-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
Copy pathmetafile.yml
134 lines (128 loc) · 4.25 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
Collections:
- Name: Generalized Focal Loss
Metadata:
Training Data: COCO
Training Techniques:
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- Generalized Focal Loss
- FPN
- ResNet
Paper:
URL: https://arxiv.org/abs/2006.04388
Title: 'Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection'
README: configs/gfl/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.2.0/mmdet/models/detectors/gfl.py#L6
Version: v2.2.0
Models:
- Name: gfl_r50_fpn_1x_coco
In Collection: Generalized Focal Loss
Config: configs/gfl/gfl_r50_fpn_1x_coco.py
Metadata:
inference time (ms/im):
- value: 51.28
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.2
Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_1x_coco/gfl_r50_fpn_1x_coco_20200629_121244-25944287.pth
- Name: gfl_r50_fpn_ms-2x_coco
In Collection: Generalized Focal Loss
Config: configs/gfl/gfl_r50_fpn_ms-2x_coco.py
Metadata:
inference time (ms/im):
- value: 51.28
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_mstrain_2x_coco/gfl_r50_fpn_mstrain_2x_coco_20200629_213802-37bb1edc.pth
- Name: gfl_r101_fpn_ms-2x_coco
In Collection: Generalized Focal Loss
Config: configs/gfl/gfl_r101_fpn_ms-2x_coco.py
Metadata:
inference time (ms/im):
- value: 68.03
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 44.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126-dd12f847.pth
- Name: gfl_r101-dconv-c3-c5_fpn_ms-2x_coco
In Collection: Generalized Focal Loss
Config: configs/gfl/gfl_r101-dconv-c3-c5_fpn_ms-2x_coco.py
Metadata:
inference time (ms/im):
- value: 77.52
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 47.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth
- Name: gfl_x101-32x4d_fpn_ms-2x_coco
In Collection: Generalized Focal Loss
Config: configs/gfl/gfl_x101-32x4d_fpn_ms-2x_coco.py
Metadata:
inference time (ms/im):
- value: 82.64
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 45.9
Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco/gfl_x101_32x4d_fpn_mstrain_2x_coco_20200630_102002-50c1ffdb.pth
- Name: gfl_x101-32x4d-dconv-c4-c5_fpn_ms-2x_coco
In Collection: Generalized Focal Loss
Config: configs/gfl/gfl_x101-32x4d-dconv-c4-c5_fpn_ms-2x_coco.py
Metadata:
inference time (ms/im):
- value: 93.46
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 24
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 48.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco_20200630_102002-14a2bf25.pth