diff --git a/Dialects/krnl.md b/Dialects/krnl.md
index 0e6c8a065c..4a9a3da08d 100644
--- a/Dialects/krnl.md
+++ b/Dialects/krnl.md
@@ -453,7 +453,7 @@ in the `value` dense element attribute.
Traits: `AlwaysSpeculatableImplTrait`, `MemRefsNormalizable`
-Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)`
+Interfaces: `ConditionallySpeculatable`, `KrnlGlobalOpInterface`, `NoMemoryEffect (MemoryEffectOpInterface)`
Effects: `MemoryEffects::Effect{}`
diff --git a/Dialects/onnx.md b/Dialects/onnx.md
index 38d6eac50e..3996ad35d6 100644
--- a/Dialects/onnx.md
+++ b/Dialects/onnx.md
@@ -529,7 +529,7 @@ AveragePool consumes an input tensor X and applies average pooling across
```
output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - dilation[i] * (kernel_shape[i] - 1) - 1) / strides_spatial_shape[i] + 1)
```
- if ceil_mode is enabled. `pad_shape[i]` is the sum of pads along axis `i`. Sliding windows that would start in the right padded region are ignored.
+ if ceil_mode is enabled. `pad_shape[i]` is the sum of pads along axis `i`.
`auto_pad` is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following when ceil_mode is enabled:
```
@@ -1701,15 +1701,15 @@ Effects: `MemoryEffects::Effect{}`
| Operand | Description |
| :-----: | ----------- |
-| `X` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
-| `W` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
-| `B` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values or none type
+| `X` | tensor of 16-bit float values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
+| `W` | tensor of 16-bit float values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
+| `B` | tensor of 16-bit float values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values or none type
#### Results:
| Result | Description |
| :----: | ----------- |
-| `Y` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
+| `Y` | tensor of 16-bit float values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
### `onnx.ConvTranspose` (ONNXConvTransposeOp)
@@ -2610,13 +2610,13 @@ Effects: `MemoryEffects::Effect{}`
| Operand | Description |
| :-----: | ----------- |
-| `input` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values or tensor of bfloat16 type values
+| `input` | tensor of bfloat16 type values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
#### Results:
| Result | Description |
| :----: | ----------- |
-| `output` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values or tensor of bfloat16 type values
+| `output` | tensor of bfloat16 type values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
### `onnx.Expand` (ONNXExpandOp)
@@ -3282,13 +3282,13 @@ Effects: `MemoryEffects::Effect{}`
| Operand | Description |
| :-----: | ----------- |
-| `X` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
+| `X` | tensor of bfloat16 type values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
#### Results:
| Result | Description |
| :----: | ----------- |
-| `Y` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
+| `Y` | tensor of bfloat16 type values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
### `onnx.GlobalMaxPool` (ONNXGlobalMaxPoolOp)
@@ -4817,7 +4817,7 @@ Effects: `MemoryEffects::Effect{}`
_ONNX MatMulInteger operation_
-Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html.
+Matrix product that behaves like [numpy.matmul](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html).
The production MUST never overflow. The accumulation may overflow if and only if in 32 bits.
Traits: `AlwaysSpeculatableImplTrait`
@@ -4845,7 +4845,7 @@ Effects: `MemoryEffects::Effect{}`
_ONNX MatMul operation_
-Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html
+Matrix product that behaves like [numpy.matmul](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html).
Traits: `AlwaysSpeculatableImplTrait`
@@ -4910,7 +4910,7 @@ MaxPool consumes an input tensor X and applies max pooling across
```
output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - dilation[i] * (kernel_shape[i] - 1) - 1) / strides_spatial_shape[i] + 1)
```
- if ceil_mode is enabled. `pad_shape[i]` is the sum of pads along axis `i`. Sliding windows that would start in the right padded region are ignored.
+ if ceil_mode is enabled. `pad_shape[i]` is the sum of pads along axis `i`.
`auto_pad` is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following when ceil_mode is enabled:
```
@@ -6611,7 +6611,7 @@ Effects: `MemoryEffects::Effect{}`
_ONNX QLinearMatMul operation_
-Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html.
+Matrix product that behaves like [numpy.matmul](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html).
It consumes two quantized input tensors, their scales and zero points, scale and zero point of output,
and computes the quantized output. The quantization formula is y = saturate((x / y_scale) + y_zero_point).
For (x / y_scale), it is rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding for details.
@@ -10215,13 +10215,13 @@ Effects: `MemoryEffects::Effect{}`
| Operand | Description |
| :-----: | ----------- |
-| `input` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values or tensor of bfloat16 type values
+| `input` | tensor of bfloat16 type values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
#### Results:
| Result | Description |
| :----: | ----------- |
-| `output` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values or tensor of bfloat16 type values
+| `output` | tensor of bfloat16 type values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values
### `onnx.TfIdfVectorizer` (ONNXTfIdfVectorizerOp)
diff --git a/Dialects/zhigh.md b/Dialects/zhigh.md
index 4780cbe551..0ce869bc1c 100644
--- a/Dialects/zhigh.md
+++ b/Dialects/zhigh.md
@@ -793,6 +793,8 @@ Effects: `MemoryEffects::Effect{}`
_ZHigh Stickified Constant operation_
This operator produces a constant tensor to store stickified data.
+`value` attribute has original constant or stickified constant.
+`stickified` attribute indicates the `value` is already stickified or not.
Stickified data is opaque and must be 4K-aligned. One who produces
the stickified data must make sure its size in bytes consistent with
the output tensor's size.
@@ -807,6 +809,7 @@ Effects: `MemoryEffects::Effect{}`
Attribute | MLIR Type | Description |
+stickified | ::mlir::BoolAttr | bool attribute |
value | ::mlir::Attribute | any attribute |
alignment | ::mlir::IntegerAttr | 64-bit signless integer attribute |
diff --git a/Dialects/zlow.md b/Dialects/zlow.md
index ba6907fced..4b1c3c3b81 100644
--- a/Dialects/zlow.md
+++ b/Dialects/zlow.md
@@ -752,6 +752,34 @@ Interfaces: `MemoryEffectOpInterface`
| `X` | memref of 16-bit float or 32-bit float values
| `Out` | memref of dlfloat16 type values
+### `zlow.stickifiedConstant` (::onnx_mlir::zlow::ZLowStickifiedConstantOp)
+
+_ZLow Stickified Constant operation._
+
+
+Traits: `MemRefsNormalizable`
+
+Interfaces: `KrnlGlobalOpInterface`
+
+#### Attributes:
+
+
+Attribute | MLIR Type | Description |
+shape | ::mlir::Attribute | any attribute |
+name | ::mlir::StringAttr | string attribute |
+stickified | ::mlir::BoolAttr | bool attribute |
+value | ::mlir::Attribute | any attribute |
+layout | ::mlir::StringAttr | string attribute |
+offset | ::mlir::IntegerAttr | 64-bit signless integer attribute |
+alignment | ::mlir::IntegerAttr | 64-bit signless integer attribute |
+
+
+#### Results:
+
+| Result | Description |
+| :----: | ----------- |
+| `output` | memref of dlfloat16 type values
+
### `zlow.sub` (::onnx_mlir::zlow::ZLowSubOp)
_ZLow sub operation_