580 |
Densenet201 | 93.4 | 89.90 | -0.914 | 1.228 | -0.590 |
MobileNet V2 | 89.1 | 75.82 | -1.115 | 1.150 | -0.693 |
MNasNet | 91.5 | 77.00 | -1.043 | 1.178 | -0.690 |
Pearson Corr | - | 0.748 | 0.324 | 0.794 | 0.843 |
Weighted Tau | - | 0.721 | 0.127 | 0.697 | 0.810 |
Model | Finetuned Acc | HScore | LEEP | LogME | NCE |
---|---|---|---|---|---|
GoogleNet | 96.2 | 5.911 | -1.385 | 0.293 | -1.139 |
Inception V3 | 97.5 | 6.363 | -1.259 | 0.349 | -1.060 |
ResNet50 | 96.8 | 6.567 | -1.010 | 0.388 | -1.007 |
ResNet101 | 97.7 | 6.901 | -0.829 | 0.463 | -0.838 |
ResNet152 | 97.9 | 6.945 | -0.838 | 0.469 | -0.851 |
DenseNet121 | 97.2 | 6.210 | -1.035 | 0.302 | -1.006 |
DenseNet169 | 97.4 | 6.547 | -0.934 | 0.343 | -0.946 |
Densenet201 | 97.4 | 6.706 | -0.888 | 0.369 | -0.866 |
MobileNet V2 | 95.7 | 5.928 | -1.100 | 0.291 | -1.089 |
MNasNet | 96.8 | 6.018 | -1.066 | 0.304 | -1.086 |
Pearson Corr | - | 0.839 | 0.604 | 0.733 | 0.786 |
Weighted Tau | - | 0.800 | 0.638 | 0.785 | 0.714 |
Model | Finetuned Acc | HScore | LEEP | LogME | NCE |
---|---|---|---|---|---|
GoogleNet | 83.2 | 29.33 | -3.234 | 1.037 | -2.751 |
Inception V3 | 86.6 | 36.47 | -2.995 | 1.070 | -2.615 |
ResNet50 | 84.5 | 40.20 | -2.612 | 1.099 | -2.516 |
ResNet101 | 87.0 | 43.80 | -2.365 | 1.130 | -2.285 |
ResNet152 | 87.6 | 44.19 | -2.410 | 1.133 | -2.369 |
DenseNet121 | 84.8 | 32.13 | -2.665 | 1.029 | -2.504 |
DenseNet169 | 85.0 | 37.51 | -2.494 | 1.051 | -2.418 |
Densenet201 | 86.0 | 39.75 | -2.470 | 1.061 | -2.305 |
MobileNet V2 | 80.8 | 30.36 | -2.800 | 1.039 | -2.653 |
MNasNet | 83.9 | 32.05 | -2.732 | 1.051 | -2.643 |
Pearson Corr | - | 0.815 | 0.513 | 0.698 | 0.705 |
Weighted Tau | - | 0.775 | 0.659 | 0.790 | 0.654 |
Model | Finetuned Acc | HScore | LEEP | LogME | NCE |
---|---|---|---|---|---|
GoogleNet | 73.6 | 34.61 | -2.333 | 0.682 | 0.682 |
Inception V3 | 77.2 | 57.17 | -2.135 | 0.691 | 0.691 |
ResNet50 | 75.2 | 78.26 | -1.985 | 0.695 | 0.695 |
ResNet101 | 76.2 | 117.23 | -1.974 | 0.689 | 0.689 |
ResNet152 | 75.4 | 32.30 | -1.924 | 0.698 | 0.698 |
DenseNet121 | 74.9 | 35.23 | -2.001 | 0.670 | 0.670 |
DenseNet169 | 74.8 | 43.36 | -1.817 | 0.686 | 0.686 |
Densenet201 | 74.5 | 45.96 | -1.926 | 0.689 | 0.689 |
MobileNet V2 | 72.9 | 37.99 | -2.098 | 0.664 | 0.664 |
MNasNet | 72.8 | 38.03 | -2.033 | 0.679 | 0.679 |
Pearson Corr | - | 0.532 | 0.217 | 0.617 | 0.471 |
Weighted Tau | - | 0.416 | -0.004 | 0.550 | 0.083 |
Model | Finetuned Acc | HScore | LEEP | LogME | NCE |
---|---|---|---|---|---|
GoogleNet | 91.9 | 28.02 | -1.064 | 0.854 | -0.815 |
Inception V3 | 93.5 | 33.29 | -0.888 | 1.119 | -0.711 |
ResNet50 | 92.5 | 32.55 | -0.805 | 0.952 | -0.721 |
ResNet101 | 94.0 | 32.76 | -0.769 | 0.985 | -0.717 |
ResNet152 | 94.5 | 32.86 | -0.732 | 1.009 | -0.679 |
DenseNet121 | 92.9 | 27.09 | -0.837 | 0.797 | -0.753 |
