diff --git a/Dialects/krnl.md b/Dialects/krnl.md index 0e6c8a065c..4a9a3da08d 100644 --- a/Dialects/krnl.md +++ b/Dialects/krnl.md @@ -453,7 +453,7 @@ in the `value` dense element attribute. Traits: `AlwaysSpeculatableImplTrait`, `MemRefsNormalizable` -Interfaces: `ConditionallySpeculatable`, `NoMemoryEffect (MemoryEffectOpInterface)` +Interfaces: `ConditionallySpeculatable`, `KrnlGlobalOpInterface`, `NoMemoryEffect (MemoryEffectOpInterface)` Effects: `MemoryEffects::Effect{}` diff --git a/Dialects/onnx.md b/Dialects/onnx.md index 38d6eac50e..3996ad35d6 100644 --- a/Dialects/onnx.md +++ b/Dialects/onnx.md @@ -529,7 +529,7 @@ AveragePool consumes an input tensor X and applies average pooling across ``` output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - dilation[i] * (kernel_shape[i] - 1) - 1) / strides_spatial_shape[i] + 1) ``` - if ceil_mode is enabled. `pad_shape[i]` is the sum of pads along axis `i`. Sliding windows that would start in the right padded region are ignored. + if ceil_mode is enabled. `pad_shape[i]` is the sum of pads along axis `i`. `auto_pad` is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following when ceil_mode is enabled: ``` @@ -1701,15 +1701,15 @@ Effects: `MemoryEffects::Effect{}` | Operand | Description | | :-----: | ----------- | -| `X` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values -| `W` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values -| `B` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values or none type +| `X` | tensor of 16-bit float values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values +| `W` | tensor of 16-bit float values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values +| `B` | tensor of 16-bit float values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values or none type #### Results: | Result | Description | | :----: | ----------- | -| `Y` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values +| `Y` | tensor of 16-bit float values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values ### `onnx.ConvTranspose` (ONNXConvTransposeOp) @@ -2610,13 +2610,13 @@ Effects: `MemoryEffects::Effect{}` | Operand | Description | | :-----: | ----------- | -| `input` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values or tensor of bfloat16 type values +| `input` | tensor of bfloat16 type values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values #### Results: | Result | Description | | :----: | ----------- | -| `output` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values or tensor of bfloat16 type values +| `output` | tensor of bfloat16 type values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values ### `onnx.Expand` (ONNXExpandOp) @@ -3282,13 +3282,13 @@ Effects: `MemoryEffects::Effect{}` | Operand | Description | | :-----: | ----------- | -| `X` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values +| `X` | tensor of bfloat16 type values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values #### Results: | Result | Description | | :----: | ----------- | -| `Y` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values +| `Y` | tensor of bfloat16 type values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values ### `onnx.GlobalMaxPool` (ONNXGlobalMaxPoolOp) @@ -4817,7 +4817,7 @@ Effects: `MemoryEffects::Effect{}` _ONNX MatMulInteger operation_ -Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html. +Matrix product that behaves like [numpy.matmul](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html). The production MUST never overflow. The accumulation may overflow if and only if in 32 bits. Traits: `AlwaysSpeculatableImplTrait` @@ -4845,7 +4845,7 @@ Effects: `MemoryEffects::Effect{}` _ONNX MatMul operation_ -Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html +Matrix product that behaves like [numpy.matmul](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html). Traits: `AlwaysSpeculatableImplTrait` @@ -4910,7 +4910,7 @@ MaxPool consumes an input tensor X and applies max pooling across ``` output_spatial_shape[i] = ceil((input_spatial_shape[i] + pad_shape[i] - dilation[i] * (kernel_shape[i] - 1) - 1) / strides_spatial_shape[i] + 1) ``` - if ceil_mode is enabled. `pad_shape[i]` is the sum of pads along axis `i`. Sliding windows that would start in the right padded region are ignored. + if ceil_mode is enabled. `pad_shape[i]` is the sum of pads along axis `i`. `auto_pad` is a DEPRECATED attribute. If you are using them currently, the output spatial shape will be following when ceil_mode is enabled: ``` @@ -6611,7 +6611,7 @@ Effects: `MemoryEffects::Effect{}` _ONNX QLinearMatMul operation_ -Matrix product that behaves like numpy.matmul: https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.matmul.html. +Matrix product that behaves like [numpy.matmul](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html). It consumes two quantized input tensors, their scales and zero points, scale and zero point of output, and computes the quantized output. The quantization formula is y = saturate((x / y_scale) + y_zero_point). For (x / y_scale), it is rounding to nearest ties to even. Refer to https://en.wikipedia.org/wiki/Rounding for details. @@ -10215,13 +10215,13 @@ Effects: `MemoryEffects::Effect{}` | Operand | Description | | :-----: | ----------- | -| `input` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values or tensor of bfloat16 type values +| `input` | tensor of bfloat16 type values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values #### Results: | Result | Description | | :----: | ----------- | -| `output` | tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values or tensor of bfloat16 type values +| `output` | tensor of bfloat16 type values or tensor of 16-bit float values or tensor of 32-bit float values or tensor of 64-bit float values ### `onnx.TfIdfVectorizer` (ONNXTfIdfVectorizerOp) diff --git a/Dialects/zhigh.md b/Dialects/zhigh.md index 4780cbe551..0ce869bc1c 100644 --- a/Dialects/zhigh.md +++ b/Dialects/zhigh.md @@ -793,6 +793,8 @@ Effects: `MemoryEffects::Effect{}` _ZHigh Stickified Constant operation_ This operator produces a constant tensor to store stickified data. +`value` attribute has original constant or stickified constant. +`stickified` attribute indicates the `value` is already stickified or not. Stickified data is opaque and must be 4K-aligned. One who produces the stickified data must make sure its size in bytes consistent with the output tensor's size. @@ -807,6 +809,7 @@ Effects: `MemoryEffects::Effect{}` +
AttributeMLIR TypeDescription
stickified::mlir::BoolAttrbool attribute
value::mlir::Attributeany attribute
alignment::mlir::IntegerAttr64-bit signless integer attribute
diff --git a/Dialects/zlow.md b/Dialects/zlow.md index ba6907fced..4b1c3c3b81 100644 --- a/Dialects/zlow.md +++ b/Dialects/zlow.md @@ -752,6 +752,34 @@ Interfaces: `MemoryEffectOpInterface` | `X` | memref of 16-bit float or 32-bit float values | `Out` | memref of dlfloat16 type values +### `zlow.stickifiedConstant` (::onnx_mlir::zlow::ZLowStickifiedConstantOp) + +_ZLow Stickified Constant operation._ + + +Traits: `MemRefsNormalizable` + +Interfaces: `KrnlGlobalOpInterface` + +#### Attributes: + + + + + + + + + + +
AttributeMLIR TypeDescription
shape::mlir::Attributeany attribute
name::mlir::StringAttrstring attribute
stickified::mlir::BoolAttrbool attribute
value::mlir::Attributeany attribute
layout::mlir::StringAttrstring attribute
offset::mlir::IntegerAttr64-bit signless integer attribute
alignment::mlir::IntegerAttr64-bit signless integer attribute
+ +#### Results: + +| Result | Description | +| :----: | ----------- | +| `output` | memref of dlfloat16 type values + ### `zlow.sub` (::onnx_mlir::zlow::ZLowSubOp) _ZLow sub operation_