-
Notifications
You must be signed in to change notification settings - Fork 9.5k
/
cascade-rcnn_hrnetv2p-w32-20e_coco.py
51 lines (51 loc) · 1.49 KB
/
cascade-rcnn_hrnetv2p-w32-20e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
_base_ = '../cascade_rcnn/cascade-rcnn_r50_fpn_1x_coco.py'
model = dict(
backbone=dict(
_delete_=True,
type='HRNet',
extra=dict(
stage1=dict(
num_modules=1,
num_branches=1,
block='BOTTLENECK',
num_blocks=(4, ),
num_channels=(64, )),
stage2=dict(
num_modules=1,
num_branches=2,
block='BASIC',
num_blocks=(4, 4),
num_channels=(32, 64)),
stage3=dict(
num_modules=4,
num_branches=3,
block='BASIC',
num_blocks=(4, 4, 4),
num_channels=(32, 64, 128)),
stage4=dict(
num_modules=3,
num_branches=4,
block='BASIC',
num_blocks=(4, 4, 4, 4),
num_channels=(32, 64, 128, 256))),
init_cfg=dict(
type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w32')),
neck=dict(
_delete_=True,
type='HRFPN',
in_channels=[32, 64, 128, 256],
out_channels=256))
# learning policy
max_epochs = 20
train_cfg = dict(max_epochs=max_epochs)
param_scheduler = [
dict(
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
dict(
type='MultiStepLR',
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[16, 19],
gamma=0.1)
]