DenseNet169 | 93.1 | 30.09 | -0.779 | 0.829 | -0.699 |
Densenet201 | 92.8 | 31.25 | -0.810 | 0.860 | -0.716 |
MobileNet V2 | 90.5 | 27.83 | -0.902 | 0.765 | -0.822 |
MNasNet | 89.4 | 27.95 | -0.854 | 0.785 | -0.812 |
Pearson Corr | - | 0.427 | -0.127 | 0.589 | 0.501 |
Weighted Tau | - | 0.425 | -0.143 | 0.502 | 0.119 |
Model | Finetuned Acc | HScore | LEEP | LogME | NCE |
---|---|---|---|---|---|
GoogleNet | 91.0 | 41.47 | -4.612 | 1.246 | -4.312 |
Inception V3 | 92.3 | 73.68 | -4.268 | 1.259 | -4.110 |
ResNet50 | 91.7 | 72.94 | -4.366 | 1.253 | -4.221 |
ResNet101 | 91.7 | 73.98 | -4.281 | 1.255 | -4.218 |
ResNet152 | 92.0 | 76.17 | -4.215 | 1.260 | -4.142 |
DenseNet121 | 91.5 | 45.82 | -4.437 | 1.249 | -4.271 |
DenseNet169 | 91.5 | 63.40 | -4.286 | 1.252 | -4.175 |
Densenet201 | 91.0 | 70.50 | -4.319 | 1.251 | -4.151 |
MobileNet V2 | 91.0 | 51.12 | -4.463 | 1.250 | -4.306 |
MNasNet | 88.5 | 51.91 | -4.423 | 1.254 | -4.338 |
Pearson Corr | - | 0.503 | 0.433 | 0.274 | 0.695 |
Weighted Tau | - | 0.638 | 0.703 | 0.654 | 0.750 |
Model | Finetuned Acc | HScore | LEEP | LogME | NCE |
---|---|---|---|---|---|
GoogleNet | 62.0 | 71.35 | -3.744 | 1.621 | -3.055 |
Inception V3 | 65.7 | 114.21 | -3.372 | 1.648 | -2.844 |
ResNet50 | 64.7 | 110.39 | -3.198 | 1.638 | -2.894 |
ResNet101 | 64.8 | 113.63 | -3.103 | 1.642 | -2.837 |
ResNet152 | 66.0 | 116.51 | -3.056 | 1.646 | -2.822 |
DenseNet121 | 62.3 | 72.16 | -3.311 | 1.614 | -2.945 |
DenseNet169 | 63.0 | 95.80 | -3.165 | 1.623 | -2.903 |
Densenet201 | 64.7 | 103.09 | -3.205 | 1.624 | -2.896 |
MobileNet V2 | 60.5 | 75.90 | -3.338 | 1.617 | -2.968 |
MNasNet | 60.7 | 80.91 | -3.234 | 1.625 | -2.933 |
Pearson Corr | - | 0.913 | 0.428 | 0.824 | 0.782 |
Weighted Tau | - | 0.918 | 0.581 | 0.748 | 0.873 |
If you use these methods in your research, please consider citing.
@inproceedings{bao_information-theoretic_2019,
title = {An Information-Theoretic Approach to Transferability in Task Transfer Learning},
booktitle = {ICIP},
author = {Bao, Yajie and Li, Yang and Huang, Shao-Lun and Zhang, Lin and Zheng, Lizhong and Zamir, Amir and Guibas, Leonidas},
year = {2019}
}
@inproceedings{nguyen_leep:_2020,
title = {LEEP: A New Measure to Evaluate Transferability of Learned Representations},
booktitle = {ICML},
author = {Nguyen, Cuong and Hassner, Tal and Seeger, Matthias and Archambeau, Cedric},
year = {2020}
}
@inproceedings{you_logme:_2021,
title = {LogME: Practical Assessment of Pre-trained Models for Transfer Learning},
booktitle = {ICML},
author = {You, Kaichao and Liu, Yong and Wang, Jianmin and Long, Mingsheng},
year = {2021}
}
@inproceedings{tran_transferability_2019,
title = {Transferability and hardness of supervised classification tasks},
booktitle = {ICCV},
author = {Tran, Anh T. and Nguyen, Cuong V. and Hassner, Tal},
year = {2019}
}